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In the past years, the development of 3-D medical imaging has enabled

the 3-D imaging of in vivo tissues, from an anatomical (MR, CT) or

even functional (fMRI, PET, SPECT) point of view. However, despite

immense technological progress, the resolution of these images is still

short of the level of anatomical or functional details that in vitro

imaging (e.g., histology, autoradiography) permits.

The motivation of this work is to compare fMRI activations to

activations observed in autoradiographic images from the same

animals. We aim to fuse post-mortem autoradiographic data with a

pre-mortem anatomical MR image.

We first reconstruct a 3-D volume from the 2-D autoradiographic

sections, coherent both in geometry and intensity. Then, this volume is

fused with the MR image. This way, we ensure that the reconstructed 3-

D volume can be superimposed onto the MR image that represents the

reference anatomy.

We demonstrate that this fusion can be achieved by using only

simple global transformations (rigid and/or affine, 2-D and 3-D), while

yielding very satisfactory results.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

In the past years, the development of 3-D medical imaging

devices has enabled anatomical (MR, CT), or even functional

(fMRI, PET, SPECT) 3-D imaging of in vivo tissues. However,

despite huge technological advances, the resolution of these images

still does not match the level of anatomical or functional details

revealed by in vitro imaging (e.g., histology, autoradiography)

(Muthuswamy et al., 1996).

The motivation of this work is to compare activations detected

by fMRI to activations obtained using autoradiographic (AR)
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imaging of the same subject. Data were acquired on awake

behaving animals (rhesus monkeys).

The aim of the presented work is to fuse the autoradiographic

data with the pre-mortem anatomical MR image to allow straight-

forward comparison of the detected activations in terms of

location.

The challenge in fusing a set of 2-D autoradiographs—or more

generally, a set of contiguous thin 2-D sections—with a 3-D MRI

volume of the same individual, is to find for each 2-D section a

correspondence in the 3-D MR volume. Fusion can be done

following different strategies. Among these, the most intuitive

one is twofold. First a 3-D volume is reconstructed by aligning

the thin 2-D sections with respect to a chosen reference one. Then,

this 3-D volume is co-registered to the MR one.

Reconstruction of a 3-D volume from a stack of 2-D images

(histological slices or autoradiographs) has been largely investi-

gated in the literature. It consists of registering every pair of

consecutive images in the stack to recover their geometrically

coherent 3-D alignment. It however differs from the image match-

ing problem, as classically understood, in several ways:

� slices to be registered are not images of the same object, but

rather of similar objects (i.e., two consecutive sections) that can

exhibit differences in shape and/or in intensity;
� non-coherent distortions may occur from one slice to the next.

The most common method, manual registration (Deverell et al.,

1993; Rydmark et al., 1992), despite its simplicity, suffers from

several drawbacks: it is not reproducible, it is user-dependent, and

it is very time consuming. Those inherent difficulties make it not

suitable to process much data.

Alternatively, fiducial markers (obtained by sticking needles in

the material before slicing) can be tracked over the whole stack to

recover the original geometry (Ford-Holevinski et al., 1991; Gold-

szal et al., 1995, 1996; Humm et al., 1995). However, since it is

usually done by least squares minimization, a bias may appear if

needles are not orthogonal to the cutting planes. Moreover,

tracking can sometimes be difficult, especially when needle holes

collapse. Furthermore, the needles may destroy part of the tissues

of interest in the sections.



Fig. 1. The purpose of the described work is the fusion of a series of misaligned 2-D sections, that can also exhibit differences in intensity, (left) with a 3-D

image (middle) to reconstruct a 3-D volume homogeneous in intensity with the geometry of the 3-D image (right).
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Other images registration methods have also been investigated

(Maintz and Viergever, 1998; van den Elsen et al., 1993). Those

methods can be divided in two classes: the geometrical approaches

which require the segmentation of some features (points, lines, or

even objects of interest) and the iconic approaches based solely on

image intensity.

Concerning the geometrical methods, registration can first be

achieved with global descriptors, for example, centers of mass and

principal axes. This proved to yield only limited precision (Schor-

mann and Zilles, 1997), but may be used as initialization (Hess et

al., 1998; Hibbard and Hawkins, 1988). More precise features, for

example, contours (Cohen et al., 1998; Hibbard and Hawkins,

1988; Zhao et al., 1993), edges (Kay et al., 1996; Kim et al., 1995),

or points (Rangarajan et al., 1997) can also be used.

Because of the difficulty to design a fully automatic and reliable

segmentation method, or to manually extract features of interest,

iconic (intensity based) methods have also been investigated. They

are based on the minimization (or maximization) of a similarity

measure of the images’ intensities: among others, one finds cross-

correlation (Hibbard and Hawkins, 1988; Ourselin et al., 2001) or

mutual information (Kim et al., 1997).

Note that the work of Ourselin et al. (2001) can be considered as

an hybrid ICP1-like approach (Besl and McKay, 1992) between

geometrical and iconic methods. Blocks can be considered as

geometrical features while co-registration of blocks is achieved by

minimization (or maximization) of a similarity measure. We find it

particularly suitable for the purpose of 3-D volume reconstruction.

So far, we have only addressed the problem of spatially aligning

the 2-D slices to reconstruct a geometrically coherent 3-D volume.

It should be emphasized that the problem of intensities alignment

has rarely been addressed. Clearly, 2-D autoradiographs exhibit

intensity inhomogeneities from one image to the next: sections of

varying thickness present different amount of radio-isotopes,

sensitivity may vary from film to film, etc. These can be compen-

sated if appropriate standards (micro-scales) of known radioactiv-

ities are also imaged (and scanned) on each piece of film (Reisner

et al., 1990). When they are not present, alternative approaches

have to be proposed.

The previously cited literature is limited to the problem of the

reconstruction of a 3-D volume from 2-D slices. However, it does

not allow for an easy comparison with more classical 3-D

modalities (e.g., MRI or CT). The fusion of such histological or

autoradiographic data with other 3-D data has not been often

addressed. In this case, the specific transformations due to the

acquisition protocol (e.g., cutting, manipulation, chemical treat-

ment, etc.) have to be compensated. To the best of our knowledge,

histology has previously been co-registered with MRI (Schormann

and Zilles, 1998; Schormann et al., 1995) and with PET data
1 Iterative Closest Point.
(Mega et al., 1997). In both cases, photographs were acquired

during the cutting process to serve as an intermediate modality. A

3-D linear transformation was used to map the photographic

volume onto the MR volume, while 2-D highly non-linear trans-

formations compensated residual in-plane misalignments between

the histological sections and the photographs.

In this paper, we address the fusion of 2-D autoradiographic

slices with a 3-D anatomical MR image, when no intermediate

modality, such as photographs, is available (see Fig. 1). In this

case, retrieving the correspondence for each 2-D section in the MR

volume is an awkward task. Moreover, we will demonstrate that it

is possible to achieve a satisfactory correspondence by using linear

transformations only.

We present the data acquisition protocols in the following

section. In Methods, we describe the fusion methodology, which

includes a first reconstruction of a 3-D volume from the 2-D

autoradiographs (the tools used for the different subtasks are

described in appendices). The steps of the method are illustrated

in Results. Finally, the proposed method is then discussed in

Discussion.
Acquisition protocols and preprocessing

Acquisition protocols

MR image

Monkeys were trained for fMRI activations studies. During this

period, several anatomical T1-weighted MR images were acquired,

while animals were anesthetized to avoid motion artifacts (Van-

duffel et al., 2001). Averaging those MRIs results in an anatomical

MR image of size of 240 � 256 � 80 and resolution of 1 mm3.

Autoradiographs

Upon completion of the fMRI studies, monkeys were trained

for the autoradiographic study, for which a double-label deoxy-

glucose technique (DG) was used to distinguish between two

activation paradigms (please refer to (Geesaman et al., 1997;

Vanduffel et al., 2000) for details). [3H]deoxyglucose ([3H]DG)

was injected during the presentation of the first stimulus, then the

second stimulus was presented and [14C]deoxyglucose ([14C]DG)

was injected.

After a short delay, the monkey was sacrificed (via the

injection of sodium pentobarbital) and perfused transcardially

(first with a saline solution to wash out the blood and second

with a fixative solution). The brain was then extracted from the

skull. The hemisphere dedicated to our protocol was cut into two

pieces and frozen as fast as possible (since the deoxyglucose

diffuses rapidly at room temperature). Each block was put on the

cutting plane to warrant the planarity of the bottom section after

freezing.



Fig. 2. Some of the original autoradiographic images (out of 818) of the

posterior block of the monkey’s brain.
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Each block (posterior and anterior) was finally sectioned

using a cryostat (slice thickness of 40 Am), resulting in 818

slices for the posterior block and 887 slices for the anterior one.

Sections were mounted on coverslips and dried. All sections

were first exposed against 3H sensitive film and then against 14C

sensitive film. The autoradiographs were subsequently manually

scanned.

The two images (3H and 14C) of a given section were

co-registered (using the registration algorithm presented in

Appendix A).

Acquisition analysis

The goal of this work is the fusion of the autoradiographic data

(from now on, we consider only one label, e.g., 14C, since the two

labels of the same section have been co-registered) with the MR

image, which serves as ground truth geometry. The above descrip-

tion of the acquisition may helps us understand the transformations

that occurred and that have to be accounted for.

� Perfusion yields a global shrinkage of the brain.
� Brain extraction causes a global non-rigid deformation (mostly

bending).
� CSF goes away, resulting in local deformations (e.g., ventricles

collapse).
� In their position for freezing, the two blocks are submitted to

biomechanical constraints (external pressure, gravity force, etc.)

different from those exerted in vivo, this may yield non-rigid

deformations.
� Freezing is also another cause of shrinkage.
� Sections cutting and positioning on films results in random in-

plane transformations (e.g., cutting artifacts).

It should be pointed out that, while the first transformations are

obviously three-dimensional and apply to the whole brain, the last

item concerns 2-D slice-dependent transformations.

Preprocessing

Autoradiographs

Each brain section on the autoradiographic film was scanned

into a 1276 � 1024 image, resulting in a pixel resolution of 40

Am2 and a slice thickness of 40 Am (see Fig. 2). These images

were then subsampled by a factor 4 which resulted in 818 images

of size 320 � 256 with a pixel resolution of 160 Am2.

For economical reasons, some of the digitized images contained

more than one brain section. The use of very simple operators

(thresholding to remove the background and mathematical mor-

phology—erosion, selection of connected component, dilation—to

separate overlapping sections) enabled us to extract the sections of

interest in each image.

To automate this task, the scanning protocol was designed so that

this particular section was centered in the image: this way, the

component to be extracted is the one which contains the central

point.

Some images (e.g., the most posterior sections, that are very

small) do not follow this protocol: in this case, the sections of

interest were manually selected.

Nevertheless, the procedure still failed for a few images where

sections were superimposed (e.g., Fig. 2(c)): here the sections were

manually segmented.
These processed sections were put into a stack, resulting in

a 3-D image of size 320 � 256 � 818 with a voxel size of

0.16 � 0.16 � 0.04 mm3 (see top row of Fig. 6).

Anatomical MR image

The original MR volume had a size of 240 � 256 � 80 with a

voxel size of 1 mm3. We extracted in it the 66 � 89 � 48 sub-

image which contained the right hemisphere of the brain.

We first performed an axis permutation on this sub-image so

as to give it roughly the same geometry than the stack of

autoradiographs. Finally, it was supersampled by a factor 4 using

cubic splines (Thévenaz et al., 2000) to end up with an image of

size 264 � 192 � 356 with a voxel size of 0.25 mm3 (see Fig. 3).
Methods

We present in the following section the methodology of the

fusion of the DG-MR volumes. We discuss in appendices the tools

that were used to implement it since we consider that alternative

choices for them can be done.

The proposed fusion of a 3-D MR image with the autoradio-

graphs consists of

1. a first reconstruction of an autoradiographic volume, coherent

with respect to both geometry and intensity, without the help of

the MR image;



Fig. 3. Left column: a region of interest (ROI) from the original MR image

centered on the right hemisphere. Right column: this ROI supersampled by

a factor 4 with cubic splines.
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2. a fusion loop that alternates between the reconstruction update

of the autoradiographic volume with the help of the MR image

and the 3-D registration of the autoradiographic volume to the

MR image.
Notations

Let us consider two images I1 and I2. We will denote by TI2pI1

the spatial transformation that maps the points of the frame

attached to image I1 onto points of the frame attached to image

I2. The image I2 can also be viewed as a function that maps the
Fig. 4. The reconstruction of a 3-D volume from a series of 2-D sections consists

intensities inhomogeneities. The registration parameters of the couples of misregi
points of the frame attached to image I2 into the set of intensities

attached to image I2. The composition of I2 and TI2pI1
, denoted by

I2 B TI2pI1
, is then a function that maps the points of the frame

attached to image I1 into the set of intensities attached to image I2,

and represents the image I2 in the geometry of image I1 (in

practice, after resampling).

The same kind of notations are used for the intensity transfor-

mation functions.

3-D reconstruction of an autoradiographic volume

The reconstruction of a 3-D autoradiographic volume from the

2-D autoradiographic sections Si, i = 1. . .N is twofold (see Fig. 4).

Geometry consistency

Following the scheme presented in Ourselin et al. (2001), we

realign the 2D sections to build a geometrically coherent volume.

Each couple of consecutive sections, Si and Si + 1 is rigidly co-

registered, with the method described below (see Appendix A),

yielding a 2-D transformation Tipi + 1 (or equivalently Ti + 1pi). A

reference section, of index ref1, is then chosen, and the 2-D

transformations Tipref1
are computed by composition of the

Tipi + 1(if i < ref1) or Ti + 1pi (if i> ref1) transformations.

The resampled sections, Si B Tipref1
, can now be stacked to build

a geometrically coherent 3-D volume. At this stage, visual inspec-

tion is necessary, to detect some eventual misalignments due to a

wrong co-registration between two consecutive sections. These

misalignments separate consistent sub-volumes in the 3-D recon-

struction (see the second row of Fig. 6). Indeed, consider a

misregistration for the couple of sections of indices e and e + 1.

The 2-D transformations with respect to the reference section of

index ref1 are computed by

Tipref 1 ¼ Tipiþ1B: : :BTe� 1peBTepeþ1B: : :BTref 1 �1pref 1

for i< e< ref1. The sections from index i to index e are then

correctly co-aligned together (they form a consistent sub-volume)

but are not correctly co-aligned with section of index e +1. By

visually inspecting the reconstructed volume, these misregistra-

tions are thus easily identifiable. Typically, this only concerns a

small number of sections, less than 2% of the total. To correct

them, we change the default registration parameters (e.g., the

exploration neighborhood size rx and ry, or the fraction p of

retained blocks, see Appendix A.1) and co-register again the

misaligned couple of consecutive sections, until the transformation

is satisfactory.
in the co-registration of any two consecutive slices and in the correction of

stered sections are changed until a satisfactory result is obtained.
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Intensity consistency

Because the overall intensity may change from one autoradio-

graphic image to the next, we compensate for these changes with a

dedicated histogram matching algorithm applied to all pairs of

consecutive sections (see Appendix B), yielding an affine intensity

transformation fipi + 1 (or equivalently fi + 1pi) between two con-

secutive sections. A reference section, of index ref2, is chosen, and

the intensity transformations fref2pi are computed by composition

of the fipi + 1 or fi + 1pi intensity transformations.

To summarize, the 3-D reconstruction of an autoradiographic

volume, coherent with respect to both geometry and intensity, is

achieved by the superposition of the resampled sections fref2pi B
Si B Tipref1

.

Initial 3-D registration MRI/autoradiographic volume

The reconstructed autoradiographic volume AV is then coregis-

tered with the MR volume (see Appendix A) using a 3-D rigid

transformation. This provides an initial solution to our fusion

problem.

Fusion loops

This loop aims to fuse the 2-D autoradiographic sections with

the 3-D MR image. Let AV(0) be the first 3-D reconstruction of the

autoradiographic volume and TMRpAV(0) the initial 3-D transfor-

mation (as obtained above). Each iteration k of the loop is divided

into four steps.

1. The first step is twofold;

(a) Resampling of the MR volume into the geometry of AV(k)

yielding the volume fMRðkÞ = MR B TMRpAV(k). This allows to
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Fig. 5. Fusion loop (see text): (1) 2-D independent registrations of each AR sect

transformations filtering and reconstruction of a 3-D AR volume; (3) 3-D registra
extract MR slices, fMR
ðkÞ
i , i = 1. . .N, that correspond to

autoradiographic slices.

(b) 2-D registrations of each autoradiographic slice AVi
(k) against

the corresponding resampled MR slice, resulting in N 2-D

independent transformations T
ðkÞ
AVi

pfMR
ðkÞ
i

(see Appendix A).

2. Filtering of the 2-D independent transformations T
AV

ðkÞ
i

p eMR
ðkÞ
i

,

yielding the 2-D correlated transformations T̂
AV

ðkÞ
i

p eMR
ðkÞ
i

(see

Appendix C).

3. Building of a new autoradiographic AV (k + 1) volume by

superposing the slices AV
ðkÞ
i BT̂

AV
ðkÞ
i

p eMR
ðkÞ
i

.

4. 3-D registration of the autoradiographic volume AV(k + 1) against

the 3-D MR image, yielding a 3-D transformation TMRpAV(k + 1)

(see Appendix A).

This loop, that alternates between the reconstruction update of

the autoradiographic volume and the 3-D registration of the

autoradiographic volume against the MR image, is summarized

in Fig. 5.

We only use global parametric transformations in this loop,

for example, rigid transformations, similarities, or affine trans-

formations. Table 2 reports the selected transformations for each

loop.
Results

Reconstruction of an autoradiographic volume

A first autoradiographic volume is reconstructed by registering

each couple of consecutive sections using the 2-D block matching

algorithm (typical values of parameters are given in Table 1). The
ion against the corresponding slice of the resampled MR volume; (2) 2-D

tion of the AR volume against the MR volume.



Table 1

Typical values of the parameters for both the 2-D and the 3-D registration

algorithms

dx dy dz sx sy sz rx ry rz p(%) l

2-D 4 4 – 3 3 – 3 3 – 80 6

3-D 4 4 4 3 3 3 3 3 3 100 3
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composition of the computed transformations allows the registra-

tion of all the sections against a reference one (taken at the middle

of the stack).

Visual inspection of the reconstructed volume enabled the

detection of possible remaining registration errors that were

subsequently corrected by changing registration parameters. This

control step was repeated until the result was satisfactory, that is,

until the reconstructed volume seemed geometrically consistent.

The first row of Fig. 6 shows the stack of autoradiographs to be

compared to the obtained reconstruction (third row of same

figure).

Intensity consistency was also obtained via histogram match-

ing (see Appendix B) for each couple of consecutive sections.

Note that this computation is independent from the above geo-

metrical registration. Among the available criteria (sum of squared
Fig. 6. From left to right: one axial and two sagittal slices of the reconstructed auto

Second row: reconstruction with the default registration parameters; failures are e

before intensity correction. Fourth row: after intensity correction.
differences (SSD), correlation, maximum of likelihood (ML)), the

SSD and the ML yield satisfactory results. We computed then

several intensity-corrected reconstruction with different kernel’s

smoothing factor (r a {3, 5, 8, 12}). The best result (based on

visual impression) was selected for the further steps. The last row

of Fig. 6 displays the final reconstruction.

Initial registration with MRI

After reconstruction of the autoradiographic volume, the latter

can be registered (here rigidly) against the MR sub-volume of

interest (i.e., the corresponding hemisphere). The top row of Fig. 7

shows cross-sections of the reconstructed AR volume while the

bottom row shows the corresponding cross-sections of the

resampled MR volume after registration. Both volumes are roughly

similar, but large differences can be seen especially in posterior area.

Fusion loops

The fusion loops consist in iterating four successive steps:

1. 2-D independent registrations of each AR section against the

corresponding slice of the resampled MR volume,
radiographic volume of the posterior block. First row: before any correction.

asily identifiable. Third row: after geometrical alignment of the slices, and



Fig. 7. Top row: one axial and two sagittal slices of the reconstructed autoradiographic volume after geometric alignment and intensity correction (id. last row

of Fig. 6). Bottom row: corresponding slices of the resampled MR volume after 3-D rigid registration. The circles highlight registration errors, which are

particularly visible in the posterior area.
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2. 2-D transformations filtering,

3. reconstruction of a new 3-D AR volume,

4. and 3-D registration of the newly reconstructed AR volume

against the MR volume.

The different transformation classes that were considered

through the fusion loops can be found in Table 2. We stopped

after the third loop since we did not notice any evolution with

respect to the second one.

Intermediate results for loop # 1 are given in Fig. 8. Fig. 9

shows the final alignment of the histological slices with respect to

the MR volume.

Fig. 10 highlights the advantages of the proposed fusion

methodology: top, middle, and bottom rows show cross-sections

of the original MR sub-volume of interest (the right hemisphere),

the first reconstructed and resampled AR volume after rigid

registration, and the final reconstructed and resampled AR volume

after affine registration, respectively. Contours extracted from the

presented MR cross-sections are superimposed on the AR cross-

sections in Fig. 11.

Improvements along the fusion process can be seen in Fig. 12

which presents the differences between any two successive auto-

radiographic volumes (registered against the MR image). Displace-

ments are large after loop #1 and become smaller between loop #2

and loop #3. The computation of the mutual information criterium
Table 2

Fusion loop, choice of the parameters: transformation classes and 2-D

transformation filtering

2-D

registrations

TAV ðkÞ
i

p eMR
ðkÞ
i

2-D

transformation

filtering r(k)

3-D

registration

TMRpAV(k + 1)

Loop # 1 rigid 10 affine

Loop # 2 rigid 8 affine

Loop # 3 affine 10 affine
(which is not the measure that is optimized), through the fusion

process, offers also a mean to assess the benefits of the proposed

method (see Fig. 13).

The residual differences that can be seen in these figures

suggest that further improvements could be reached by gradu-

ally increasing the number of degrees of freedom of the

transformations.

We have also fused the anterior part of the same monkey’s brain

(see Fig. 14) to the MR volume. As we did observe only minor

changes between loops #1 and #2, we did not go into the third

loop. Indeed, the so-called banana problem (see Discussion) was

less acute in this case.

Visual-based inspection

The results were checked using two different methods. First,

the two volumes in the same geometry (here the one of the MR)

can be seen in two synchronized 3-D viewers: both of them

always display the same cross-sections (axial, sagittal and coro-

nal) as well as a cursor at the same position (see Fig. 14(A) and

Fig. 14(B)). Both volumes can alternatively be visually super-

imposed, possibly using different color maps and transparency

(see Fig. 14(C)) (Delingette et al., 2001).

Both tools allow the navigation in the fused 3-D volumes which

permits to check the accuracy of the fusion, for example, by

following sulci. At the level of the visual cortex, the correspon-

dence is accurate, as well as for most of the brain. Some subtle

mismatch errors can be seen at the medial side of the caudate

nucleus (due to collapsed ventricles).
Discussion

We first address some methodological issues: first, the sole

problem of reconstructing a volume from a series of 2-D auto-

radiographs and second, the fusion of the 2-D autoradiographs with



Fig. 8. Fusion loop # 1. From left to right: one axial and two sagittal slices. First row: autoradiographic volume after the independent 2-D slice registration.

Second row: autoradiographic volume after smoothing of the 2-D transformation. Third row: MR image resampled after affine registration against the above-

reconstructed AR volume. The effect of this first loop can be appreciate by comparing the middle row to the first row of Fig. 7.
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the MR volume. Then, we discuss the conditions of applicability of

our method.

Reconstruction

This step consists of two parts, a geometrical reconstruction and

an intensity compensation.

Concerning the geometrical reconstruction, a visual inspec-

tion (and possibly manual correction) is necessary in case of

mismatch between two consecutive sections. It should be point-

ed out that mismatch does not mean poor accuracy. Indeed, it

has been proven that the block matching algorithm gives

accurate results (Ourselin, 2002; Ourselin et al., 2001) given

initial conditions in the convergence basin. If not, for example,

in case of failure, there is a huge discrepancy between the

obtained transformation and the expected one so the failure can

be easily visually recognized. This is all the more noticeable

when reconstructing a full set as two mismatched consecutive

sections will separate two geometrically consistent 3-D sub-

volumes. We corrected these errors by changing the registration

parameters. This modified the shape of the convergence basin,

now including the initial condition. Another solution could have

been to change the initial transformation parameters.

Visual inspection of the intensity-based reconstruction is facil-

itated by similar considerations. Indeed, a single error (a mismatch

between two consecutive sections) results in a clear separation

between two intensity-consistent 3-D sub-volumes.
One might question the necessity of the intensity-based recon-

struction. When no additional assumption can be made about the

autoradiographs’ acquisition protocol, it appears to be required.

Indeed, the 3-D reconstructed AR volume has to be registered

against the MR volume. To do so, 3-D sub-images (blocks) of the

AR volume will be compared to 3-D blocks of the MR volume.

The correlation coefficient assumes an affine relationship between

intensities of these two blocks and thus needs each of both blocks

to be consistent in intensity. Obviously, it is not possible to find the

right correspondence for a block that would not be consistent in

intensity. Since our implementation of block matching is robust (it

can reject outliers), it may still compute the expected 3-D trans-

formation if there are not too many corrupted blocks, for example,

if there are only very few intensity jumps in the AR volume.

Without such additional assumption, intensity-based reconstruction

is thus necessary. However, it also appears that the visual exam-

ination of the 3-D reconstructed AR volume is more comfortable

with intensity compensation than without.

Fusion

Fusion of a set of 2-D autoradiographs, or more generally of a

set of contiguous thin 2-D sections, with an MR volume of the

same individual, can be done following a twofold approach. First,

the thin 2-D sections are aligned with respect to a chosen reference

section, which yields a reconstructed 3-D volume; then this 3-D

volume is co-registered to the MR volume.



Fig. 9. Fusion loop # 3. From top to bottom: one axial and two sagittal

slices. Left column: autoradiographic volume after smoothing of the 2-D

transformation. Right column: MR image resampled after affine registration

against the above reconstructed AR volume.

G. Malandain et al. / NeuroImage 23 (2004) 111–127 119
Obviously, as a result of such a co-registration, one expects to

find a point-to-point correspondence between the MR volume and

the stack of 2-D sections. This implicitly assumes that the

alignment of the 2-D sections respects the real underlying anato-

my. The above twofold approach is clearly not design to encounter

such an expectation, which is generally not achieved in practice

(see Fig. 7).

This difficulty in the reconstruction of a 3-D volume from 2-D

sections (either histological or autoradiographic) comes from the

so-called banana problem (illustrated in Fig. 15): namely a 3-D

curved object cannot be reconstructed from cross-sections without

any additional information.

The acquisition protocol can be designed to include additional

information in the form of fiducials. To do so, needles can be

sticked in the material before slicing, which provides correspond-

ences to drive the geometry-based reconstruction (Ford-Holevinski

et al., 1991; Goldszal et al., 1995, 1996; Humm et al., 1995).

However, reconstruction can be awkward, particularly if needles

are not orthogonal to the cutting plane or if needle holes collapse

during the histological treatment. Another way is to take photo-

graphs of the unstained surface of the material during the slicing

process, including a reference system fixed on the cryomicrotome

(Mega et al., 1997; Schormann and Zilles, 1998; Schormann et al.,

1995). Alignment of the photographs using the reference system

will then provide a photographic 3-D volume with the real

geometry of the object under study, for example, the brain after

extraction from the skull but before slicing and staining. Thus,

further reconstruction of the 2-D histological sections into a

geometrically consistent 3-D volume can be made by independent

registrations of the 2-D sections with the corresponding previously

aligned photographs.
When such a priori additional information about the real

geometry of the object under study is available, the banana

problem does not occur. Nevertheless, for practical reasons, such

information is not always available. In that case, the only infor-

mation about the geometry of the brain (its real anatomy) before

slicing is given by the anatomical MR volume.

A direct and strict twofold approach, namely the reconstruction

of a 3-D volume by alignment of the 2-D sections followed by the

registration of this volume with the anatomical MR volume could

have provided a satisfactory result. This implicitly assumes that

either the computed 2-D transformations will compensate the

random in-plane transformations due to the acquisition procedure

(this is not realistic for curved objects), or that further 3-D elastic

registration may compensate for the residual distortions. However,

existing elastic transformations implemented in such algorithms are

obviously not adapted. First, they consider in a similar manner the

three directions of space. In our particular problem, one direction

(the one orthogonal to the cutting plane) clearly plays a different

role. Moreover, from a methodological point of view, they do not

take the acquisition procedure into account (see Acquisition anal-

ysis). Namely, transformations that have occurred during the

acquisition are of different types, that is, 3-D and applied to the

whole brain, or 2-D and independent from section to section.

The proposed fusion methodology mimics the acquisition

procedure by considering both a stack of 2-D transformations (that

correspond to the displacements of the AR sections) and a 3-D

transformation corresponding to the registration against the MR

volume.

More precisely, after an initial reconstruction of the 2-D

sections, we alternate between the correction of this reconstructed

AR volume (by recomputing the 2-D transformations) and a 3-D

registration with the MR volume. By doing so, we allow the 2-D

sections to slide on each other, and we expect to estimate more

optimally the random in-plane transformations due to the acquisi-

tion procedure, together with the relative position of the recon-

structed volume with respect to the MR volume. The choice of the

transformation search spaces during these fusion loops is made so

as to preserve the integrity (e.g., constant slice thickness, parallel-

ism of sections) of the AR sections. That is, the optimization starts

with strongly constrained transformations (i.e., rigid), which are

then slightly relaxed (ending up with affine transformations both in

2-D and 3-D). In other words, we do not allow the AR sections to

be strongly deformed before their corresponding MR slices have

been localized for a given transformation search space.

It should be pointed out that the obtained result is visually

correct, although it only involves a stack of 2-D and 3-D linear

transformations.

Fig. 16 illustrates the banana problem with our data. It shows

(in blue) the vertical central line of the first 3-D reconstruction of

the AR volume (last row of Fig. 6) that could be considered as the

symmetry axis of the cylindrical reconstructed object, and the

deformation of this line (in red) after the fusion: a curvature

appears.

Fig. 17 compares the result of the fusion using our approach and

a twofold approach. It shows (middle row) a direct registration

using affine transforms of the reconstructed AR volume with the

MR volume, compared to the final result using fusion loops (bottom

row). This demonstrates that a direct 3-D affine transformation is

obviously not sufficient to model the deformation between the

initial AR reconstructed volume and the MR volume. On the middle

row of Fig. 17, the anterior part of the AR volume is well registered,



Fig. 10. From left to right: coronal, sagittal, and axial slices in the acquisition geometry of the MR image. Top row: the MR image (resampled with cubic

splines, see Fig. 3). Middle row: the three same slices of the first reconstructed autoradiographic volume (before any fusion loop) rigidly registered against

the MR image. Bottom row: the three same slices of the last reconstructed autoradiographic volume (after all fusion loops) registered against the MR

image.
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while a large discrepancy appears in the posterior part. This

suggests that a further 3-D elastic registration (usually initialized

by a rigid or affine transformation) would result in inhomogeneous

deformations of the AR slices along the antero-posterior axis. Thus,

we suspect that the latter procedure would alter the integrity of the

AR slices and would not yield the most exact point-to-point

correspondence in the MR volume for each 2-D AR section.

Conditions of use

If additional fiducial markers cannot, or have not, be included

in the acquisition protocol (see the above discussion about fusion),
we demonstrated that it is still possible to fuse a stack of 2-D

sections with a 3-D image. However, there is some limitations to

our approach with respect to the above-mentioned one.

� To obtain the first reconstruction (section 3.1), the registration of

two consecutive sections must make sense. It means that there

should be enough information redundancy (similar structures

should appear, etc) in these two sections so that a registration

algorithm could co-align them (if there are no common

structures, co-registration cannot succeed). Dealing with thin

sections sounds obviously better than thick ones, however, this

does not intrinsically put an absolute constraint (say 40 or 20 Am)



Fig. 11. The contours extracted from the MR image (first row of Fig. 10)

superimposed on the corresponding slices of the middle (left column) and

last (right column) rows from the same figure.
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on the slice thickness since it highly depends on the imaged data.

The condition for a successful reconstruction can be formulated

as ‘‘enough 3-D structures can be seen in a number of

consecutive sections.’’
� To co-register a 3-D reconstruction with a 3-D image, or a 2-D

section with the corresponding resampled slice in the 3-D

image, the same condition holds, that is, registration must make

sense. It means that we must have two 3-D volumes (the total

thickness of the sectioned material should be of the same order

than the in-plane sections’ dimensions), and that there is enough

overlap and information redundancy between the two volumes.
� In this work, we only use linear (rigid or affine) trans-

formations. It was sufficient for the proposed application, since

we manipulate frozen sections, so that in-plane distortions are

unlikely to occur, or are of limited amplitude (e.g., near the

collapsed ventricles)

In other situations (e.g., histological stained sections), such 2-D

distortions will certainly occur, and the assumption of global

linear (affine or rigid) transformation will not hold anymore. The

introduction of more complex transformations when co-regis-
tering two consecutive sections (e.g., 2-D piecewise affine trans-

formations (Pitiot et al., 2003)) enables to correctly reconstruct a

3-D volume from a stack of stained sections (in our fusion

scheme, this only concerns the first step, see 3-D reconstruc-

tion of an autoradiographic volume). However, to compensate

for the distortions in the fusion loops is still under study.
Conclusion

This paper describes a methodology that allows the fusion of 2-

D sections (autoradiographs) with a 3-D volume (MR). The

iteration of a so-called fusion loop, which alternates between the

correction of the reconstructed AR volume (by recomputing the 2-

D transformations) and a 3-D registration, delivers very satisfac-

tory results as confirmed by visual inspection.

Since such 2-D section (autoradiographs or histological stained

sections) can be considered as imaging the ground truth, to fuse

them with in vivo 3-D imaging modalities provides a way to assess

the signal (or results emanating from the processing of the signal)

of these modalities.

The proposed method address the case where additional fiducial

markers (or intermediary images, e.g., photographs) cannot, or

have not, be included in the acquisition protocol (see the above

discussion about fusion).

From a methodological point of view, it should be pointed out

that the fusion only involves a stack of 2-D affine transformations

and a 3-D affine transformation (no complex 3-D or 2-D elastic

transformations are required): we argue that this is appropriate

since it faithfully models the acquisition procedure.

Yet, we still observe a few mismatched areas in our results.

Following our strategy, we could perform an additional 2-D

registration step between AR and corresponding MR sections

using transformations with more degrees of freedom. One way

would be to use transformations used by Mega et al. (1997) and

Schormann and Zilles (1998), and another way would be to design

a transformation that models the specific 2-D piecewise distortions

(Pitiot et al., 2003).

Finally, thanks to the acquisition procedure (the brain and the

AR sections are almost always manipulated when frozen), geo-

metrical distortions within an AR section are somehow minimized.

It will be challenging to process histological stained data with the

same method since, in the later case, strong distortions will

certainly occur because of the staining procedure.
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Appendix A. 2-D and 3-D Registration

In principle, any registration method can be used to register two

images when the latter are two 2-D autoradiographs or the 3-D

autoradiographic reconstructed volume and the 3-D MR volume,



Fig. 12. Difference images between the successive autoradiographic volumes (AV) registered against the MR image. First row: AV after loop #1 minus first

reconstructed AV. Second row: AV after loop #2 minus AV after loop #1. Third row: AV after loop #3 minus AV after loop #2. Fourth row: AV after loop #3

minus AV after loop #0.
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Fig. 13. Measure of the mutual information through the fusion procedure: it

provides a mean to assess the benefits of the proposed method.
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(Maintz and Viergever, 1998; van den Elsen et al., 1993). The

method we choose, namely block matching, is particularly well

suited for 3-D reconstruction as has been described and discussed

in Ourselin et al. (2001), but can be used as well for 3-D

registration (Ourselin et al., 2000).

This method is very similar to the ICP2 algorithm (Besl and

McKay, 1992) which consists in extracting feature points in the

two images (say the reference and the floating images) to be

registered and in iterating the following steps until convergence:

1. to pair each feature point of the floating image with the closest

feature point in the reference image,

2. to compute the transformation that will best superimpose the

paired points, and,

3. to apply this transformation to the feature points of the floating

image.

Indeed, after applying the transformation, the pairings may have

changed, thus a better transformation may be found by iterating

these three steps.

In the block matching algorithm, we do not extract feature

points but consider sub-images (i.e., blocks) in the floating image

that will be paired to the most similar sub-image in the reference

image. The computed transformation is the one that will best

superimpose the centers of the paired sub-images. More details

are given below.

A.1 . Block matching

This algorithm takes as input a reference image I and a floating

image J, and aims to estimate a transformation T such as J B T can

be superimposed on I. It is done through an iterative scheme: at

each stage, correspondences are computed thanks to a block

matching algorithm, and a transformation yT is estimated from

these correspondences to allow an update of the searched trans-

formation T.
2 Iterative Closest Point.
As described, the transformation T is computed iteratively. Let

us denote its estimation at step k by Tk (with T0 = Identity).

A block B (x, y) in image I is defined as the sub-image of I with

upper left corner (x, y) and dimensions dx � dy. For each block, we

can compute its average value B̄(x, y) and its standard deviation r
(x, y). We define the set Ba,b of blocks by

Bsx ;sy ¼ fBðx; yÞoI such that x ¼ asx;

y ¼ bsy with a; baNg

As it is, B1,1 contains all the possible blocks of size dx � dy
included in I, while Bsx ,sy

with sx > 1 or sy > 1 contains only a

subset of them.

While large values of sx and sy reduce the number of considered

blocks in I, and thus decrease the computational cost, important

features of I may be missed. We then choose a not too large sx and

sy, but remove from the set Bsx ,sy
the blocks with the lowest

standard deviation value.3 We thus only keep a fraction p of blocks

of Bsx ,sy
, to compose the final set of blocks Dsx ,sy

of I. We have then

Dsx ,sy
o Bsx ,sy

and card (Dsx ,sy
) = pcard (Bsx ,sy

).

Once the blocks to be considered in I are defined, we compute,

for each of them their best corresponding block in J B Tk (i.e., J

resampled with Tk). To achieve this, we look for the block BV(xV,
yV) of upper left corner (xV, yV) and size dx � dy in J B Tk that

optimizes a given similarity measure S

BVðxV; yVÞ ¼ arg max
BVðu;vÞo JBTk

SðBðx; yÞ;BVðu; vÞÞ

For practical reasons, the search for BV(xV, yV) is limited in

J B Tk to a region of interest (exploration neighborhood),

denoted by N(x, y), centered in (x, y), and defined by N(x, y) =

[x�rx, x + rx]�[ y� ry , y + ry].

BVðx V; y VÞ ¼ arg max
ðu;vÞaNðx;yÞ

SðBðx; yÞ;BVðu; vÞÞ

The choice of the similarity measure should depend on the expected

relationship between the block intensities. Considering that a block

may contain up to two (and rarely three) different tissues, an affine

relationship seems reasonable. Hence, we choose the correlation

coefficient as similarity measure (Roche et al., 2000):

SðBðx; yÞ;BVðu; vÞÞ

¼ 1

dxdy

1

rðx; yÞrVðu; vÞ
X

a¼ 0...dx � 1

X
b¼ 0...dy � 1

½Iðxþ a; yþ bÞ

� Bðx; yÞ�½ðJBTkÞðuþ a; vþ bÞ � B Vðu; vÞ�

where B̄ V(u, v) and r V(u, v) are the average value and the standard

deviation of the intensities of block BV(u, v).
From each pair of corresponding blocks, B(x, y) and BV(x V, y V),

we extract a pair of corresponding points, C(x, y) and CV(x V, y V): the
centers of blocks B(x, y) and BV(x V, y V), respectively.

The optimal transformation yTk between the images I and J B Tk
is the one that minimizes the residuals NC(x,y)-yT (CV(x V, y V))N2 in
3 Blocks with low standard deviation are likely to contain only one type

of tissue, yielding not reliable correspondences, while the ones with the

highest standard deviation are more likely to contain different types of

tissue, and yield more reliable correspondences.



Fig. 14. Fused images can be presented in two different viewers, but with synchronized cursors, that is, at the same position in both viewers, (A and B), or in a

single viewer with different color tables (C). Some subtle residual distortions, indicated by the circle and due to collapsed ventricles, can be seen.
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a least squares sense. To reject outliers, a robust estimation with a

weighted Least Trimmed Squares (LTS) was selected (Rousseeuw

and Leroy, 1987). M estimators could have be chosen as well

(Zhang, 1997).

After this estimation, the value of the transformation T is

updated: Tk +1 = yTk B Tk. This iterative procedure stops as soon

as no significant change occurs in the transformation evaluation

(yTk < q).

A.2 . Multi-scale implementation

Large transformations can only be captured by using both large

regions of search (large values of rx and ry), and large blocks (to

avoid local minima in the similarity measure), and thus at a high

computational cost, while smaller transformations can be captured

with smaller blocks and smaller regions of search.

Consequently, to allow for the capture of both small and huge

displacements, we have implemented the block matching algorithm

within a multi-scale strategy.

Each image is represented by a pyramid of l levels: from one

level to the next, the image is subsampled by a factor 2 along every

dimension. The registration is done at each level, while the initial

transformation comes from the previous level.
Fig. 15. The banana problem: the 3-D reconstruction of a 3-D curved object

is not easy. (a) Take a 3-D curved object (e.g., a banana); (b) cut it into

slices; (c) digitize the slices; (d) mix the digitized slices; (e) the 3-D

reconstruction results in a cylindrical banana. (f) Using a shape prior (e.g.,

MRI) may help to reconstruct the curved banana.
Appendix B. Intensity compensation

This section addresses the problem of intensities alignment, that

is, the correction of global intensity inhomogeneities from one 2-D

image to the next. However,

� the histograms of two successive sections are not identical

because the sections are intrinsically different and because of

the noise, and
� there does not exist a one-to-one mapping between the

intensities of two successive sections (the brighter one will

use a larger interval of intensities).

To address these issues, we propose

� to use a continuous estimation of the intensity distribution (so

that a one-to-one mapping can be easily built), and
Fig. 16. The banana problem: illustration with the posterior block. In blue,

some outer 2-D contours and the central line of the image after the first 3-D

reconstruction (last row of Fig. 6). In red, the same after applying the fusion

loops’ transformations (left column of Fig. 9).
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� to make the intensity distributions of two successive sections

similar instead of strictly equal.

Some details on the proposed approach are given below,

and more details can be found in Malandain and Bardinet

(2003).

Consider two discrete histograms or equivalently two discrete

probability density functions (PDF) p(xi) and q( yj), with xi, yj a Z,

the aim of this section is to estimate an intensity transformation f
Fig. 17. From left to right: coronal, sagittal, and axial slices in the acquisition ge

splines, see Fig. 3). Middle row: the three same slices of the first reconstructed

image. Bottom row: the three same slices of the last reconstructed autoradiograph
such that the distribution p is similar to q B f. This problem is

known as histogram matching.

Classically, this can be solved via histogram equalization.

This consists in transforming one histogram into a flat histogram

(Castleman, 1996) where all intensities have the same probabil-

ity. Thus, matching two histograms can be achieved by (implic-

itly) using this flat histogram as intermediary (Hildebolt et al.,

1996). However, this approach is not robust at all, as it acutely

depends on the extremal values of the intensity histogram.
ometry of the MR image. Top row: the MR image (resampled with cubic

autoradiographic volume registered (affine transformation) against the MR

ic volume (after all fusion loops) registered against the MR image.
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Moreover, we chose to estimate global parametric (e.g., affine or

polynomial) intensity functions, with few degrees of freedom,

since they are sufficient for our purpose. The above described

approach does not allow to impose such a constraint: this also

makes it not suitable.

Thus, our problem is as follows: given an intensity transfor-

mation function class F, we are looking for the best function f̂ a F
such that y = f (x):

f̂ ¼ arg min
faF

SðpðxiÞ; qðyjÞ; f Þ

where S is some similarity measure of histograms.

Because of the discrete quantization of intensities (binning,

etc), it is not possible to directly compare the discrete pdf p(xi )

to q B f (xi ). Instead, we will first estimate the continuous pdf

corresponding to q, transform it with function f, and build from

this transformed continuous pdf the discrete one corresponding

to the xi bins.

There exists many ways to estimate a continuous pdf from

discrete samples or from an histogram. We chose the most common

one, that is, the so-called Akaike–Parzen–Rosenblatt windowing

technique (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956).

The continuous pdf Qs(x) estimated from q(yj) is written

QsðyÞ ¼
X
j

qðyjÞKsðy� yjÞ

where s > 0 is a smoothing factor, K is a non-negative absolutely

integrable function (called the kernel).

We chose a Gaussian kernel function. The smoothing factor is

the standard deviation r.
We then built the discrete pdf q B f (xi) as follows: for each bin

xi, we integrate Qs( y) in the interval [xi
min, xi

max] that defines the

bin xi.

ðqB f ÞsðxiÞ ¼
X
j

qðyjÞ
Z f ðxmax

i Þ � yj

f ðxmin
i

Þ � yj

KsðuÞdu

Because of the smoothing effect of the kernel, we do not

compare ( q B f )s(xi) directly against p(xi) but against ps(xi) with

psðxjÞ ¼
X
i

pðxiÞ
Z xmax

j � xi

xmin
j � xi

KsðxÞdx

This formulation may however introduce some asymmetry in

the criterion to be minimized. To overcome this issue, we modify it

as follows:

f̂ ¼ arg min
faF

ðSðpsðxiÞ; ðq B f ÞsðxiÞÞ þ Sððp B f �1ÞsðyjÞ; qsðyjÞÞÞ

Our practical choice for this application is to use affine function

f. Indeed, the histogram of the 2-D image exhibits two peaks for,

respectively, the grey and the white matter. To match two histo-

grams, an affine function is thus sufficient. Minimization is done

with a classical Powell-Brent procedure. We implemented several

similarity measures (sum of squared differences (SSD), correlation,

maximum of likelihood (ML)) which all yielded visually satisfac-

tory results.
Appendix C. Transformations filtering

Here, we describe how to apply a low-pass filter to global

parametric transformations (rigid or affine). This is used to add

coherency between the independent 2-D transformations computed

in the fusion loop.

Given a set of transformations T(i) which belongs to a trans-

formation class T, we want to estimate a filtered transformation T̂(i)

aT such that:

T̂ðiÞ ¼ arg min
TaT

X
j

gði� jÞdistðTð jÞ; TÞ2

where g is some low pass filter (e.g., a Gaussian function), and dist

represents a distance for T.

Such a computation is not straightforward (Pennec and Ayache,

1998) but can be managed with the Frechet expectation. Since this

expectation can be approximated by the standard expectation near

the origin (i.e., the identity), we use this property to compute the

Frechet expectation with an iterative procedure that then needs a

first estimate of T̂(i), for example, T̂(0) (i) = T(i):

T̂ðk þ 1ÞðiÞ ¼ T̂ðkÞðiÞB
X
j

gði� jÞ T̂
ð�1Þ
ðkÞ ðiÞBTð jÞ

� �" #

It stops when Aj g(i-j) (T̂(k)
(-1)(i) BT( j)) is close enough to the

identity. In the above formula, we must ensure that the weighted

sum belongs to the transformation class T, so we have to detail how
to compute a weighted sum of transformations Aj wj T( j) within a

given class of transformation T.

� Such a computation is straightforward for affine transforma-

tions that can be represented by matrices T( j) = [tu,v( j)] in

homogeneous coordinates since the weighted sum can be

achieved on the matrices’ elements.

T̂ðiÞ ¼ ½t̂u;vðiÞ� with t̂u;vðiÞ ¼
X
j

wjtu;vð jÞ

� For rigid transformations, we must choose another param-

eterization since a element-by-element sum of two matrices

which both represent rigid transformations is generally not a

rigid transformation. The rotation and translation vectors

perfectly fit for that purpose. With T( j) = (v( j), t( j)), we

then have

T̂ðiÞ ¼ ðv̂ðiÞ; t̂ðiÞÞ with v̂ðiÞ ¼
X
j

wjvð jÞ

and t̂ðiÞ ¼
X
j

wjtð jÞ
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