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Abstract
In emission tomography imaging, respiratory motion causes artifacts in
lungs and cardiac reconstructed images, which lead to misinterpretations,
imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions
like respiratory gating, correlated dynamic PET techniques, list-mode data
based techniques and others have been tested, which lead to improvements
over the spatial activity distribution in lungs lesions, but which have the
disadvantages of requiring additional instrumentation or the need of discarding
part of the projection data used for reconstruction. The objective of this
study is to incorporate respiratory motion compensation directly into the
image reconstruction process, without any additional acquisition protocol
consideration. To this end, we propose an extension to the maximum likelihood
expectation maximization (MLEM) algorithm that includes a respiratory
motion model, which takes into account the displacements and volume
deformations produced by the respiratory motion during the data acquisition
process. We present results from synthetic simulations incorporating real
respiratory motion as well as from phantom and patient data.
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1. Introduction

The motivation of this work is the early diagnosis of tumors in lungs. Early diagnosis is
essential since it increases the probability of therapy success. However, respiratory motion
during the data acquisition process leads to blurred images, making diagnosis, planning and
following more difficult. The scenario is worst if small tumors are to be detected. For
instance, Osman et al (2003) investigated the impact of motion during the examination,
finding mislocalizations of lesions in the fusion of positron emission tomography (PET) and
transmission computerized tomography (CT). Similarly, significant tumor motion has been
reported in other studies, e.g. Shih et al (2002), Shimizu et al (2000), Balter et al (1996),
Seppenwoolde et al (2002). Nehmeh and colleagues also reported a significant volume
increase of lung lesions in images reconstructed without respiratory motion compensation
(Nehmeh et al 2002).

Current methods can be classified into the following categories: post-processing, filtered
back projection (FBP)-based methods, multiple acquisition frame (MAF), sinogram data
selection, sinogram correction and incorporated-motion-model (IMM)-based methods.

Post-processing methods are based on transformations applied on the reconstructed
images. These transformations are typical found aiming at improving the image fusion between
different modalities. A typical example of this is the image fusion of PET-CT images, where the
PET image presents a blurring component due to respiratory motion during the data acquisition
process, whereas the CT image does not or in a much lesser degree and can be thought of as
a motion-free image. The image registration procedure then deals with motion compensation
indirectly trying to warp the PET image into the CT one. Due to the elastic nature of lungs
and the deformation of the thoracic cavity under respiratory motion, nonlinear registration
techniques have shown to perform better than rigid or affine transformations (Mattes et al
2003, Camara et al 2002). On the other hand, nonlinear registration method techniques can
compensate for shape differences due to the motion, but do not fully compensate for all the
motion’s effects, since the reconstruction itself has been intrinsically and definitively impaired
by the motion.

FBP-based methods work on the projection space (Crawford et al 1996, Lu and Mackie
2002). These methods are based on a modified filtered backprojection algorithm that considers
respiratory motion as a time-varying magnification and displacement in the anterior–posterior
and lateral directions, which is too simplistic considering the elastic and non-homogeneity of
motion within the thorax. The main drawback of these methods is that the motion model is not
really coupled to the reconstruction algorithm, and thus the reconstruction algorithm must be
modified to adapt it, hindering further adaptations of the method to more complex or specific
motion models.

More realistic are the MAF-based methods (Picard and Thompson 1997, Pellot-Barakat
et al 2001). They consist in regrouping the projections into smaller subsets according to the
detected motion. Then, the image reconstruction of each subset is performed independently
and is followed by realignment of the images to fuse all reconstructions. The MAF-based
approaches present the inconvenience that the signal-to-noise ratio decreases for images
reconstructed from smaller subsets of projections, leading to intermediate images suffering
from heavy noise. Besides, these methods require the data to be acquired specially in a set of
frames for the purpose of motion compensation, which does not allow us to perform motion
compensation in a retrospective way in data acquired in a normal clinical set-up.

Sinogram data selection based on motion detection, also known as gating, has been
used to compensate for motion correction in ET (Nehmeh et al 2002, 2003, Visvikis
et al 2003). Respiratory gating (Nehmeh et al 2002) synchronizes the breathing cycle with
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the data acquisition process by using a respiratory motion tracking device. In respiratory-
correlated dynamic PET (Nehmeh et al 2003), the tracking of an external FDG source point
situated over the patient’s thorax allows us to correlate with the patient’s breathing motion.
Gating techniques have shown improvements in reducing the blurring effect caused by motion,
contributing to a better quantification of lesions. However, they require extra hardware or
specific data acquisition modes and they discard some data for the image reconstruction.
Besides, it has been shown that using tracking devices based on external information (e.g.
elasticized belt, skin markers, etc) may not always correlate with lung tumor location (Berbeco
et al 2005, Vedam et al 2003), which has motivated the use of more complex tracking device
systems (e.g. implanted radio-opaque markers). In Visvikis et al (2003), an approach based
on a posteriori respiratory motion gating of dynamic PET images was presented, which does
not need an external signal to perform the gating of data. In this method, a Fourier analysis of
the acquired PET dynamic data allows us to estimate the respiratory frequency, from which
projection data can be retrospectively selected (a posteriori gating). However, the method
requires user interaction in order to carefully select a region-of-interest (ROI) on which the
time activity curve is analyzed.

Other approaches are based on sinogram correction. These methodologies act directly on
the projection data by repositioning the lines-of-response (LOR) when the motion is known
(Qi and Huesman 2002, Rahmim and Bloomfield 2003, Thielemans et al 2003, Lamare et al
2007). However, these approaches are only applicable to rigid or affine motions and require
to deal with motion-corrected LORs that may fall in non-valid positions. Although this issue
was solved in Qi and Huesman (2002), there is still the constraint of rigid motions, which
decreases their practical interest for respiratory motion compensation.

IMM-based methods, as can be seen in Jacobson and Fessler (2003), Qiao et al (2006),
Li et al (2006), Gilland et al (2002), Cao et al (2003), Gravier and Yang (2005), Gravier
et al (2006), employ a motion model coupled to the image reconstruction process. This makes
these types of techniques very appealing since they perform at once a single optimization for
the acquired data and the motion compensation. In Gilland et al (2002), Cao et al (2003),
the motion model is incorporated through spatial and bio-mechanical-based penalty terms,
whereas in Gravier and Yang (2005), Gravier et al (2006) motion information is incorporated
through a temporal prior functional in a maximum-a-posteriori (MAP) framework. These
techniques have been tested for gated cardiac applications yielding reconstructed images
with improved quality. However, it has been remarked that the parameter associated with the
prior/penalty term needs careful selection and plays an important role in the final reconstructed
image (Qiao et al 2006). In addition, these techniques still need to be tested for respiratory
motion compensation.

On the other hand, the approaches presented in Jacobson and Fessler (2003), Qiao et al
(2006), Li et al (2006) consider the motion model as a part of the system model of photon
detection probabilities. In Jacobson and Fessler (2003), joint maximum likelihood of image
and deformation parameters is performed. Motion is modeled through an image transformation
matrix that is dependent on a set of unknown parameters. The image transformation matrix is
proposed to be constructed as compositions of interpolation functions and affine expressions
of the unknown parameters. In Qiao et al (2006) and Li et al (2006), a more practical
implementation is proposed. The motion model is constructed by performing non-rigid
registration on 4D-CT data of the patient. This way, motion information from different phases
of the breathing cycle can be retrieved and then used in the image reconstruction step. The
main drawback of these approaches is the need of the 4D-CT scan to construct each time the
motion model.
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The purpose of this paper is to describe a reconstruction algorithm that allows for a
retrospective respiratory motion compensation, which does not require any specific acquisition
protocol or discarding of data for the reconstruction. In regard to how motion information is
incorporated within the image reconstruction process, the method follows the ideas initially
presented by Rahmim et al (2004), and then extended in Li et al (2006) and Qiao et al (2006).
The main novelties of the proposed method are mainly twofold. First, a respiratory motion
model is constructed from two MRI image frames. Motion information of a particular patient
is then retrieved by adapting this model to the patient anatomy through affine registration.
This, in turn, allows retrospective motion compensation on data acquired without any other
type of complementary motion information (e.g., 4D CT scans, respiratory tracking devices)
nor temporal tags associated with the acquired data (e.g., list-mode). Second, the method
is able to take into account not only displacements but also local deformations through a
voxel model designed to adapt itself accordingly to the deformations produced by respiratory
motion.

The next sections present the methodology and results from synthetic simulations
incorporating real respiratory motion, phantom and patient data, as well as conclusions and
perspectives.

2. Method

2.1. Maximum likelihood expectation maximization

First introduced in emission tomography by Shepp and Vardi (1982), the MLEM algorithm
is based on a Poisson model for the emission process. For a given emission element b (that
we also identify as a voxel), the number of emissions fb follows a Poisson law with mean
λb. Besides, each scalar term Rdb of the projection matrix R (or called by some authors
system matrix or transition matrix) gives the probability that a certain emission from voxel b
is detected by the detector unit, or detector tube, d.5

The number of detections from the detector tube d (i.e., pd ) can be expressed in terms of
the number of emissions fb as follows:

pd =
∑

b

fbRdb. (1)

Equation (1) is important since it states the relationship between detections and emissions
through the system matrix values.

We are interested in finding the mean value λ̂ from the set of projections p. This can be
done by searching the maximum likelihood of getting a set of measures p given an image λ,

λ̂ = arg max
λ

[P(p|λ)]. (2)

It can be shown (see Shepp and Vardi (1982) for more details) that the maximization
of (2) can be conducted by means of an iterative algorithm

λ
〈K+1〉
b = λ

〈K〉
b∑

d Rdb

∑
d

pdRdb∑
b′ λ

〈K〉
b′ Rdb′

, (3)

where pd stands for the number of detections from detector tube d, λb is the estimated mean
number of emissions from voxel b,Rdb is the probability that a particle emitted from voxel
b is detected by d and K stands for the iteration number. Further correction factors and

5 For annihilation coincidence detection the detector tube is defined by the two photons detected in coincidence,
whereas for single photon detection, collimation is used to define it (Shepp and Vardi 1982).



Model-based respiratory motion compensation for emission tomography 3583

regularization schemes can be added to (3). We perform attenuation correction according
to Levkovitz et al (2001) in which weights are computed based on an attenuation map
(typically a CT scan). This methodology is revisited in the next section to account for
motion. Regularization is performed by means of image convolution with a Gaussian kernel
(Reader et al 2002, Levkovitz et al 2001).

2.2. Incorporating motion compensation into MLEM

We incorporate motion compensation into the MLEM algorithm (Shepp and Vardi 1982)
through the projection matrix R. As was stated, each element Rdb of this matrix represents
the probability that a particle emitted from voxel b is detected by detector tube d. To account
for motion, each of these terms is computed by considering the motion that each voxel
performs during data acquisition. The new contribution term, Rm

db, reflects the interactions
voxel/detector-tube under motion.

To describe the motion each voxel suffers, let us first consider a continuous motion
modeled by the spatio-temporal transformation ϕ : R+ × R

3 �→ R
3, where ϕ(t, m) = ϕt(m)

denotes the position of a point m = (x, y, z) at time t. The motion is observed from time t = 0
to t = T . This motion is then discretized in a set of N spatial transformations ϕ : N×R

3 �→ R
3,

where ϕ(i, b) = ϕi(b) describes the position of voxel b at time i (i = 0, . . . , N − 1), and ϕi

being valid from t = ti to t = ti+1. N denotes the number of motion states that discretize the
continuous motion.

The discrete transformations ϕi allow us to construct Rm
db as the weighted sum of partial

contributions Ri
db of deformed voxels ϕi(b) as follows:

Rm
db =

∑
i

wiR
i
db. (4)

The weights wi = (ti+1 − ti)/T allow to take into account the kinetic of the motion: wiT

represents the duration where ϕt can be effectively approximated by ϕi .

2.3. Computation of system matrix terms

The voxels that contribute to detector tube d are assumed to intersect a line in 3D. Let us
denote by ldb the intersection length of this line with the emission element b. We thus define
the contribution of b to d by

static: Rdb = ldb∑
d ′ ld ′b

dynamic: Ri
db = lidb∑

d ′ l
i
d ′b

. (5)

In the static case, we model the emissions elements as spheres inscribed in voxels (see
figure 1(a)), which facilitates the calculation of (5) (see appendix A). The summation in each
denominator of (5) allows to compute the probability values from length measures ldb.

To take into account the motion, one has to compute the contribution of the moving
emission element b to each detector tube d (5). If no deformations occur, computation of
Ri

db can be performed by considering the intersection between a line and a sphere-shaped
voxel. However, this is not realistic since it has been shown that the displacements in
the thorax (due to the respiratory motion) present a nonlinear and a non-homogeneous
behavior (Seppenwoolde et al 2002, Weruaga et al 2003). Thus, the voxel deformation
has to be considered. Unfortunately, the shapes of deformed cubic or spherical voxels are
too complex to enable an easy computation of the intersection. However, the spherical
model allows us to approximate the deformed voxel as ellipsoids (see figure 1(b)), whose
deformation can be easily obtained by studying the gradient of ϕi,∇ϕi (see appendix B
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Figure 1. The contribution of an emission element b to a detector tube d, represented by a dotted
line, is defined by the intersection (continuous line) of (a) a sphere with a line (static case) or,
(b) an ellipsoid (a deformed sphere) with a line (dynamic case).

Figure 2. Testing the deformation of a set of sphere-shape-modeled emission elements following
a pre-built DVF. Left: original and displacement vector field. Right: emission elements after
transformation.

for more details). Indeed, let us consider the singular value decomposition (SVD) of the
matrix ∇ϕi , that is ∇ϕi = U�V T , where U and V are square and orthogonal matrices and
� = diag(δ1, δ2, δ3), with δj , j = {1, 2, 3} the singular values of ∇ϕi . It turns out that the
columns of U are the eigenvectors of ∇ϕi∇ϕT

i , which also give the preferred local deformation
directions, while the δj are related to the magnitude of the deformations in the direction of the
eigenvectors.

In practice, one normally disposes of a displacement vector field (DVF) ψi : N × R
3 �→

R
3, that describes the marginal displacement of a voxel in space during time interval i. The

matrix ∇ϕi can be easily obtained by ∇ϕi = Id + ∇ψi , with Id the identity matrix.
Figure 2 shows a test in which emission elements have been modeled as spheres and

deformed into ellipsoids with a pre-built displacement vector field.
The modeling of the emission elements as spheres that translate and deform locally

into ellipsoids according to a given DVF, represents a novel contribution. Furthermore,
since a closed form exists to compute the intersection between a line and an ellipsoid (see
appendix A), computations of the system matrix elements are faster than those using classical
methods of intersection (e.g. Siddon algorithm (Siddon 1985)) used by others, e.g. (Reader et al
2002, Herman and Odhner 1991). This is of great importance since the motion compensation
methodology requires to compute the projection matrix terms for each time state, so storage
of several projection matrices is prohibitive. The situation is even worse when one deals with
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fully 3D image reconstruction, which would require computation and storage of a very large
projection matrix.

Under the model assumptions, we consider that the number of decays per voxel maintains
during deformation, but its distribution changes. Indeed, a spheroid changing its volume so
that it fills completely or partially two or more regular voxels (static case), will distribute the
number of decays between these voxels. This precisely permits the retrospective correction
through the interaction between voxels and detector elements as indicated by (5). The model
does not account for elasticity properties of tissues (e.g., Young’s modulus and Poisson’s ratio),
which we consider does not contribute greatly due to the current detection system resolution
capacities.

2.4. Estimation of the respiratory motion

In practice, unless extra devices are used to measure the breathing pattern, the respiratory
motion (transformation ϕ) is generally unknown. A first approach to estimate this motion
consisted in registering a known respiratory motion model on the data to be reconstructed. To
build this model, two MRI images of a volunteer were acquired at breath holding in expiration
and inspiration and then non-rigidly registered with an iconic feature-based non-rigid algorithm
(Cachier et al 2003). This provides us with a volumetric DVF ψ . Transformations �i(b),
describing the position of a voxel b at time state i, are then obtained by linear interpolation

�i(b) = b +
i

N
ψ(b). (6)

To adapt the transformation �i to a patient, we found two alternatives. The first one considers
the creation of an average image of the model expiration and inspiration states (to simulate a
non-corrected reconstruction) that is affinely registered against the non-corrected functional
reconstructed patient’s image. The second alternative uses an existing attenuation map
acquired with breath holding, generally at inspiration, which is then registered with the
inspiration image of the model. For both cases the registration is performed on the segmented
lungs. No inter-modality registration issues are then expected to appear when performing the
affine registration.

The affine registration was performed with a block-matching-based algorithm. It uses
a least square estimator and the correlation coefficient as similarity measure (Ourselin et al
2000). This provides us with an affine transformation T. We compose then the transformations
to obtain

ϕi = T ◦ �i ◦ T −1. (7)

To illustrate these steps, figure 3 shows the adaptation performed between the simplified
model and the patient’s attenuation map.

Though this method is by no means robust since it is sensitive to the selection of the
anatomy and physiology of the person from where the motion model is created, it provides a
preliminary insight of the results that can be achieved by using such an approximative model
in conjunction with the motion compensation technique used here. In regard to this matter,
further improvements and work in progress are discussed later.

2.5. Attenuation correction

In general terms, the value µb in an attenuation map µ(x) represents the linear attenuation
coefficient of voxel b. As is also known, this coefficient represents the fraction of a beam
of gamma rays that is absorbed or scattered when it passes through voxel b. This coefficient
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Lungs segmentation

Lungs segmentation
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Non–linear registration

known DVF

reference

floating

Affine registration

Adapted DVF to patient

T
model’s full–inspiration MRI

patient’s attenuation map

model’s full–expiration MRI

Figure 3. Adapting a known respiratory displacement vector field to patient anatomy. Two
MRI images corresponding to full-expiration and full-inspiration are non-rigidly registered (TDV F

transformation), the resulting displacement vector field (labeled as ‘known DVF’) is then adapted to
the patient anatomy by means of an affine transformation (i.e. T ◦TDV F ). In practice, the patient’s
anatomical image can be the patient’s attenuation map used later for attenuation correction of the
ET reconstructed image.

is dependent on the tissue type the particular voxel represents. For annihilation coincident
detection systems, the attenuation experienced by a pair of photons along a detector tube d
can be written as

exp

(
−

∫
d

µ(x) dx

)
, (8)

which can be approximated to

exp

(∑
b

−ldbµb

)
. (9)

In the presence of motion, we must take into account the displacements and deformations
of emission elements. To do so, we compute attenuation correction weights ai

d associated with
the detector tube d to each time state i

ai
d = exp

(∑
b

lidbµb

)
, (10)

with µb assumed to be measured at the reference state.
This way, the attenuation correction can be incorporated into the reconstruction step by

modifying (4), as follows,

R
m,att
db =

∑
i

wia
i
dR

i
db. (11)

Finally, by replacing the term Rdb in (3) by R
m,att
db or Rm

db, we incorporate motion
compensation with or without attenuation correction, respectively.
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(a) (b) (c)

Figure 4. Sagittal (a), axial (b) and coronal (c) activity image planes of the reference volume
image with a lesion modeled as a sphere with a diameter of 15 mm.

(a) (b) (c)

Figure 5. Image reconstruction of reference frame (static) (a), without motion compensation
(b) and with motion compensation (c).

3. Results

3.1. Motion correction for simulated and real data

3.1.1. Simulated data. We simulated respiratory motion in a SPECT study of lungs. For
this, we used the thorax phantom NCAT (Segars 2001) (NURBS-based cardiac torso). It is
a model of the human thorax anatomy and physiology, which was created for the nuclear
medicine imaging research. To the NCAT phantom a small lesion of 15 mm diameter with
a background-to-lesion-activity of 1:8 was added. Figure 4 shows the activity image for the
reference state.

The model was then deformed with N transformations ϕi, i = 0, . . . , N −1 (equation (7)),
which were estimated from the known real respiratory motion transformation � (equation (6)).
Sinograms were computed for each time state using the SimSET (Simulation System for
Emission Tomography) library (Harrison et al 1993) and then combined into one single
sinogram by a weighted sum.

The images were reconstructed with the MLEM algorithm without and with motion
correction. Regularization was performed by means of iterative Gaussian filtering every two
iterations with a full-width at half-maximum (FWHM) of 8.0 mm. These parameters were
found by visual inspection of the image profiles around the hot spot of images reconstructed
with different sets of regularization parameters.

No other correction was included for the image reconstruction. The reconstructed 3D
images have a size of 128 × 128 × 128 voxels with a voxel size of 3 × 3 × 3 mm3.

Figure 5 shows, from left to right, the reconstructed reference image (motion-free),
the reconstructed image without motion compensation, and with motion compensation. As
described in the literature, the lesion appears larger in the non-corrected reconstruction
(Nehmeh et al 2002). Indeed, the measured relative volume error with respect to the reference
image was of 23.8%. After motion compensation it decreased to 1%, with a centroid error
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Figure 6. Intensity profiles for axial slice 43 around the lesion area. After 20 MLEM iterations the
corrected profiles (dashed line) show a close relationship with the reference profiles (continuous
line) in comparison with the non-corrected profile (dotted line).

before motion compensation of 2.49 voxels (7.5 mm) and of 0.45 voxels (1.5 mm) after motion
compensation.

Motion compensation was also applied without considering voxels deforming as
ellipsoids, but only displacements. In terms of volume error with respect to the reference image,
an increase from 1% (considering voxels deforming into ellipsoids) to 5.36% (considering
non-deforming voxels) was found. This result agrees with the inspection of values of the
Jacobian, which has a physical interpretation in terms of the local volume variation (Rey
et al 2002), computed on transformation ϕ over the lesion area. As an average, an expansion
factor of 1.06 was found, meaning that the local volume expansion in the lesion region is on
average 6%.

A visual comparison of the intensity profiles (figure 6) shows a good fit between the
motion-corrected and the ground truth intensity spatial distributions.

To better assess the results, a qualitative study based on a fuzzy c-means segmentation
of the lesion was performed. It is a segmentation technique based on fuzzy logic. The user
provides the number of sets upon which the data are segmented (e.g. three sets for background,
lung tissues and lesion tissues), the intensity centroid for each set, level of overlap between
sets and an error threshold to stop the iterations (Ahmed et al 2002). Isosurfaces were
generated for the reference volume (i.e., expiration state) and for the non-corrected and
corrected reconstructed volumes (figure 7). From figure 7 it can be seen the improvements
in terms of shape correction obtained after motion compensation. As can also be seen in
figure 6, a good fit between the reference image (i.e., motion-free reconstructed image) and
the motion-compensated image is noticeable.

Two figures of merit were used to measure quantitatively the performance of the
motion compensation methodology, namely the coefficient of variability (CV), defined by
CV = σ(lesion)/µ(lesion) where µ(lesion) and σ(lesion) denote the average and the standard
deviation of the intensity values over the lesion, and the contrast recovery (CR), defined by
CR = µ(lesion)/µ(background) (Levkovitz et al 2001). Table 1 shows the CR and CV values
obtained for the reference, non-corrected and corrected reconstructed images with respect to
the number of intermediate states (N) used for the image reconstruction.

From the CV values shown in table 1, we found that for the simulated data noise properties
of the reconstructed images were not affected by the motion compensation technique. Higher
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(a) Non-corrected (b) Corrected

Figure 7. Comparison of the reconstructed lesion volumes (a) without motion compensation and
(b) with motion compensation for the activity volume shown in figure 4. Iso-surfaces extracted
from reconstructed images are rendered in wire frame, while the one extracted from the reference is
colored. The color indicates the distance between the two displayed surfaces, i.e. an error between
the reference lesion and the reconstructed one.

Table 1. Coefficient of variability (CV) and contrast recovery (CR) values for the reference,
non-corrected and corrected reconstructions for different numbers of motion states (N).

Corrected

Reference Non-corrected N = 2 N = 3 N = 4 N = 5 N = 6

CR 5.80 3.20 4.10 4.35 4.40 4.30 4.40
CV 0.14 0.13 0.14 0.14 0.13 0.14 0.13

CR values are found for the corrected cases in comparison with the non-corrected one
(27 ± 4% of increment), which demonstrates the deblurring effect of the motion compensation
technique. It can also be noticed that from a certain point onwards, an increment in
the number of times used to discretize the motion does not considerably improve the
reconstruction.

3.1.2. Influence of the registration step on the motion-compensated lesion activity distribution.
The matching between the respiratory motion model with the patient anatomy involves a step
of affine registration (see figure 3). Our concern was to measure the influence of the errors
introduced due to this step in the reconstructed images. The hypothesis is that an increase in
volume due to an error in the registration step should produce a decrease in the mean intensity
of the lesion activity, and vice versa. To check this hypothesis, errors were introduced in the
form of an affine transformation, which was applied to the adapted DVF (7). Then, image
segmentation performed by thresholding at a fixed percentage of maximum intensity was
performed in order to measure volume and mean intensity of the lesion volume. The affine
matrix has the following parameters:


1 + e 0 0 a

0 1 + f 0 0
0 b 1 + g 0
0 0 0 1


 . (12)
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(a)

(b)

Figure 8. Testing the influence of matching errors in the step of affine image registration (see
figure 3). A known affine transformation (equation (12)) was set with three different configurations
of parameters (varying one parameter (a), (b), and a mixture of them (c)) and applied to the patient-
adapted DVF. The plots show that an increase in volume produces a decrease in intensity.

For simulated data, three tests were carried out: varying only the parameter e, varying only the
parameter b, and a combination of different variations in the parameters (see figure 8). From
figure 8 the expected inverse relation between lesion volume and mean intensity increase can
be seen. However, due to the effects of noise in the reconstructed images, the points do not
fall exactly in a line, but the tendency is clearly visualized.

3.1.3. Phantom data. A phantom made of three spheres filled with 99mTc, having a
concentration of 85 µCi ml−1 each, and of 1.8, 3.2 and 1.3 cm diameters (inserts number
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(c)

Figure 8. (Continued.)

1, 2 and 3 respectively) was acquired with a Millenium-VG SPECT camera. This camera
consists of two detectors revolving around the field-of-view (FOV). Each of the detectors is
of dimensions 540 × 400 × 15.8 mm3. The scanner is capable of producing data in limited
angle 3D mode (i.e., with axial lead septas mounted) and in full 3D mode (i.e., without the led
septas). The experiments presented here were acquired in limited 3D mode (commonly used
for lungs and abdomen studies).

Five data acquisitions were performed, and for each acquisition, the phantom was
translated 1 cm in the axial direction of the scanner system. By summing the sinograms,
we simulate the acquisition of a moving phantom. Finally, one single acquisition of duration
five times longer than every single acquisition was performed in the reference position, to
serve as ground truth.

The reconstructed volumes had dimensions 128 × 128 × 128 voxels with a voxel size of
4.42 × 4.42 × 4.42 mm3. As for the simulated data, the same criteria were used to select the
regularization parameters. Gaussian regularization every two iterations with a full-width at
half-maximum (FWHM) of 8.0 mm were set as main parameters. No other correction factors
were incorporated to the reconstruction. Figure 9 shows the corrected and non-corrected
reconstructed volumes.

Image segmentation performed by thresholding at a fix percentage of maximum intensity
was carried out. Then, for each insert, volume, CR, and CV measurements were calculated to
assess the quality of the motion compensation in phantom data. Since for the experiments the
background was air, in theory CR should be infinity. Thus, to make the results understandable
we compare the average activity of the lesion in a normalized intensity scale with respect to an
unitary average activity of the background. In addition, volume-error-non-corrected (VENC)
and volume-error-corrected (VEC) were defined as the relative error between the reference
and non-corrected volumes and between the reference and corrected volumes, respectively.
Centroid-error-non-corrected (CENC) and centroid-error-corrected (CEC) are defined as the
distance between reference and non-corrected centroids and between reference and corrected
centroids, respectively. CR ratios are presented as CRc (corrected contrast recovery) over
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(a) Non-corrected (b) Corrected

Figure 9. Effect of discrete axial translations of sphere sources during an ET study. Without
motion compensation (a) and after motion compensation (b).
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Figure 10. Phantom data. Intensity profiles of reference, non-corrected and corrected volumes of
insert number two for different numbers of time states (a), and root-mean-square errors for each
slice in the hot spot volume for the non-corrected and corrected reconstructed images (b).

Table 2. Results of motion correction for phantom data. Labels stand for volume-error-
non-corrected (VENC), volume-error-corrected (VEC), centroid-error-non-corrected (CENC),
centroid-error-corrected (CEC), corrected contrast recovery (CRc), non-corrected contrast recovery
(CRnc), corrected coefficient of variability (CVc), and non-corrected coefficient of variability
(CVnc).

Insert VENC VEC CENC (cm) CEC (cm) CRc/CRnc CVc/CVnc

1 350% 5.8% 2.0 0.16 2.2 0.58
2 125% 1% 1.96 0.21 1.62 0.89
3 166% 8% 1.85 0.21 2.57 0.48

CRnc (non-corrected contrast recovery). Similarly, CV ratios are presented as CVc (corrected
coefficient of variability) over CVnc (non-corrected coefficient of variability) (see table 2).

We present intensity profiles and RMSE values computed for each axial slice within the
hot spot volume and for different numbers of time states, where for a given number i of time
states each step of the motion discretization spans L/i cm, with L the maximum translation
of the phantom with respect to the reference position (see figure 10).
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Figure 11. Different views of approximative lesion positions for the five patients. Iso-surfaces for
each lesion are positioned under an average anatomy for visualization purposes. Numeric labels
correspond to the patient numbers in table 3.

(a) Coronal (b) Sagittal (c) Axial

Figure 12. Image fusion between the patient’s attenuation map and the averaged lungs anatomy
of the respiratory motion model after affine registration.

Table 3. Patient database summary for respiratory motion correction tests.

Patient Position CT size (mm) Surgical size (mm)

1 Left superior 60 80
2 Left medium – 40
3 Right medium 16 –
4 Right inferior 28 –
5 Right superior – 37

RMSE measures and visual inspection were used as criteria to evaluate the motion
compensation technique. From table 2 and figure 10 it can be seen that the motion correction
method yields corrected volume size and position of the spheres. From table 2 an improvement
can also be noticed in both figures of merit which indicates an improvement in the spatial
distribution of intensities.

3.1.4. Patient data. Five patients having one lesion each, underwent dual-head coincidence
gamma camera scanning (CDET). The projection data was used to test the methodology of
motion compensation presented in section 2.4. Figure 11 shows approximative positions of
each lesion labeled according to table 3 which summarizes, if available, the lesion position,
CT and post-surgery lesion sizes. Figure 12 shows the result after adaptation of the respiratory
model to the patient’s anatomy (see figure 3).
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Table 4. Results of motion compensation for patients in table 3. Labels stand for contrast recovery
(CR), coefficient of variability (CV) for the non-corrected (NC) and corrected (C) case, and lesion
displacements in the cranial–caudal (CC), anterior–posterior (AP) and lateral (LR) directions.

Displacement (mm) CR CV
Volume

Patient (C/NC) LR AP CC NC C NC C

1 0.95 2.00 3.20 3.20 4.78 5.42 0.22 0.23
2 0.64 2.60 3.60 5.10 5.04 6.06 0.24 0.20
3 0.98 0.30 2.62 4.23 7.47 7.49 0.26 0.22
4 0.86 0.45 1.20 1.74 3.66 3.90 0.18 0.16
5 0.77 2.50 0.60 2.33 4.92 5.70 0.09 0.09

For each patient in table 3, image reconstruction with and without motion compensation
was performed. Discretization in three motion states and Gaussian regularization with filter
full-width at half-maximum (FWHM) of 8.5 mm every three iterations were set as main
parameters. The reconstructed image dimensions are 128 × 128 × 128 with a voxel size
of 4 × 4 × 4 mm3. As for the phantom experiments, image segmentation performed by
thresholding at a fixed percentage of maximum intensity was carried out. Then, for each insert,
volume, CR and CV measurements were calculated. Table 4 presents the results obtained in
terms of lesion volume (normalized with respect to the non-corrected case), contrast recovery
(CR), coefficient of variability (CV) for the non-corrected (NC) and corrected (C) cases, and
lesion displacements in the cranial–caudal (CC), anterior–posterior (AP) and lateral (LR)
directions. Figure 13 shows for patient number two, coronal, sagittal and axial slices without
motion compensation (left column) and with motion compensation (central column). The
right column in figure 13 is a zoom of both, the region of interest of the non-corrected (i.e.
without motion compensation) image and the motion-corrected contour (extracted from the
segmented image). Figure 14 shows line profiles across the lesion in patient number two.
For each plane (i.e., coronal, sagittal and axial) motion-compensated and non-corrected line
profiles are plotted together.

From the results presented in table 4, a reduction in the lesion volumes after motion
correction, ranging from 2% to 36% can be noticed. In terms of displacements of the
lesion’s centroids, the cranial–caudal direction presents the maximal displacements, while
the lateral direction presents the smaller ones, a fact that agrees with the findings in lung
lesions displacements of Seppenwoolde and colleagues (Seppenwoolde et al 2002). The
lesion in patient number four experiences the smallest global displacement, which is attributed
to its position near the back of the thorax, where displacements are found to be minimal.
On the other hand, the lesion in patient number two experiences the largest motion in the
cranial–caudal direction and the largest change in volume. This is expected to happen due
to the position of the lesion, where rigid structures are not expected to be attached to it (see
figure 11). Quantitative measures indicate improvements in contrast recovery after motion
compensation, which demonstrates the ability of the proposed method to compensate the
blurring effects in the lesion area and its spatial activity distribution. Improvements in noise
level are less significative. However, we did not find any increase in noise level due to motion
compensation.

4. Discussion

The modeling of emission elements as spheres that deform into ellipsoids under the action
of respiration is a novelty of the method. As was discussed, this modeling allows us to take
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Figure 13. Coronal, sagittal and axial slices for patient number two without motion compensation
(left column), with motion compensation (central column) and a zoom of both, the region of interest
of the non-corrected image and the line contour of the motion-compensated lesion (right column).
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Figure 14. Line profiles across the lesion in patient number two for the coronal, sagittal and axial
planes. For the coronal and sagittal plane, the line profile is taken along the cranial–caudal direction,
and for the axial plane in the anterior–posterior direction (i.e., vertical line across the lesion in
each plane in figure 13). For each plot, the continuous and non-continuous lines correspond to the
motion-compensated and non-corrected image, respectively.
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into account local deformations found inside the thorax due to respiratory motion. Is it worth
noticing though, that the approaches in (Jacobson and Fessler 2003, Qiao et al 2006, Li et al
2006) also have capabilities to deal with local deformations through a motion model that is not
used to rule the dynamic of the system matrix terms as proposed here but as the motion model
conceived from first principles to work on emission maps at different times. A comparative
study would be then of great interest.

Another issue of interest about the voxel modeling comes from the fact that although
such voxel modeling can incur aliasing effects (e.g., due to the possibility that a tilted line that
intersects a cubic voxel near a corner may not intersect the inscribed sphere), we noted that
the effects are negligible and mostly eliminated by the regularization step. Besides, previous
works on image representation and image reconstruction in 3D have shown the good properties
of using spherical volume elements (or blobs) in terms of noise and contrast recovery (Lewitt
1990, Matej and Lewitt 1996). These studies have demonstrated that a configuration of blobs
with a width inferior to the intrinsic resolution width of the data acquisition system provides
satisfactory results in terms of image quality and noise suppression. Further research must be,
however, conducted to determine precisely how these findings should be related to the proposed
motion compensation methodology. Nonetheless, preliminary results and experimentation
give us an indication that such a consideration holds for the proposed respiratory motion
compensation scheme. Finally, another interesting point of research is how parameterized-
overlapping blobs can improve the image quality of motion-compensated images, as has been
shown to be the case for static tomographic reconstructed images (Matej and Lewitt 1996).

Under the initial design considerations of the method (i.e., no external respiratory tracking
devices, and no data acquisition modes allowing temporal information retrieval) we have
addressed the problem when no information about the patient’s breathing is available. It is
our belief that this corresponds to the most unfavorable case, and although it would be ideal
to have the true patient’s respiratory motion, this is rarely possible in clinical practice since
it requires special imaging devices (e.g., 4D scanner). Some other devices could also give
some information about the patient’s respiratory motion (e.g., real-time position management
(RPM) systems), but they are also rare in clinical routine, and have to be coupled to an imaging
system.

As presented in section 2.4, the motion model is built from MRI data of a single subject.
This makes the estimation of the patient-specific respiratory motion sensitive to the selection
of the subject being used as a respiratory motion template. The next section discusses
improvements and future work being performed to avoid this possible issue.

5. Conclusions and perspectives

During an emission tomography study, induced motion due to patient breathing can lead
to artifacts in the reconstructed images. This can produce a less accurate diagnosis and,
more important, an incorrect radiotherapy plan (Osman et al 2003, Nehmeh et al 2002,
Seppenwoolde et al 2002). We have presented a methodology to compensate for respiratory
motion effects that does not require any additional equipment or special data acquisition
protocols. The method is based on a respiratory motion model that takes place in the
computation of each term of the probability matrix and takes into account displacements
and deformations experienced by the voxel during respiratory motion. For this, we model
the emission elements as spheres that translate and deform into ellipsoids, which makes the
implementation straightforward and allows faster computations than using classical methods
of voxel/tube intersection.



Model-based respiratory motion compensation for emission tomography 3597

The methodology was implemented in a parallel framework and tested with simulated,
phantom, and patient data. The results show the ability of the proposed method to compensate
for motion, rendering images with improved spatial intensity distributions and corrected
lesions’ shapes. Furthermore, the results obtained in simulated data to test the ellipsoidal voxel
representation show improvements in volume correction when using such a voxel modeling.

We presented a respiratory motion model built from MRI data of a single subject.
The model consists of a displacement vector field describing the displacements of each
voxel in a discretized space, which is then adapted to the patient’s anatomy through affine
transformations. This voxel-wise modeling allows us to take into account the spatial
deformation variability found within the breathing lungs. Furthermore, the study of local
voxel deformations can be retrieved directly from the analysis of this displacement vector
field, as explained in section 2.3.

We are convinced that this first approach yields images with lesser respiratory motion
effects than those reconstructed without motion compensation. Indeed, improvements of the
figures of merit were found after motion compensation, and volume reduction and lesion
displacements are likely to occur according to findings of previous studies (Seppenwoolde
et al 2002). Moreover, under the strong initial considerations, we believe that such an
approach can make a valuable contribution in terms of retrospective motion compensation in
emission tomography. This presents itself as an advantage over existing methods requiring
on-site setting of the data acquisition system or the presence of external devices.

Further improvements and work in progress consider the inclusion of breathing and
anatomy subject variability into the respiratory motion model estimation. In this sense, a
statistical respiratory model is built not from one single subject but from a given population.
This is in order to avoid possible biases introduced when using a single subject to build the
motion model.

The main interest of the proposed method is on motion correction for intrapulmonary
nodules. However, it is known that respiratory motion affects imaging of other organs (Langen
and Jones 2001, Livieratos et al 1999, 2003, Klein et al 1998). A model considering thorax
and abdomen deformations would allow us to consider deformations produced not only inside
the lungs as it has been proposed here in the framework of respiratory motion compensation
for lung cancer. Cardiac motion was not considered since it has been shown that its impact is
of lesser extent compared to respiratory motion (Berbeco et al 2005).
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Appendix A

Given the equation of an ellipsoid in its standard form: x2/a2 + y2/b2 + z2/c2 = r2 (for
an ellipsoid r = 1 and for a sphere a = b = c = 1), and the parametric equation of a
3D line (x0, y0, z0) + t (dx, dy, dz), in which (x0, y0, z0) is a known point in the line and
dx = x0 − x1, dy = y0 − y1, dz = z0 − z1, with (x1, y1, z1) another point in the line. The
values of t defining the intersection points are found by: ti = −B/2A ±

√
B2/4A2 − C/A,

with A = (dxbc)2 + (dyac)2 + (dzab)2, B = 2(dxx0b
2c2 + dyy0a

2c2 + dzz0a
2b2) and

C = ((
bcx2

0

)
+ (acy0)

2 + (abz0)
2 − (rabc)2

)
.



3598 M Reyes et al

Appendix B

Let us define ϕi(b) : N × R
3 �→ R

3 as the spatio-temporal transformation that describes the
position of voxel index b with coordinates (xi, yi, zi) at time i. For the sake of simplicity the
following notation is adopted,

ϕi(b) = ϕ(i, b) = (ϕx(i, b), ϕy(i, b), ϕz(i, b)), (B.1)

with ϕj : N × R
3 �→ R; j ∈ {1, 2, 3}.

Thus, the matrix ∇ϕi can be obtained as

∇ϕi =




∂ϕx

∂x

∂ϕx

∂y

∂ϕx

∂z
∂ϕy

∂x

∂ϕy

∂y

∂ϕy

∂z
∂ϕz

∂x

∂ϕz

∂y

∂ϕz

∂z




∣∣∣∣∣∣∣∣∣∣∣ x = xi

y = yi

z = zi

. (B.2)
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Weruaga L, Morales J, Núñez L and Verdú R 2003 Estimating volumetric motion in human thorax with parametric
matching constraints IEEE Trans. Med. Imaging 22 766–72

http://dx.doi.org/10.1118/1.1558675
http://dx.doi.org/10.1109/TMI.2003.814782

	1. Introduction
	2. Method
	2.1. Maximum likelihood expectation maximization
	2.2. Incorporating motion compensation into MLEM
	2.3. Computation of system matrix terms
	2.4. Estimation of the respiratory motion
	2.5. Attenuation correction

	3. Results
	3.1. Motion correction for simulated and real data

	4. Discussion
	5. Conclusions and perspectives
	Acknowledgments
	Appendix A
	Appendix B
	References

