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Summary
Objectives: When analyzing shapes and
shape variabilities, the first step is bringing
those shapes into correspondence. This is a
fundamental problem even when solved by
manually determining exact correspondences
such as landmarks.We developed a method to
represent a mean shape and a variability
model for a training data set based on proba-
bilistic correspondence computed between
the observations.
Methods: First, the observations are matched
on each other with an affine transformation
found by the Expectation-Maximization Iter-
ative-Closest-Points (EM-ICP) registration.We
then propose a maximum-a-posteriori (MAP)
framework in order to compute the statistical
shape model (SSM) parameters which result
in an optimal adaptation of the model to the
observations. The optimization of the MAP
explanation is realized with respect to the
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observation parameters and the generative
model parameters in a global criterion and
leads to very efficient and closed-form sol-
utions for (almost) all parameters.
Results: We compared our probabilistic SSM
to a SSM based on one-to-one correspond-
ences and the PCA (classical SSM). Experi-
ments on synthetic data served to test the per-
formances on non-convex shapes (15 training
shapes) which have proved difficult in terms
of proper correspondence determination. We
then computed the SSMs for real putamen
data (21 training shapes). The evaluation was
done by measuring the generalization ability
as well as the specificity of both SSMs and
showed that especially shape detail differ-
ences are better modeled by the probabilistic
SSM (Hausdorff distance in generalization
ability ˜ 25% smaller).
Conclusions: The experimental outcome
shows the efficiency and advantages of the
new approach as the probabilistic SSM per-
forms better in modeling shape details and
differences.

1. Introduction
The representation and analysis of 3D shape
variabilities is of importance in different
medical imaging problems, for example when
dealing with 4D image data as breathing
lungs [1, 2] or beating hearts [3], when com-
puting an anatomical variability atlas as e.g.

shown in [4] or when solving segmentation
problems. One of the central difficulties of
analyzing different organ shapes in a statis-
tical manner is the identification of cor-
respondences between the points of the
shapes. As the manual identification of land-
marks is not a feasible option in 3D, several
preprocessing techniques were developed to

automatically find exact one-to-one cor-
respondences between surfaces which are
represented by meshes [5–8]. A popular
method is to optimize for correspondences
and registration transformation as does the
Iterative Closest Points (ICP) algorithm [9]
for point clouds. More elaborate methods di-
rectly combine the search of correspondences
and of the SSM for a given training set as pro-
posed in [10, 11] or the Minimum Descrip-
tion Length (MDL) approach to statistical
shape modeling [12, 13]. The MDL is used to
optimize the distribution of points on the
surfaces of the observations in the training
data set when determining the best SSM. For
unstructured point sets, the MDL approach is
not suited to compute a SSM because it needs
explicit surface information. Another inter-
esting approach proposes an entropy-based
criterion to find shape correspondences, but
requires implicit surface representations
[14]. Other approaches combine the search
for correspondences with shape-based clas-
sification [15, 16] or with shape analysis [17],
however, these methods are not easily adapt-
able to multiple observations of unstructured
point sets as they either depend on under-
lying surface information or fix the number
of points representing the surface. The ap-
proach in [18] for unstructured point sets
focuses only on the mean shape. In all cases,
enforcing exact correspondences for surfaces
represented by unstructured point sets leads
to variability modes that not only represent
the organ shape variations but also artificial
variations whose importance is linked to the
local sampling of the surface points.

Therefore, we believe that a method for
shape analysis should better rely on probabi-
listic point locations as presented with the
EM-ICP registration in [19]. Based on this,
we advanced the probabilistic concept of [20]
to compute a probabilistic SSM for unstruc-
tured point sets.
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cient and closed-form solutions for (almost)
all parameters without the need of one-to-one
correspondences as is usually required by the
PCA. We then compute the SSM which best
fits the given data set by optimizing the global
criterion iteratively with respect to all model
and all observation parameters.

2.1 Statistical Shape Model Built
on Correspondence Probabilities

In the process of computing the SSM, we dis-
tinguish strictly between model parameters
and observation parameters. The generative

SSM is explicitly defined by four model pa-
rameters:
● Mean shape M

– ∈ R3m parameterized by Nm

points mj ∈ R3.
● Variation modes vp consisting of Nm 3D

vectors vpj .
● Associated standard deviation λp which

describes the impact of the variation
modes.

● Number n of variation modes.

Using the generative model Θ = {M
–

, vp, λp, n}
of a given structure, the shape variations of
that structure can be generated by Mk =

M
–

+ ωkpvp with ωkp ∈ R being the defor-

mation coefficients. The shape variations
along the modes follow a Gaussian probabil-
ity distribution with variance λp:

p(Mk | Θ) = p(Ωk | Θ) = Πp p(ωkp | Θ) =

(1)

with Ωk ∈ Rn being a vector consisting of the
deformation coefficients ωkp associated with
shape variation Mk. In order to account for
the unknown position and orientate on of the
model in space, we introduce the random
(uniform) rigid or affine transformation Tk.
A model point mj can then be deformed and
placed by Tk omkj = .

Finally, we specify the sampling of the
model surface: Each sampling (e.g. obser-
vation) point si is modeled as a Gaussian
measurement of a (transformed) model
point mkj . The probability of the observation
p (ski | mkj , Tk) knowing the originating model
point mkj is given by the equation you can see
in �Figure 1.As we do not know the originat-
ing model point for each ski , the probability of
a given observation point ski is described by a
mixture of Gaussians and the probability for
the whole scene Sk becomes:

p(Sk | Μ, Tk) = (2)

We summarize the observation parameters as
Qk = {Tk, Ωk}. Notice that the correspond-
ences are hidden parameters that do not be-
long to the observation parameters of inter-
est.

2. Methods
We argue that when segmenting anatomical
structures in noisy image data, the extracted
surface points only represent probable surface
locations. Based on this, it is very difficult to
find the true shape surface. In our probabi-
listic approach, we propose a maximum-a-
posteriori framework in order to compute the
model parameters which result in an optimal
adaptation of the model to the observations in
a global unique criterion. The optimization of
the MAP explanation is realized with respect
to the generative model parameters and all
observation parameters and leads to very effi-

Fig. 1

Fig. 2
Synthetic training
data set featuring
banana shapes.
a) Observation
examples; b) prob-
abilistic SSM; c) clas-
sical SSM. Mean
shapes (middle) and
mean shapes de-
formed with respect
to the first varia-
tion mode. Left:
M– – 3λv→1 and right:
M– + 3λv→1. d) Result
example of leave-
one-out experiment.
Left: SSM built on
one-to-one corre-
spondences. Right:
SSM built on proba-
bilistic correspond-
ences. The deformed
mean shapes are
dark grey while the
obsrevation is col-
ored in light grey.
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2.2 Derivation of the Global
Criterion Using a MAP Approach

When building the SSM, we use a training
data set containing N observations Sk ∈ R3Nk,
and we are interested in the parameters linked
to the observations Q = {Qk} as well as the
unknown model parameters Θ. In order to
determine all parameters of interest, we opti-
mize a MAP on Q and Θ.

(3)

.

As p(Sk) does not depend on Θ and p(Θ) is
assumed to be uniform, the global criterion
integrating our unified framework is the
following:

C(Q, Θ) = (4)

The first term describes the maximum likeli-
hood (ML) criterion (�Eq. 2) whereas the
second term is the prior on the deformation
coefficients ωkp as described in �Equation 1.
Dropping the constants, our criterion sim-
plifies to C(Q, Θ) ~ Ck(Qk, Ω) with

C(Qk, Θ) = .

(5)

This equation is the heart of the unified
framework for the model computation and
its fitting to observations. By optimizing it al-
ternately with respect to the operands in Qk =
{Tk, Ωk} we are able to determine all parame-
ters we are interested in. In a first step, all ob-
servations are aligned with the initial mean
shape by estimating the Tk using the EM-ICP.
In order to robustify, we used a multi-scaling
scheme concerning the variance σ2, that is we
start with a great σstart in order to align posi-
tions, rotation and sizes. The variance is then
reduced in each iteration to cover for shape
details. This approach seems to be quite ro-
bust to the choice of initial mean shape [21].

Starting from the initial model parameters Θ,
we then fit the model to each of the observa-
tions. Next, we fix the observation parameters
Qk and update the model parameters. This is
iterated until convergence.

2.3 Evaluation Methods

In order to asses the quality of the probabilis-
tic SSM, we compare its performance to a
‘classical’ SSM as e.g. used in [8]. The classical
SSM is based on exact correspondences
found by an iterative closest points (ICP) reg-
istration and its variation modes are deter-
mined by a classical principal component
analysis (PCA). In the following, we first ex-
plain the measures we use to quantify the per-
formance of an SSM and state which distance
measures we use. Next, we describe the design
of the experiments.

2.3.1 Performance Measures

For both SSMs, we compute two performance
measures, the generalization ability and the
specificity as proposed in [22].

The generalization ability indicates how
well a SSM is able to match new unknown
shapes. This is important e.g. when using the
SSM to segmentation problems. The general-
ization ability is tested in a series of leave-one-
out experiments. We analyze how closely the
SSM matches an unknown observation. The
SSM is first aligned with the new observation.
Then, the optimal deformation coefficients
are determined and used to deform the
aligned SSM in order to optimize the match-
ing. Finally, the distance of the deformed SSM
to the left-out observation is measured. For
aligning the probabilistic SSM using the EM-
ICP registration, similar parameters as for the
SSM computation were used, that is, the
registration was not optimized for each un-
known observation.

The specificity indicates how well the
modeled variability represents the variability
found in the training data set. For estimating
the specificity, a high number (in our case 500)
of random shapes have to be generated which
are uniformly distributed with their variances
equal to the variance or eigenvalues of the re-
spective SSM. Then, the distances of the ran-
dom shapes M i

def to the most similar observa-
tion S i

def in the training data set is measured.

2.3.2 Distance Measures

There are several options to compute a simi-
larity measure between two shapes (source
and target).

As in our case the shape surfaces are
represented by point clouds, we compute the
distances based on point coordinates.
Hence, we define the distance d from an ob-
servation Sk to the deformed mean
shape Mdef with Nm points mj as

d(Sk, Mdef) = where

mki = arg minmj || ski – mj ||. This distance
measure is not symmetric, hence, we also

compute d(Mdef, Sk) =

where skj = arg min . In ad-
dition, we compute the maximum distance
dmax (Sk , Mdef) as the maximal minimal dis-
tance found from Sk to Mdef for || ski – mki ||
with mki = arg minmj || ski – mj || and respec-
tively dmax(Mdef, Sk). The Hausdorff distance is
then max(dmax(Mdef , Sk), dmax(Sk , Mdef). Fur-
thermore, we determine the mean difference
between the pairs d(Mdef , Sk) and d(Sk , Mdef)
as a measure of symmetry.

As symmetric distance measures we define
the averaged mean distance dmean(Sk , Mdef) =

and the aver-

aged maximum distance dav – max (Sk , Mdef) =

. The sym-

metric measures are especially useful for esti-
mating the specifity as the deformed model
has to be compared to all observations in the
training data set in the same reference frame.

2.3.3 Design of Experiments

We conducted two sets of experiments, one
on synthetic data and one on real data.

Shapes with non-convex or even non-star-
shaped surfaces are a challenge for the compu-
tation of a SSM as the automatic deter-
mination of correspondences is difficult.As we
later want to use the SSM for segmenting
structures like the kidney or the acetabulum,
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an analysis of a SSM method regarding non-
convex shapes is of great interest. In order to
test how the probabilistic SSM and the classical
SSM deal with non-convex shapes, we gener-
ated a synthetic data set containing 15 observa-
tions shaped like bananas (see �Fig. 2a). In
order to obtain meaningful results, the varia-
bility in the training data set is high: The cur-
vature of the banana as well as the size, thick-
ness and orientation in space changes from ob-
servation to observation. The number of
points range from minimum 386 to maximum
642. The average smallest distance between the
points is 29.3 mm. The experiments served to
prove that the probabilistic SSM is suited
better for training data sets containing non-
convex shapes. Our real data set consisted of N
= 21 left segmented putamen observations
(approximately 20 mm × 20 mm × 40 mm)
which are represented by minimum 994 and
maximum 1673 points (�Fig. 3a). The MR
images (255 × 255 × 105 voxels of size 0.94 mm
× 0.94 mm × 1.50 mm) as well as the manual
segmentations were kindly provided by the
Hôpital La Pitié-Salpêtrière, Paris, France. The
data was collected in the framework of a study
on hand dystonia. The computation of a SSM
for the putamen data might be useful either for
segmentation purposes or for an analysis of
the shape variability in patient and control
groups. We again evaluated the quality of a
probabilistic SSM and a classical SSM.

3. Results

3.1 Synthetic Data Results

We computed a classical and a probabilistic
SSM for the banana training data set; for the
results see �Figures 2b and 2c. For the prob-
abilistic SSM, the following parameters were
chosen: σstart = 15 –100 mm (dependent on
the observation shape), reduction factor =
0.9, 10 iterations (EM-ICP multi-scaling)
with five SSM iterations. For the classical SSM
using the ICP and the PCA, we iterated the
ICP 50 times. Most of the parameter values
were found in an heuristic way.

The tests for the generalization ability for
the banana SSMs were performed on six dif-
ferent left-out observations. The estimation
of the specificity was performed on 500 ran-
dom shapes. The results are represented in
�Table 1.

Table 1 Banana shape results. Shape distances found in generalization experiments (six leave-one-
out tests) and in specificity test with probabilistic SSM approach and with the SSM-ICP approach. The
distances and associated standard deviations are given in mm.

Fig. 3
Real training data
set featuring the
putamen. a) Ob-
servation examples;
b/c) probabilistic
SSM; d/e) classical
SSM. Mean shapes
(middle) and mean
shapes deformed
with respect to the
first (b, d) and sec-
ond (c, e) varia-
tion mode. Left:
M– – 3λv→1, 2 and
right: M– – 3λv→1,2.
The regions in cir-
cles mark shape de-
tails which are rep-
resented by the
probabilistic SSM
and which are not
modeled by the
classical SSM.

Generalization ability Classical SSM Probabilistic SSM

d(Mdef, Sk) in mm 18.82 ± 3.49 19.43 ± 5.46

d(Sk, d(Mdef)) in mm 30.37 ± 15.75 20.28 ± 5.14

dmax(Mdef, Sk) in mm 48.84 ± 18.47 63.62 ± 32.07

dmax(Sk, Mdef) in mm 84.31 ± 53.41 49.57 ± 12.83

average |d(Mdef, Sk) – d(Sk, Mdef) | in mm 11.56 ± 12.6 1.31 ± 1.06

Specificity

dmean(Sk, Mdef) in mm 18.87 ± 9.73 30.74 ± 2.78
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The distance values for the probabilistic
SSM in general are lower than those of the
classical SSM in the generalization ability
experiment. Especially the maximum dis-
tances differ with 84.31 mm for the classical
SSM and 63.63 mm for the probabilistic SSM.
Also the difference between the values of
|d(Mdef , Sk) – d(Sk , Mdef)| is considerably large
with 11.56 mm for the classical SSM and
1.31 mm for the probabilistic SSM.

The specificity tests show lower distance
values for the classical SSM.

3.2 Real Data Results

For our SSM, the following parameters were
chosen: σstart = 4 mm, reduction factor = 0.85,
10 iterations (EM-ICP multi-scaling) with
five SSM iterations. For the ICP+PCA SSM,
we iterated the ICP 50 times. Most of the pa-
rameter values were found in an heuristic
way.

The results are shown in �Figures 3b/c
for the probabilistic SSM and in �Figures
3d/e for the classical SSM.

The results of the testing series for the gen-
eralization ability and the specificity for both
our SSM and the ICP+PCA SSM on putamen
data are depicted in �Table 2.

Regarding the generalization ability, we
obtained an average mean distance of
0.610 mm for the classical SSM and an aver-
age mean distance of 0.447 mm for the prob-
abilistic SSM. The average maximum dis-
tances read 4.288 mm for the classical SSM
and 2.526 mm for the probabilistic SSM.
These results concur with the images which
show the first and second variation modes/-
eigenmodes for the probabilistic and classical
SSM, here the deformations of the probabi-
listic SSM account for more details than those
of the classical SSM 2.

The specificity tests show similar distance
values for the classical and the probabilistic
SSM.

4. Discussion

Especially the outcome for the values of
|d(Mdef , Sk) – d(Sk , Mdef)| shows that the prob-
abilistic SSM is able to capture for shape de-
tails which are lost for the classical SSM.
Moreover, the Hausdorff distances in the gen-

eralization ability tests are more than smaller
for the probabilistic SSM than for the classical
SSM in the experiment on synthetic data.
This is also illustrated in �Figure 2d where
the result of a rather extreme leave-one-out
experiment is shown. The classical SSM
adapts very well the corpus of the banana but
fails to deform into its tip. The probabilistic
SSM, however, is coming close to represent
also the tip of the banana. This is due to the
fact that the ICP only takes into account the
closest point when searching for correspond-
ence, thus, the points at the tip of the bananas
are not necessarily involved in the registra-
tion process. The EM-ICP, however, evaluates
the correspondence probability of all points,
therefore, also the points at the tip are
matched. For the same reason, the specificity
values are better in the classical SSM as the
standard deviations λp which were used for
the random shape distributions are smaller in
the classical SSM than in the probabilistic
SSM. This is due to the fact that the classical
SSM models less variability than the probabi-
listic SSM.

Furthermore, in the test series on putamen
data, our SSM achieved superior results in the
generalization ability. Especially the reduced
maximum distance (more than 40% smaller)
illustrate the benefit of the new approach. In
the figures displaying both SSMs it can be
seen that the mean shapes of both approaches
resemble, however, the first and second vari-
ation mode of the probabilistic SSM show
more details than the first and second eigen-
modes of the classical SSM. In conclusion,
there are various shape details which are not
captured very well by the ICP-SSM but can be
modeled by the probabilistic SSM. This is an
advantage when dealing with observations
whose shapes differ significantly form those
in the training data set or when the training
data set contains two different shape classes.

Additionally, for segmenting unknown
shapes of the same type, a well-modeled
variability is of great importance. On the
other hand, the classical SSM is easier to
handle as the computation is straight forward
and fast. For the probabilistic SSM, however,
the practical convergence rate has to be inves-
tigated more carefully. For instance, a fast de-
crease of the multi-scale variance σ2 easily
freezes the model in local minima and several
parameter values are chosen heuristically in
dependence of the number and distribution
of points representing the observation
shapes.

5. Conclusion

We proposed a mathematically sound and
unified framework for the computation of
model parameters and observation parame-
ters and succeeded in determining a closed
form solution for optimizing the associated
criterion alternately for all parameters. Ex-
periments showed that our algorithm works
well and leads to plausible results. It seems to
be robust to different initial mean shape
choices and is stable even for small numbers
of observations.

A good modeling of the variability is an
important feature of a SSM, especially when it
is employed to the segmentation of anatomi-
cal structures for radiotherapy or surgery
planning where the precision must be high.
We showed the efficiency of our approach
compared with a SSM built by the traditional
ICP and PCA for a non-convex and non-star-
shaped shape and found that the probabilistic
SSM performs better in terms of generaliza-
tion ability.

From a theoretical point of view, a very
powerful feature of our method is that we are
optimizing a unique criterion. Thus, the con-

Table 2 Putamen results. Shape distances found in generalization experiments (seven leave-one-out
tests) and in specificity test with probabilistic SSM approach and with the SSM-ICP approach. The dis-
tances and associated standard deviations are given in mm.

Generalization ability Classical SSM Probabilistic SSM

dmean(Sk, Mdef) in mm 0.610 ±0.089 0.447 ± 0.101

dav – max(Sk, Mdef) in mm 4.388 ± 0.930 2.426 ± 0.712

Specificity

dmean(Sk, Mdef) in mm 0.515 ± 0.117 0.452 ± 0.020
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vergence is ensured. Currently, we continue to
evaluate the performance of the probabilistic
SSM on different synthetic data such as non-
spherical shapes which pose a problem for
other well-established SSM methods as for
example the otherwise effective MDL ap-
proach. Besides, we are working on an appli-
cation of the probabilistic SSM on segmen-
tation problems.
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