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Blockwise Processing Applied to Brain
Microvascular Network Study

Céline Fouard*, Grégoire Malandain, Steffen Prohaska, and Malte Westerhoff

Abstract—The study of cerebral microvascular networks re-
quires high-resolution images. However, to obtain statistically
relevant results, a large area of the brain (several square millime-
ters) must be analyzed. This leads us to consider huge images,
too large to be loaded and processed at once in the memory of a
standard computer. To consider a large area, a compact represen-
tation of the vessels is required. The medial axis is the preferred
tool for this application. To extract it, a dedicated skeletonization
algorithm is proposed. Numerous approaches already exist which
focus on computational efficiency. However, they all implicitly as-
sume that the image can be completely processed in the computer
memory, which is not realistic with the large images considered
here. We present in this paper a skeletonization algorithm that
processes data locally (in subimages) while preserving global
properties (i.e., homotopy). We then show some results obtained
on a mosaic of three-dimensional images acquired by confocal
microscopy.

Index Terms—Chamfer map, digital topology, image mosaic, me-
dial axis, skeleton, topological thinning.

I. INTRODUCTION

THE STUDY of the brain microvascular network is cru-
cial to understanding brain behavior. Indeed, microvas-

cular blood flow affects not only macrocirculation [1], but also
neuronal nutrition and development. A topological and mor-
phometric study of the brain vascular network is thus neces-
sary to develop models for a better understanding of functional
imagery such as positron emission tomography (PET) or func-
tional magnetic resonance imaging (fMRI). These imaging tech-
niques, promising great progress in knowledge of brain cogni-
tive function, are actually based on a relationship between mi-
crocirculation and neural activity [2]. Some authors showed that
fMRI signal intensity strongly depends on microvascular den-
sity [3], [4]. To facilitate understanding of the underlying mech-
anisms, a quantification of microvascular features, as for ex-
ample the number or the diameter of vessels, is needed. This
could provide geometrical models to represent and/or simulate
functional imaging modalities. The study of microvasculariza-
tion can also characterize some brain tissues, and determine
whether or not they are healthy [5], [6].
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Our project aims to provide tools for anatomists and neu-
roanatomists to better study brain microvascular networks [7].
It turns out that extracting the vessel centerlines is an efficient
method to achieve this goal. Indeed, centerlines are compact
representations of data and allow one to compute vessel lengths
and junctions. With an additional distance map, they also give
vessel diameters and densities.

The above mentioned tools (centerline detection, distance
map computation) have been widely studied in the literature.
However, for this particular application, we have a practical
problem, namely the size of the data to be processed, that
prevents us to use existing methods, and that requires us to
design dedicated methods.

Indeed, the study of a single microscopic image provides
useful qualitative results that can hardly be extrapolated to the
whole brain because of the small size of the imaged area. For
statistically relevant quantitative results, a sufficiently large area
(several square millimeters) of the brain has to be analyzed.
Moreover, the small diameter of microvessels (about 3 m) re-
quires high resolution images. To deal with this issue, we sub-
divide the area to be studied creating an image mosaic: several
images (to cover a large part of the brain) are acquired with a
confocal microscope (for its high three-dimensional (3-D) res-
olution capacity). We obtain a large amount of data, up to 4
GB in size, which cannot be loaded and processed at once in
the memory of a standard computer. Datasets have to be stored
out-of-core and can only be partially loaded into main memory
for processing.

External memory algorithms and data structures [8] aim at
redesigning algorithms to run with minimal performance loss
due to out-of-core data storage. The portions of an image loaded
for processing will be called blocks in the following.

Some image processing algorithms might easily be applied
block-wise without further difficulties (for example algebraic
operations, morphological operators, filtering, etc.). This is not
the case for skeletonization, because we must ensure that both
global (i.e., homotopy) and regional (i.e., being located at the
center of the global object) properties of a skeleton are preserved
while applying local operators.

This paper is an extended version of one presented at a con-
ference [9]. In Section II, we present our data, the imaging pro-
tocol, and the preprocessing steps that result in a binary image.
Next, a distance map based skeletonization algorithm is de-
scribed. Section IV presents how to efficiently compute vessel
centerlines on image mosaics, which is the main methodolog-
ical contribution of this paper. Section V presents samples of
result obtained on synthetic data, as well as real data. Finally,
we discuss the validity of our results.
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Fig. 1. Left: Brain section captured with an optical microscope (about 10 �
10 cm wide). Right: Enlargement showing a sulcus (about 1� 1 cm wide).

Fig. 2. Left: Image mosaic corresponding to the sulcus area of Fig. 1 (about
7�7�0:2 mm wide). Right: MIP view of one confocal image (600�600�

180 �m wide).

II. MICROVASCULAR DATA

The imaged material comes from Duvernoy’s collection of
samples [10]. Briefly, a human brain has been injected with In-
dian ink and then cut in thin sections to be observed with a tradi-
tional microscope (see Fig. 1). The visual (and tedious) inspec-
tion of several slices yields useful qualitative observations about
the cerebral microvasculature, but the extraction of quantitative
measures on a large area is unrealistic.

A. Confocal Microscope Observation

These sections can also be observed with a confocal micro-
scope. The mean size of a confocal microscope image is about

m stored in a voxels image
(see Fig. 2, right). Each voxel is stored using 8 bits so the image
memory size is 32 Mb.

The resolution of such images is m and this
allows us to study small veins and arteries, as well as the capil-
lary bed (indeed, the smallest vessels have a diameter of about
3 m, so the Nyquist criterion is satisfied). Quantitative param-
eters can be computed, but should carefully be extrapolated to
larger portion of the section. Indeed, a large number of vessels
are only partially imaged.

To image wider areas, an image mosaic has to be built (see
Fig. 2, left). The section is located on a table which can be trans-
lated with a micrometric screw. Once an image is acquired, the
section is translated, the acquisition of the next image is per-
formed, and so on. The size of the area that can be so imaged is
virtually unlimited. However, since the acquisition time is rather
long (between 10 and 20 min per image), we limit ourselves
to mosaics of about 100 images that represent several square
millimeters of the section and are sufficient to cover a whole
sulcus. Fig. 2 (left) shows a mosaic of 118 images covering

Fig. 3. MIP views of a part of a confocal image (left), after median filtering
(center), and after Gaussian filtering (right).

about mm of the brain section and corresponding
to an image of approximately voxels and
4 GB.

To obtain a workable binary large image containing all the
vessels in white and the background in black, we first perform
some filtering on each small image to improve their quality (Sec-
tion II-B). We then find the correct alignment between each
image and build a single large image (Section II-C). We finally
perform a segmentation to separate vessels from the background
(Section II-D).

B. Filtering

We first perform a median filtering kernel step
to remove salt and pepper noise, then a Gaussian filtering (

kernel, voxel) step to smooth borders (see Fig. 3).
Filter parameters have been set empirically by experts.

C. Mosaic Creation

Building a mosaic from several images requires the knowl-
edge of their relative position from each other. This position is
given by a micrometric screw when displacing the imaged sec-
tion under the microscope. However, some imprecision occurs
between the real displacement and the value indicated by the
screw, and moreover, the induced errors are cumulative. Thus,
an automated in-plane repositioning is required.

To achieve a precise relative positioning of the mosaic
images, we design the acquisition protocol so that there is
an overlap of about 50 voxels along the overlap direction
(i.e., voxels in total) between two adjacent
mosaic images. This overlap allows to use standard registration
methods [11].

The in-plane (along and directions) translation is com-
puted by optimizing a similarity measure on the overlapping
area. In our case, a simple sum of squared differences (SSD) ap-
pears to be enough. We perform this step by considering two-di-
mensional (2-D) images, i.e., the maximum intensity projec-
tion (MIP) views of the images, for computational purposes.
In addition to this in-plane translation (16 voxels in average),
an in-depth (along direction) mislocation (three voxels in av-
erage) may occur when the imaged section is not perfectly or-
thogonal to the optical axis of the microscope. This is subse-
quently corrected by maximizing the SSD criterion on over-
lapping 3-D parts of the images. Decoupling both in-plane and
in-depth corrections allows to reduce the time needed to com-
pute them.

The mosaic of confocal image stacks is then merged into one
large dataset comprising the whole examination volume. The
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value of a voxel in the overlapping area is defined as a linear
combination of the values of the corresponding voxels in the
original images: weights depend on the distance to the image
borders to ensure smooth transitions. We obtain a huge image,
stored on hard disk, the value of each voxel being known and
unique. This allows us to load any subvolume for inspection or
for processing.

D. Segmentation

Finally, we perform a global segmentation with a user defined
threshold value. Although not optimal, we chose this segmen-
tation method because it is extremely fast and does not require
any initialization or any modification to a mosaic. Moreover, the
threshold can be efficiently chosen by considering the MIP view
of the mosaic (see Fig. 2). Other better segmentation techniques
exist, but are beyond the scope of this paper. As discussed in
Section VI-B, the use of a single threshold in our confocal im-
ages is an acceptable solution.

III. CENTERLINE REPRESENTATION

We chose to represent blood vessels by their centerlines with
local estimates of their radii. That way, the complete network
can be efficiently visualized and processed, while quantitative
information (vessel length, diameter, etc.) is still accessible.
First, we present different centerline extraction methods, and
then we present distance map calculation methods. By asso-
ciating with each centerline point the smallest distance to the
background, we obtain an estimate of the vessel radius at this
point.

A. Centerlines

With respect to the original object, i.e., the thresholded image,
we want the following properties to be verified.

Homotopy: the centerline set is topologically equivalent to
the original image.
Thickness: the centerline set is thin i.e., one voxel wide.
For discrete objects, however, it may happen that connec-
tivity requires a two-voxel thickness at junction points.
Medialness: the centerline set is centrally located within
the object. However, in case of an even number of voxels, a
centerline one pixel wide cannot be exactly centered within
the object.

Centerlines can first be obtained with methods derived from
the continuous world, for instance the Voronoï diagram [12],
or partial differential equations (PDE) [13]. However, such ap-
proaches cannot be easily adapted for an efficient computation
in our context. We, thus, prefer to consider methods directly
designed for discrete spaces. There exist methods that directly
process the raw data and do not require any segmentation (e.g.,
[14]). However, our raw data are almost binary, so that the extra
computational cost required by such methods is not justified.
Hence, we mostly discuss approaches designed for binary ob-
jects in a discrete lattice.

On one hand, medialness is ensured by the extraction of the
medial axis. This notion was introduced by Blum [15] with an
analogy to grass fire: he defined the local axis as the locus of
points at which the propagation fronts meet and extinguish each
other. Calabi and Harnett [16] defined a medial axis as the set

of centers of maximal disks of the object. However, the medial
axis can be disconnected, and a postprocessing step is required
to ensure that the homotopy property holds. In the same way,
the medial axis can be defined as the locus of the ridges of the
distance map [16]–[18]. The principle of these latter methods is
to calculate the distance map of the object, to extract directional
maxima, and to then reconnect these maxima.

On the other hand, homotopy is ensured by iterative thin-
ning approaches or skeletonization. This notion was introduced
by Hilditch [19], [20]. The skeleton is computed by iteratively
peeling off the boundary of the object, layer-by-layer. Thinning
methods are iterative and remove deletable points at each iter-
ation, either sequentially [21], or in parallel [22]–[24]. In that
case, removal strategies are designed to preserve at most the me-
dialness property. For instance, a directional strategy [24] con-
sists in dividing each iteration into subiterations, each subiter-
ation reducing the thickness in one direction (e.g., top, down,
north, south, east, west).

To preserve the axis from overshrinking, i.e., complete thin-
ning (an object without hole nor cavity will be shrunk to a single
point), a point is considered as deletable only if it is both simple
and not an end point. A point is said to be simple if its deletion
preserves the object topology; this is a local property [25] that
only depends on the point’s neighborhood. Conditions for end
points are defined for points located on the border of a line or
surface to keep it a line or a surface: e.g., for lines, end points
are simple points that have only one neighbor [26].

Nevertheless, although preserved, medialness is not ensured.
To this end, hybrid methods have been recently introduced to
take advantage of both approaches [27], [28]. these are called
distance ordered homotopic thinning (DOHT). They use a dis-
tance map to guide the process of iteratively removing simple
points (homotopic thinning) towards the center of the object.
They thus lead to a skeleton which is homotopic to the original
object (only simple points are deleted), thin (points are deleted
until no deletable point is found), and as centered as possible
(point deletion follows the distance to the background). As dis-
cussed in Section IV, the adaptation of DOHT methods to our
context allows us to control their computational cost.

B. Distance Map

DOHT algorithms require the computation of a distance map
of the object to skeletonize. A distance map is a grey level image
where the value of each object point corresponds to its shortest
distance to the background. Numerous ways have been inves-
tigated to compute distance maps. A Euclidean distance map
can be obtained through a particular PDE , or by
Euclidean distance mapping [29] where a vector is propagated,
or by computing square distances [30]. Such methods cannot
easily be adapted to our context (see Section IV), and, there-
fore, we consider approximations of the Euclidean distance.

Chamfer distance transforms, popularized by [31], achieve a
good trade-off between precision and computational cost. They
propagate local integer distances using chamfer masks. Briefly,
a chamfer mask is a set of legal displacements weighted by local
distances. Fig. 4 displays a 3 3 chamfer mask.

We exemplify the 2-D case in the following, but this algo-
rithm can be easily adapted to higher dimensions. For a 2-D
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Fig. 4. Samples of 2-D 3 � 3 chamfer masks. Left: Global mask. Right: Two
half-masks.

image, we use , to represent the image dimensions in the
, directions. Rosenfeld and Pfaltz [32] have shown that a

distance map can be computed with two scans on the image:
a so-called forward scan from the top left corner of the image
[point with coordinates (1,1)] to the bottom right corner of the
image [point with coordinates ( , )], and a backward one,
from the bottom right corner of the image [point ( , )] to the
top left corner [point (1,1)] of the image. To do so, the image is
first initialized to 0 for the background and (practically, a very
high value) for the object points. Then, they use half masks (cf.
Fig. 4 right) and assign to each object point the minimum value
between its previous value, and the value of the points located
in its half neighborhood added with the corresponding weight
of the half-mask. Thus, during the forward scan, the value of
the current point depends on its neighbors located on its left
and above (right and left) of this point. In the same way, during
the backward scan, the value of the current point depends on its
neighbors located on its right and under.

A distance between two points is generally defined as the
length of the shortest path between these points. In the case of
chamfer distance, we reduce the path choice to linear combina-
tions of the legal displacements allowed by the mask. To obtain
a chamfer distance as close as possible to the Euclidean one,
one has to choose the mask coefficients leading to the smallest
error with respect to the Euclidean distance. This computation
is generally done on isotropic grids. In our case, however, slice
thickness is larger than pixel size. Dealing with an isotropic
grid would lead to having to interpolate data and to drastically
increasing the amount of data. This is undesirable for the tar-
geted application. In order to prevent such problem, we take
into account the anisotropy of the lattice and consider the use
of adapted coefficient computation methods [33].

IV. BLOCKWISE PROCESSING

The algorithms presented in the previous section implicitly
assume that the image can be loaded and processed at once in the
memory of the computer. Since this is not possible here, we have
to process the image by subimages or blocks. Thus, this favors
methods that can be more easily adapted to such a constraint

Fig. 5. Synthetic image (left) and original dimensions (right).

Fig. 6. Example of forward distance propagation. Black point represents a
background point. Gray color represents the forward mask updated values.
From left to right: propagation resulting from a 2-D forward scan; propagation
resulting from a naive blockwise 2-D forward scan (each block is considered
once); propagation resulting from an adequate blockwise 2-D forward scan
(each block is considered twice, except the blocks at the end of block rows that
are considered once).

(e.g., Chamfer distance map, see Section IV-B), and eliminate
the ones that cannot (e.g., Voronoï diagram). Moreover, we are
also concerned by the computational cost and want to restrict the
number of sub-images to be loaded. Thinning or PDE methods
have to be iterated until convergence and may not offer such a
control. On the other hand, the DOHT can be adapted so that the
number of subimages to be loaded is fixed (see Section IV-C).
It is then the method of choice in this context.

A. Synthetic Images

To illustrate the problems raised by a block-wise process, we
produced a synthetic image. Consider a voxel
binary image. To simplify comparisons, we choose to create an
isotropic image ( voxel size). This image is small
enough to be entirely processed at once, but we will also process
it in four blocks to compare the result we obtain with the result
obtained when processed as a single image.

We draw lines of known endpoints in this image with Bre-
senham’s algorithm [34], and dilate the lines with spherical
structuring elements of several known diameters.

Fig. 5 (left) shows the obtained image, while Fig. 5 (right)
sums up the different lengths and diameters of lines. Notice
that the diameters are not integers. This is due to the fact that
the structuring elements we use are not real spheres, but com-
binations of discrete elements. This results in the fact that the
shortest distance to the background is located at the corner of a
voxel.

B. Blockwise Distance Map

If we compute distance maps independently on each image
block, we obtain wrong values at block borders. Indeed, Fig. 6
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(left) shows the result of the forward scan computed by pro-
cessing the image as a whole and Fig. 6 (center) shows the re-
sult of the forward scan computed by sequentially considering
the blocks of the mosaic.

Two reasons explain this behavior.
• First, local distances should be propagated from a block

to another through chamfer masks. To do so, blocks must
overlap each other. The overlap size depends on mask size.
For example, for a chamfer mask, blocks must
have at least one overlapping voxel in each direction (two
voxels for a mask and so on). Fig. 6 (center) shows
one computed with such an overlap.

• Second, to update a point value, for example in the forward
scan, the process must know the values of its neighbors
located on the left, above (on the left and on the right), and
in the previous plane (above, under, on the left and on the
right). In the case of a point located on the right border of
the first block, points located on its right (above and on the
previous plane) are not updated yet. A simple forward scan
on each block from upper left to bottom right is thus not
enough. This is depicted by Fig. 6 (center). It is the same
for points located on the left border block for the backward
scan. A simple backward scan on each block is not enough
either.

To overcome these problems, we divide the image into overlap-
ping blocks, and we perform several scans on rows of blocks,
columns of blocks, and planes of blocks. Indeed, in the forward
scan, once a row of blocks has been forward processed from
left to right, we perform another forward process on this row of
blocks, but from right to left [as depicted by Fig. 6 (right)], to
update right border points of each block (except for the block
located on the right border of the row which does not need to
be updated). In the same way, once a plane of blocks has been
processed from top to bottom, we perform the forward process
from bottom to top on this plane of blocks to update points lo-
cated on the bottom border of blocks (to update a point located
on a bottom border of a block, values of points located under this
point, in the previous plane, are needed and not yet updated).
This way, we ensure that the result of our forward scan (with
subimages) is strictly equivalent to a forward scan on the whole
image, and we then have the same convergence properties as in
Rosenfeld and Pfaltz’s algorithm [32]. We perform for the back-
ward scan in a similar fashion.

C. Blockwise Skeletonization

The blockwise skeletonization process also raises problems.
Fig. 7 (left) shows the skeleton we would obtain by processing
the whole image at once. Fig. 7 (right) shows the skeleton we
obtain by independently processing each block. We can observe
that disconnections appear at each block border.

Few authors propose tools to compute blockwise centerlines
extraction. For example, Vossepoel et al. [35] process indepen-
dently on partially overlapping blocks, and then they recon-
nect skeleton parts within the overlapping areas. However, to
be able to know which point has to be reconnected with an-
other, a previous labeling of each object to be skeletonized is
required. In our application, labeling each vessel is simply not

Fig. 7. If we process independently each block (right), disconnections appear
on each block border with respect to the expect result (left).

Fig. 8. Example of homotopy problems on block borders. Vessel crosses two
blocks. If we process each block independently, its skeleton will be discon-
nected. (a) Expected skeleton and (b) independent computation of each block:
the skeleton is disconnected on block borders. (c): Border points “freezing”
guarantees the skeleton connectivity across borders.

realistic. Pakura et al. [36] use mask driven skeletonization to
determine nervous fibers on partially overlapping subblocks.
Unfortunately, as skeleton location is not mandatory for their
application, no precautions are taken to center skeletons within
fibers located at block borders.

We propose to adapt DOHT to a block-wise process. This
adaptation is driven by the skeleton properties we want to pre-
serve: homotopy, medialness, and thinness.

1) Homotopy: Homotopy can be guaranteed by deleting only
simple points of the object. Problems of homotopy (vessel dis-
connections) may appear on block borders. Indeed, neighbor-
hoods of points located on block borders are partially unknown.
On one hand, if we assume that the unknown neighbors belong
to the background, the object to be thinned can be disconnected
from the border, and disconnections will appear on block bor-
ders. On the other hand, if we assume that these unknown neigh-
bors belong to the foreground, the object to be thinned cannot
be disconnected from the border, but the resulting thinned ob-
ject (in the whole mosaic) can be disconnected as well since the
continuity of the skeleton from block to block is not ensured.

Fig. 8(a) shows an example of a vessel located across two
blocks and the skeleton expected for this vessel. Fig. 8(b) shows
the skeleton obtained when the two blocks are processed inde-
pendently.

To solve this problem, we freeze points located on block bor-
ders, i.e., we consider points as deletable only if the whole
neighborhood is included within the block.
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Fig. 9. Example of skeleton relocation problem. If we freeze only border
points, the skeleton is “stuck” to the block border. (a) Expected skeleton and
(b) relocated skeleton. (c) Frozen points and (d) expected skeleton inside frozen
points.

This condition guarantees a homotopic skeleton. Indeed,
changes of homotopy (e.g., disconnections) appear when con-
sidering each block independently because some points located
on block borders are not simple points in the whole mosaic,
but appear to be simple with respect to one block as their
neighborhood is not entirely known. Freezing border points
ensures that each deleted point is simple with respect to the
whole mosaic (because the neighborhood of each point within
one block is entirely known). By definition of simple point,
deleting simple points does not alter the object topology.

However, one may notice that thick portions of the object ap-
pear at the borders. They will be later deleted by further consid-
ering other blocks that straddle the borders.

2) Medialness: As opposed to properties that can be ensured
locally, e.g., homotopy, medialness is a regional property which
is more difficult to guarantee, and that is no more verified if we
only freeze points on the one-voxel border as proposed above.
Indeed, if we delete all simple points except for the border of a
block, the skeleton may be mislocated.

As shown in Fig. 9(a) and (b), some points expected to be
in the skeleton can be deleted. The connected component kept
from the object becomes the “frozen” points of the border.

The skeleton is then “stuck” to the border of the first thinned
block and not located at the object center. To overcome this
problem, we consider points to be deletable only if their dis-
tance to the block border is larger than their distance to the ob-

Fig. 10. Steps of Fig. 5(a) skeletonization using our method. In the first step of
blockwise skeletonization, contiguous blocks are processed (border points are
freezed according to previous conditions). Then border blocks are processed in
x, y (and z) direction. In this synthetical example, we consider only one block
in z direction. (a) Process on independent contiguous blocks and (b) process
borders on vertical direction. (c) Process borders on horizontal direction and (d)
result.

ject border [see Fig. 9(c)]. This means that a point can be deleted
only if its associated maximal ball is entirely included within the
block, or equivalently that points that do not verify this property
have to be “frozen” to prevent them to be deleted. This last prop-
erty locally adapts the shape of the “frozen” part of the object
on borders to ensure that points of the expected skeleton will not
be deleted at this phase. Fig. 9(d) shows the object component
which is kept after this skeletonization phase. Fig. 10(a) shows
the result of the skeletonization process applied to the synthetic
lines (cf. Fig. 5), taking into account these two conditions. The
expected skeleton is located within this component, but it is not
really centered.

3) Thinness: The two previous conditions lead to a homo-
topic (because we remove only simple points) and potentially
medial (because points located on maximal ball centers are not
deleted) skeleton. But it may still be thick. Indeed, object areas
located on block borders have not entirely been thinned. To
obtain a thin skeleton, we reapply the skeletonization algorithm
with the same conditions, on block border areas. To do so,
blocks are redesigned as thick strips centered on previous block
borders. The strip thickness depends on the largest distance
found in the mosaic. As we are dealing with vessels, we are sure
that the largest vessel diameter is far smaller than a block width.
Fig. 10(b) and (c) shows different scans in - and -directions.
For 3-D images, we handle the -direction in the same way.

This blockwise DOHT methodology ensures that most of the
mosaic will only be accessed once, while only a small part of
the mosaic (the points inside the additional strip blocks on the
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TABLE I
LENGTHS AND DIAMETERS OBTAINED WITH OUR

METHOD FOR SYNTHETIC LINES (CF. FIG. 5)

border) will be accessed several times. This way, the additional
cost due to the blockwise processing is minimized.

Moreover, deletion of simple points is ordered by the original
object distance map. The correct skeleton is located on this dis-
tance maps maxima, and the skeletonization algorithm deletes
every point located around these maxima before reaching the
expected skeleton points. This leads to a medial skeleton.

We thus obtain a skeleton which is homotopic to the original
object, is centered and is as thin as possible with respect to the
definition given in the previous section.

V. RESULTS

Once the distance map and skeleton are computed, we per-
form the following:

• convert the binary image obtained into a network of line
segments by considering point connectivity.1 This allows
us to avoid storing a huge binary image, and only store
connected lines with the coordinates of each of their points.

• attach to each line point the corresponding distance found
in the distance map, which gives us the vessel radius on
each point of its centerline (and allow us to compute its
mean diameter).

In this way, as a line models a vessel, we have direct access each
to vessel’s number, length, and mean diameter.

A. Synthetic Data

Table I presents the lengths and mean diameters we obtained
on synthetic data presented in Fig. 5.

Except for lines , and , we can notice that lengths are al-
ways underestimated (by about 15%). This is due to the fact that
during the skeletonization process, several points are deleted be-
fore a line end-point is recognized. In the case of lines , and

, values differ because the junction point between these three
lines has been relocated when we performed a dilation on the
Bresenham lines to give them a diameter. This, added to the re-
location of line borders, gives higher errors.

Concerning diameters, they are systematically underesti-
mated, too. But the error never exceeds 6% which corresponds
to the error between the weighted and the Euclidean distance
[33]. If the skeleton would have been misplaced or not correctly
centered, this error would combine with the previous one and
would then be higher. This agrees with the visual observation
that the skeleton is correctly centered with respect to the orig-
inal object. Moreover, the skeleton obtained with this method

1End points have one neighbor, curve points separates the foreground into
two components and have two neighbors, others points are junctions [26]. If the
junction consists of several points, we use the barycenter of these points.

TABLE II
COMPUTATIONAL TIMES FOR THE SYNTHETIC IMAGE

TABLE III
COMPUTATION TIMES OF THE BLOCK-WISE CALCULATIONS

is exactly the same (same binary image) as the one obtained by
processing the image as a whole (Fig. 7).

Table II shows the execution times of the different skele-
tonization steps for the synthetic image processed as a whole
and in subimages. In this case, the slicing in subimages is per-
formed within the XY plane (no subimage is created in the depth
direction). However, it should be pointed out that in realistic sit-
uations, the border strips are very narrow with respect to the
contiguous blocks.

B. Real Data

We integrated these algorithms into the visualization system
Amira [37], [38]. The experiments were conducted on a Pen-
tium 4 1.7 GHz laptop with 512 Mb RAM. The amount of data
(4 GB for the original image, 4 GB for the segmented image, 8
GB for the distance map stored on short integers, as bytes are not
enough to store the chamfer map, and 4 Gb for the skeleton cre-
ation image, i.e., 20 Gb for the whole process) leads us to store
result images on a distant hard disk, which slowed down the
image I/O process, and considerably increased the total compu-
tational time. I/O procedures were implemented using the HDF5
library [39].

Computing chamfer distances took 13 min of actual calcu-
lation, and 14 h 17 min of total process due to image I/O pro-
cedures. The skeletonization process took 1 h 32 min of actual
calculation for a total duration of 8 h 8 min for the whole mo-
saic. During these two processing steps, the mosaic was cut into
about voxel subimages (the number of voxels
may slightly change considering block location, e.g., blocks lo-
cated on the border of the mosaic, and overlap needed between
blocks). Table III summarizes the computational times of the
different process.

The whole process takes then several hours on a standard PC,
due to the I/O procedures. This remains comparable to the total
acquisition time of the mosaic. Contrary to the acquisition, this
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Fig. 11. Left: Vessel centerline network of the mosaic presented in Fig. 2.
Right: Enlargement with vessels modelled as cylinders.

Fig. 12. Vessel diameters obtained from the mosaic of Fig. 2.

pipeline is fully automatic and does not require any human in-
tervention after the choice of the threshold.

After converting the voxel representation of the skeleton to
a geometric representation of lines (Fig. 11 shows vessel center
lines obtained from the image shown in Fig. 2: the whole line-set
contains more than 2 000 000 points and about 74 000 lines),
the result can be interactively explored. Displaying the original
image data together with the generated skeleton in one visual-
ization is possible (see Fig. 11, right). This helps to verify results
as well as to document them.

From these data, we can also extract statistical data, as for
example the histogram of vessel diameters (see Fig. 12). We can
notice that most vessel diameters are lower than 10 m, with a
peak at about 5 m.

VI. DISCUSSION

A. Validation

Validation is a critical issue in any medical imaging process.
We performed a qualitative validation on real data and a quan-
titative validation on simulated images.

1) Qualitative Validation on Real Images: The first aim of
our study was a proof of feasibility. We showed that extracting
morphometric data on real data representing several square mil-
limeters of the brain was feasible in reasonable time (at least in
finite time). This study allowed us to recover several qualitative
features identified by anatomists [10]:

• the shape of vessel junctions corresponds to their expecta-
tions: veins and arteries emerge from the cortex with right
angles, and form sharp angles in deep layers;

• the distribution of vessel density corresponds to the obser-
vation on several cortex layers;

• the distribution of vessel radii also corresponds to their
observation.

Unfortunately, this validation on real data cannot be quantitative
as we are not aware of a ground truth set of morphometric values
on such data.

2) Qualitative Validation on Synthetic Binary Image: We
produced a synthetic binary image to test our block-wise pro-
cessing methods. We showed that we obtained a skeleton which
is homotopic, thin, and centered with respect to the binary ob-
ject. Moreover, we showed that mean vessel diameters were es-
timated with an error smaller or equal to 6%. This validation on
synthetic data did not take into account the segmentation step,
which is beyond the scope of this paper.

B. Dependence on Segmentation

By construction, the obtained skeleton is topologically equiv-
alent and centered with respect to the binary object. However,
spurious branches may appear, that are not representative of the
vessel network. These branches are bounded by an end point,
that generally corresponds to an irregularity of the vessel to be
thinned, and a bifurcation. When studying a vessel network, end
points should not appear, except at image border, or for seg-
mentation error (typically a vessel partially filled by indian ink),
or for spurious branches. Characterizing the latter is facilitated
by the distance information [17], [40], but requires an addi-
tional threshold, and may also remove branches corresponding
to missing vessels. Thus, to allow the network correction (by
manual editing), we keep all branches.

Nevertheless, by smoothing the original before thresholding
it, we reduce the vessel irregularities, and consequently the
number of spurious branches. Our experiments demonstrated
that DOHT methods generally generated less of such branches
than pure thinning methods (e.g., [24]), and that this number
further decreases if a directional strategy (as in thinning
method) is adopted, in addition to the distance ordering.

However, being topologically equivalent to the binary object
leads the skeleton to highly depend on segmentation, and on
the threshold choice. For example, if binarization creates a hole
within a vessel, then the skeleton will get around this hole to be
topologically equivalent to the object. Here again, the median
and the Gaussian filtering help to avoid such problems.

Additionally, the measurements also depend on the threshold
choice. Indeed, the higher the threshold value is, the less points
are taken for each vessel, and the smallest their mean diameter
is. Conversely, the lowest the threshold value is, the most points
are taken for each vessel and the highest their mean diameter is.

By choosing different thresholds2 on the same mosaic (40, 50,
and 60), we obtain respectively as mean radius 3.31, 3.09, and
2.88, while the shape of the obtained histograms are identical,
but shifted. This emphasizes that a particular attention must be
paid for binarization. Ongoing work on a more accurate segmen-
tation, better adapted to our specific data (e.g., histogram equal-
ization, mathematical morphology, etc.), is currently conducted.

2Values of original images vary between 0 and 255. Inter and intra-operator
variability for the choice of threshold does generally not exceed 5 or 6 value
units.
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We favor automatic segmentations techniques which limit inter
and intraoperator variations.

However, it has to be pointed out that vessel shapes and diam-
eters have been considerably altered by the preparation process.
Indeed, vessels may have been inflated by Indian ink injection,
distorted by the cutting process, and flattened between the slide
and the cover-glass to be observed with a microscope. The im-
precision brought by the choice of the binarization threshold
is less important with respect to the deformations vessels were
subjected to.

VII. CONCLUSION AND PERSPECTIVES

The extraction of morphometric parameters from a mosaic
of 3-D confocal microscopic images has been presented. This
has required the design and development of dedicated software
tools. Indeed, as huge images cannot be loaded at once in a
standard computer memory, they need adapted algorithms. The
proposed block-wise skeletonization method preserves global as
well as local skeleton properties by avoiding border effects, and
allows to control the number of subimages to be processed. In
a first pass, we process 3-D blocks without overlapping. Next,
we process subimages covering boundaries. The size of these
subimages depends on the size of the object to be thinned. Doing
so, inner block areas are processed only once. The algorithm
overhead due to the block by block process appears only on
boundaries. We have also shown that for our application, our
tools allow to extract quantitative information precious for neu-
roanatomists and neurophysiologists to describe the brain mi-
crovascular network [7].

This application can be widened to other acquisition tech-
niques (as long as it can lead to a binarized image with ves-
sels outlined from the background), and to other research area
(e.g., oil industry or plant roots study [41]). Indeed, the pre-
sented techniques can be applied to any binarized large data, as
long as considered objects represent tubular structures or small
shapes with respect to the size of a block to ensure that we can
design strips at block borders for the skeletonization.
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