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Abstract

Medical image registration techniques are of particular importance to improve and facili-

tate working with images of the body interior. The main idea in medical image registration

is to find a transformation that maps a source image as close as possible to a target image

by determining a corresponding position for each point of the source. To find a map-

ping between two images that takes anatomic variabilities into account, the respective

transformation must be non-linear.

In this thesis, an algorithm is implemented that calculates a non-linear transformation

to register 2D or 3D images. The transformation estimation is based on a block-matching

technique that identifies a displacement field between two images. Using this set of cor-

respondences as sampling points, the transformation is approximated by cubic B-Spline

functions. In order to compute the approximation, a Least Squares estimator is employed

which is extended in a second step to a weighted Least Squares approach to gain robust-

ness. The minimization is solved by the conjugate gradient algorithm.

For a high accuracy of the result, the transformation estimation is performed in an

iterative manner that is in addition nested in a pyramidal approach. For reasons of noise

influence and lack of sampling points in homogeneous regions, a biharmonic regulariza-

tion term is integrated to smooth the unfavourable effects.

Results are presented obtained by experiments on different artificial testing images

as well as on images of histological slices of the brain. As highlighted, the non-linear

approach yields satisfying registration results for most ...?.

The implementation of the B-Spline transformation completes a program that registrates

two images fully automatically in a linear or non-linear way.
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C H A P T E R 1

Introduction

In 1895, the German physicist W.Roentgen discovered the first technique to see the inside

of a three-dimensional structure without opening it when he found the phenomenon of the

X-rays. Since then, a multitude of methods to gain visual access to the interior of a closed

body has been developed. They are applied in a wide range of different areas to produce

images; in this thesis, we deal with their application to medical images.

1.1 General Scope

Nowadays, medical images are widely used in health-care and biomedical research; the

vast advantage to analyze the state and function of organs without actually having to

perform a surgical operation is exploited in the most ways possible. Depending on the

purpose, different methodologies to obtain the images are used. X-ray computed tomog-

raphy (CT), for example, is able to represent tissue densities and atomic compositions

whereas magnetic resonance imaging (MRI) is sensitive to proton density and relaxation

times. Utilizing contrast agents (e.g. for an angiography) provides information on the per-

meability and function of tubular structures like blood vessels or organ ducts. The images

of the body interior help the physician to diagnose a pathology, to examine the effect of

a medication, or to evaluate the results of a surgery. Very often, he has to compare one

image to another to analyse their feature differences and to draw a conclusion. A lot of

image processing tools using computers have been developed to support the physicians

doing these analyses.
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The term image registration covers all procedures that are applied to align images with

the intention to determine a relation between their corresponding features. The image

registration process transforms one image (the source) to resemble another image (the

target). Establishing the correspondences of spatial information between two images by

an image registration is fundamental to medical image interpretation and analysis.

The two images to be registrated might be acquired with different sensors, in which case

the operation is called multimodal registration. When registrating two images produced

by the same kind of sensor at different times, the process is referred to as monomodal

registration. There exist 2D-to-2D, 3D-to-3D and 2D-to-3D registration appliances, how-

ever, the registration of multiple 3D images such as MR and CT volumes is the most

common concerning medical informatics approaches.

Medical image registration inter alia provides the means

� to compare two images in an analytical way, e.g. to survey a region of the body

before and after a surgery,

� to fuse anatomical and functional information, e.g. to detect the accurate position

of a tumor obtained by MRI in the skull (obtained by CT),

� to map an image to an atlas image, e.g. to do an automatic segmentation of the

bones of the pelvis.

In this thesis, a method to registrate two- or three-dimensional monomodal images using

an algorithm based on B-Splines is presented. Its implementation extends already existing

program called Baladin. Baladin was created to align two-dimensional histological

slices of the brain in order to form a three-dimensional brain model. It calculates linear

(rigid and affine) transformations using a block-matching technique (see sections 2.1 and

2.2) [1].

The objective of this thesis is the development of a non-linear transformation class to

upgrade the usage options of the Baladin program. The non-linear transformation esti-

mation is realized by determining a B-Spline approximation of the desired transformation

that is finally integrated in the Baladin program.

The content of the thesis is structured as follows:
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In section 1.2, the issue of image registration as the domain where this thesis belongs is

described elaborately.

In chapter 2 the knowledge and data where we start from are presented, that is, the block-

matching algorithm, the program Baladin and the fusion of those three subjects forming

the topic of this thesis are specified.

In chapter 3, the spline functions B-splines and their properties are defined and depicted.

In chapter 4 the application of B-spline functions to the transformation problem at hand

is explained with all customization required.

Chapter 5 deals with the details of how the wanted transformation is calculated on basis

of the algorithms that are implemented in the Baladin program.

In chapter 6 specifications concerning the functions used as well as the implementation

of the algorithms are given.

Following, chapter 7 presents and discusses the results. Concluding, chapter 8 summa-

rizes the outcomes and gives an outlook on the measures to be taken next.

The subsequent part of chapter 1 is subdivided in the following sections:

In section 1.2 an overview on the subject ’Image Registration’ as well as the mathemati-

cal notation of image representation is given. In section 2.1 the block-matching algorithm

is introduced and explained in detail. In section 2.2 the program Baladin and its fea-

tures are described whereas section 2.3 depicts the idea and advantages of a non-linear

registration.

1.2 Image Registration

Let �	� be the source image whereas � � denotes the target image of the registration prob-

lem. In medical imaging, we deal either with 2D or 3D images. Next, we define the

continuous image volume functions:

Definition 1.1 Continuous Image Functions in 3D:

�	� � ��������� 	
��� �	�� 	
�� (1.1)

and ��� � � � ����� 	���� ���� 	���
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In reality, images obtained by the sensors described above are never continuous functions

but sampled on a regular grid, hence, they are defined on a discrete pixel or voxel basis.

Here, “pixel” is the abbreviation for “picture element”, and “voxel” stands for “volume

element”. The pixels divide a 2D space into a collection of uniform rectangles whereas

the voxels divide a 3D space into a collection of uniform cuboids. Hence, a medical image

� is represented by its collection of voxel (or pixel) values. Each value �  	
�� specifies the

grey scale intensity of the respective voxel at position
	
 .

In practice, we have to pay attention to the fact that the voxels are defined over a three-

dimensional grid, that is over
� � and

� � respectively where the voxel sizes are usually

neither standardized nor cubic. It holds:

�	� � � � � ��� 	
�� � � � 	
 �� �	�� 	
 � (1.2)

and ��� � � � � ��� 	��� � � � 	���� ���� 	�����

It is important to distinguish the voxel coordinates from the world (or real) coordinates

when working with the image volumes.

Registrating two images ��� and ��� means searching for each voxel of ��� a correspond-

ing position in ��� . To describe all correspondences, we introduce a transformation or

mapping function � that assigns a new position
	
 �  � to each position

	
 of image ��� :

� � � � � � � � �  	
 � � 	
 �  � �

� describes the relationship between two images regarding their features.

To determine the transformation � different approaches that depend on the characteristics

of the problem at hand have been developed, three of them are introduced in the follow-

ing:

The landmark-based registration is based upon identifying corresponding point land-

marks in the two images. Using the information about their positions in the source and

in the target image the algorithm calculates a transformation � that minimizes the differ-

ences between the deformed source ensemble and the target ensemble of points.

For the surface-based registration the surface features are segmented in the two images

before the transformation � is computed by minimizing a certain kind of distance mea-

sure between them.
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Different from the two registration algorithms described above, the voxel-intensity-based

registration method works directly on the intensities of the two images; there are no re-

quirements to segment corresponding structures. This type of registration uses a large

portion of the image data, hence, it tends to average out any errors that are caused by

noise [3, 4].

The simplest applications are the alignment of two images of the same modality showing

the same subject or the alignment of two slices of the same image volume. The idea is to

deform the source image in a way that the maximum of the similarity measure between

the corresponding voxels of source and target image is found. The most intuitive way to

determine the degree of similarity is to sum up all squared differences (sum of squared

differences, SSD) between the intensities of the corresponding voxels, yet, this method

works only for images of the same modality. In that case, alignment is adjusted until the

smallest SSD is found [5].

Definition 1.2 Sum of Squared Differences:

����� � �� � ���
	 ���� 	�
�
��� �	��
 �  � ��  	


�
� � 	  (1.3)

with ��� being the target image, ����
 �	�� being the deformed source image and
	�
�
� 	

�

the �
voxels they are built out of.

For images of different modalities, the registration methods are often based on statistical

relationships between voxel values (for more information see [21]).

There are various transformation classes used in the registration algorithms described

above. They are defined by the space of research where the transformation � is calculated,

therefore, the transformation classes have different degrees of freedom. Moreover, we

distinguish between linear and non-linear registration methods. Actually, the term linear

in this context is mathematically not correct as a linear transformation � between two

vector spaces � and � with � ��� � � fulfills

� �� ��� �  � � � �� � � � � ��  � � � � � �  � � and

� ���� � � � � �� � � for any scalar �
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only if the translation term is neglected [7].

Below, the most common transformation classes are described [3], [6]:

� Rigid transformations are linear transformations that allow one rotation � and one

translation � to align the two images. The standard three-dimensional representation

looks like this:

�  	
�� � � 	
 � � � 	
 � � �
(1.4)

with � being a matrix of dimension ����� and � being a vector of dimension ����� .
Matrix � contains three rotations of angles 	�
 � 	� � 	�� , � � ��
�������� with

��
 �
����
�
� � �
� ����� �	
 � � ����� �	 
 �
� ����� �	 
 � �!��� "	 
 �

#�$$$
%

determining the rotation around the x-axis and �&� and �'� the rotations around the y-

and the z-axis respectively (see their appearance in appendix A). Thus, a rigid trans-

formation in 3D contains 6 parameters of degrees of freedom. It is used e.g. when

registrating two images of the same object merely in a different position or orienta-

tion.

� Affine transformations are linear transformations that preserve the parallelism, i.e.

all points of the image lying on a line before the transformation will still lie on a

line afterwards. Therefore, affine transformations allow to obtain torsion, shearing,

compression and extension of features, its three-dimensional representation looks

like this:

�  	
 � �)( �+* ( �",-� 	
 � � � 	
�� � � �
(1.5)

with
( �"* being the matrix that contains the scaling parameters and

( �", being the

matrix that contains the shearing parameters for each direction (details see appendix

A). Affine transformations have 12 degrees of freedom and are used e.g. when

registering an image with an atlas image or for the initialisation of all non-linear

registration algorithms.
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� Non-linear transformations must be applied when the two images in question pos-

sess some kind of features that cannot be aligned with an affine transformation

because the features do not correspond with respect to the parameters of an affine

transformation. This occurs e.g. when bones of different persons are to be regis-

tered to obtain patient-atlas mapping or when registrating intestines of the same

patient taken at different times. In the first case, the anatomical variabilities have to

be incorporated what is not possible with a linear transformation. The second case

presents the problem of ’soft tissue deformations’ that must be taken into account.

When performing a linear transformation on an image, each voxel position is de-

formed with the same kind of operation, e.g. a multiplication with a certain matrix.

In contrast to this, when applying a non-linear transformation to an image each

voxel position is assigned a value that depends e.g. on the characteristics of the

voxel environment. According to [8] three principal types of non-linear algorithms

to estimate the transformation can be classified:

– Competitive algorithms use an energy term that regularizes the transformation

estimation. A typical example are the elastic registrations where the deforma-

tion is modeled as a physical process which resembles the stretching of elastic

material such as rubber.

– Fluid algorithms constrain the transformation to evolve in a continuous man-

ner to arrive at the solution. These registration technics are utilized to model

highly localized deformations.

– Parametric algorithms work with parametric transformation representations

like polynomials or splines.

Most non-linear registration can be formulated as an optimization problem whose

goal is to minimize an associated cost function like

� � � � �
�
�

�
�����
�
� � � ��� 	��
�� � � �

�

 � �

� �
�
�

�
�����
�
� � stands for the similarity between the source and the target image whereas

��� ��
	� � � �
�

 � characterizes the cost function associated with the deformation which

is often a measure for its smoothness.
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Analysis of the Problem Environment

In this thesis, we want to create a program that registrates two images with a non-linear

transformation in a fully-automatical way. The program will use the outputs of a block-

matching algorithm that is applied to the two images as input for its transformation es-

timation. Finally, the program will extend already existing program called Baladin

(Epidaure Project, INRIA, Sophia Antipolis) which does a linear transformation estima-

tion.

This chapter is subdivided in the following manner:

In section 2.1, the block-matching algorithm with all its options concerning the functional

background and the similarity measures is described. In section 2.2, the capacities of the

Baladin program as well as its execution in a multiscale approach are depicted.

Section 2.3 presents the non-linear registration idea and explains the realization of the

non-linear transformation estimation using the block-matchinig algorithm.

2.1 The Block-Matching Algorithm

The block-matching algorithm is one of the two principal components that are succes-

sively executed to estimate the transformation here introduced. It works on the iconic

features of the images. Prior to depicting its properties and functions in detail, below the

block-matching algorithm is placed in its context regarding the registration algorithm:

Let �	� be our source and ��� be our target image volume. We search a transformation �
that registrates �	� and ��� . The transformation � will be estimated with a non-linear algo-

rithm (see section 2.3). The algorithm belongs to the so-called category Pair-and-Smooth,
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where two phases are distinguished that are executed alternately. The first phase works on

the voxel intensity similarities (see section 2.3) to determine a correspondence whereas

the second phase smoothes this result. To do so, we have to perform the following steps:

1. We identify corresponding point pairs  	
���� � 	������� between �	� and ��� that form a set

of matches or a sparse displacement field.

2. We calculate the transformation parameters based on the set of matches (see section

4.1).

The first step is realized by using a block-matching algorithm. Block-Matching algo-

rithms find correspondences between local iconic features, therefore their appliance is

well-suited for registrations where local deformations play a major role. The goal of

applying the block-matching algorithm in the registration process is to receive a sparse

displacement field as its output. The sparse displacement field is a set of matches where

a number of point pairs that indicate the correspondences of voxels of the source image

with voxels of the target image is stored. This information is used to estimate the image

transformation � [9, 10].

2.1.1 Matching the Blocks

To obtain the sparse displacement field, we cut ��� into an ensemble of possibly overlap-

ping subimages that we call blocks. Next, each block
�

is moved around in the volume

��� in order to find the position where its voxels hold the highest degree of intensity sim-

ilarity with the voxels of � � (see figure 2.1). (In section 2.1.2, the similarity measure

will be discussed.) When that position is found, the coordinates of the centers (
	
	� � 	�
� ) of

the respective corresponding blocks are stored as a displacement vector associated to the

center position of the source image block.

Subsequently, the displacement vectors are used as sampling points to calculate the para-

metric transformation � so that for each source voxel the corresponding target voxel is

determined.

To obtain the optimal result, there are 4 scheme parameters that can be modified so the

algorithm works ideally according to the registration task at hand [2, 11, 12]:
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I TI S

Figure 2.1: The block-matching algorithm. For the grey shaded block in image � � the position
that features the greatest similarity in image � � is searched. The search region is limited to a
certain zone around the respective center coordinates of the block.

� The size � of the blocks is defined as � � �� 
 � � � � � � � . Taking into account the

possible anisotropy of the image axes, � 
 , � � and � � can be assigned different values

so not to weight one direction more than another. A big block size diminishes the

influence of noise in the images but also the locality of the measures. Hence, a big

block size reduces the fineness of details that will be retrieved.

� In most cases, the position of the target block that offers the highest similarity de-

gree will be close to the respective position of the source block. Therefore, it is

suggested to constrain the region of the correspondence research to a zone around

the source block position. The size � of this ’research neighbourhood’ is defined as

� � ���� 
 � ��� � � ��� � � .
� According to the characteristics of the images to registrate, the sparse displacement

field can be chosen to be more or less dense. We introduce to that effect the pa-

rameter � � �� 
 � � � � ��� � that represents the distance between two consecutive

blocks (the blocks may well overlap each other). � �  � � � � � � e.g. describes a

vector density of one sampling point per voxel, however, to reduce the computing

time, bigger distances are proposed.

When there is no a priori knowledge about the image, the vectors should be uni-

formly distributed.

� The classical approach is to compare our source block to all of the blocks being

contained in � , that is, to do an exhaustive research in the neighbourhood. Though,
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on the assumption that the similarity measure obtained by comparing the block

voxels is convex we can, for instance, examine just one voxel out of two and con-

sider that the solution found by that method is close to the real solution. Then,
� � � 
 ��� � ��� � represents the resolution of the sparse displacement field with
� 
 ��� � ��� � describing the voxel distances between the research positions inside the

neighbourhood. Choosing
� 
 ��� � ��� ��� � reduces the computing time.

2.1.2 The Similarity Measure

The iconic criteria provide a measure for the similarity between the iconic features of the

images regarding a certain position. The similarity is evaluated using a chosen distance

measure comparing the voxel intensities of the images. The classical hypothesis used

states that the distance measure diminishes in a reciprocally proportional manner with the

quality of the registration.

To explain the different types of distance measures, we have to introduce some notations

first: When performing a registration based on iconic features, joint histograms are a tool

to determine the type of intensity relations. Let ��� and ��� be defined over the voxel grids
� � and

� � and let voxel
	
 of �	� correspond to voxel

	� of � � at the respective position. It

holds:

�	� � � � � � � � (2.1)

��� � � � ��� � �

Here,
� � ��� � represent the ensembles of colors possibly found in the images. It is

� � ��� � ��� � � �
	
	�� .
In a joint histogram  ���� � ��� � the probabilities that ��� � � and ��� ���

with � � � � and
� � � � are displayed (see figure 2.2). Given two identical images ��� and ��� , the joint

histogram will show a perfect diagonal.

Considering the images as random variables, the values of the joint histogram can be in-

terpreted like a probability density. The probability value �
�
� expresses henceforth the

probability that a randomly chosen voxel pair  	
 � 	� � will bear the intensity combination
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Figure 2.2: Example for a joint histogram. The axes display the intensities of image � � and image
� � in a grey scale. The number of voxel pairs with intensities ��������� is represented with a circle,
the darker the circle the greater the number.

+� � � � . It holds

�
�
� � � � �� (2.2)

with � being the sum of all voxel pairs and � � � being the number of voxel pairs with

intensities +� � � � .
The choice of the distance measure depends on the intensity relations between the two

images to be registrated. The simplest approach relies on the assumption that the only

difference between the two images after the registration will be a Gaussian noise. In

that case, the Sum of Squared Differences (SSD 	 ) or the Sum of Absolute Differences

(SAD 	 ) are utilized to compare the transformed image ����
 �  � with the target image � �
(see equations below). It is defined

� ��� 	��� ��
 �	�� � ��� � � �
�
�
�
�  ��

 � � 
� �  �� ( � 	 ��	��
 �	�� � ��� � � �

�
�
�
�� ��

 � � 
� �

where ��

 and
� 
� are the intensities of the corresponding voxel positions

	
 and
	� of the

two images to be compared. The number of voxels is given with � . As can be seen, the
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intensity differences are weighted with �
�
� which is a measure for the occurrence of an

intensity combination  � � � � (see equation (2.2)). In most cases, we work with images

that differ more than just by Gaussian noise, hence, we assume that an affine relation

between the two images exists. Here, � � � � ��� ��� holds denoting a linear relation

with � � � � �
and � being a Gaussian noise. The distance measure utilized is called

correlation coefficient � which is defined by

�
 �� ��
 �	�� � ��� � � � � ����� ��� � �
	 �� ��
 �	�� � ��� � ����������� �	 ��	��
 �	 � � ����������� �	 ���� � (2.3)

where
� � ����� ��� � �
	 �� ��
 �	�� � ��� � � �� �

�
+� 

 ���� ��
 �  � �  � 
� ������ �

and ����� ��� � �
	 �� � � �� �
�
 ��

 � �� �  �

��	��
 �	 � and ���� denote the average intensity of the source and the target image respectively.

In the Baladin program, the correlation coefficient is the distance measure of choice.

In one block of the histological slices to be registrated mostly just two types of tissues

are found, therefore, a linear relation between the intensities comprised in the blocks is

probable [1].

2.2 The Baladin Program

The Baladin program realizes a three-dimensional registration method that is based on

a local matching of iconic features combined with a global estimation of the transforma-

tion. Baladin registrates on voxel basis and fully automatically. The first version of

the program (Aladin) was implemented at the Epidaure project, Inria, Sophia Antipolis

in 2002, see [1], to facilitate the construction of a three-dimensional histological atlas by

aligning its two-dimensional histological slices. The revised version now used is called

Baladin.
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2.2.1 Capacities of Baladin

To obtain a local matching of the iconic features of the image volumes � � and ��� , Bal-

adin applies the block-matching algorithm (see section 2.1) to the images, hence, a set

of matches is created so that for a number of source voxels the corresponding target voxels

are known. Those corresponding voxel position pairs  	
	� � 	��� � are called sampling points.

Thereupon, the transformation � is estimated that assigns each voxel of the source im-

age a corresponding voxel of the target image. The desired transformation �� smoothly

extrapolates the correspondence to the whole space while minimizing the displacement

error on the sampling points:

�� � � � ��� ����� � �  � � ���
T

The parameter � � � � �
describes the difference between the deformed source voxel

of position
	
 � and its corresponding target voxel of position

	� � , thus, � � � �  	
 � � � 	��� .
The function �  � � � � � � �

denotes the norm of that measure. If a least-squares

approach is used then �  � � � � 	 � � 	  holds. To ensure the robustness of the algorithm, a

more elaborate idea utilizes a weighted least-squares estimation. Here, each displacement

vector is furnished with a weighting coefficient (or confidence value) that regulates its

influence in the search for the transformation. The value of the weight depends on the

intensity variance in the target region around the original center of the respective source

image block. A low variance presents a high risk to find an ’optimal’ position that is

incorrect because the blocks contained in the neighbourhood do not differ much in their

similarity measures. Hence, a displacement vector belonging to a block showing a low

variance is equipped with a small weight whereas a displacement vector situated in a

region of high variance is weighted with a great value. The estimator implemented in the

Baladin program is called least-trimmed-squares (LST) estimator. Here, the sampling

points having values that differ too much from the average sampling point values are

eliminated so that in the end only 60% of the sampling points computed by the block-

matching algorithm are used as input for the transformation estimation.

The transformation classes implemented in the Baladin program to calculate � are



16 Analysis of the Problem Environment

linear, it can be chosen between a rigid and an affine approach, that is

�  	
 � � � 	
 � � or

�  	
 � � ( �"* ( ��,-� 	
 � �
as described in chapter 1.2.

To obtain an improved result, the block-matching algorithm and the subsequent transfor-

mation estimation are repeatedly applied to the two image volumes. In each new iteration

step, the deformed source image of the last step serves as new source image (for fur-

ther details see chapter 5) so that the estimation of the final transformation � consists of

several transformations that are concatenated.

2.2.2 The Multiscale Approach

As described in section 2.1, there are different parameter values to be chosen in the block-

matching algorithm to meet best the requirements of the application. An iteratively re-

peated exhaustive search of blocks of small sizes in big neighbourhoods would yield a

high quality result, but the computational time may be unacceptably long. To avoid this

and still gain the advantages of the iterating approach, Baladin realizes a multiscale

approach that is based on a reduction algorithm, also known as Gaussian and Laplacian

pyramids. The basic idea is introduced in the following:

While the representation of fine scales requires the full resolution, coarser scales can be

represented at a lower resolution. A coarser scale image means that here a certain quantity

of pixels of the full resolution image will be represented as just one pixel, this process is

referred to as subsampling. It leads to a succession of images that become smaller and

smaller with increasing coarseness of the scale, therefore, it is called a ’pyramid’. When

subsampling an image, the ’Nyquist Theorem’ has to be taken into account, that is, when

we do not want to lose information by subsampling an image, the minimum sampling rate

must be greater than the double of the maximal frequency of our image structures. To

ensure this, an adapted smoothing filter must be applied to the image before sampling.

The classical approach is to fix the base size of the pyramid (= the original image) to a

power of 2. When acting on the assumption that we utilize an image of size � ��� ��� �

� � � � � � � � the different levels � of the pyramid are obtained by dividing the respective
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Figure 2.3: 2D quarternaire Gaussian pyramid. From one level to the next, the number of pixels
is quadrupled. Each parent pixel possesses four children, each child possesses one parent.

previous level size by 2. Therefore, the size 	 	 � 	
	 �-��� 	�� of level 	 is calculated like

	 	 � 	
	 ����� 		� � � �� � � � �� � � � �� � �

Hence, the pyramid is made out of 	 � � 
 �������   � � � � levels (see figure 2.3) [13].

In Baladin, the multiscale strategy is applied in the following way: The image is re-

peatedly subsampled so that a Gaussian pyramid is built until the image of level 	 reaches

the same size as the chosen size � � �� 
 � � � � � � � of the blocks. On this image, the block-

matching algorithm followed by a transformation estimation is applied iteratively until

a satisfying result is achieved. In the next step, this transformation is approximated on

the previous level 	 � � of the Gaussian pyramid, then the block-matching algorithm and

the transformation estimation are applied and so forth. As the size of the blocks stays

the same in each level, the relative size of the blocks compared to the image volume is

decreased in each step, and the block-matching algorithm moves from being global at the

beginning to being local at the end.

2.3 Non-Linear Registration Using Block-Matching

As mentioned in section 2.2.1, the transformation classes solving the registration problem

that are implemented in Baladin are linear transformation classes. The linear regis-
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Block−Matching Algorithm

displacement field

Estimating transformation
non−linear

Estimating transformation
linear

Baladin

Figure 2.4: The Baladin program is extended with a non-linear transformation class. The ex-
tension will use the same block-matching algorithm as Baladin to obtain the displacement field
as input.

tration method works well for e.g. registrating bone images of one modality that come

from the same patient. However, images of the same structure that come from different

patients will bear characteristics that cannot be registrated with an affine transformation

alone as the variabilities of the features come into play. The features vary in a way that

a linear function cannot represent. Here, we have to determine and apply a non-linear

transformation. On this account, we want to extend the Baladin program with a new

transformation class that is non-linear. We will present another way to work on the output

of the block-matching algorithm, so to say the set of matches. By using the given dis-

placement vectors as sampling points for an approximation, we will obtain a non-linear

transformation estimation (see figure 2.4).

In order to find the transformation � that registrates the source image volume � � with

the target image volume � � , we want to compute a displacement vector
	

� for each voxel

coordinate  
 � � � � � of �	� :

Definition 2.1 Transformation:

� � ����� � � �
�  	
�� � 	
 � 	

�  	
�� � 	
 �  � � (2.4)
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 �  
 � � � � � � 3D coordinate of voxel position,

	
�  	
�� � 3D displacement vector of voxel at position  
 � � � � � �
	
 �	�� � 3D coordinate of the position of the transformed voxel �

We work on basis of the block-matching algorithm as input to the transformation estima-

tion. The block-matching algorithm is applied to ��� and ��� ; its output consists of a set

of
�

correspondent voxel pairs  	
�� ��	��� � with
	
 � � � � ,

	��� � � � and
� � � � ��� � (see

section 2.1).

We look for a way to determine the transformation � by exploiting our knowledge about

the ensemble of the N voxel pairs. They will serve as sampling points
	

�	�  	
 � � for the

displacement vectors
	

�  	
�� . It holds

	
� �  	
 � � � 	
 � � 	�
� � (2.5)

A classical approach to approximate a function when several sampling points are known

is to use B-Splines. They have mathematical advantages that renders them well adapted

for this task as well as numerical advantages that makes them suitable to be employed in

a program. In chapters 3 and 4.1 the numerical procedures based on B-Splines that are

executed to find the desired transformation � are explained in detail.
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B-Splines

In the first part of this chapter, a definition of B-Spline functions is given followed by a

description of their properties and an illustration of their characteristics. The second part

deals with a specific type of B-Spline functions, the cubic B-Splines.

A spline function is a piecewise polynomial function that is used to interpolate or ap-

proximate curves or volumes of which a certain number of sampling points is known. Let
� � � � � be a given interval and let ����� � � � � � � � � ����� be a given partition of

� � � � � with

knots �
�
� � � � � � � � � � � � � �

. The associated normalized B-Spline basis function
�

�

 � of

order k is defined in a recursive way as described in the following.

Definition 3.1 B-Spline basis function:

for
� � � � �

�

 �  � � � �	�
 � � for �

��
��� �

�
� �

� � �-��� 	 ����� � 	
for

� � � � �

�

 �  � � � � � �

�
�
�
���  � � �

�
�

�

 �  �  � � � �

�
��� � ��

�
��� � �

�
� � �

�
� � 
 �  �  � ��� (3.1)

B-Spline basis functions possess the characteristic traits depicted in the theorem below:

Theorem 3.1 Properties of B-Spline basis functions (see [14], chapter 4):
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� B-Spline basis functions have support only on the interval
� �
�
� �
�
��� � :

�

�

 �  � � � � for �

��
��� �

�
��� ,

�

�

 � � � for ���

�
��� �

�
and �

�
���

�
�
�
� � ��� �

� �

� � �� � � �

�

 �  � � � � for � � � ���  � � � � � � �

�
�

�

 �  � � has continuity

� �   at each of the knots �
�
.

� For equally spaced knots we refer to
�

�

 �  � � as uniform B-Splines, for non-equally

spaced knots they are called non-uniform B-Splines.

A B-Spline of order
�

is made out of B-Spline basis functions that are piecewise polyno-

mials of degree
� � � . If we impose a smooth continuity up to order

� � � of the spline

and its derivatives at the knots, there exists only one degree of freedom per basis function

[14].

A descriptive non-recursive way to model B-Splines uses a convolution approach, thus, a

B-Spline basis function of order
�

is constructed from the
�

-fold of a rectangular pulse

� � .

� �  
 � �

�
�
�
�	
�
�
�


 � � � � � 
 � �� � � 
 � � �
� � �-��� 	 ����� � 	

� �  
 � � � ��� � ��� � � � � � �
� ��� �

� � � times

� (3.2)

with 	 � � � � and � � � � �  � 
 �
for an interval

� �
�
� �
�
� � � that is centered around zero.

To illustrate their appearance, the basis functions of order � , � , and
�

are displayed in

figure 3.
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Figure 3.1: B-Spline basis function of different orders.

To create a B-Spline curve �  � � that approximates a function
� � �

we use a super-

position of the basis B-Spline functions of order
�

that were defined above.

Definition 3.2 B-Spline curve in 1D:

�  � � � ������ � � � �
�
�

�

 �  � � � �

�
� � � (3.3)

The B-Spline curve �  � � in the interval
� ��� � � � � is composed of the sum of � � �

overlap-

ping weighted B-Spline functions
�

�

 �  � � . Because of the local support of

�

�

 �  � � exactly

k B-Spline basis functions that are non-zero overlap in each interval
� �
�
� �
�
� � � .

The points
�
�

associated with
�

�

 � are called control points and serve as B-Spline coef-

ficients. (In the following we will always refer to the B-Spline coefficients as control

points.) To determine the B-Spline curve that approximates a given problem in the best

way possible, the optimal value for each control point has to be found. By doing so, each

piecewise polynomial B-Spline basis function in a B-Spline curve is equipped with its re-

spective control point value as coefficient. Thus, all B-Spline curves are unambiguously

characterized by their sequence of control points [15, 16].

Due to the fact that the basis functions have local support, each control point
� � influ-

ences �  � � only for � � � � � � � ��� . To ensure that all
�

basis functions are present in each

interval considered, we have to choose ��� � � � and � � � � �  � � � ��� � � [14]. If that was not

the case, the
� � � outermost intervals would be equipped with less than

�
overlapping

basis B-Spline functions.

A B-Spline curve � that approximates a function
� � � �

looks like described in equa-
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tion (3.3), except that now
�
�
� � �

(instead of
�
�
� �

) yields as the control points are

distributed in the 3D space. However, to approximate a function
� � � � �

in 3D with a

B-Spline volume in 3D, equation 3.3 needs to be extended.

Definition 3.3 B-Spline volume in 3D:

�  
 � � � � � �
����

 � �

����
� � �

����
� � � � 



 
 �  
 � � �
� 
 �  � � � �

� 
 �  � � � 
 
 � 
 � � �

 
 � 
 � � � � �

(3.4)

with ��
 , � � , and � � being the numbers of intervals in x-, y- and, z-direction, � � � ��� denot-

ing the position of the control point and
�

giving the value of the control point.

The function �  
 � � � � � represents the three-dimensional B-Spline volume built by the

3D tensor product of the 1D B-Spline functions
� 

 
 �  
 � , � �

� 
 �  � � and
� �� 
 �  � � that are all

of order
�

.

Each position  
 � � � � � in the volume is assigned to a point �  
 � � � � � in 3D space, that

is, the desired function is approximated in all three directions using three basis B-Splines
� 

 ,

� �� and
� �� . Thus, the control points here are also elements of

� �
and are arranged

in a regular 3D grid.

As deduced from equation 3.4 the three-dimensional cubic B-Spline volumes are defined

like this:

Definition 3.4 Cubic B-Spline volume in 3D:

� * � �
�
*  
 � � � � � � � ��


 � �
����
� � �

� ��
� � � � 



 
 �  
 � � �
� 
 �  � � � �

� 
 �  � � � 
 
 � 
 � � �

 
 � 
 � � � � �

(3.5)

with ��
 , � � , and � � being the numbers of intervals in x-, y- and, z-direction.
� 

 
 	  
 � � �

� 
 	  � � , and
� �� 
 	  � � are of order 4; they are called cubic B-Spline basis functions.

Theorem 3.2 Properties of a cubic B-Spline volume:

Two basis functions that meet at a knot
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� have the same value at the knot:
�

�

 �  �

�
� � � � �

�
� � 
 �  � � � � � ,

� have an equal gradient at the knot:
���

�

 �  �

�
� � � � ���

�
� � 
 �  � � � � � ,

� have the same bending at the knot:
��� �

�

 �  �

�
� � � � ��� �

�
� � 
 �  � � � � � .

Therefore, the function � * � �
�
* describes a volume that is smooth because the basis func-

tions come with a
� 

continuity at the knots.

Their local support comprises 4 knots, thus, in an interval
� �
�
� �
�
� � � four basis B-Splines

are superimposed as can be seen in figures 3.2 and 3.3.

In both figures, the length of one interval
� �
�
� �
�
� � � equals 1. According to what is said in

the first part of this chapter the cubic B-Spline volume is composed of piecewise polyno-

mials up to the degree of 3.



26 B-Splines

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

N
3(x

)

Figure 3.2: One basis function of the cubic B-Spline. It comprises 4 intervals. In this example,
the length of one interval is fixed to 1.
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Figure 3.3:
�����

overlapping cubic B-Spline basis functions in one interval. In this example, the
length of the interval is fixed to 1.
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3D B-Spline Estimation

As described in chapter 1 and section 2.3, the topic of this thesis is the estimation of

a non-linear transformation to registrate the source image ��� with the target image � � .

Using the block-matching algorithm as explained in section 2.1 will give us a set of cor-

respondences between the two images..

The 3D B-Spline estimation introduced here will use the set of correspondences as sam-

pling points upon which it approximates the transformation function with a least squares

approach.

This chapter is subdivided as follows:

Section 4.1 explicates how the B-Spline functions are used to represent the desired trans-

formation.

In section 4.2 the application of a least squares estimator to calculate the transformation

on basis of the B-Spline functions is explained.

Section 4.3 deals with the introduction of weighted sampling points to the approximation

algorithm whereas section 4.4 proposes the extension of the algorithm with a regulariza-

tion term.

In section 4.5 the approach of a multiresolution strategy concerning the choice of the

number of control points is presented.

4.1 Representing the Transformation using B-Splines

In this thesis, we employ the transformation class of uniform B-Splines to approximate	
�  
 � � � � � . We want to transform an image volume, consequently,

	
�  
 � � � � � � 	

��� � � �
�
�	��  
 � � � � �
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is represented using equation 3.4 that describes B-Spline functions in 3D (see equation

(4.2)).

Definition 4.1 Representation of the cubic B-Spline approximation,

version 1:

	
� � � � �

�
�	 �  
 � � � � � �

� �� � � �
� ��
� � �

� ��
� � � � 
�  
 � � ��  � � � ��  � � �

�

 � 
 � � (4.1)

�
�

 � 
 � � 	� � � � �

�
�	 �  
 � � � � � � ���

Moreover, we want to benefit from all advantages that are given by basis B-Splines of

order
�

(see section 3), thus, we choose our B-Splines to be cubic ones which implies a

order
�

of 4.

The number � 
 ��� � � of control points for the spline approximation should be less than the

number
�

of our sampling points. Instead of using each sampling point as a control point

we introduce a control point grid coarser than the density of sampling points, hence, we

do a B-Spline-approximation that yields the following advantages:

� Our number of unknowns is smaller, thus, we work with less degrees of freedom.

� We can use a multiresolution strategy that enables us to adaptedly increase the num-

ber of control points.

� Noise is reduced by using an approximative approach.

As pointed out in chapter 3, in each interval of length �
�
�
�
� � exactly

�
non-zero B-Spline

basis functions overlap. Hence, equation (4.2) can be simplified; instead of regarding

all � 
 ( � � � � � ) intervals in every sum we now just calculate the sum of 4 values in the

respective interval that we consider to have the length 1. For each B-Spline sum we need

4 control points in x-, 4 control points in y- and 4 control points in z-direction, thus, we

consider 64 control points per coordinate  
�� � �
� � � � � . The representation therefore looks

like depicted in equation (4.2), here
� � stands for

� � 
 	 with
� � � � � � � � � � � � � � � , so the

�
in

the equation denote cubic B-Splines:
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Definition 4.2 Representation of the cubic B-Spline approximation,

version 2:

	
� � � � �

�
�	 �  
 � � � � � �

��
� � �

��
� � �

��
� � � � 
� �� � � ��  � � � �� �� � �

�
� � 
 � � � 
 � � � � (4.2)

�
�

 � 
 � � ���

� � � � � � position of the nodes of the control point grid
�
�
� � 
 � � � 
 � � � � values at the nodes of the control point grid

� 
� �� � � � ��  � � � � �� �� � � basis functions of the cubic B-Splines

As we deal now with B-Spline basis functions of length 1, their inputs that depend on the

voxel positions
	
 �  
 � � � � � are determined using the following formulas:

� � 
� � ��� 
� ���
� � �� � ��� �� � �
� � �� � ��� �� �	�

To find the associated 3D interval with its
� � � � �

B-Spline functions to a given voxel

position  
 � � � � � , the neighbouring control point nodes are calculated like this:

��
 � distance between the control points in x-direction

��� � distance between the control points in y-direction

� � � distance between the control points in z-direction

� � � 
� ��� � � � to find the � closest to 

� � � �� � � � � � to find the

�
closest to �

� � � �� �
� � � � to find the
�

closest to �

Therewith, we have obtained a parametric representation of the unknown transformation

component
	

� � � � �
�
�	 �  
 � � � � � .

4.2 3D B-Spline Least Squares Estimation

Our task now is to find the values for the parameters
�
�

 � 
 � that render the optimal ap-

proximation of the transformation � with respect to the ensemble of
�

sampling points
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� �  	
 � � 	

� �  
 � � � � � given by the set of matches at hand. We choose a least squares esti-

mation as the criterion to be minimized (see equation (4.3)) which gives a linear problem

[19]:

Definition 4.3 Least squares estimation:

Minimize the criterion

� ���  ��
� � � 	 	� �  	
 � ���

��
� � �

��
� � �

��
� � � � 
� �� � � ��  � � � �� �� � �

�
� � 
 � � � 
 � � � � 	  �

(4.3)

By decomposing the norm into three sums along its x-, y-, and z-direction we obtain

� � � 
 � � � � � � �
As we deal with a tensor product,

� 
 � � � , and
� � rely on different parameters, thus, they

can be minimized independently. Therefore, we deal now with the following three least

squares estimators (see equations 4.4):

� 
 � �  ��
� � �  � 
  	
 � ��� ��

� � �
��

� � �
��
� � � � 
�  � � � ��  � � � �� �� � � 


�
� � 
 � � � 
 � � � �  �

� � ���  ��
� � �  � �  	
 � ��� ��

� � �
��

� � �
��
� � � � 
�  � � � ��  � � � �� �� � � �

�
� � 
 � � � 
 � � � �  � (4.4)

� � ���  ��
� � �  � �  	
 � ��� ��

� � �
��

� � �
��
� � � � 
� �� � � ��  � � � �� �� � � �

�
� � 
 � � � 
 � � � �  �

Here, � 
  	
 � � stands for the 
 -component of vector
	

���  	
 � � , � �  	
 � � for the � -component

and � �  	
 � � for the � -component.

The same notion applies for
� 
� � � 
 � � � 
 � � � , � �� � � 
 � � � 
 � � � and

� �� � � 
 � � � 
 � � � so that

� 
  	
 � � � � �  	
 � � � � �  	
 � � � �
and

� 
� � � 
 � � � 
 � � � � � �� � � 
 � � � 
 � � � � � �� � � 
 � � � 
 � � � � �
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holds.

We want to solve
� 
 �� � ��� ,

� � �� � � � and
� ���� � ��� by finding the best adapted

values for
�
�

 � 
 � . In the following, we consider only the solution to minimizing

� 
 , the

proceeding for the two associated minimizations of
� � and

� � will be alike. Representing

that issue in a matrix-vector approach leads to the following equation (4.5):

	 	� � � 	� 	  �� � ��� �
Here,

	
� is composed of all

�
x-components � 
  	
 � � of

	
� �  	
 � � . All ��
 � � � � components of

� 
� 
 � 
 � are comprised in
	� (a more detailed definition follows below). As the number N of

the sampling points
	

��� should be greater than the number � 
 � � � � of control points
�
�

 � 
 � ,

we deal with a linear equation system that is overdetermined.

That fact serves to augment the accuracy of the least squares algorithm. Furthermore,

it guarantees that an approximate solution exists. To find the best values for the control

points we derive 	 	� � � 	� 	  with respect to
	� and set the derivation to zero.

	 	� � � 	� 	  � 	
� � 	� � � 	� � � 	� � 	� � � � � 	�

�
� 
�  	� � 	� � � 	� � � 	� � 	� � � � � 	� � � �
� � � 	� � � � � 	� � � � � � �
� 	� � � � � � 	

� � �

� � � � 	� � � � 	�
� 	� �  � � � �  � � � 	�

(4.5)

with
	

� � �
�
� 	� � � � � � � � ���

�
�

� � number of sampling points
	

��� �
� � number of control points � � � 
 � � � �

The last step assumes that
� � �

has full rank, i.e. that the system is overdetermined.

To put it more efficiently from a computational point of view, we have to solve the equa-
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tion

� 	� � 	
� (4.6)

with � � � � � � � ��� �
and

	
�
� � � 	� � � �

Below, the components of the matrix-vector representation are described in a detailed

way: The three-dimensional sampling points
	

� �  	
 � � given by our set of matches are ar-

ranged in three vectors with
	

� 
 containing the x-values of
	

� �  	
 � � etc.:

	
� 
 �

�������������
�

� 
 �
� 
 �
�

�

�

� 

�  �

#�$$$$$$$$$$$$
%
� 	

� � �

�������������
�

� � �
� � �
�

�

�

� �
�  �

#�$$$$$$$$$$$$
%
� 	

� � �

�������������
�

� ��
� � �
�

�

�

� �
�  �

#�$$$$$$$$$$$$
%
�

Arranging the x-components of the control point values
�
�

 � 
 � of our grid row by row in a

vector we obtain
	� that is outlined below:

	� �

�������������������������
�

��� 
 � 
 �
� � 
 � 
 �
�

�

� � �  � 
 � 
 �
��� 
 � 
 �
�

�

�

� ���  � 
 ���  � 
 ���  �

# $$$$$$$$$$$$$$$$$$$$$$$$
%

Here, ��
 , ��� and � � represent the number of control points in x-, y- and z-direction.

The matrix
�

of the system contains the B-Spline values necessary to set up the triple sum
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Figure 4.1: Appearance of the B-Matrix when cubic B-Splines are used. Each shaded quadrate
represents one entry of a row and several entries of a column (number depends on the number
ratio sampling points/control points).

equation (4.4), thus, the first row is associated with the sum for � � � , the second for � � �
and so forth. As each sampling point influences 64 control points in its neighbourhood,

each row of the matrix contains 64 entries that are non-zero. The matrix can be arranged

to have a diagonal appearance like depicted in figure (4.1) (compare [20]). Here, each

square stands for a non-zero entry in one column and in several rows where the number

of rows with the same structure depends on the ’sampling point - control point’ ratio.
� � �

is symmetrical positive in general, and definite positive when at least one sampling

point appears in each of the three-dimensional intervals.

4.3 Weighted 3D B-Spline Least Squares Estimation

In this section, the idea of improving the robustness of the B-Spline estimation by ex-

tending the least squares approach with a weighted least squares approach is presented.

Firstly, the weighted least squares approach is defined. Subsequently, its application to

the B-Spline estimation with the adaptions necessary is explained.

As we aspire toward a robust algorithm, we have to establish a means to ensure that

the calculation of the transformation � does not become instable due to partially incorrect

data. To cover the fact that not all sampling points
	

� �  
 � � have the same significance we

introduce a weighting factor � with �
�

�
�

� to each difference in equation (4.4). In

case of a high significance of
	

���  	
 � � , the value associated to � � will be close to 1, in case

of a low significance, � � is given a value close to 0. By doing so, we ensure that out-

liers and sampling points that are not significant ’enough’ loose influence on the resulting

transformation.
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Equation 4.7 below represents the weighted least-squares estimation of the transformation

� in x-direction.

Definition 4.4 Weighted least squares estimation:

Minimize

� 
 � �
� 	 � �  � 
  	
 � ��� ��

� � �
��

� � �
��
� � � � 
�  � � � ��  � � � �� �� � � 


�
� � 
 � � � 
 � � � � 	  �

(4.7)

The matrix representation looks like this:

� � � � � � 	� � � � � � � 	
� (4.8)

with � � �
�
�
�
�

where � is a diagonal matrix that in each row contains the weight that corresponds to the

element in the respective row in
	

� .

We have to solve

� 	� � 	
� (4.9)

with � � � � � � � � � � � � �
and

	
�
� � � � � � 	

� � � � �

The value of the weight � � depends on the variance in the region of the respective block
�

(see section 2.2.1). A high variance augments the probability of the result being accurate.

Therefore, a sampling point
	

���  	
 � � is equipped with a great � � if it lies in a high variance

region and vice versa.

As described in chapter 3, B-Splines come with a local support. For our purpose, this

property is ambivalent. On the one hand, the local support turns out to be a great advan-

tage concerning sampling points that are significant outliers. In that case, the influence of

the outlier is limited on a certain region of the transformation, therefore, the computation

gains robustness. On the other hand, the combination of representing the wanted trans-

formation � by B-Splines and simultaneously introducing weights to the least squares

estimation (see section 4.3) bears the problem that some control points may be associated
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with the weight zero. That happens for example in a largely homogeneous region if all

sampling points
	

� �  	
 � � of the local support of one specific control points
�
�

 � 
 � are as-

signed the weight � �
zero. In that case, the matrix � mutates to a non-invertible matrix

and the equation system becomes singular.

To find a solution to this problem, three different approaches are conceivable:

Firstly, we could prohibit the weight � � � altogether but choose a value that is close to

zero instead for sampling points with a low significance. Here, the equation system will

not become singular but the matrix � will be ill-conditioned.

Next, we could assess that for each control point at least a certain number of sampling

points must have a value different from zero. That approach will surely prevent the matrix

� from becoming ill-conditioned but it seems rather elaborate to be realized.

Finally, the problem might be solved by adding a regularization term (see section 4.4)

to our criterion to be minimized as that measure will render the matrix much more well-

conditioned.

4.4 The Regularization Term

In order to obtain a transformation that is smooth we introduce a penalty term to forestall

resulting functions that are discontinuous. Hence, we formulate the registration task as an

optimisation problem with the goal to minimize an associated cost function:

Definition 4.5 Cost function in the transformation estimation:

� � � � �
�
�

�
� ���
�
� � � � �

� �� ��� ���
�
� � �
�

 � (4.10)

Here,
� �
�
�

�
� ���
�
� � characterizes the similarity between the source and the target image, and

�
� �� ����� �

�
��� �
�

 � represents the degree of discontinuity of the associated transformation func-

tion [17]. The parameter
�

defines the tradeoff between the alignment of the two images

and the smoothness of the transformation.
� �
�
�

�
��� �
�
� � corresponds to the least squares estimation as seen in equation (4.6). As pro-

posed in [18], we use a biharmonic model as depicted in equation (4.11) to describe the
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penalty term. The physical interpretation of the biharmonic model is the idea of approx-

imating the energy of a thin plate of metal which is subjected to bending deformation [17].

Definition 4.6 The regularization term:

�
� �� ��� ���

�
� � �
�

 � �

�� ���� ���
�
���
� ���	�  �  	� �� 
 �
 � �	�  �  	� �� � �
 � ��  �  	� �� � �
 � (4.11)

� � �  �  	� �� 
�� 
 � � � �  �  	� �� 
 � 
 � � � �  �  	� �� � � 
���� 
 � � � � �

To minimize
�

, we derive equation (4.10) with respect to
	� :

� �� 	�
� � � � �

�
�

�
��� �
�
� �

� 	� � � � � ���� ��� ���
�
� � �
�

 �

� 	�
� � � (4.12)

4.5 The Multiresolution Strategy

By modifying the number of control points we are able to vary the performance of the

algorithm as the number of control points determines the number of freedom degrees

of the calculation. A small number of control points results in a transformation that is

coarse but quickly computed whereas a large number of control points increases the com-

putation time but produces a more refined registration result. To take advantage of these

correlations, we employ a multiresolution strategy that comprises an iteration of the trans-

formation iteration. Thus, in the first iteration � � � we begin with a small number of

control points to receive a rough transformation � � that maps �	� to ��� . (The transforma-

tion calculated in each step � is denoted � � .) By applying � � to �	� , we deform �	� to a new

image �	��
 �	�� .

In the next iteration � � � , we insert additional control points and repeat the calculation

of the transformation. This time we use the deformation information stored in ����
 �	�� to

calculate the next transformation � � � � � �  (for the exact computational approach see

chapter 5). We iterate until the desired refinement of the transformation is reached.



38 3D B-Spline Estimation

By applying the multiresolution strategy we receive a registration that is global at the be-

ginning and becomes more and more local with every step.

Now we have to decide in which manner the additional control points will be inserted.

One possibility consists in keeping our regular grid and inserting one additional control

point in between each two already existing ones so that the grid resolution is doubled.

Another possible idea is to insert additional control points depending on where the trans-

formation needs to be refined. However, that approach causes the problem that uniform

B-Splines can not be used any longer.





C H A P T E R 5

Derivation of the Non-Linear Transformation

In this chapter, the details of derivating the desired transformation estimation are ex-

plained. The first section describes the recursive algorithm with the steps necessary to

compute the transformation iteratively. The second section illustrates how the transfor-

mation calculation depicted in the first section is integrated in a multiscale approach (see

also section 2.2.2).

In order to find the non-linear transformation � that registrates the source image � � with

the target image � � , we compute a displacement vector
	

� for each voxel coordinate
	
 of

�	� as defined in section 2.3, see equation (2.4):

�  	
 � � 	
 � 	
�  	
 �

We start the calculation by applying the block-matching algorithm to the two images � �
and ��� to obtain a sparse field of point correspondences  	
 � � 	�
� � where

	
 � � � � and	��� � � � with
� � and

� � being the grid of voxels of ��� and ��� respectively. They form a

displacement vector
	

� �  	
 � � that is assigned to each block
�

in the source image such that

	��� � �  	
 � � � 	
 � � 	
� �  	
 � � �

(see section 2.1).

To calculate � , we have to approximate
	

�  	
 � � 	� � � � � � �
, using the point pairs  	
 � � 	��� �

as sampling points. � shall deform ��� in a way that its features resemble the features of

��� best possibly.

As can be seen in the layout below, the transformation � does not change the intensities
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Figure 5.1: Illustration of the Transformation � . The transformation � is applied to image � � to
obtain image � ��
 �  � that resembles � � . With the transformation �  � the voxels �� associated to
�� �  � are determined by ��

�
�  � ���� �  � � .

but the positions of the voxels
	
 :

������

	

�  	
 �

�� � ������

�  	
 � � 	
 �	��
�	��
 �  �� 	
 �	 � � � �  	
 �

Definition 5.1 Transformation Application:

� ��
 �	�� � � ��� � � �
with � ��
 �	�� ��  	
 � � � �	�  	
 � � (5.1)

where � denotes the application of a transformation � on an image � [6].

�  	
 � represents the new position
	
 �	�� for the voxel at position

	
 , hence, � applied to ���
deforms �	� so that the result will be the new image ����
 �  � (see figure 5.1). When we apply

the transformation � to ��� , the new image ����
 �	 � comprises the new coordinates
	
 �	�� that

are associated to each source voxel position
	
 (see equation (5.2) below).

��� �	�� 	
�� � �	��
 �	 �� �  	
 � � � �	��
 �  �  	
 �  � � (5.2)

To determine which intensity in ����
 �	�� is associated to the voxel at position
	
 �	�� , we

have to find the place where the voxel came from and, therefore, detect the corresponding

position
	
 in �	� (see figure 5.2). Thus, we apply the inverse transformation �  � to �	��
 �  �
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Figure 5.2: Detecting the corresponding positions between � � and � ��
 �	�� . To determine the in-
tensity of �� �	�� in � ��
 �  � the associated �� in � � must be detected.

and get

	
 � �  �  	
 �	 � � and

�	��
 �	 �� 	
 �	�� � � � �  �  �  	
 �  � � � � (5.3)

Hence, we have to model the transformation

�  �  	
 �  � � � 	
 �  � � 	
���  ���  	
 �  � � (5.4)

where
	

� �  ���  	
 �	�� � denotes the negative vector to
	

�  	
�� :
	

���  ���  	
 �	 � � � � 	�  	
 ���
Note:

	
� and

	
� �  ��� are not inverse referring to the operator � as

	
���  ���  	�  	
�� ���� 	
 �

We will represent
	

� �  ���  	
 �  � � with a B-Spline approximation as described extensively in

chapter 4.

We chose to determine the transformation by using cubic B-Splines (see chapter 3 and

sections 4.1) and 4.2.
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i

a) The result of the block-matching algorithm is a field of displacement vectors.
b) The sparse displacement field is used to calculate the transformation �

�
c) �

�
is applied to the source image (see also section 5.1 ).

Figure 5.3: Iterated estimation of � .

5.1 Calculation of the Transformation Iteration

The transformation is computed iteratively. At each iteration a transformation �  �� is

calculated. �  �� is then applied to the source image so that the respective next iteration

incorporates the results found before. The estimation procedure has to undergo the same

operational steps repeatedly. This cyclic context is simplifiedly illustrated in figure 5.3.

In the following, those steps are explained in a detailed manner:

Initialisation of �
�
:

We perform the first iteration � � � on our way to find the transformation that matches

best possibly the voxels of our source with our target image. The following moves have

to be made:

� We use the source image and the target image as input to the block-matching algo-

rithm of the Baladin program (see section 2.2). We retrieve a set of matches as

the result that contains
�

corresponding voxels  	
�� � 	��� � with
� � � � � � � � � . Those

point pairs indicate the displacements
	

���  	
 � � with

	
� �  	
 � � � 	����� 	
 � with

	
� � ��� � � � � �
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Hence, voxel
	
 � of image �	� corresponds to voxel

	� � � 	
 � � 	
� �  	
 � � of image ��� .

To approximate the transformation, we have to adapt the resulting
	

�	�  	
 � � to the

search for �  �� (see equation (5.4)). They must be inverted, so

	
� �  ����  	��� � � � 	� �  	
 � �

holds.

� Based on the sampling points
	

� �  ����  	�
� � we compute � �  ����
 	
 �	�� � in each iteration �

with � �  ����
 	
 �	�� � � � � � � �

. We use the B-Spline approximation and determine

therewith �  �� � �  �� .

� We resample ��� : �	��
 �  �� 	
 �	 � � � � ��

�
 	
 �	�� � � �	� ��  ��  	
 �	 � � � .

Calculation of �
�
� � :

In a recursive approach, we would estimate a residual transformation ���
�
� � from the de-

formed source image ����

�

of iteration � to the deformed source image ����

�
� � of iteration

� � � to calculate the transformation �
�
� � . However, the action of resampling an image

brings along a loss of data which would accumulate with each iteration during an recur-

sive process. To avoid this, we do not want to compose recursively the image resamplings.

Instead, we need to compute �
�
� � from �	� straight to the deformed source image ����


�
� � of

iteration � � � . Hence, we do not resample ����
 �  � � � ��

�

into �	��

�
� � but we resample ���

directly into ����

�
� � .

To do so, we exploit the information being enclosed in the transformed image � ��

�

in the

following way:

Using �	��

�
we determine point pairs between the original source image ��� and ��� that cor-

respond better than the sampling points used for the iteration before. Those point pairs

will serve as sampling points
	

���  	
 � � for the calculation of �
�
� � (see figure 5.4). Below,

the measures taken to find the newly corresponding point pairs  	
 �  � 
 � � 	��� � are explained:

� We compute the matches from ����
 �  � � �	��

�

to ��� by applying the block-matching

algorithm.

As a result, we obtain the corresponding voxel pairs  	
 �	 � 
 � ��	�
� � with
	
 �  � 
 � �

� ��
 �  � � 	�
� � � � �
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Figure 5.4: Finding the corresponding points between � � and � � (simplified representation). The
image � ��
 �  � serves to find a better correspondence between � � and � � than in the iteration before.
The point pair � � �	�� ��� � is calculated by the block-matching algorithm applied to � ��
 �	�� and � � .

� For all point pairs  	
 �	�� 
 � ��	��� � that establish the correspondences between ����
 �  � and

��� we find the respective corresponding points
	
 � in �	� by calculating

	
 � � �  ��  	
 �	�� 
 � �
� �� 	��� 	
 �	�� 
 � � 	

� �  ����
 	
 �	�� 
 � � � (5.5)

� As a result, we obtain a set of point matches  	
 � ��	��� � that establish the correspon-

dences between �	� and ��� .

� We compute
	

� �  ����
� �  	
 � using the sampling points

	
� �  	
 � � � 	����� 	
 � to determine �  �� � � .

� We resample ��� : �	��
 �  �� 	
 �	 � � � � ��

�
� �  	
 �	�� � � �	� ��  �� � �  	
 � � .

Stopping criterion:

We continue the iterations until the transformation has become as accurate as desired,

meaning that either a certain number of iterations has been performed or a certain thresh-

old value of the similarity measure (see section 2.1.2) is exceeded.

� We stop the iteration if the demands for the quality of the registration are fulfilled.

With �
�
� � ��� 
 � � � �� � we have found the desired transformation � .



46 Derivation of the Non-Linear Transformation

These components of the algorithm as well as their inputs and outputs are depicted in

figure 5.5.

5.2 Calculation of the Transformation in a Multiscale Ap-

proach

In section 5.1 the task of finding the transformation iterations �
�

and therewith the overall

transformation � regarding two images of a certain size is defined. To gain a better accu-

racy of the transformation estimation, this procedure has to be extended:

The Baladin program uses a multiscale approach as described in section 2.2.2. Here,

we begin the process of calculating the transformation by subsampling the source image

and the target image to the lowest level 	 � � 
 of the pyramid. Hence, we deal with images

of a small size where the transformation estimation � � � � 
 is computed fast. However, the

quality of the resulting transformation needs to be improved. Thus, in the following step

we approximate the transformation on level 	 � � 
 � � where the images are less subsam-

pled than on level 	 � � 
 . To use the already calculated transformation estimation � � � � 
 ,
we have to figure a way to apply � � � � 
 to the images of size 	 	 � 	
	 ����� 	�� � � 
  � before

starting the transformation estimation of � � � � 
  � [22]. In the following, the operation

of derivating the overall transformation estimation � in the already existing algorithm of

Baladin is explained:

Baladin calculates the transformation estimations using rigid and affine transformation

classes. The determined transformation iterations are represented in matrix-vector form

(see section 2.2). Likewise, the action of subsampling an image is encoded in a subsam-

pling matrix.

When the transformation estimation on a given level 	 is completed, a transformation ma-

trix for that level is obtained. That transformation matrix is valid only for its respective

level 	 since it is expressed in the level specific image coordinate system. To apply it to the

images of the following level 	 � � , it is first multiplied with the inverse subsampling ma-

trix of the current level and then multiplied with the subsampling matrix of the next level.

The procedure is repeated for each level to obtain finally a result matrix that contains

all transformations of all pyramid levels. In the last step of the algorithm, the reference
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Figure 5.5: Course of action in the calculation of the B-Spline transformation. On one level of
the multiscale pyramid the transformation estimation is iterated as described in section 5.1. The
calculating component Block-Matching computes a displacement field between two input images,
the component Transformation-Estimation uses the field as input to compute the transformation.
Then, the transformation is applied to image � � to obtain image � ��
 �	�� . � ��
 �	�� serves as input
for the next iteration. The displacement field containing correspondences between � ��
 �	 � and � �
as well as the transformation are used in the component Finding Correspondencesto calculate the
new correspondences between � � and � � .
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image is deformed by multiplying the result matrix with the voxel position coordinates.

(These operations are described in a detailed manner in section B and figure B.2.)

Regarding the B-Spline transformation we have to think of another way to apply a trans-

formation that was calculated on level 	 to the images of the following level 	 � � because

there is no direct way to transform a spline function with a (subsampling) matrix.

The data where we start from are the following:

� For level 	 we know all correspondences
	

� � between the source and target voxels

( � ��
 � and ��� 
 � ) of the subsampled images.

� All voxels � � of the subsampled images of level 	 can be retrieved as voxels � �  � in

the subsampled images of level 	 � � .
� Hence, we know already some correspondences between voxels of the source and

target images of level 	 � � .
Now, we use these correspondences as a set of matches and apply a B-Spline approxima-

tion on basis of a least squares estimator to compute a transformation representing � � on

level 	 � � [23]. This approach is very convenient concerning the implementation because

it resorts to the B-Spline algorithm already implemented (see section 4.1).
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Implementation

This chapter deals with the properties and characteristics of the main elements of the

implementation. In section 6.1 the integration of the B-Spline transformation as a reg-

istration technique in the Baladin program is described. In section 6.2 the conjugate

gradient algorithm used for solving the Least Squares estimator introduced in section 4.2

is presented in detail. Finally, section 6.3 gives an overview of the complexity of the

individual components necessary to estimate the transformation.

6.1 Integration of the B-Spline Transformation in Bal-

adin

The B-Spline transformation will be estimated in a pyramidal approach and two nested

iteration processes (see figure 6.1). As described in section 2.2.2, we commence the cal-

culation by subsampling the images to the lowest level of the pyramid to estimate a first

coarse transformation. On each pyramid level, we iterate the transformation estimation

by applying the transformation of the iteration � to the (subsampled) source image � � to

obtain the deformed source images ����

�

and using �	��

�

as input for the next iteration � � � .
In each iteration, we additionally iterate over the number of control points used for the

B-Spline approximation. This multiresolution procedure is explained in section 4.5. Now,

these processes must be integrated in the already existing Baladin program.

The program Baladin was written in C and serves uniquely for registrating two images

in a rigid, similitude, or affine manner. To integrate the B-Spline transformation in the

Baladin program, we have to extensively analyse the code of Baladin to determine
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Figure 6.1: Diagram of the computation process.
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Figure 6.2: Provisional Structure of Baladin and the extension. On a certain level of the mul-
tiscale pyramid, the two (subsampled) images � � and � � are the inputs for the block-matching
algorithm. The displacement field as output of the block-matching algorithm is used as input for
the matrix transformation as well as for the B-Spline transformation. Hence, the result of the
block-matching algorithm serves as interface to connect the B-Spline transformation. Before set-
ting off the respective next iteration ����� , the image � � is resampled to image � ��


�
either using the

matrix or the B-Spline transformation.

the locations in the code that will serve as interfaces. Generally, the program has to be

extended as displayed in figure 6.2. Thus, a function that estimates the B-Spline transfor-

mation (Estimate-Transformation-Spline) and a function that resamples the

image (Resample-Image-Spline) have to be integrated. As described in chapter

5, the resampling of an image using the B-Spline transformation in an iterative approach

needs to be realized in a different manner than the resampling using a matrix transforma-

tion. Taking this into account, the extension has to be implemented as shown in figure 6.3.

To obtain the displacement field that serves as input to the B-Spline transformation esti-

mation two steps are necessary: At first,we have to apply the block-matching algorithm

to find a set of corrrespondences between the images ����

�

and ��� . Next, we have to apply

the transformation � � � �
�
�  

�

to image �	��

�

to find the respectively corresponding points in
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Figure 6.3: Structure of Baladin and the extension. The block-matching algorithm calculates
the correspondences between � � and � ��


�
. The component Finding Correpondences uses

the output of the blockmatching algorithm to find a new set of correspondences between � � and
� � that will be used as input for the spline transformation estimation (for details see chapter 5).

image �	� . In doing so, we receive a set of correspondences between � � and ��� that serves

as the new displacement field (see section 5.2).

To be easily integrated in the Baladin program, the implementation of the B-Spline

transformation estimation was written in the programming language C. To integrate the

functions concerning the B-Splines that are described above, Baladin has to be re-

organized to offer the possibility of choosing between different types of transformation

classes. For these purposes, a structure named TRANSFORM is created that contains

among other things a component of type void*. This structure will substitute the present

matrix component used to store the transformation. According to the choice of the user,

the void* -component is initialized to be either a matrix structure or a B-Spline struc-

ture. All functions of Baladin are modified to work on the new structure instead of the

matrix. The function calls of the interface are adapted to branch to either the matrix or

the B-Spline functions.

Some of the components in the process of implementing of the B-Spline transformation

are listed below:
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� We create a structure for B-Splines and a file that contains all components needed

to create, represent and work with the B-Spline functions.

� We create a c-file named estimateur spline.c that is responsible for all op-

erations to estimate the B-Spline transformation, e.g. the Least Squares algorithm.

� We create a c-file named reech spline.c that contains all measures to be taken

when resampling an image with a B-Spline transformation.

� To be able to judge the results obtained with the B-Spline transformation, we im-

plement a code that verifies the accuracy of the transformation. Here, the original

sampling point values that serve as displacement vectors are compared with the

vectors that are created by the transformation for the same voxel (see e.g. section

7.1).

6.2 The Conjugate Gradient Algorithm

In section 4.1 the mathematical details for determining the control points
	� that are needed

to represent the B-Spline functions are explained. Thus, we would like to solve the system
� 	� � 	

� . As
�

is not square but overdetermined we do not know if a solution to that

system exists. Thus, instead we will solve the symmetric system below (see also equation

(4.5)):

	 � 	� � 	
� 	  �� �����

(6.1)

� � � � 	� � � � 	�

with
	

� � �
�
� 	� � � � � � � � ���

� �

It is always possible to find a vector
	� that minimizes equation (6.1).

The numbers
� � � � � � � � and � ��� � � � are an example for typical values the pa-

rameters could adopt. Hence,
�

is a big sparse matrix that we do not want to invert or

to factorize, therefore, we have to find another idea than calculating
	� directly. A direct

approach would involve factoring that will consume a lot of time and memory. We resort
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to an iterative method as most iterative methods are memory-efficient and run fast with

sparse matrices.

Since
� � �

is symmetric positive definite (as we deal with a matrix of full rank), the equa-

tion is a system of normal equations that are typically associated with the least squares

problem.

We know � �  	� � � � � � 	� � � � 	� � � being the derivative of the quadratic system

�  	� � � �
�
	� � � � � 	� � 	

� � 	� � �
that has to be minimized. As

� � �
is positive definite the function � is shaped like a

parabolic bowl. Hence, searching the minimum as demanded in equation (6.1) we have

to determine the location where the gradient of � equals zero [25].

The most popular approach to solve a non-symmetric linear system in the way described

above employs the conjugate gradient procedure. It is efficient and will converge theoret-

ically after a certain number of iterations. The number of iterations necessary equals the

dimension � of
	� . In practice, the accumulated floating point roundoff error causes the

residual to gradually loose accuracy. However, this does not pose a problem as in gen-

eral the results become satisfyingly precise before the procedure has actually undergone
� iterations [26]. In the conjugate gradient approach, we look for the solution ’gradient

equals zero’ by analyzing a
� � �

-orthogonal set of search directions. Let � � � � �

and �
� � � 	� (see equation (4.6)). The algorithm that is directly applied to the system

� � �
� looks like denoted below:

Conjugate Gradient Algorithm:

1. Choose a initial solution
	� � .

2. Compute the first residual
	��� � 	

� � � 	� � .
3. Set the first search direction

	� � � 	� � .
4. For � � � until convergence do:

� calculate the length � � of the distance to go in search direction
	�
�
,� � � � 
��� 
 
������ 
��� 
 � 
���	�
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�
	�
�
� � � 	�

� � � � 	� �
� calculate the residual

	�
�
� � ,	�

�
� � � 	�

� � � � � 	�
�

� �
�
� � 
������� 
 
���������� 
��� 
 
���	�

� calculate the search direction
	�	�

�
� � � 	�

�
� � � � � 	� � .

It holds
	� � 	� � � �

and � � � � �
.

For each iteration we have to compute one matrix-vector multiplication and 5 inner prod-

ucts of size � .

Supposing we want to reduce the norm of the error 	

�
� 	� � 
�� � �

�

 � � 	� � by a factor of � with

	 	
�
	 �

�
� 	 	 � 	 �

and with

	 	� 	 � ��� 	� � � 	�
we have to perform the number of ��� iterations. We find

�
�

�
� � 	  � � � �� 	  � � � ��


��
(6.2)

and deduce

��� � �
�
� 	  � � � �  �� � � (6.3)

where
	  � � stands for the condition number of matrix M,

	  � � � 	 � 	 	 �  � 	 [27].

The foundation on which to decide when to stop the iterating process is explained in sec-

tion 7.1.

To speed up the process of convergence, we employ a method that improves the iteration

situation:

We precondition our matrix � � � � �
. Applying a preconditioning technique amelio-

rates the condition number
	

of a matrix by down-sizing so that ��� (see equation (6.3))
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becomes smaller. To do so, we create a matrix
�

that has the properties to be symmetric

positive definite, to have an appearance similar to � , and to be more easily invertible than

� so that
	  �  � � � � 	  � � holds. As the matrix

�  � � is generally not symmetric nor

positive which is required for applying the conjugate gradient algorithm we decompose
� � � � � �� (what will always work because

�
is symmetric and positive definite).

Working with the equation equation (4.6) that was given in section 4.2 we form

� 	� � 	�
� �  �� �  � �� �  � � �� 	� � �  �� 	� �

where
�  �� �  �  �� � � will be symmetric and positive definite [28]. The new - precondi-

tioned - problem to be solved is now represented by the following equation

�  �� �  �  �� � � 	
��

� �  �� 	� (6.4)

with
	
��

� � �� 	�

To compute the control point values, we commence by determining
	
�� using the conjugate

gradient algorithm and carry on by calculating
	� based on the results.

To simplify the calculation we resort to a diagonal preconditioning in our implementation

and define
�  �� �  � �� �  � to be a diagonal matrix with the values

�  �� 

� �
� � 	 �

�
	 

where �
�

denotes the � -th row of matrix M.

6.3 Complexity of the Transformation Estimation

In this section we describe the complexity of the different components of the transfor-

mation estimation to determine which element uses how much of the computation time.

There are three principal components that need to be analysed (compare [1]):

1. The evaluation of the spline transformation.

2. The assembling of the matrix for the CG-procedure.
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Operation Number �
* 12
/ 6

+ - 6

Table 6.1: Number of mathematical operations necessary to evaluate the B-Spline basis functions
for one point.

Operation Number � Equivalence

* � "� � � � � 	 � � m
/ m(3*6) m

+ - m(3*6 +1) -1 m

Table 6.2: Number of mathematical operations necessary to evaluate the B-Spline transformation.

3. The calculation of the CG-procedure.

1. The evaluation of the spline transformation:

The evaluation of a B-Spline basis functions is implemented using the algorithm of

De Casteljau. Here, determining the value of a cubic B-Spline basis function given

an input 
 takes 6 mathematic operations where each one consists of � multiplica-

tions, 1 division and 1 substraction (see table 6.1) [29].

To evaluate the value of the B-Spline transformation as presented in equation 4.2

we need to evaluate 3 times a B-Spline basis function, we need to effactuate 2 mul-

tiplications for the tensor product and three multiplications for the values of the

controlpoints.

Those operations have to be performed for all m controlpoints. Finally, all � contri-

butions of the control points have to be summed, so there need to be � � � additions

. Resumed, we get the number of operations as displayed in table 6.2.

2. Assembling of the Matrix:

Aufwandsbeschreibung der LS-Estimation wie in Declerck, Seite 28-31

hier koennte ich ausserdem die tests mit epsilon im CG-verfahren unterbringen

oder gehoert das in ’results and discussion’?
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Results and Discussions

7.1 Performance of the CG-Algorithm

As described in section 6.2 it suffices to perform a certain number of iterations because

we reach a satisfactory accuracy of the result before the iteration converges. In this sec-

tion, we will present the performance of the CG-Algorithm in dependence of the number

of iterations executed. The number of iterations executed can either be fixed to a certain

figure in the beginning or be dependent of a break condition. The break condition estab-

lishes a threshold of error that must be undergone by the results of the algorithm.

In the implementation we designate the relative amplitude of the residual 	 �
�
	  as com-

pared to the length of the vector
	� to be the break condition (see equation (7.1)).

	 �
�
	  � 	 � � � 	� � � 	

� 	 � 	 � � � �� 	 � 	� � 	� 	  �

if 	 �
�
	 

�
� 	 	� 	  (7.1)

break!

To determine the performance of the conjugate gradient algorithm in dependence of the

value chosen for � we execute several testing procedures. In the following, the detailed

description of the testing procedure and its outcomes comprises four paragraphs; the first

one illuminates the input situation where we start, thereupon, the settings for the trans-
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formation estimation are displayed in the second paragraph followed by a depiction of

the actual execution of the testing in the third paragraph. In the fourth paragraph, the

outcomes are analyzed and interpreted.

1. The input for the CG-testing:

The test image volume on hand measures �
	 � � �
	 � � �
	 � voxels. The voxels

volume is set to � � � � � . To approximate a typical situation when working with

the block-matching algorithm, one displacement vector is positioned every 3 vox-

els. The emerging sparse displacement field that serves as input for the B-spline

transformation consists of
� � � 	�� � 	 � � 	 � � � � � �
	 displacement vectors.

To test different types of image situations, we created diverse kinds of the sparse

displacement fields that are noted in the following list:

(a) All sampling point vectors
	

��� have the same values, thus, the field represents

a translation.

(b) The sampling point vectors
	

��� are built by applying a matrix
(

to their respec-

tive position coordinate values
	
 � and then subtracting the deformed vectors

from their position vectors:

	
� � �  ( � � � 	
 � � (7.2)

We use one-by-one

� a matrix
(

that effects a rotation around the z-axis (representing a rigid

transformation),

� a matrix
(

that effects rotations around the x-, y-, and z-axis under dif-

ferent angles � � � � � (representing a rigid transformation),

� a matrix
(

that effects an affine transformation

to deform the position values
	
�� .

(c) The sampling point vectors
	

��� are built by using the position values
	
�� as input

for a (three-dimensional) sinusoidal function.

All testing approaches described above have resulted in satisfying outcomes. To

illustrate the insights we gained with these experiments, in the following the test-

ing and the results when using an affine deformed sparse displacement field are
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Figure 7.1: 2D Cut of a displacement vector field. It was gained by applying an affine matrix to
the coordinates of a volume.

depicted. (The results of the other approaches can be found in Appendix C.) The

affine matrix
(
� ��� that warps the position coordinate values

	
 into a sparse dis-

placement field (see equation (7.2)) looks like this:

(
� � �

�

����
�
� � � � � � � � � �
� � � � � � � � �� � � � � � � �

#�$$$
% �

HIER KOMMT NOCH EIN BEWEIS HIN, WARUM DIE MATRIX AFFIN IST

Figure 7.1 shows as an example the resulting displacement vectors of one layer

when
(
� ��� is applied to a � � � � � � � � volume that is assigned one displacement

vector each three voxels.

2. The parameters of the B-Spline transformation:

For each dimension, a quantity of 20 uniformly distributed control points is chosen

so that � � � � � � � � ��� � � � � � , that is, one control point appears approximately

every 4 sampling points.

The sought-after values for the control points
	� that minimize the equation 	 � 	� �	� 	 �� � ��� are calculated with the conjugate gradient procedure. The factor � stands
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for the ratio of the system residual �

�
� ( 
 � � � � � 	�

� � 	� (see ’conjugate gradient

algorithm’ in section 6.2) and
	� . Therefore, � is the parameter that controls the num-

ber of iterations and that represents the break condition of the conjugate gradient

procedure. The loop of iterations is stopped as soon as 	 � 	�
� � 	� 	 � 	 �

�
	
�
� 	 	� 	

(see (7.1)). The bigger the number of iterations gets the more accurate the final

result for
	� becomes. Yet simultaneously, the time consumed by the calculation

grows. A reasonable trade-off between the duration of the calculation and the accu-

racy of the result must be found.

To determine the accuracy of the obtained
	� , we apply the B-spline transformation

� � � � �
�
�	 that is built on them to the 614125 sampling point positions in the image

volume. The vectors calculated at the sampling point positions by � � � � �
�
�	 should

equal the original sampling point vectors that were derived from the block-matching

algorithm. Now, their respective differences are summed up and standardized to

give an error measure � for the accuracy of the transformation

� � �
�
�� � ���  � � � � �

�
�   	


�
� � 	


� � 	
�

�
�  � (7.3)

� � � � �
�
�  � B-Spline transformation that calculates the displacement vectors

for each voxel �	

�
� position of voxel �	

�

�
� sampling point/ displacement vector of voxel �

� � number of sampling points

3. The testing procedure:

The value of parameter � in the conjugate gradient function of the program test-

CodeSplineTransfo is varied from �������  � to �����-�  � . Each time the program

testCodeSplineTransfo is executed, the accuracy of the result and the com-

puting time are determined. Here, the accumulated and standardized differences of

original and calculated displacement vectors serves as a measure for the accuracy.

The computing time depends on the number of iterations necessary to obtain a re-

sult that falls below the threshold defined by � in the conjugate gradient procedure
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(see section 6.2).

The coherences epsilon � accuracy are represented in figures 7.2 and 7.3 to show

how the accuracy of the result depends on the value of the break condition. Fig-

ures 7.4 and 7.5 display how the choice of � influences the computation time. The

respective correlation time � accuracy is presented in figures 7.6 and 7.7.

4. Conclusion:

On the whole, the outcomes of the testing are highly satisfying because a good ac-

curacy is achieved in a well acceptable time as can be clearly seen in figures 7.6

and 7.7.

As explained above, we want to determine a reasonable trade-off between the com-

putational time consumed and the precision of the result. Analyzing figure 7.4 we

observe that the curve can be represented by two evens with different gradients that

intersect approximately at coordinate "�
	�� � � � � . Here, we reckon to find the optimal

compromise regarding CPU-time and accuracy. Using the next sampling value at

coordinate "� ����	 � � � we detect the associated error value as deducted from figure

7.3 being � � � �-�  � . An error of that order of magnitude fulfills our request concern-

ing the accuracy.

As we work with float values that have an accuracy of � � �-�  � we do not demand

for a greater preciseness. Referring to the literature (or to the unpublished knowl-

edge of persons with a lot of experience regarding image analysis) we decide that

an accuracy of � � �-�  	 suffices for our application that registrates images volumes

on voxel basis.

Augmenting the error sum tolerated by factor 10, that is an error of ��� � � �-�  � , gives

a CPU-time value of 37s (see figure 7.4). This is an improvement in time of only

30% compared to 54s at an error sum of � � � ���  � . Seeing this, we state that we do

not gain a computational time reduction that is worth the loss of accuracy. For an

illustration of this context see table 7.1.

On the other hand, observing our results we can state that the implemented algo-

rithm offers the possibility of improving the accuracy of the transformation without

a problematic loss in time. This might be interesting for other applications.
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Figure 7.2: Coherence epsilon � differences. The differences between calculated and original
sampling point vectors in dependence of the break condition epsilon are displayed as ’standardized
sum of errors’

�
(see equation (7.4)).
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Figure 7.3: Zoomed in coherence epsilon � differences. The differences between calculated and
original sampling point vectors in dependence of the break condition epsilon are displayed as
’standardized sum of errors’

�
(see equation (7.4)).
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Figure 7.4: Coherence of the break condition � � time. The time necessary to calculate the
CG-procedure in dependence of the break condition � is displayed.
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Figure 7.5: Zoomed in coherence of the break condition � � time. The time necessary to calculate
CG-procedure in dependence of the break condition � is displayed.
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Figure 7.6: Coherence time � differences. The correspondence of calculation time and standard-
ized sum of errors

�
is displayed.
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Figure 7.7: Zoomed in coherence time � differences. The correspondence of calculation time
and standardized sum of errors

�
is displayed.
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� Error � CPU-time

�
	 � � �-�  � � � ���  � 37s�-� � � �-�  � � � ���  	 42s� � � �-�  � � � ��� �� 54s�-� � �-�  � � � ���  � 70s

Table 7.1: Relations between break condition � , standardized sum of errors
�
, and CPU-time.

The 3D testing field represented an affine transformation. The transformation was calculated on
a Pentium III, �

���
, �
���

RAM.

7.2 Performance of the B-Spline Transformation

In this section, we present first results of the B-Spline transformation. As will be outlined,

the basic transformation estimation must be extended by a regularization term to deal with

unfavourable effects caused by noise and homogeneous regions contained in the images.

The medical images we work ON are histological slices of the brain, VON WO? In the

following examples, the source image ��� measures ��� � � � � � � � pixels, the target image

��� consists of ��� � � � � � � � pixels. Their voxeldimensions are � ��� ��� . The images are

depicted in figure 7.8.

We apply the B-Spline transformation as described in section 4.2 and chapter 5 with a

weigthed Least Squares approach to registrate the two images. The resulting displacement

vectors for the source image can be seen in figure 7.9. They lead to the deformed source

image �	� that can be seen in figure 7.10.

The incorrectly interfering patterns at the borders of the image are clearly visible. Evi-

dently, performing further iterations using the results of the first one leads to an augmented

error effect ending in a total destruction of the original image. The error effects are due to

a combination of homogeneous regions in the image covered with noise. When we regard

the distribution of sampling points (see figure 7.11) we come to the conclusion that the

error effects appear only in the parts of the image where are none. As explained in sec-

tion 4.3, we use a weighted Least Squares approach where sampling points coming from

regions with high significance are assigned a greater weight than sampling points coming

from regions with low significance. Big homogeneous regions have zero significance,

thus, the sampling points are eliminated from the input for the B-Spline approximation.
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(a) The source image ��� is a histological
slice of the brain that measures ���������
�
	 � � pixels.

(b) The source image ��� is a histolog-
ical slice of the brain that measures
�����������	 � � pixels.

Figure 7.8: The source image � � and the target image � � that are used in several experiments.
The grey scale varies from � to ����� .

(a) Value of dis-
placement vector in
x-direction

(b) Value of dis-
placement vector in
y-direction.

Figure 7.9: Displacement values for a registration of the images shown in 7.8. We used 25 control
points per direction and performed one iteration on level 4 of the unregularized B-Spline transfor-
mation estimation.
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Figure 7.10: Deformed source image � ��
 �	�� after one iteration on level 4 of the unregularized
B-Spline transformation estimation.

Figure 7.11: Distribution of sampling points when registering the images of figure 7.8. In the
homogeneous regions of the images, no sampling points are found.
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Figure 7.12: Example of an output of the block-matching algorithm when the images contain
great homogeneous regions. Here, all sampling points are situated in the upper left quarter of the
image. The control points are distributed over the whole of the image.

7.2.1 Effects of Noise and Homogeneous Regions

The B-Spline functions represent the approximation of the transformation as described in

section 4.1 and equation (4.2):
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Assuming that the control points are uniformly distributed across the image and the sam-

pling points are not, we are faced with the problem that the values of several control points

cannot be approximated due to lack of data in the respective region. To analyse the result-

ing effect, we perform testing procedures by registrating two images that simulate great

homogeneous regions. The respective displacement field put out by the block-matching

looks like the scheme portrayed by figure 7.12.

All sampling points are comprised in one region that takes the upper left querter of the

image. The other three quarters contain no sampling points. The control points used to ap-

proximate the B-Spline transformation are uniformly distributed all oder the image. The

simulated sampling points have values in the range of �-�  . The image is of size �
	 � � �
	 � .
We simulate 2 different situations:
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(a) Value of displacement vec-
tor in x-direction.

(b) Value of displacement vec-
tor in y-direction.

Figure 7.13: Displacement vectors for all pixels in an image measuring � ����� � ��� pixels where
no noise was added. All sampling points were situated in the upper left quarter of the image. The
control points were uniformly distributed. The type of grey covering most of the image represents
the value zero. The scale of grey is of magnitude ��� ���  � ��� 	��


1. The images contain no noise effect.

2. The images contain noise effects. The noise used is random and has a mean of zero.

The bounds of the noise are varied; for the following image examples we chose the

highest amplitude to be in the magnitude of the length of the sampling points.

Now, we approximate the B-Spline transformation using the displacement field shown

in figure 7.12. Subsequently, we apply the B-Spline transformation to the source image.

Then, the resulting displacement vectors of the image pixels are displayed.

1. In case of no noise, we obtain the images shown in figure 7.13. All control points

were initialised to zero, therefore, the displacements in the region where no sam-

pling points were found equal likewise zero. In the upper left quarter of the image,

the displacement vectors are calculated correctly to values other than zero.

2. In case of noise added to the images, the results look like demonstrated in figure

7.14. Like in the example without noise, the displacement vectors in the left upper

quarter of the image were approximated correctly by the B-Spline transformation.

However, at the border between the region that contains sampling points and the

region that contains none, the displacement vectors calculated do not at all represent

the desired transformation. The noise effectuates an impulse at the border that
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0,0

0,255 255,255

255,0

(a) Value of displacement vec-
tor in x-direction.

0,0

0,255 255,255

255,0

(b) Value of displacement vec-
tor in y-direction.

Figure 7.14: Displacement vectors for all pixels in an image measuring � ����� � ��� pixels where
a zero-mean random noise was added. All sampling points were situated in the upper left quarter
of the image. The control points were uniformly distributed. The type of grey covering most of the
image represents the value zero. The scale of grey is of magnitude ��� ��� � � ��� � � .

cannot be compensated by the next row of control points as those do not take part

in the estimation. Hence, the impulse given to the Least Squares approach leads to

unpredictable results and therefore to invalid displacement vectors at the border.

To judge the deviation of the transformation estimated on images with noise or on images

without nose, we compute the differences between the resoective displacement values.

In figure 7.15 the difference images are displayed. Evidently, the noise does only effect

the contrlo points at the borders between inhomogeneous and homogeneous regions. The

transformation is still calculoated correctly for the regions that contain sampling points.

Considering the results shown above, we have to introduce a regularization term as de-

scribed in section 4.4. Therewith, we add a constraint to the output of the transformation

estimation.1 We want to obtain a function that does not contain discontinuities to forestall

effects like seen in figure 7.14. To demonstrate the influence of the regularization term on

the estimation, we now apply the regularized B-Spline transformation to the images. The

resulting displacement vectors are displayed in figure 7.16 for the no noise example and

in figure 7.17 for the noisy example.

As can be seen, the unfavourable effects of the combination of noise and homogeneous

regions in an image are heavily reduced. Here, the Least Squares estimator computes non-

1The implementation of the cost function is realized using the Gauss-Legendre
technique to compute the integrals.
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(a) Differences of the x values
in images 7.13 and 7.14. The
values outside the region con-
taining sampling points are
all zero (grey scale: � �����
� ����� , �
	�� � ����� ).

(b) Differences of the x values
in images 7.13 and 7.14. The
values outside the region con-
taining sampling points are
all zero (grey scale: � ����
� ����� , ��	�� � ����� ).

Figure 7.15: Difference values of images 7.13 and 7.14. The differences outside the region con-
taining sampling points are all zero. The differences inside the region vary between � � and

�
.

(a) Value of displacement vec-
tor in x-direction.

(b) Value of displacement vec-
tor in y-direction.

Figure 7.16: Displacement vectors for all pixels in an image measuring � ����� � ��� pixels where
no noise was added. All sampling points were situated in the upper left quarter of the image. The
control points were uniformly distributed. The B-Spline transformation estimation was regular-
ized.
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(a) Value of displacement vec-
tor in x-direction.

(b) Value of displacement vec-
tor in y-direction.

Figure 7.17: Displacement vectors for all pixels in an image measuring � ����� � ��� pixels where
random zero-mean noise was added. All sampling points were situated in the upper left quarter of
the image. The control points were uniformly distributed. The B-Spline transformation estimation
was regularized.

zero values for the control points that lie outside the sampling point region. This results

in a slow decay of displacement values beginning at the border of the region containing

sampling points and leading toward the edges of the image. The values of displacement in

the region with sampling points are still calculated correctly. The difference of the regu-

larized B-Spline approximation for the image example with noise and the image example

without noise is displayed in figure 7.18. Looking at figure 7.18 we see that the displace-

ment differences outside the sampling point region are quite big (in the same magnitude

as the displacement values), hence, the characteristics of the decay change depending on

if the regularization term is applied to images with noise or without noise. Though, the

region containing sampling points shows very little difference, therefore, the smoothing

effect of the regularization term is satisfying.
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(a) Differences of the x values
in images 7.16 and 7.17, (grey
scale: � ��� � � � � , ��	�� �
���

).

(b) Differences of the x values
in images 7.16 and 7.17, (grey
scale: � ���
� � � , �
	�� � � ).

(c) Differences of the y values
in images 7.16 and 7.17, (grey
scale: � ��� � � ��� , ��	�� �
� � ).

(d) Differences of the y values
in images 7.16 and 7.17, (grey
scale: � ���
� � � , �
	�� � � ).

Figure 7.18: Difference values of images 7.16 and 7.17. The left images show that the differences
outside the sampling point region are big whereas the differences inside the sampling point region
are quite small. The right images focus on the values in the sampling point region.
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Summary





C H A P T E R A

Transformation Parameters

Rigid transformation:

The matrix � of a three-dimensional rigid transformations �  	
 � � � 	
 � � consists of

three rotation matrices:

��
 �
����
�
� � �
� �!� � "	 
 � � ��� � �	
 �
� ��� � �	
 � ����� �	
 �

# $$$
%

��� �
����
�

����� �	 � � � �-� � "	 � �
� � �� ����� �	� � � �!��� "	 � �

#�$$$
%

�'� �
����
�
�!��� "	�� � � �-� � "	�� � �
����� "	�� � �!� � �	 � � �

� � �

#�$$$
% �

Affine transformation:

The matrices
( �"* and

( ��, of �  	
 � � ( �+* ( �",�� 	
 � � provide the scaling and shearing

parameters for the affine transformation:

( �"* �
����
�
� 
 � �
� � � �
� � � �

#�$$$
%
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with
� 
 � � � � � � as scaling coefficients and

( �", �
����
�

� � �� � �
� � �

# $$$
%

with � � � � � as shearing coefficients.
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Structure of Baladin Implementation

The basic structure of the Baladin implementation is displayed in figure B.1. The four

main c-files are baladin.c, py image.c, estimateur.c, and bal image.c.

As can be seen, the pyramidal approach and the block-matching iteration are realized in

py image.c that calls fnctions in estimateur.c to estimate the transformation. In

bal image.c the resampling (french: “re �	 chantillonnage”) of the images is executed.
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appel

baladin.c

main

appel

appel

appel
balimage.c

Reech3TriLin4x4

py_image.c

Pyramidal_Block
_Matching

loop
Pyramid−levels

appel

BlockMatching
and_Estimate

CalculChamp

estimateur.c

Estimate
Transformation

loop
Iterations

Figure B.1: Function calls in the baladin implementation using affine matrices for the transfor-
mation computation.
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Implementation of the linear transformation in a multiscale approach:

In the following, the estimation of a transformation matrix on level 	 and its application

to an image on level 	 � � is explained.

First, the images are subsampled to their respective size on level 	 . The action of subsam-

pling an image is encoded in a matrix that is called Subsample-Matrix. The Subsample-

Matrix transforms the image from a voxel into a real coordinate system before actually

subsampling it.

When the transformation estimation on a given level 	 is completed, a transformation

matrix Transform-Matrix � is obtained. That transformation matrix is valid only for its

respective level 	 since it is expressed in the level specific image coordinate system. To

apply it to the images of the following level 	 � � , it must be first multiplied with the in-

verse subsampling matrix (Subsample-matrix) �  � of the current level and then multiplied

with the subsampling matrix Subsample-Matrix �  � of the next level. (As these multipli-

cations take place in the real space, no data will be lost due to the subsampling operations

as can be seen in figure B.2.) The procedure is repeated for each level.

The matrix Result-Matrix is the result of multiplying all matrices used. It contains all

information of the transformation estimations of the different pyramid levels. In the last

step of the algorithm, the reference image is finally deformed by multiplying the Result-

Matrix with the voxel position coordinates.
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Figure B.2: Composition of the overall transformation matrix
� ���������� in the affine registration

using a pyramidal approach. The first transformation ���������
	��
�� � � ����� � � � � � 
 is calculated
on the lowest level ���� � of the pyramid. Each ���������
	����� � � ����� � � consists of a matrix����� ��� � that transforms the subsampled image from the voxel to the real coordinate system, a ma-
trix

� �����
that contains the transformation estimation in the real coordinate system and a matrix� ��� � ���

that transforms the real into the voxel coordinate system. Each ����� �
��"!#�%$ � � ����� � �
consists of a matrix

� � ���
that transforms the original source image into the real coordinate

system and a matrix
� ��� � ���

that transforms the image of the real coordinate system into a sub-
sampled image in the voxel coordinate system. As can be seen, those matrices fuses to identity
matrices so that finally all transformation matrices of the different levels are multiplied directly.
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Results of the CG-Testing

The conjugate gradient procedure is one of the main components of the transformation es-

timation presented in this thesis. Here, the results concerning the testing of the conjugate

gradient procedure are depicted. We performed different tests by varying the input field

that served as hand-made output of the block-matching algorithm (detailed description

see section 7.1).

� We create a field that represents a translation. All displacement vectors
	

� �  	
 � � have

the same value:

	
� �  	
 � � �

����
�

� �
�
	
� �

#�$$$
% � � � � � � � � � ��� �

The results are resumed in table C.1 As can be seen, the results are satifyingly

correct and very accurate.

� Error � ���  CPU-time

�
	�� � �-�  � � � � ���  � 31s�-� � � �-�  � �
� ���  � 36s� � � ���  � �
� ���  � 40s��� � ���  � � � ���  	 96s

Table C.1: Relations between break condition � , errors of result
� 

, and CPU-time. The 3D testing
field represented a translation. The transformation was calculated on a Pentium III, �

���
, �
���

RAM.
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� Error � ���  CPU-time

�
	�� � �-�  � � � � � 197s�-� � � �-�  � � � � � 243s� � � ���  � � � � � 243s��� � ���  � � � � � 341s

Table C.2: Relations between break condition � , errors of result
� 

, and CPU-time. The 3D testing
field represented a sinusoidal transformation. The transformation was calculated on a Pentium III,
�
���

, �
���

RAM.

� We create a sinusoidal field. The displacement vectors
	

� �  	
 � � have the values

	
� �  	
 � � �

����
�
� � ��� � ���� 
 ��� � �
�  �-� � ���� ����� � �
� � ��� � ���� � ��� � �

#�$$$
%

with

� � � � � � � � �
� � � � � � � � � � � �

The results are resumed in table C.2.

As can be seen, the transformation estimation cannot be improved by augmenting the

number of iterations. The sinusoidal transformation proves to be difficult to estimate by

the B-Spline transformation.
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