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Image matching as a diffusion process: an analogy with Maxwell’s
demons
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Abstract
In this paper, we present the concept of diffusing models to perform image-to-image matching.
Having two images to match, the main idea is to consider the objects boundaries in one image
as semi-permeable membranes and to let the other image, considered as a deformable grid
model, diffuse through these interfaces, by the action of effectors situated within the membranes.
We illustrate this concept by an analogy with Maxwell’s demons. We show that this concept
relates to more traditional ones, based on attraction, with an intermediate step being optical
flow techniques. We use the concept of diffusing models to derive three different non-rigid
matching algorithms, one using all the intensity levels in the static image, one using only contour
points, and a last one operating on already segmented images. Finally, we present results with
synthesized deformations and real medical images, with applications to heart motion tracking
and three-dimensional inter-patients matching.
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1. INTRODUCTION

Many concepts of thermodynamics have been fruitfully ap-
plied in the field of information theory and, more specifically,
to image processing. A recent example is the application
of mutual entropy minimization techniques (see Viola and
Wells, 1995; Maes et al., 1997) to the matching of medical
images acquired with different modalities.

Another instructive example is anisotropic filtering (see
Perona and Malik, 1990; Catté et al., 1992; Gerig et al., 1992;
Kimia and Siddiqi, 1994), now commonly used as a pre-
processing step for medical images: it can be shown that the
application of a Gaussian filter of parameter σ is equivalent
to the diffusion of heat in a homogeneous material for a time
duration directly related to σ . Heat propagation is a new way
of looking at Gaussian filtering: variations of this concept,
for example by using the object boundaries in the image to
create inhomogeneities with respect to heat propagation, have
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led to a large variety of new, non-linear algorithms for image
filtering, even if convergence proofs have not always been
established. Anisotropic filtering is not a new technique, but
a new exciting way to consider a problem as ancient as image
processing.

Extending the presentations in Thirion (1995, 1996), we
propose an original viewpoint for image-to-image matching,
also based on an analogy with thermodynamic concepts (see
Figure 1). Having two images to match, the main idea
is to consider the object boundaries in one image as semi-
permeable membranes and to let the other image, considered
as a deformable grid model, diffuse through these interfaces,
by the action of effectors situated within the membranes.
We illustrate this concept by an analogy with Maxwell’s
demons and we contrast it with more conventional viewpoints
such as deformable models based on attraction. As we will
see, diffusing models rely mainly on the notion of polarity
(inside–outside), while attraction relies on the notion of
distance, but mixed models can be devised, and we will also
see how to translate the diffusing model concept into the
concept of attraction, with an intermediate step corresponding
to optical flow methods.
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Figure 1. Diffusing models: a deformed image, considered as a
deformable grid, is diffusing through the contours of the objects in
the static image, by the action of effectors, called demons, situated
in these interfaces.

First, we recall some existing techniques concerning non-
rigid matching, such as ‘snakes-based’ methods, similarity
maximization techniques and optical flow. Then we present
and detail our concept of diffusing models, illustrated by
its application to a simplified case, when two identical
discs are matched rigidly (demon 0). We present a general
iterative scheme to implement diffusing models, with several
possible variants (demons 1, 2 and 3) which illustrate how the
concept can be applied to generate new matching algorithms.
Finally, we present experimental results with several medical
applications such as the tracking of deformable organs or
three-dimensional (3-D) inter-patients matching.

2. NON-RIGID MATCHING TECHNIQUES

Matching is an essential task for many computer vision appli-
cations. A clear definition can be given for rigid or articulated
bodies: it is to recover rigid displacements of rigid parts.
The task is much more complicated for deformable objects,
with plastic or elastic deformations. In this case, there is not
a single definition of an ideal optimal match, but as many
definitions as practical applications. Each time, one has to
define precisely the set of deformations T which are explored
(rigid, affine, spline, free-form etc), and the type of features
which are used (points, curves, surfaces, intensities etc).

However, classifying all non-rigid matching techniques
with a single metric is made impossible in practice by the
numerous works recently performed in that domain for a large
number of different goals. We only describe a few of these
methods here.

2.1. The concept of attraction
A widespread (and very intuitive) way to consider matching
is based on an analogy with attraction. One example is
gravitation: a point P of the deformable model M is attracted
by all the points P′ in S which are similar. For example, let
K (P, P′) be a similarity criterion, and D(P, P′) a function
of the distance (not necessarily Euclidean), the force Ef on P,

Points attracted by the scene

Line of attractors

Deformable model M

Scene S

Figure 2. Deformable model with attraction.

induced by the attraction of all the points of Scan be

Ef (P) =
∑
P′∈S

K (P, P′)
D(P, P′)

EP P′. (1)

M is deformed according to these forces, and also
according to smoothness constraints internal to M . Such a
method is computationally too expensive [O(n2)]. A less
expensive method is to retain in the computation only one
principal attractive point of S: a point P of M is attracted by
the point P′ of Swhich is the ‘closest and most similar’ to P.

We perceive in this definition that a balance between being
‘close’ and being ‘similar’ must be determined. For example,
in some methods, only contour points are used, and contour
points in Sare equally similar to contour points in M , making
proximity the most important factor (see Figure 2). This is
the case for iterative closest point (ICP) methods; see Besl
and McKay (1992) and Zhang (1992) for the rigid case. This
is also a basic assumption in the ‘snakes’ method introduced
by Kass et al. (1987); see also Blake and Yuille (1992) for a
review of these techniques.

Distance and similarity can be married in an elegant
way. For example in Feldmar and Ayache (1994), the points
have n attributes (or parameters), defined using differential
geometry: these attributes are invariants associated with the
points, such as principal curvatures. The coordinates x, y, z
of the points are also considered as parameters, therefore each
point of S is represented by a single point in an (n + 3)-
dimensional parametric space, where spatial coordinates and
differential invariants are mixed. Then only distance is
needed, like in ICP, but in the (n + 3)D parametric space:
it can be the Euclidean distance, or the Mahalanobis distance
if uncertainty is evaluated as well (see Ayache, 1991).

Similarity can also be introduced into snakes-based tech-
niques. For example in Benayoun and Ayache (1995), a
third term is added to the energy function to be minimized,
corresponding to the similarity of differential geometry
properties attached to those points. This helps to reduce the
well known ‘aperture problem’ (see Faugeras, 1993), which
states that it is easier to recover displacements normal to the
contour rather than along it.
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In contrast to ICP or snakes, correlation techniques place
more importance on similarity than on distance. The point P
of M is attracted by P′ of S which maximizes a correlation
function K (P, P′). But a distance is also used, which is 1
if P′ is within a neighbourhood of Ti (P) (where Ti is the
current estimated deformation) and +∞ if P′ is out of the
correlation window.

As described, these methods are still expensive because
at each iteration and for each P, a large number of possible
attractive points P′ in S are to be considered. In practice,
there are algorithmic solutions to reduce the complexity of
finding this ‘closest and most similar’ point. It can be
the use of KD trees, like in Besl and McKay (1992) or
Feldmar and Ayache (1994). It can be by reducing the
set of feature points, like using the surface of organs (see
Davatzikos, 1996; Thompson and Toga, 1996), or an even
more compact representation such as crest lines (see Declerck
et al., 1995) or individual points (see Thirion, 1994; Rohr et
al., 1996). It can be the use of pre-computed distance maps,
such as for chamfer matching techniques (see Borgefors,
1988; Malandain et al., 1994).

An attractive point can also be considered to be a minimum
of a potential field (an ‘attractor’): by differentiating this
potential field a local expression of the forces is obtained.
This can be done for snakes [using, for example, the gradient,
see Kichenassamy et al. (1995)], and also for correlation
techniques. These differentiations give forces which are
likely to be directed toward the ‘closest most similar’ point,
but it is only a local approximation.

As we can see, the concept of attraction has inspired
the majority of existing matching methods. Distance and
similarity are central in attraction, while polarity is accessory
and seldom used. We note however that there exist some
works that make use of polarity—in Radeva et al. (1995)
polarity is used to discard the forces of contours whose
normals are directed away from their closest point. In the
work of Chakraborty et al. (1996), regional information is
used in the form of a third term to be minimized along with
internal and external forces. This third term corresponds to
the integral over the model interior of the points which are
unlikely to be interior points. One can refer to the work of
Ronfard (1994) for a method mostly based on polarity: we
will discuss this last method in detail later on.

2.2. Optical flow methods
A special kind of method is optical flow, which is used to
find small deformations in temporal sequences of images
(see Horn and Schunck, 1981; Aggarwal and Nandhakumar,
1988; Barron et al., 1994). At a given point P, let s be the
intensity function in Sand m the intensity in M (see Figure 3).
The basic hypothesis of optical flow is to consider that the
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Figure 3. Instantaneous velocity from image M to image S.

intensity of a moving object is constant with time, which
gives, for small displacements, the optical flow equation

Ev · E∇s= m− s. (2)

This constraint is not sufficient to define the velocity Ev;
see for example Simoncelli et al. (1991). One solution is to
regularize the problem to obtain the local values of Ev. Another
solution is to consider that the end point of Ev is the closest
point of the hypersurface m, with respect to spatial (x, y, z)
translations (see Figure 3), which leads to Equation (3):

Ev = (m− s) E∇s

( E∇s)
2

. (3)

This equation is unstable for small values of E∇s, leading to
infinite values for Ev. Ideally, the expression should be close
to zero for small E∇s. A solution is to multiply Equation (3)

by (( E∇s)
2
/(( E∇s)

2 + (m− s)2)), which gives Equation (4):

Ev = (m− s) E∇s

( E∇s)
2 + (m− s)2

(4)

or, Ev = E0 if ( E∇s)
2 + (m− s)2 < ε. With this expression, the

optical flow can be calculated in two steps: first compute the
instantaneous optical flow for every point in S, then regularize
the deformation field.

In optical flow, Ev is considered to be a velocity because the
images are two successive time frames: Ev is the displacement
during the time interval between the two image frames. In
fact, when comparing images of two different patients, there
is no such temporal consideration and it is more general to
consider Ev as being simply a displacement.

3. DIFFUSING MODELS

We now present the concept of diffusing models, with a
parallel with Maxwell’s demons.
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Figure 4. Maxwell’s demons and a mixed gas.

3.1. Maxwell’s demons
The concept of demons was introduced in the 19th century
by Maxwell to illustrate a paradox of thermodynamics (see
Figure 4). Assume a gas composed of a mix of two types
of particles a and ba, and separated by a semi-permeable
membrane. Assume also, that this membrane contains a set of
‘demons’, which are able to distinguish between the two types
of particles, and allow particles of type a only to diffuse to
side A of the membrane and particles of type b only to diffuse
to the other side B. At the end, A contains only particles a,
and B particles b.

This corresponds to a decrease of entropy, in contradiction
with the second principle of thermodynamics. The paradox
was solved because the demons generate a greater amount of
entropy to recognize the particles; thus, the total entropy of
the system has increased.

3.2. Demons for image processing
Let us see how to apply demons to image matching. We
want to match a model image M with a scene image S: M
must be deformed to resemble S as much as possible. We
assume (see again Figure 1) that the contour of an object
O in S is a membrane, and we scatter our demons along
this contour. We assume also that we are able to determine
locally, for each contour point in S, a vector perpendicular
to this contour and oriented from the inside of the object to
the outside (for example, the gradient of the image S can be
used). We assume also that M is a deformable grid, whose
vertices are particles which can be classified as ‘inside’ or
‘outside’ particles. The rigidity of the deformable grid M
is determined by the relations between these particles, and
different behaviours, from totally rigid to totally free form,
can be obtained by varying these relations. We will see later
on that many types of deformations can be used. We call
M a diffusing model, and we give an informal definition for
demons:

aOriginally a and b were cool and hot particles.

Figure 5. Three iterations of a model based on attraction (top
row) and a rigid diffusing model (bottom row). These examples are
produced by actual implementations.

a demon is an effector situated in a point P of the
boundary of an object O. It acts locally to push the
model M inside O if the corresponding point of M
is labelled ‘inside’, and outside O if it is labelled
‘outside’.

Polarity (inside–outside) is central for diffusing models,
and distance is optional.

3.3. Diffusing models: a simplified example
To illustrate this principle, we consider the simple case of two
images displaying the same disc, and we restrict ourselves
to rigid transformations. We consider how this problem is
tackled having in mind the concept of attraction as well as of
a diffusing model (see Figure 5).

• For attraction, it is natural to sample regularly the model
disc boundary (like in snakes-based techniques), and
to apply forces directed toward the closest point of
the scene circle, which contains the attractive points:
distance is central.
• For a diffusing model, we regularly sample the scene

disc boundary, each point being a demon. The force
of the demon is oriented from the inside to the outside
of the disc if the corresponding model point is labelled
‘outside’, and the other way if the label is ‘inside’:
polarity is central.

Both methods are iterative: at each iteration, the motion
created by all the elementary forces is applied to the model.
Again to simplify the comparison, the force magnitudes
induced by the demons and the attractive points are constant
and equal at each iteration, but decrease with each iteration,
in order to allow convergence.
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Figure 6. Next three iterations (top row, attractive points; bottom
row, demons).

Figure 7. Example of problematic initializations: left, when the
two objects to be matched do not overlap, diffusing models are
inefficient. Right, with an attraction model that does not take
polarity into account, and with forces decreasing with the distance,
the model can get trapped in a local minimum.

In Figure 5, the top three images represent three iterations
using attraction, and the bottom three images are three
iterations using a diffusing model. We can see that the
individual forces are clearly different between both methods,
and that this is not due to a change of the reference system,
because the transformation is rigid. Figure 6 presents the
next three iterations for attractive points (top) and diffusion
(bottom). The two methods converge toward a similar result
(but this is not always the case) and for small deformations,
the forces also become similar.

We note that if the two discs do not overlap initially, then
the demon-based method does not apply, whereas attraction
still works, but there are other examples where attraction
models can get stuck into local minima (see Figure 7 for an
example) while diffusing models can still give the expected
solution.

It is remarkable to observe that a model solely based on
polarity can lead to matching.

deformable grid

static image
static contour

demons

deformable contour

Figure 8. Two different uses of the concept of demons. Left, in
‘anticipating snake’ for image segmentation; right, in a diffusing
model, used to perform image-to-image matching.

3.4. Related works
From all the methods that we have considered, the closest
work in its spirit is probably the ‘anticipating snakes’
of Ronfard (1994) used for two-dimensional (2-D) image
segmentation (see Figure 8). The principle of the method is
to consider a deformable contour where the external forces
are replaced by ‘region-based’ forces, relying mainly on
polarity, and which fit perfectly to our definition of demons.
Anticipating snakes is distinct from diffusing model though,
mainly because what is considered in Ronfard (1994) is a
deformable contour evolving in a static image instead of a
deformable image grid diffusing through a static contour. One
visible consequence is that forces are applied to a deformable
contour in Ronfard (1994), and to a deformable grid in our
method. Along iterations, external forces are also always
applied in the same location of the deformable contour in
anticipating snakes while they are applied on successive
locations of the deformable grid in diffusing models.

With respect to medical applications, the most related
works are Bajcsy and Kovacic (1989), Gee et al. (1993) or
Christensen et al. (1994b) where a global image, considered
as a 2-D or 3-D grid, is also deforming. In these methods,
the external forces exerted on the grid are traditional ones,
based for example on the derivatives of a cross-correlation
similarity measure.

It seems to us that the latter methods could be studied from
the viewpoint of diffusing models, although it is still unclear
to us how to do so. However, we are able to show that, to
some extent, optical flow can be considered as an intermedi-
ate concept between diffusing models and attraction.

3.4.1. Optical flow behaves like diffusing models
Through each point P of a scene image S where E∇s 6= 0 is
an iso-contour s = I , where I = s(P) is constant. This iso-
contour is the interface between the inside regions s < I and
the outside regions s > I . Comparing the intensities of the
model image M with I also gives an automatic way to label
the points of M ‘inside’ or ‘outside’.
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The displacement Ev [Equation (4)] is comparable to the
application of an elementary force Ef during one iteration step,
whose direction is the same as E∇s and whose orientationb is
according to −E∇s if m < s, that is m < I and according to
+E∇s when m> I . In other words, the force f pushes a point
P of M toward the outside (that is, E∇s) when P is labelled
outside (m > I ), and toward the inside (that is −E∇s), when
P is labelled inside (m < I ), which is exactly our definition
of a demon.

3.4.2. Optical flow also behaves like deformable models
based on attraction

Consider again Figure 3: Ev is the shortest spatial displace-
ment that brings the point [P,m(P)] of the hypersurface
corresponding to M , into the hyper-plane coming through
[P, s(P)], with normal (−E∇s, 1), which is the best local ap-
proximation of the hypersurface S. If only local information
are available [that is m(P), s(P) and E∇s(P)], it is legitimate
to assume that P′ = P + Ev is the point of Sclosest to P, and
having the same intensity [m(P)]: P′ is the closest point in S
having the same intensity than P in M , which is by definition
the behaviour of attractive points.

4. IMPLEMENTATIONS DERIVED FROM THE
CONCEPT OF DIFFUSING MODELS

We propose a general scheme with several possible variants,
leading to different implementations of diffusing models.

4.1. Matching as an iterative process
Similarly to deformable models based on attraction, diffusing
models require an iterative scheme. The aim is to find a
final transform T ∈ T (where T is the set of allowed
deformations), between the spaceM of the model image M
and the space S of the scene image S. T is the final evolution
of a family of transforms {T0, T1, . . . Ti , . . .} ⊂ T .

At each step, the deformed version Ti (M) of the model
M becomes Ti+1(M), constrained by ‘internal’ forces fint
created by the relations between the model points, and
‘external’ forces fext, created by the interactions between
Ti (M) and S. We can also change the reference system and
process inM the interactions between M and T−1

i (S).
Both of the simplified examples described previously

(diffusing model and attraction) illustrate an iterative scheme:
in these cases, T is the group of rigid transforms and Ti+1 is
δTi ◦ Ti where δTi is the residual motion created by the set of
elementary demons or attraction forces.

bWe distinguish between direction and orientation: a straight line has a
direction. An oriented line, a half line or a vector has an orientation as well
as a direction, which is the way it is headed.

Compute Ti+1 from Ti and {f}

Compute the forces {f} between Ti(M) and S

Pre-compute the demons Ds

Figure 9. Iterative scheme in the case of diffusing models.

In the case of diffusing models, the first step is the pre-
computation of the set of demons Ds, extracted from S, and
the second step is an iterative estimation of the deformation
T , from the model spaceM to the scene space S (Figure 9).

4.2. Extracting the demons from S
The demons set Ds is extracted from the scene image S.
Ds can be the whole image grid (one demon per pixel or
voxel), such as in Thirion (1995): in that case, the interfaces
at each points are the iso-contours. Ds can be also restricted
to the contour points in S, such as in the simplified example
(demons 0), or to points automatically extracted by edge
detection methods. The information attached to each demon
can be:

• its spatial position P in S (possibly sub-pixel);

• a direction Ed from the inside to the outside [generally
based on the gradient E∇s(P)];

• the current displacement from S to M at that point: Ed =
EP P′, where P′ = T−1

i (P);

• information about the interface, such as the intensity at
that location s(P).

4.3. The iterative part
We start with an initial deformation T0 (i.e. identity). At
iteration i , we have a current estimated transform Ti , and each
iteration is composed of two steps:

(i) For each demon P ∈ Ds, compute the associated
elementary demon force Efi (P) which depends on the
demon direction Eds at point P and on the polarity of M
at point T−1

i (P).

(ii) Compute Ti+1 from Ti and from all the elementary
demons forces { Efi (P), P ∈ Ds}.

In some cases, step (ii) can be decomposed into two
steps: first compute an elementary deformation δTi from the
elementary forces Efi , then Ti+1 = δTi ◦ Ti .
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4.4. Possible variants
Useful variants of the scheme above can be obtained by
varying:

(i) the selection of the demon positions Ds (whole image
grid, contours points etc).

(ii) the space of deformations T (rigid, affine, spline, free
form etc).

(iii) the interpolation method which gives the values of M
for the non-integer positions T−1

i (P) (linear, spline, sinc
etc).

(iv) the formula giving the force Ef of a demon (constant
magnitude, gradient-based, optical flow like etc).

Thus, the simplified diffusing model example (demons 0)
uses: (i) sample points of the disc contour of S for Ds;
(ii) rigid transforms for T ; (iii) no interpolation because
m(T−1

i (P)) is analytically defined and (iv) constant magni-
tude forces. In the following, in addition to the simplified
case, we examine three other examples of diffusing models,
illustrating different variants of the general scheme.

4.5. Demons 1: a complete grid of demons
The following method is especially suitable for 3-D medical
image analysis (see Thirion, 1995). The general scheme is
modified as follows.

(i) All pixels of S where E∇s 6= 0 are selected to be demons
(Ds = S).

(ii) T is a free form deformation, that is, for each demon P
we store the current elementary displacement Ed(P). To
get a regular displacement field, a Gaussian filter with
a given σ is applied to the whole field at each iteration.
A theoretical study about how smoothing deformation
fields can be used for regularization can be found in
Anandan (1989).

(iii) m(P′), where P′ = P + Ed(P) is estimated using tri-
linear interpolation in M .

(iv) the demon force is given by optical flow [Ev of Equa-
tion (4)], using only the information provided with each
point: m(P′), s(P) and E∇s(P). More precisely, we do
not define the force, but the result of the application of a
force during one iteration step, which is a displacement:
Ed = −Ev.

To make the algorithm faster (each voxel is considered
at each iteration) and more robust with respect to initial
positions, we adopt a multi-scale scheme, starting with a large
number of iterations at coarse scales, down to a few iterations
at the finest scale. More precisely, we use a pyramid approach
were, at each scale, 1

8 of the voxels and four times the number
of iterations are used than that in the immediately finer scale,

which means that the computation time for the rest of the
pyramid is equivalent to the time spent at the finest scale.

This gives us results qualitatively similar to other de-
formable grid methods such as those of Bajcsy and Kovacic
(1989) or Christensen et al. (1994b). However, it is
hard to assess quantitative differences, firstly because the
definition of an ‘ideal’ inter-patients matching remains open
to interpretation (see Thirion et al., 1996).

With respect to computation time, our method is particu-
larly time efficient, when compared to the results described by
Christensen et al. (1996) with the use of a massively parallel
computer. Besides the computational aspect of finding similar
points, the method presented in Christensen (1994b, 1996)
is also computationally expensive because it models exactly
the physical behaviour of a viscous fluid. Bro-Nielsen
and Gramkow (1996) have shown (and in 2-D) that those
computations can be implemented using a convolution filter
applied to the deformation field, leading to an improvement
of one order of magnitude in speed. Another interesting
result is that they demonstrate theoretically that the Gaussian
filtering used in our method to regularize the deformation
field approximates linear elasticity.

The algorithm demons 1 could have been derived from
optical flow concepts too: to some extent, demons 1 can
be considered as a particular kind of multi-scale, iterative
version of optical flow. We derived it from diffusing models,
which emphasize how optical flow can be treated as a
diffusion process. This reveals possible changes in the
algorithm, for example in the expression of the forces (see
demons 2 and 3 below) which have less and less to do with
the optical flow equation. We note however that using the
optical flow formula for demons leads to particularly good
results for the experiments presented in the last section.

4.6. Demons 2: demons in contours only
In matching methods, contour points are generally more
important than other points in the image. Furthermore, using
only the contour points of S leads to a faster algorithm. We
used, for the possible variants:

(i) the Canny-Deriche edge detector (see Deriche, 1986;
Monga et al., 1990) to extract Ds from S;

(ii) global transforms (rigid, affine) for T , determined
by least squares [like in Besl and McKay (1992)].
It could be improved by extended Kalman filtering
(EKF; see Ayache, 1991) to reject outliers. We have
also tested more flexible deformations using warping
techniques (see Bookstein and Green, 1993; Szeliski and
Lavallée, 1994; Szeliski and Coughlan, 1994; Declerck
et al., 1995) which extend the deformation defined at
irregularly distributed points Ds to the whole image S;
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Figure 10. A first type of K functions.

(iii) (tri-)linear interpolation;
(iv) the demon behaviour is detailed below.

We now describe the demon force computation in this case.
As only a subset Ds of S is considered, more sophisticated
demons can be designed than in the previous method relying
on the optical flow formula. Let P be a contour point
in S, of intensity s(P), and En = E∇(P)/|| E∇(P)|| be the
oriented normal of the contour (from inside to outside). By
interpolation, we compute the value sout = s(P + kEn) and
sin = s(P − kEn) (where k is a constant, possibly 1).

P is therefore the interface between a region whose
estimated intensity is sin and a region whose intensity is sout.
The demon force is

Ef (P) = Ksin,sout(m(P
′))En (5)

where P′ = T−1
i (P) and Ksin,sout(m) is a function that we

now detail. By definition, the demon pushes inside (K < 0)
when P′ is labelled ‘inside’ in M , and outside (K > 0) when
P′ is ‘outside’ in M .

We have considered functions K where the probability of
being ‘inside’ is very high if m(P′) ≤ sin (then we impose
K = −k), and the probability of being ‘outside’ is very high
for m(P′) ≥ sout (then K = k). We have used the simple
piecewise linear formula of Figure 10 for K (m).

We have considered another type of function K , where
when m is too different from sin and sout, P′ is neither
considered ‘inside’ nor ‘outside’, but simply ‘irrelevant’
(K = 0). We assume that the intensities of inside points
are sin, and outside points are sout, but that the measure s
is corrupted with Gaussian noise. We use therefore for K
the sum of two Gaussian distributions K = K− + K+
(see Figure 11); K−(m) is negative and centred at sin, with
K−(sin) = −k, and K+(m) is positive, centred at sout, with
K+(sout) = k.

We still have two free parameters (σ− and σ+), which
can be related to the level of noise in the images S and M .

m
S in

S out

K(m)

k

-k

K+

K-

σ−

σ+

Figure 11. A second type of K functions.

Anisotropic diffusion filters mentioned in the introduction
could be used efficiently to pre-process S and M and reduce
the noise level, while preserving the interfaces. Both of the
K (m) functions described gave us good results and we kept
the first one for the experiments in the present paper, but a
more careful study is needed to determine when to use one or
the other.

4.7. Demons 3: already segmented images
Here, the nature of the problem is different. We assume that
the images S and M are already segmented, that is, for each
point in image Sor in image M , we have a label which refers
to a given structure (for example a given organ in the case of
medical images). Even though the images are segmented, we
can still search for a geometric point to point correspondence
between Sand M . Within the general scheme, we use:

(i) the set of interface points of S for Ds, that is, points
between adjacent voxels whose labels are different
(Figure 12);

(ii) deformations similar to method 2 (rigid, affine, warp-
ing);

(iii) no interpolation, but the label of the closest voxel in M
(using linear interpolation between labels is generally
meaningless);

(iv) demons with forces of constant magnitude, the orienta-
tions are defined according to the labels (see below).

We now detail the demons behaviour. Two adjacent voxels
are linked by a segment of length 1,

√
2,
√

3 depending on
their connectivity (6, 18, 26) (see Figure 12). Let A and B be
two adjacent voxels whose labels sin = s(A) and sout = s(B)
are different, and Ed = EAB. We create a demon in P =
(A+ B)/2.

The ‘force’ Ef (P) of the demon is determined by sin, sout
and the label m(P′), where P′ = T−1

i (P), then
• if m 6= sin and m 6= sout, Ef = 0
• if m= sin, Ef = −k Ed
• if m= sout, Ef = k Ed.
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demon position

demon direction

(no need to define demons here)

different labels

BA P

Figure 12. Demons in a labelled image.

For a given iteration, k is a constant magnitude, which can
vary at each iteration depending on the convergence strategy.
For example, k can be set to k0 voxel size and decreased
linearly to zero during iterations. Accordingly, the smoothing
parameter σ can be decreased from σ0 to 0, to ensure the
convergence of the algorithm. The ratio k0/σ0 depends on
the application: it controls the rigidity of the diffusing model.
The advantage of using pre-segmented images is that the
interface points are labelled (sin, sout), and interact with the
structures of M which are either sin or sout, but do not interact
at all with other structures.

For automatic registration with a digital anatomical atlas,
such a method is very suitable: a physician can spend a lot of
time labelling all the voxels in the image S of a reference
patient (see Figure 26), then a method using an hybrid of
demons 2 and 3 can be applied to automatically match and
label, at the same time, the image M of a new patient.

4.8. ‘Bijectivity’ of the 3-D deformation
We do not enter into the debate of what bijectivity means
in the case of discrete deformation fields, but one important
constraint for 3-D deformations is the possibility of inverting
these deformations. With the previously described imple-
mentations, there is no guarantee that this inversion can be
performed [a problem which is raised in Bro-Nielsen and
Gramkow (1996)]. The bijectivity property is ensured to
some extent in physically based techniques [such as those of
Christensen et al. (1994a) or Bro-Nielsen and Gramkow
(1996)] by a local control of the Jacobian (the determinant
|J| of the Jacobian matrix of the deformation), which is
forced to be positive (|J| > 0). This type of bijectivity
should not be confused with the ‘one-to-one’ correspondence
of viscous fluids (see Christensen et al., 1996), corresponding
to incompressible matter (|J| = 1) which might be useful for
specific types of problems.

However, the elastic fluid is probably a better model for
inter-patients matching than viscous fluida although there

aFirstly, the two patients are likely to have different sizes.

Figure 13. MR head slice: original (left), deformed (right).

Figure 14. Deformations corrected with demons 1 (left), with the
contours of the original image superimposed (right).

are no grounds to relate these two mechanical models to
anatomical differences. In the following applications we will
be mainly concerned the elastic deformations.

Maintaining a constraint such that |J| > 0 (elasticity) is
also time consuming. To simply verify that a discrete 3-D
deformation field has a positive Jacobian, one can consider
each cubic cell (or 8-cell) composed of 8 voxels, and verify
that the deformed 8-cell is still positively oriented. One way
to do this is to decompose the 8-cell into five tetrahedra, and
verify that the deformed tetrahedra are still positively oriented
(by computing the determinant of the matrix formed by three
edges), which means about 100 floating-point operations per
voxel and per iteration, which would make this measurement
a bottle neck of our method, without even solving the problem
(which is to impose a positive Jacobian).

We have implemented a simpler solution (see also Burr,
1981): at each iteration, we compute the direct deformation
T12 (from I1 to I2, for a regular grid in I1), and the reverse
deformation T21 (from I2 to I1, for a regular grid in I2),
and also the residual deformation R = T21 ◦ T12. We then
compensate equally for this residual deformation in T12 and
T21, by removing ‘half’ of R from each deformation. More
precisely (Figure 15), a point P in image I1 is projected into
P′ = T12(P) in I2, and, by interpolating T21 at the floating
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I2

P

P’

T12

P’’

T21
I1

Figure 15. The bijectivity is maintained by the computation of
R= T21 ◦ T12 and the redistribution of the residual at each iteration
of the diffusing model.

point position P′, re-projected back into P′ = T21(P′).
Hence the residual vectors P P′ constitute a vector field for
a regular grid in I1. 1/2P P′ is directly subtracted from the
vector field T12 and the other half 1/2P P′, is projected into
I2 by using T21 and added to it, to give a new T21. After
this operation, T21 ◦ T12 is very close to identity, and we have
verified experimentally that this residual is less than a voxel
on average, when this operation is performed at each iteration
of the diffusing model.

This method requires only twice the computation of the
one way transformation plus only about 20 additional floating
point operations per voxel per iteration. Besides bijectivity,
the advantage of this method is that it provides at the end
not only the direct transformation T12, but also an inverse
transformation T21 very similar to the ‘ideal’ T−1

12 .
Experimentally, this bijective implementation has proved

to be much more robust than the simple one for anatomically
homologous organs (for example right hands with five fingers
each). It tends to preserve the morphology of each specimen.
For example, in the temporal lobes of the brain, the number
of gyri for different patients can be different, but are still
preserved: only low frequency morphometrical differences
are compensated for, which allows for the comparison of local
morphological differences (see Guimond et al., 1997).

4.9. Partial conclusion
To some extent, diffusing models (principally demons 1) can
be connected back to more classical concepts of matching.
However, the concept can serve to foster the exploration
of new matching algorithms by the many possible options.
Diffusing models are not constrained to use forces derived
from a known potential field or from a similarity measure; the
concept provides a global understanding of how things are
working: the deformable model diffuses through the scene
interfaces in order to have more points of the model with

Figure 16. Original (left), corrected with demons 2 (right).

polarities or types similar to those at corresponding places
in the scene.

5. EXPERIMENTS

We now present some experimental results of non-rigid
matching obtained with implementations 1 and 2 of diffusing
models, using synthesized and real data. We have used the
same set of parameters for all the experiments: σ = 1 for
the Gaussian filtering, four iterations at the finer scale of the
pyramid, and four levels of resolution with respect to the
multi-scale processing.

5.1. Experiments with simulated deformations
First, we present some results with a synthetic deformation
in 2-D. Figure 13 shows a typical slice from a magnetic
resonance (MR) brain image, and the same image after a
deformation based on sinusoidal functions with a spatial
period of 32 voxels.

We applied demons 1 to get the image of Figure 14 (CPU
time, 30 s), where we have also superimposed the contours of
the original image to verify visually the quality of the match,
which is quite good, when compared with the large amount
of deformation.

We have also successfully tested demons 2 (with warping
for the deformations) on this image (see Figure 16). The
quality of the match is also good, but slightly less satisfying
than with demons 1. The difference, however, is very small.

The computation time is only 9 s in 2-D (three times faster,
edge extraction included). This is a general result of our
experiments: demons 2 is faster but less accurate than demons
1, because the density of demons is reduced in demons 2. The
difference in quality is generally on the order of the voxel
size. The choice of the method depends on a compromise
between quality and computation time: none is better per se.

Lastly, we performed a test with the implementation
demons 3, using warping for deformations. In this experiment
only already labelled images are taken into account (the
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Figure 17. Top left, original label image (I1); top right, deformed
label image (I2). Bottom left, I2 deformed toward I1 using the
implementation ‘demons 3’; bottom right, deformed I2 with a
superimposition of I1 contours.

grey-level images are ignored, see Figure 17). This demon-
strates that polarity (or labelling) is sufficient to perform
successfully the non-rigid matching of two images.

5.2. 3-D image sequences displaying cardiac motions
The two major drawbacks of non-rigid matching are reduced
for image sequence analysis: the acquisition device being the
same, the intensities of the scanned object do not vary much
from frame to frame, and the position of the object in one
frame is a good initialization for the next one.

Many deformable surface techniques have been proposed
to study cardiac sequences, such as in Bardinet et al.
(1994), where a parametric surface is fit to the data and the
deformation is analysed using modal decomposition. A very
interesting study about the relevance of surface deformable
models to heart motion analysis can be found in Shi et al.
(1995), based on clinical experiments with dogs. However,
these techniques require a segmentation of the object surface
and the problem of extending the deformation to the whole
volume remains to be solved.

In the following experiment, we present an example
of the analysis of a CT scan of the heartbeat of a dog,
acquired with the Mayo Clinic DSR (courtesy of Dr Richard
Robb). To consider extreme conditions, we match directly

Figure 18. Corresponding diastolic and systolic slice before
matching (dog).

Figure 19. Corresponding diastolic and systolic slices after 3-D
matching and re-sampling.

the diastolic and systolic 3-D images. In Figure 18, we
present two corresponding slices before elastic matching, and
in Figure 19, the same slices after 3-D matching and re-
sampling. With 3-D tools, we verified visually the quality of
the match in all the other parts of the volumes. To get an idea
of the smoothness of the non-rigid transform, we artificially
added a regular grid tag to the image before deformation (see
Figure 20). The computation time, for the matching of the
two 1003 voxels images was about 5 min on a DEC alpha
workstation.

Figures 21 and 22 present similar experiments for nuclear
medicine 643 SPECT images (a human heart), with a CPU
time of about 1 min. Figure 23 is a 3-D visualization of the
same results.

We have also analysed whole cardiac gated sequences
(eight 3-D images for a whole cardiac cycle). According
to the physics of the SPECT acquisition, we have added
two constraints: the cyclicity of the sequence, which is
imposed by another set of iteration taking the whole sequence
into account and performing temporal filtering, and the
conservation of the radioactive matter. This last constraint
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Figure 20. Artificially tagged image (2-D grid of planes) to show
the 3-D deformation.

Figure 21. Corresponding diastolic and systolic slice before
matching (SPECT, human).

Figure 22. Corresponding diastolic and systolic slice after 3-D
matching and re-sampling (SPECT, human).

states that, when the myocardium contracts, the density of
radioactive material is increased, and thus the image intensity
is correspondingly enhanced. This can be easily modelled
within the design of the demons, by multiplying m(Pi ) by
the Jacobian of the transform, which represents the local
variation of the density. The analysis of one whole time series
takes only about 10 min.

Figure 23. 3-D visualization of the left ventricle of the heart in
SPECT images. Left is the diastole, middle is the systole, right is
the surface of the diastole deformed toward the systole by the 3-D
vector field obtained with demons 1.

Figure 24. Two slices of two different patients (256 × 256 × 128
voxels).

To conclude, we have an automatic, fast algorithm to
estimate a deformation field between frames in 3-D image
sequences, that does not necessitate a segmentation of the
object, which is advantageous for SPECT images. A good
point is that the physics of nuclear medicine acquisition can
be taken into account in our scheme. The challenge now is to
extract from this 4-D flow field the parameters that precisely
characterize a pathology. Of course, these examples are given
only to illustrate potential applications of diffusing models,
but much harder work remains to be performed to validated
the results from a medical viewpoint and to lead to useful
clinical applications.

5.3. Inter-patients matching: the 3-D case
Matching the images of two different patients is very
important for medical image applications. We present in
Figure 24 slices from two different patients, extracted from
their 3-D 256 × 256 × 128 MR images. We applied demons
1 and demons 2, but in 3-D, to the two blocks of data.
The computation time, with the bijective computation, is
only about 30 min on a Dec Alpha workstation, which is
reasonably fast, with respect to the size of the data under
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Figure 25. The two different patients after automatic matching.

Figure 26. The deformation field is used to adapt the 3-D anatomical
atlas presented in Figure 27 to the new patient. Top row: one slice
of the MR image of the originally labelled subject along with the
corresponding labelling. Bottom row: left, a slice of a new subject
and right, the inferred labelling obtained by the application of the
deformation field to the labelled reference subject. The inference is
visually satisfying, up to the local morphological differences.

consideration. Figure 25 presents the result of the matching:
differences between the deformed patient and the reference
patient is now hard to perceive. Only anatomical details
which are topologically different between the two patients are
still different. Again, demons 1 performs slightly better than
demons 2, but at the expense of more computation time.

Because we have a 3-D completely labelled version of
the reference image (courtesy of Dr Kikinis, Brigham and

Figure 27. A 3-D display of the segmented image of the brain,
courtesy of Dr Ron Kikinis, and rendered by Gerard Subsol.

Women’s Hospital, Boston, see Figure 27), we are able to
apply the computed deformation field to it, and superimpose
result on the image of the new patient (Figure 26), providing
an automatic labelling of the patient. We note, however, that
the inferred labels are mostly correct only where there are
no local morphological differences between the two subjects.
We hope to improve the automatic labelling with a more
local, final pass of segmentation, taking the tissue types into
account, such as in the segmentation presented by Wells III et
al. (1995). Dr Benoı̂t Dawant, at the University of Vanderbilt,
TN, has used our method to compare the automatic labelling
of images obtained by inference thanks to the deformation
field that we can produce with several independent manual
segmentation (see Dawant et al., 1998).

5.4. A database of brain images
Finally, we present the results of the automatic non-rigid
matching performed on a database of brain images. In order
to perform this experiment, we have modified our method
to estimate automatically a global bias and gain between
the two images to be matched. We do this simply by
incorporating into the iterative scheme an estimation of the
two parameters based on the fitting of a line (with outliers
rejection) to the transfer function between the two images,
which gives, for each intensity in one image, the average
intensity in the other image, based on the correspondence Ti
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Figure 28. One slice (out of a 128) of the original images of nine
different patients. Shapes and intensities are very different.

estimated at iteration i . We can see in Figure 28 a zoom
on the central part of the brain in nine different patients,
which shows both the differences in intensities and in shapes.
Figure 29 shows the result of the automatic matching: after
re-sampling, morphometrical differences between patients
are hard to perceive, while local morphological differences
still exist.

Figure 30 shows several slices of the reference image, and
the average of the 10 images before and after matching with
this reference image. The whole process is entirely automatic,
and it takes about 5 min CPU time to match two 1283 3-D
images. It shows the quality of the matching, and also that the
central parts of the brains are indeed more stable anatomically
than the peripheral parts (which appear fuzzier).

5.5. Other medical applications
Our non-rigid matching method has been embedded into a
more general system to automatically explore large databases
of 3-D medical images in order to find similarities between
patients, and to compute average representative specimens
(see Guimond et al., 1997). It is also being used for
an ongoing large clinical study about Schizophrenia (E.C.
project Biomorph) to measure and compare brain asymmetry
between individuals. It has also been used for the com-
putation of average activation maps in SPECT images (see
Migneco et al., 1997): similar ongoing studies are under way

Figure 29. The same nine patients after non-rigid matching, re-
sampling and intensity correction. The computation is performed
entirely in 3-D. Note that the morphometrical differences are
compensated for, but not the local morphological differences. Our
technique has been already applied, with qualitatively identical
results, to more than a hundred cases.

on a larger scale for fMRI and for PET activation images
using competing non-rigid matching techniques (see Collins
et al., 1994). Finally, we have used our method to study and
quantify the evolution of multiple sclerosis plaques in time
series of 3-D brain MRI (see Thirion and Calmon, 1997).

5.6. Validation with real images
The major problem of inter-patients matching is how to
validate the different methods. In Thirion et al. (1996),
we carefully compared three different inter-patients matching
techniques with a database of CT scans of dry skulls: one
matching method was based on the feature points defined by
an anatomist, one was based on deformable 3-D crest lines,
and the last technique was the demons-based method. The
main results of this study were:

• the three matching methods gave mutually consistent
results, with an average point to point distance of about
3 voxels;
• this average distance was reduced to about 2 voxels

when used to compute average patients’ models;
• the average influence of the choice of a reference patient

on the resulting average model computations was less
than 1 voxel.
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Figure 30. Left, five consecutive slices of the reference image; right, the average of 10 patients without matching; centre is the average of
the 10 patients after matching and re-sampling. The fuzziness of the edges of the brain in the middle images express the remaining local
morphological differences between the subjects, which have been reduced.
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As mentioned, a study being performed at the University
of Vanderbilt with our tool provides another independent
validation of the application to automatic segmentation.

VIDEO DEMONSTRATIONS

Two video sequences illustrating the 3-D deformation field
measured between two patients can be obtained from:
http://www.inria.fr/epidaure/Gallery/atlas movie.html and at-
las movie2.html.

6. CONCLUSION

We have proposed the concept of a diffusing model for
image-to-image matching, and the related concept of demons
to emphasize the role of polarity information in matching
methods. A diffusing model corresponds to the ‘diffusion’
of a deformable model grid into the image of a scene, where
the boundaries of the scanned objects are considered to be
semi-permeable membranes, filtering the points of the model
according to their polarity (inside or outside). We have also
shown that optical flow can be considered as an intermediate
step between diffusing models and more classical matching
methods based on attraction.

Diffusing models and demons can be tools for examining
matching methods from an original viewpoint, to generate
ideas leading to new methods, or to improve existing ones by
taking into account polarity, whose importance is generally
underestimated. Considering matching as a diffusion process
might also be a way to introduce new ideas from thermo-
dynamics into image matching.

With respect to applications, we have shown different
ways to apply these ideas to the medical field, such as organ
tracking or 3-D inter-patients matching. Developing and
testing such 3-D non-rigid matching tools is now a very
important challenge for diagnosis, for surgery planning and
control, and more generally, for a better understanding of the
human anatomy and its variability.
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Höhne, K. H. and Kikinis, R. (eds), Visualization in Biomedical
Computing VBC’96, Lec. Notes in Computer Science, Vol. 1131,
pp. 297–306. Springer-Verlag, Hamburg.

Ronfard, R. (1994) Region-based strategies for active contour
models. Int. J. Comp. Vision, 13, 229–251.

Shi, P., Robinson, G., Chakraborty, A., Staib, L., Constable, R.,
Sinusas, A. and Duncan, J. (1995) A unified framework to
assess myocardial function from 4d images. In Computer
Vision, Virtual Reality and Robotics in Medicine, Lecture Notes
in Computer Science, Vol. 905, pp. 327–337. Springer-Verlag,
Nice.

Simoncelli, E. P., Adelson, E. H. and Heeger, D. J. (1991)
Probability distributions of optical flow. In Computer Vision and
Pattern Recognition, CVPR’91, pp. 310–315, Lahaina, Maui,
Hawaii. IEEE.

Szeliski, R. and Coughlan, J. (1994) Hierarchical spline-based
image registration. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR’94), pp. 194–201, Seattle, WA.

Szeliski, R. and Lavallée, S. (1994) Matching 3-d anatomical
surfaces with non-rigid volumetric deformations. In Proc. IEEE
Workshop on Biomedical Images Analysis (WBIA’94), Seattle,
WA. Also in AAAI 1994 Spring Symposium Series. Application
of Computer Vision in Medical Image Processing, Stanford
University, 1994.

Thirion, J.-P. (1994) Extremal points: definition and application to
3D image regist ration. In IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 587–592, Seattle, WA.

Thirion, J.-P. (1995) Fast non-rigid matching of 3D medical images.
In Medical Robotics and Computer Aided Surgery (MRCAS’95),
pp. 47–54, Baltimore.

Thirion, J.-P. (1996) Non-rigid matching using demons. In
Computer Vision and Pattern Recognition, CVPR’96, San
Francisco, CA.



260 J.-P. Thirion

Thirion, J.-P. and Calmon, G. (1997) Measuring lesion growth
from 3D medical images. In Nonrigid and Articulated Motion
Workshop (NAM’97), Puerto Rico. IEEE.

Thirion, J.-P., Subsol, G. and Dean, D. (1996) Cross validation
of three inter-patients matching methods. In Visualization in
Biomedical Computing, VBC’96, Lecture Notes in Computer
Science, Vol. 1131, pp. 327–336, Hamburg.

Thompson, P. and Toga, A. W. (1996) A surface-based technique
for warping three-dimensional images of the brain. IEEE Trans.
Med. Imag., 15, 402–417.

Viola, P. and Wells, W. M. III (1995) Alignment by maximization
of mutual information. In 5th Int. Conf. on Computer Vision,
ICCV’95, pp. 16–23, Cambridge, MA. IEEE.

Wells III, W. M., Grimson, W. E.L., Kikinis, R. and Jolesz, F. A.
(1995) Adaptative segmentation of mri data. In Computer
Vision, Virtual Reality and Robotics in Medicine, Lecture Notes
in Computer Science, Vol. 905, pp. 59–69. Springer-Verlag,
Nice.

Zhang, Z. (1992) Iterative Point Matching for Registration of Free-
form Curves. Technical Report 1658, INRIA.


