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Quantitative information on growing organs is required to 
better understand morphogenesis in both plants and animals. 
However, detailed analyses of growth patterns at cellular 
resolution have remained elusive. We developed an approach, 
multiangle image acquisition, three-dimensional reconstruction 
and cell segmentation–automated lineage tracking (MARS-ALT),  
in which we imaged whole organs from multiple angles, 
computationally merged and segmented these images to 
provide accurate cell identification in three dimensions and 
automatically tracked cell lineages through multiple rounds 
of cell division during development. Using these methods, 
we quantitatively analyzed Arabidopsis thaliana flower 
development at cell resolution, which revealed differential 
growth patterns of key regions during early stages of floral 
morphogenesis. Lastly, using rice roots, we demonstrated that 
this approach is both generic and scalable.

The control of morphogenesis during plant and animal develop-
ment is a major question in developmental biology. Although 
several studies have provided profound insight into the molecular 
regulatory networks that act during development, the effects of 
such networks on shape transformations are often only described 
qualitatively. Indeed, describing shape and shape change as a 
geometrical output of gene activity requires the quantification 
of growth patterns with cellular resolution. Obtaining accurate 
geometric information about cell positions and shapes will be 
essential to develop quantitative growth models1–6 and to accu-
rately test their predictions. Although several recent methods, 
mostly based on nuclear tracking in animal cell populations7–10, 
have addressed cell positioning and tracking, they cannot provide 
information on three-dimensional (3D) cell geometry.

We are interested in characterizing and quantifying growth 
in plant meristems, which are small groups of pluripotent cells 
that give rise to all organs in both the shoot and the root. Three 
types of meristems can be identified: the root apical meristem, the 
shoot apical meristem and the floral meristem. Meristem size may 
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vary from a few cells to several thousand cells, depending on the  
species and the meristem type. In Arabidopsis thaliana, an initiating 
floral meristem measures 20–35 m along each axis and contains 
30–50 cells, each ~150–250 m3. With divisions every 19–24 h 
on average11, the flower quickly grows into an object measuring 
80–100 m along each axis and containing several hundred cells, 
even before the onset of differentiation and organ formation. Rice 
root meristems, in contrast, may contain many thousands of cells12. 
Plant cells are typically separated from each other by cell walls and 
cell membranes of less than 0.5 m in thickness, whose correct 
identification is essential to accurately determine cell shapes.

Different methods have been used to image and reconstruct 
tissues at cellular resolution7–10,13–15. Confocal laser-scanning 
microscopy has been used to image fixed roots and to semiauto-
matically identify individual cells16. In living plant tissues, most 
protocols have been restricted to surface reconstructions17–19. 
Confocal microscopy has the advantage of providing access to 
the inner parts of the tissue, but the fluorescence signal fades in 
the inner parts of thick tissue, making it difficult to identify cell 
walls in the deeper layers. Additionally, cell walls perpendicular  
to the focal axis of the microscope are very often not seen. These 
drawbacks severely limit the use of automatic processing to 
extract additional information from confocal images. Here we 
present a method to generate 3D digitized tissues at cell reso-
lution and to automatically track cell lineage during growth. 
To create a digitized tissue that can be used to quantitatively  
analyze growth in four dimensions, we developed an experimental 
pipeline comprising two key steps: multiangle image acquisition, 
3D reconstruction and cell segmentation (MARS) and automated 
lineage tracking (ALT). We applied this pipeline to analyze the 
developmental dynamics of young floral meristems over 70 h.

RESULTS
Multi-angle, real-time imaging via confocal microscopy
To overcome limitations owing to either tissue thickness or 
microscope resolution anisotropy (Supplementary Fig. 1), we 
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devised MARS based on the idea of visualizing a single sample 
from multiple angles (Fig. 1a). We stained shoot apical meristems 
bearing only flower buds between stages 1 and 3 with the vital 
dye FM4-64 and imaged them under a confocal laser-scanning 
microscope (Online Methods). First we imaged the flower from 
the top (‘top-view stack’), and then we manually tilted it by 30–40° 
and reimaged it (‘tilt-view stack’). We repeated this process such 
that we imaged every flower from at least three different angles  
(Fig. 1b–d). We avoided rotation angles greater than 50° to main-
tain sufficient common context between each image.

3D reconstruction and segmentation of volumetric images
We computed 3D cell-segmented images from multiangle scans 
in two steps. First, we fused the images acquired under dif-
ferent orientations to enhance the quality of the cell outlines 
(Supplementary Note 1), which required co-registering every 
image stack with a reference stack. We used a hierarchical strategy 
wherein, for convenience, we chose the top-view stack as the ref-
erence stack and in an incremental procedure registered the other 
(floating) tilt-view stacks onto this reference. Based on at least 
four landmarks that we manually identified in both the reference 
and the floating stacks (Fig. 1b–d and Supplementary Fig. 2)  
using surface reconstructions19, we computed an initial rigid trans-
formation (which consisted of rotation and translation; Fig. 1e).  
This first step usually yielded only an approximate matching  
(Fig. 1f), possibly because of local shape changes resulting from 
plant growth or from changes in the mechanical or physiological 
properties of the cells. Then, a more robust, rigid transformation 
was automatically computed using all available image informa-
tion20, followed by a refined nonlinear transformation computed 
using a block-based pyramidal algorithm21 
(Fig. 1g,h). This process substantially 
restored membrane-to-cytoplasm contrast 

in the entire 3D structure and also typically provided a much 
more homogeneous contrast distribution in the tissue (Fig. 1i,j 
and Supplementary Fig. 3).

Second, we segmented the resultant 3D images using a 3D water-
shed algorithm22 to identify the cells as individual 3D objects  
(Fig. 1k–m and Supplementary Note 2). Such an algorithm is well 
suited for processing our images, in which the objects to segment were 
dark areas (cell interiors) surrounded by bright and thin boundaries 
(cell walls). To initialize the procedure, every cell must have a unique 
marker. We defined these markers as the main local minima (com-
puted using the h-min operator22) of the noise-filtered image.

We next assessed whether MARS was generic and scalable by 
applying it to rice roots, which are large (200–450 m) and have 
a complex cellular organization (with about 30 cell layers)23. We 
observed the root meristem under four azimuthal angles spaced 
approximately 90 degrees from one another. The cell recognition 
was of better quality in the four-fused-view reconstructions than 
in the one-view reconstructions: the algorithm could segment 
16,400 cells in the rice root tip for the four fused views and for 
one view with an estimated cell recognition rate of 88% and 61% 
in the root center, and of 93% and 87% in the cortical region, 
respectively (Online Methods, Supplementary Figs. 4 and 5 and 
Supplementary Note 3).

Automatic lineage tracking during growth
To identify cell lineages during floral growth, we developed a sec-
ond software pipeline called ALT (Fig. 2a). First, we used MARS 
to track the growth of young flower meristems (primordia) by 
imaging them from multiple angles every 24 h for up to 4 d and 
generating 3D cell-segmented images at each time point (Fig. 2b–i 
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Figure 1 | MARS. (a) Pipeline for segmented 
3D tissue reconstructions. From an image of 
inflorescence expressing a flower-specific GFP 
marker (pLEAFY<ER-GFP), one flower (blue 
box) is chosen for further study (left). For each 
flower, image stacks are acquired from multiple 
angles and computationally fused into a single 
3D reconstruction, which is then automatically 
segmented. (b–d) Example confocal images 
of a flower acquired from three angles. After 
image acquisition, three to eight common 
landmark vertices (colored dots) are identified 
in each image stack. (e–h) These image stacks 
are registered using a hierarchical process with 
increasing precision and then fused as follows: 
superposition of the raw images from two 
different views (e), a manual, rigid registration (f), 
an automatic, linear registration (g) and a 
dense, nonlinear registration (h). (i,j) Images 
showing details of single-angle (i) and fused 
multiangle (j) acquisitions. Arrows highlight 
signal for cell outlines and interiors that is low 
or absent in single-angle images. (k–m) After 
automatic segmentation, tissue was visualized 
with a full organ reconstruction (k) or with 
virtual sections using color codes for cell layer (l)  
or cell volume (m). Scale bars, 50 m (a),  
25 m (b–h,k–m) and ~10 m (i,j).
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and Supplementary Fig. 6). Next, we manually identified an initial 
set of surface (L1 layer) cell lineages for every pair of consecutive 
segmented images from sequential time points (Supplementary 
Note 4). We used these ‘known’ reference lineages to initialize 
the set of high-confidence lineages of the ALT pipeline. ALT 
begins by estimating a rigid transformation between two images 
by minimizing the total square distance between parent cells 
and their descendants in high-confidence lineages. It then esti-
mates new high-confidence cell lineages iteratively by perform-
ing the following steps until no candidate cell lineages remain 
(Supplementary Note 4).

In the first step, ALT computes a deformation field based on 
the high-confidence lineages. The residual positioning error is 
used to define a nonlinear transformation of the image voxels 
as a dense vector field (a vector per voxel). For this, each high-
confidence lineage is transformed into one vector that links the 
center of mass of the parent cell to the center of mass of all its 
descendants, and the dense vector field is computed by interpolat-
ing between these vectors.

In the second step, the deformation field is refined. The initial 
nonlinear transformation is refined by an automated nonlinear 
registration algorithm that matches the voxel intensities of the 
two images. This defines a more precise nonlinear registration 
that makes it possible to overlap the two images and compare 
their segmentations.

In the third step, ALT builds lineage hypotheses and solves 
the lineage problem. Pairwise registration of sequential images 
 permits candidate daughter cells for each parent cell to be 

 hypothesized, based on their spatial proximity in a common 
image frame. ALT formalizes the lineage problem as the search 
for a mapping between cells in sequential images that globally 
minimizes the total distances between the mapped cells. To solve 
this problem, ALT treats it as an optimal flow problem (Fig. 2j, 
Supplementary Note 4 and Online Methods).

In the final step, ALT updates the set of high-confidence line-
ages. ALT automatically scans the list of lineages between two 
images to identify those lineages that comply with additional cri-
teria (Supplementary Note 4) by applying plausibility tests based 
on geometric and topological rules that are not used to guide the 
algorithm. If a cell lineage passes the test, it is then added to the 
list of high-confidence lineages.

We used the ALT algorithm to identify lineages during flower 
growth over 70 h (Fig. 2k–n). ALT provided 84–100% accurate 
cell lineage information, depending on the extent of growth 
(Table 1 and Online Methods).

Validation of the MARS-ALT pipeline
We assessed the quality of the segmentation algorithm by an 
exhaustive visual examination of the results obtained from the 
automatic segmentations of Arabidopsis floral meristems. We 
examined eight MARS-analyzed floral meristems cell by cell 
using MARS exploratory tools (Supplementary Note 5). This 
included one flower (‘flower A’) imaged at an optimal resolution 
(varying from 576 × 576 to 680 × 680 pixels) at four time points 
separated by about 24 h each, and two flowers (‘flower 2’ and 
‘flower 3’) imaged at a higher resolution (1,024 × 1,024 pixels) 
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Figure 2 | ALT. (a) ALT pipeline. Reconstructed 
and segmented data from serial time points 
(tn and tn + 1) are compared to automatically 
determine cell lineages. (b–e) Confocal image 
surface projections of the top view of a  
wild-type flower collected at the indicated  
times. (f–i) Segmented 3D reconstructions  
of each time point (corresponding to images  
in b–e, respectively), with many cells belonging 
to the shoot apex and to neighboring flowers 
manually discarded. (j) ALT is modeled as a 
problem of flow in which plausible lineage 
correspondences are expressed in a valued 
graph. Edges connect parent cells of the source 
image (i1–6) to candidate daughter cells of the 
target image (j1–8). I, J, s and t are additional 
nodes representing, respectively, void source 
cell, void target cell and source and target 
nodes emitting and collecting the flow. Each 
edge may carry units of flow that are bounded 
by the edge minimal and maximal capacities, 
ci,j and Ci,j, respectively, and is associated with 
a cost per unit flow. NI and NJ, the number 
of source and target cells, respectively; Ndiv, 
hypothesized maximum number of daughters 
that can be associated with a given parent. 
(k–n) Application of the ALT algorithm to floral 
growth: cells at an earlier time point (k,l) and 
corresponding daughter cells (m,n) were colored 
to show lineages. Detailed views (l,n) show cells 
that have undergone up to two rounds of cell 
division (arrowhead). Also visible is a tracking 
error (cell marked with an arrow should be red). 
Scale bars, 10 m.
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at two time points each. We created a reference segmentation 
for each of these multiangle images by manually correcting an 
automatic segmentation. To assess the performances of different 
segmentation algorithms or the effect of varying their parameters, 
we compared, for a given image, the automatic segmentation pro-
duced by these algorithms to the reference segmentation of this 
image. As two segmentations, each containing hundreds of cells 
in three dimensions, cannot be manually compared routinely, we 
designed a special algorithm to automate this comparison process 
(Supplementary Note 6). We considered cells correctly identified 
if they could be associated one-to-one with a manually corrected 
cell by the validation mapping algorithm.

Merging increasing numbers of view stacks made it possible 
to substantially increase the percentage of correctly segmented 
cells. Thus, when a view stack alone was processed, 91.2% of 
cells were correctly identified (Fig. 3a). With the addition of one 
and two tilt-view stacks, identification improved to 95.7% and 
98.5%, respectively. Additional analysis revealed that in one- and 
two-angle segmentations, only about 60.9% and 81.5% of cells, 
respectively, had the correct volume relative to the reference 
 segmentations (Fig. 3b). Here we considered cells correctly 
 identified if, in addition to the above criterion, the volume of the 
mapped cells differed by a maximum of 10%. Image resolution 
had little effect on the efficiency of the algorithm, so that the 
results obtained for images acquired at optimal resolution or with 
oversampling differed by only about 2% (data not shown). We 
then analyzed how the segmentation errors were distributed in the 
data for floral meristem. As expected, in one-angle segmentations, 
the percentage of correctly segmented cells decreased steadily 
with the depth of the tissue (Fig. 3c). The fusion of one or two 
additional view stacks made it possible to substantially improve 
segmentation quality (Fig. 3c) such that at depths greater than  
40 m, up to 7% more cells were correctly identified.

We analyzed how the cell wall signal depended on both its ori-
entation with respect to the focal axis of the microscope and on 

its depth in the tissue. Cell walls with different orientations have 
different projected silhouettes in the focal plane. We defined the 
ratio between the silhouette area of a cell wall projected in the 
focal plane and the total actual area of the wall as the silhouette to 
total area ratio (STAR), which has values between 0 and 1. Values 
close to 1 are reported for cell walls parallel to the focal plane, 
and values close to 0 are reported for cell walls perpendicular to 
it. The use of multiangle acquisitions enhanced the contrast for 
the different categories of cell-wall orientations (Fig. 3d), with 
particular improvement in regions with high STAR (that is, walls 
nearly parallel to the focal plane) in the reference image stack. 
Distribution of cell-wall orientations was not homogeneous in 
the tissue (Fig. 3e). At the meristem surface, cell walls had a hori-
zontal bias (STAR > 0.5), consistent with our observation that 
segmentation quality for surface cells was lower in single-angle 
segmentations (Fig. 3c). The use of multiple angles efficiently 
corrected this effect of the wall orientation distribution.

To assess the quality of the automatic cell-lineage tracking pro-
cedure, we used the four time points (T0 to T3) from the flower-A 
data (Fig. 2b–i) and validated the MARS-processed segmenta-
tions with the automated procedure described above (Table 1). 
We then manually identified a large number, ki, of reference 
 lineages between parent cells (at Ti−1) and daughter cells (Ti)  
for each time transition (i = 1, 2 or 3, k1 = 98, k2 = 129 and k3 = 
184 lineages) in superficial as well as internal cells. We compared 
the results of the ALT pipeline to these manually identified refer-
ence lineages (Table 1). About half the cells at time T0 yielded 
daughter cells at time T3, which corresponded to an average of 
3.5 daughter cells at T3 per parent cell at T0, for a 4.8-fold volume 
increase of the corresponding growing region. Our data showed a 
burst of growth between T2 and T3, during which both the volume 
and the cell division rate increased. When the change in volume 
was small (T0 to T1), ALT correctly identified all of the reference 
 lineages. The performance was slightly worse (89% of cell lineages 
identified) with a twofold increase in volume. With even bigger 

Table 1 | Results of the MARS-ALT pipeline applied to flower development
T0 (0 h) T1 (23 h) T2 (46 h) T3 (70 h)

Segmentation (MARS)
Total number of cells imaged and segmented 716 798 706 1,236
Mean cell volume ( m3) 212 189 250 299
Number of epidermal (L1 layer) cells 344 405 253 379
Number of subepidermal (L2 layer) cells 254 276 251 351
Percentage of correct MARS-segmented cells 97.8 96.2 98.6 98.1

Lineage tracking (ALT)a

Total number of cells tracked by ALT 357 444 582 1236
Increase in total volume of cells tracked during T0–T3

b NA  1.04-fold  2.26-fold  2.50-fold
S.d. of parent cell volume increase in a T0–T3 transition NA 0.29 0.94 1.38
Reference lineages provided for ALT initialization 4 26 33 NA
Cells with one daughter at the next time point (no division) 252 194 141 NA
Cells with two daughters (1 division) 94 154 240 NA
Cells with three daughters (2 divisions) 1 16 109 NA
Cells with four daughters (3 divisions) 0 4 51 NA
Cell lineages identified manually for ALT evaluationc 98 129 184 NA
Percentage of correctly detected mother-to-daughter lineagesd 100 89 84 NA
Percentage of correctly detected daughter-to-mother lineagese NA 100 94 94
All data presented are from the ‘flower-A’ time-course experiment (Fig. 2a). NA, not applicable.
aFor clarity, only the ancestors of cells present at T3 were retained for analysis. bAt T0, the total volume of the 357 T0−T3-tracked cells was 77.5 × 103 m3. The fold-increase values in the table are based on  
the automatically tracked cells. As a consequence, they may be slightly affected by lineage errors. cA manual lineage identification was performed to determine the ancestors of all epidermal and subepidermal 
cells in the upper part of the flower bud (up to and including the sepals) at T3. 

dThis is the most strict definition of a lineage wherein, for a given parent cell, ALT provides the identical set of daughters that 
had been identified manually. eIn this definition of a correct lineage, for any given daughter cell, ALT provides the same parent cell that had been identified manually.
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increases of volume (2.5-fold between T2 and T3), only 84% of the 
cell lineages were perfectly identified. But this corresponded to an 
incorrect detection of a parent cell for only 6% of daughter cells. 
By extrapolation to the entire dataset, ALT correctly detected the 
parent cell for 1,162 of the 1,236 cells at T3. We observed similar 
trends in other time-course experiments (Fig. 3f,g).

The ALT algorithm identifies not only the cellular lineages 
but also the precise geometrical deformations that occur during 
growth. Based on this four-dimensional reconstruction, it is 
possible to estimate the intermediate 3D images by interpola-
tion between serial time steps. This virtual 3D representation 
of continuous growth at cellular resolution is a powerful way to 
observe organ-growth dynamics (Supplementary Note 7 and 
Supplementary Videos 1 and 2).

Analysis of early floral growth at cellular resolution
The Arabidopsis flower initiates on the flanks of the shoot apical 
meristem as a stage-1 bud. During stage 2, the bud becomes 
 separated from the shoot apical meristem and goes through a 
long growth phase. The first organs form at stage 3, when the 
flower bud comprises four sepal primordia surrounding a dome 
of meristematic tissue in the center, which gives rise to all other 
 floral organs. We used MARS-ALT to analyze cell lineage trajec-
tories and cell morphometrics of this entire zone in two inde-
pendent time-course experiments (Fig. 4a).

First, we used the digital reconstructions of the last time points 
in both time courses, selected all the cells of the sepals and the 
floral dome (the ‘floral organ zone’) and used ALT to identify these 
cells’ ancestors at the earliest time points in the two experiments. 
We then mapped the locations of those ancestors in the flower 
and observed that at mid–stage 2, these cells were located not at 
the vertical summit of the flower, but abaxially, in the region most 
distal to the shoot apical meristem (Fig. 4b,c). This suggests that as 
the flower develops, it undergoes unequal growth along the medial 
(proximo-distal) axis that pushes the abaxial cells toward the 

 summit (Fig. 4d). We next investigated whether such an unequal 
tissue growth was linked to particular cellular characteristics, such 
as cell size. We analyzed cell volumes during floral growth (Fig. 4e 
and Supplementary Fig. 7). We observed that at stage 3 in both 
time-course experiments, the floral organ zone cells had signifi-
cantly similar mean volumes (195  88 m3 for flower A (n = 674 
cells); 195  102 m3 for flower B (n = 611 cells); P = 0.9833 in a 
Welch two-sample t-test). However, during the transition from 
stage 2 to 3, many cells (12%, 70 h of flower A time course) grew 
to volumes of over 500 m3 (Fig. 4e). We observed that all of these 
cells were located below the floral organ zone and likely belonged 
either to the emerging vascular strands or to the elongating pedicel 
(Fig. 4f). Whereas the smallest cells in this group (500–600 m3) 
were distributed uniformly around the base of the flower (Fig. 4g), 
the largest cells (1,000–2,200 m3) were located primarily along 
the abaxial side of the flower (Fig. 4h). Thus, in contrast to the 
majority of cells, these cells had not divided in this 24 h period. 
These data suggest that changes in cell division rules are an impor-
tant part of floral growth and specification and that these rules may 
be altered locally to control morphogenesis.

To explore cellular growth and dynamics in the floral organ 
zone, we examined the stem cells and the stem cell organizing 
center, which are crucial for proper flower development. We local-
ized the putative stem cells and organizing center over time using 
a stem cell–specific reporter line. Consistent with our findings 
for the floral organ zone, the putative stem cells and organizing 
center ancestors were also located in an abaxial region at early 
stages (Supplementary Fig. 8). It has long been suggested that 
organizing center cells are large and slow dividing24, but it has 
never been possible to properly examine their morphologies or 
dynamics in four dimensions. We found that at early mid–stage 2,  
the uppermost (L3 layer) putative organizing center cell had 
an exceptionally large volume (402 m3 in flower-A data) that 
was almost twice the mean volume of all floral cells (212 m3;  
Table 1). Descendants of this cell formed a tight cluster at stage 3,  

Figure 3 | Validation of MARS-ALT results. 
(a–d) Comparisons of eight individual flowers 
(representing 6,038 cells) that were segmented 
using reconstructions from one, two or three 
image stacks. Plotted are data for correctly 
identified cells (a) and correctly identified cells 
with correct volume (b) relative to the manually 
curated three-angle segmentation. Percentage 
of correctly segmented cells as a function of 
depth in the tissue in reconstructions compared 
to the manual 3-angle segmentation was plotted 
(c; depth was measured along the focal axis of 
the reference image relative to the meristem 
surface). Relative amelioration of contrast  
(d) between cell membrane signal and cell 
interiors (that is, the quality of cell outlines) for 
various cell membrane orientations relative to 
one-angle reconstructions was graphed. STAR is a 
measure of cell-membrane orientation. (e) Heat 
map of cell membrane orientation distribution as 
a function of depth in the flower. Red color, high 
values of the distribution, and blue, low values. 
(f,g) ALT results from time-course experiments 
covering different developmental stages from different flowers, showing percentage of mother cells with fully correct daughter cells (f) or percentage of 
daughter cells with correct mother cells (g) for average volume change per cell. Horizontal lines show s.d. (n = 49–184 lineages, depending on the point in 
the diagram). Points clustered at 100% were manually separated for clarity.
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whereas descendants of its immediate 
neighbors tended to form cell files that 
extended away from the organizing center 
cluster (Fig. 4i–k), reflecting local aniso-
tropic cell growth that presumably con-
tributes to the emergence of floral shape at stage 3.

By enabling examination of specific cells or groups of cells, 
MARS-ALT allowed us to analyze floral growth emergence. A 
powerful extension of this analysis will be to combine such stud-
ies with cellular identities (for instance, using cell-fate reporters) 
to clarify the temporal link between local growth properties and 
differentiation events.

DISCUSSION
Our pipeline has some key advantages over existing methods. In 
contrast to published ad hoc methods of fusing multiple images25, 
MARS requires neither dedicated hardware nor precise external 
landmarks to guide the fusion. It works at cellular resolution, 
can efficiently segment internal cells deep in living tissues, can 
efficiently segment very large numbers of cells and can be applied 
to images with different markers (Supplementary Fig. 9). In con-
trast to methods that track nuclei in growing tissues at very small 
time intervals (typically one image per minute)7, the combina-
tion of MARS and ALT allowed us to describe growth deforma-
tions in the entire cell and over long developmental time periods. 
Thus, we can begin to describe floral morphogenesis in terms of 
the morphological changes in component cells. As our lineage 

 tracking algorithm relies on a global optimization procedure, it is 
very robust to local segmentation or tracking errors. Furthermore, 
as we designed the pipeline with no plant-specific dependencies, it 
should be applicable to other biological systems, with adaptation 
to address cell movement and/or cell death in animal tissues. Our 
algorithm already accommodates the loss of cells (for example, 
those that leave the field of view), and should thus be able to 
‘accept’ cell death. The fact that the topology should not change 
in vegetal cells during growth is only used in ALT to select the 
most probable cell lineages (Supplementary Note 4). This test 
may be removed or weakened for use with animal tissues. It may 
be possible to address the issue of cell movement just by generat-
ing sufficiently clustered time point data.

One limitation of our algorithms is that the error rate for line-
age tracking tends to increase with increasing extent of change 
(deformation and/or cell divisions) that the tissue undergoes 
 during growth (Fig. 3f,g and Supplementary Fig. 7). Thus, 
during periods of rapid growth in a tissue, shortening the time 
interval between two acquisitions (and thus limiting the extent 
of change) may be required to obtain highly accurate ALT results. 
For 90% accurate daughter-to-mother cell lineage recognition, 
time intervals will have to be adjusted to maintain the s.d. of 
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Figure 4 | Application of MARS-ALT to flower 
development. (a) Reconstructions from two 
MARS-ALT time-course experiments (flower A 
and flower B) tracking wild-type floral growth. 
For comparison, stages 1–3 are positioned 
on a common timeline. Times of image 
acquisition (which are unrelated between the 
two experiments) and mean volumes ( s.d.) 
of cells in the floral organ zone are indicated. 
(b–k) Image renderings and schematics are 
side views of reconstructed flower A at early 
mid–stage 2 (c,i) or early stage 3 (b,f–h,j). 
The flower and a part of the shoot apical 
meristem (asterisk) are shown in red, with 
cells of interest in green or blue. Side view at 
70 h with all floral organ zone cells selected 
(b) and at 0 h showing the ancestors of 
the cells in b (c). The schematic in d shows 
growth along the proximo-distal axis with 
the first and last time points drawn as solid 
lines and intermediate stages represented as 
dashed lines. Frequency distributions (e) of 
cell volumes from flower A during growth. 
Rendering at 70 h with 143 large cells marked 
(f; green). The smallest (g; 500–600 m3) 
and the largest (h; >1,000 m3) of the marked 
cells in f are shown. Rendering in i shows a 
single stem cell organizing center cell (green) 
at 0 h and one immediate neighbor (blue). 
Daughter cells of both cells in i at 70 h are 
shown in j. (k) Schematic contrasting growth 
of the organizing center cell and that of its 
neighbor is shown in k (as in d). Scale bars, 
10 m (a), and ~25 m (b,c,f–j).
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volume expansion (which reflects nonhomogeneous tissue defor-
mation) below 0.8 (Supplementary Fig. 7). A second limitation is 
that because our current floral analyses have been focused on the 
early stages, our experiments have not used time windows of more 
than a few days. It is possible that the biological protocols may 
require modification for much longer time course experiments. 
It will be necessary to determine the optimal time window to 
accurately observe certain developmental phase changes, as floral 
growth is not a temporally linear process. Furthermore, because 
the vital stain appears to have some toxic effects upon prolonged 
exposure, other fluorescent membrane markers (such as GFP 
fusions) may be needed. Finally, in the long term, scaling up the 
pipeline to improve throughput may present potential problems 
from an algorithmic point of view, such as in automatically iden-
tifying input reference points for MARS and reference lineages for 
ALT. These are challenging, highly combinatorial operations that 
will require additional development and testing to reach complete 
(or near-complete) automation.

Our work has many potential applications. First, MARS-ALT 
provides the opportunity for developmental biologists to quantita-
tively examine organ growth and track growth rate, anisotropy and 
growth direction in both surface and internal cells. Incorporation 
of reporter expression could enable linking quantitative growth 
analyses to gene activity and cellular identity. Second, our digi-
tized floral growth template provides an opportunity to use 3D 
computational modeling to quantitatively test biological hypo-
theses. Third, we can now address a longstanding question on the 
precise nature of cell division rules in growing tissues and organs. 
Finally, our approaches may be used to examine and model organ 
growth in mutants with the aim of quantifying affected cellular 
behaviors and generating hypotheses on mechanisms that control 
them. This will serve to link the activities of specific genes to their 
morphogenetic outputs at cellular resolution.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Plant growth and imaging. Arabidopsis plants were grown as 
described previously26. Approximately 2 cm of the upper part of 
the plant, including the shoot apical meristem and the flowers, were 
placed in growth medium. All flower buds older than stage 3 were 
then dissected away to facilitate observations of early stage flowers. 
During time course experiments, plants were maintained in growth 
chambers between acquisitions, and, if necessary, older flower buds 
were removed. In general, only one flower from any given inflores-
cence meristem was tracked over time, to limit damage from han-
dling. Just before imaging, inflorescences were treated with about 
2 l (of a 330 g ml−1 stock) of the water-soluble lipophilic dye FM 
4-64 (Invitrogen), which labels cell membranes. The treated inflo-
rescences were then immersed in water and observed on a Zeiss 
LSM 510 confocal microscope with a 63× water immersion achro-
plan lens with a 2 mm working distance. Images were acquired 
at a resolution of 0.2 m along x and y axes and 1 m along the  
z axis. The meristems were manually rotated between angle scans, a 
process that took 2–5 min, which equates to a total acquisition time 
of 45–60 min per flower at each time point. Each set of multiangle 
scans took 45–60 min to acquire. In experiments in which the flowers  
were imaged multiple times, the inflorescence meristems were 
returned to a culture chamber after each observation and relabeled 
with FM4-64 before subsequent imaging.

All flowers presented here were either in the Columbia (Col) 
or the Wassilewskija (Ws) ecotypes. ‘Flower 3’ and ‘flower 2’ were 
observed at high resolution (1,024 × 1,024 pixels) over two time 
points. ‘Flower A’ and ‘flower B’ were imaged at ‘optimal’ resolu-
tion (using the option and specifications provided by Zeiss LSM 
Browser software) at four and three time points, respectively. 
Every flower was observed from three angles.

Rice (Oryza sativa L., variety Nippon bare) crown roots were 
collected from young seedlings (three developed leaves) and 
mounted (coverslip grade 0) in a PBS buffer solution (pH 7). 
Imaging was carried out on an inverted Zeiss 510 META NLO 
multiphoton microscope in the nondescanned mode using a 
chameleon ultra 140 fs pulsed Ti-sapphire laser (Coherent). For 
cell-wall autofluorescence measurement, the laser was scanned 
from 690 to 770 nm range, with a peak performance at ~710 nm 
(which is roughly equivalent to 355 nm in single-photon excita-
tion with a continuous wavelength laser system). Images were 
collected with a c-apochromat ×40, 1.2 numerical aperture (NA) 
(Korr uv-vis-ir) water-immersion objective.

Scalability of the MARS pipeline. We applied our MARS  
protocol to rice roots using a multiphoton microscope. We first 
acquired images of the root apex from multiple lateral views 
(Supplementary Fig. 5a); the first image stack was defined as 
the ‘reference view’ (X), one other view (X ) was diametrically 
opposite to this and two others were at either end of the ortho-
gonal diameter (Y and Y ). We segmented either the reference 
view alone (which we called ‘one-view’) or the 3D reconstruc-
tions generated by fusing the following combinations of image 
stacks: X plus X  (two-opp-view); X plus Y or Y  (two-ort-view); 
X plus X  plus Y or Y  (three-view) or all four (four-view). The 
results were evaluated on a sample of about 800 manually seg-
mented cells chosen in either the superficial cortical layer or 
the central meristematic zone (Supplementary Note 5 and 
Supplementary Video 3).

Lineage tracking as an optimization problem. After each regis-
tration step of the ALT algorithm, we used the obtained common 
reference system to detect potential cell lineages. For every cell 
i of a given image in the sequence (source image), we look for 
daughter candidates j1, j2,…, jk in the next image in the sequence 
(target image). Daughter candidates of i were identified based 
on their spatial proximity to i in the common reference system. 
Here these were defined as the cells j whose center of mass are at a 
distance less than a threshold distance, dmax, from the surface of i 
(the distance of a cell j to the surface of i is defined as the shortest 
distance between the center of j and any point of the surface of i). 
This defined a set of lineage hypotheses at this step (note that the 
cells belonging to the set of already determined high-confidence 
lineages are not taken into consideration here).

To solve the lineage problem, we then formalized the search for 
a set of consistent lineages between the source and target images 
as a combinatorial optimization problem. Here we define a valid 
mapping between the two images as a list of pairs of cells (i,j), i in  
the source image I and j in the target image J such that j is one 
of the candidate cells for cell i, and such that j appears only in 
one pair of the mapping (a cell of the target image cannot be a 
descendant of several cells in the source image). If a parent cell 
does not appear in a valid mapping M, it has no descendant in the 
target image by M. The set of such cells and the set of daughter 
cells that have no parent in the source image are denoted 

I JM Mand ,

respectively. We then attach a cost ij corresponding to the  
normalized distance between i and j. We also define constant 
costs, I and J that a cell i has no daughters, and a cell j has no 
parent, respectively (Supplementary Note 4). Then, the cost of a 
valid mapping M between the source and the target image can be 
defined as the sum of the local cost of the pairs of cells in M: 

( )M ij
M

I
I M

J
J M

The search for a valid lineage between the two images can then 
be formulated as an optimization problem: among all the possible 
valid mappings, we look for a single M* with minimal cost, that is, 
that globally minimizes the distance between the mapped cells: 

M M
M

* arg min ( )
valid

To solve this optimization problem, we modeled it as a problem 
of flow (Fig. 2j and Supplementary Note 3), which was shown 
to be tractable in polynomial time27,28.

Assessing the effect of tissue deformation between consecu-
tive acquisitions in ALT. The ALT pipeline accuracy is critically 
related to the amount of change in the tissue (deformation and/or 
cell divisions), rather than to the time intervals between acquisi-
tions. We tested this using serial time points where the deforma-
tion was limited (less than twofold), such as for ‘plant A’ at T0, T1 
and T2, and performed a direct tracking of cell lineages between 
T0 (considered as the source image) and T2 (as the target image), 
as if the image at T1 did not exist. We found that the tracking 
results were markedly better between T0−T1 (100%) and T1−T2 
(94%), than between T0−T2 (87%), hence showing that keeping 
time intervals short in order to limit deformation increases ALT 



©
20

10
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

doi:10.1038/nmeth.1472 NATURE METHODS

accuracy. In addition, this also decreases the required manual 
annotation (for example, T0−T1is 100% accurate regardless of 
whether 4 or 22 reference lineages are provided). However, sys-
tematically decreasing time intervals from 24 h to 12 h may not 
be necessary as different growth transitions require different time 
intervals (Fig. 3 and Supplementary Fig. 7).

Software. The MARS-ALT software pipeline is available as 
Supplementary Software and at http://openalea.gforge.inria.
fr/dokuwiki/doku.php?id=packages:packages/. Software details 

are described in Supplementary Note 5. Time estimates for 
the different phases of the MARS-ALT pipeline are given in 
Supplementary Table 1.

26. Das, P. et al. Floral stem cell termination involves the direct regulation of 
AGAMOUS by PERIANTHIA. Development 136, 1605–1611 (2009).

27. Edmonds, J. & Karp, R.M. Theoretical improvements in algorithmic 
efficiency for network flow problems. J. Association Computing Machinery 
19, 248–264 (1972).

28. Tarjan, R. Data structures and Network Algorithms. (Society for Industrial 
and Applied Mathematics, 1983).

http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:packages/
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Supplementary Figure 1 
 

 
 

Supplementary Figure 1 | Oversampling in the Z-axis does not improve data quality. A 
single early-mid stage two flower was imaged in different ways. (a-b) Surfacic projections of the 
top (a) or tilted (b) views acquired every 1  along the Z axis. (c) Segmentation rendering of a 
top view acquired every 0.3  and rotated to match the tilt view in (b). (d) Rendering of a 
MARS-processed segmentation where the top and tilt views (a-b) were fused. Colored dots mark 
identical positions, while arrows and arrowheads indicate examples of cells that were not 
correctly identified with a higher Z resolution. 
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Supplementary Figure 2 
 

 
 
Supplementary Figure 2 | Incorrectly positioned fusion landmarks generate obvious errors. 
MARS-processing of a stage 1 flower using a top view stack (a, b) and one tilt view stack (c, d). 
Yellow dots indicate the landmarks provided using a custom-designed interface, while the red 
dots indicate landmarks that are either correctly (a-c) or incorrectly (b-d) identified. (e-f) Results 
of the rigid transformation step, with cell outlines from the top view shown in white and those 
from the tilt stack in purple. When all landmarks provided are correct, the outlines of the same 
cells from the top and tilt views being in close proximity (e), whereas if even one landmark is 
incorrectly positioned by just one cell width, the overlaps of the cell outlines are significantly 
perturbed (f). 
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Supplementary Figure 3 
 

 
 

Supplementary Figure 3 | Effect of multi-angle reconstructions on image quality. An optical 
longitudinal section through a flower with (a) only the 'reference view' or (b) after the fusion of 
three view stacks. The boxed area is shown in Figure 1 (d-d') in the main text. 
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Supplementary Figure 4 
 

 
 
Supplementary Figure 4 | Scalability: rice root segmentation with MARS. (a) Tranversal 
image of the root observed with a multi-photon microscope (b) MARS segmented image showing 
the automatically identified individual cells. A total of 16,400 cells were segmented.  
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Supplementary Figure 5 

 

 
Supplementary Figure 5 | Scalability of MARS assessed on rice roots. (a-d) Transversal 
views of a coronary rice root. (a) The different view angles are indicated with arrows (X is the 
reference view, X' is diametrically opposite X, Y is orthogonal to X and Y' opposite to Y). 
Colored regions indicate the various groups of cells that were manually segmented: the cortical 
cells (in yellow) and the central meristematic cells, including the metaxylem (red) and the 
quiescent centre (green). (b-c) Prior to the fusion of the various image stacks, many areas of the 
tissue have ill-defined cell outlines (b), whereas after fusion, many of these are clearly restored 
(c). Insets show magnified views of the boxed areas. (e-f) The segmented reconstructions may be 
easily rendered according to volume (e) or to cell type (f). (g-h) Percentage of correctly 
segmented cells as a function of the number of the fused view stacks in either the cortex (g) or the 
central meristematic region (h). The scale bars indicate 70 m in a-c, 25 m in the inset boxes in 
b-c, and 50 m in d. 
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Supplementary Figure 6 
 

 
 

Supplementary Figure 6 | Time-course experiments to track flower development. (a) Surface 
projections of a time course experiment (called 'flower-B'; 'flower-A' is presented in Fig. 2 in the 
main text). Time intervals between acquisitions are indicated in hours. (b) Frequency 
distributions of cell volumes during growth (the distributions for flower-A can be seen in Fig. 5 
in the main text). (c-d) Violin plots directly comparing volume distribution data from flower-A 
(blue) and flower-B (green) shows the dissimilarities at stage 2 and similarities at stage 3 (both 
are statistically significant values as tested using the Welch t-test). 
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Supplementary Figure 7 

 

 
 

Supplementary Figure 7 | Quality of the cell lineage automatic tracking. (a) Percentage of 
parent cells with perfect ALT-identified daughter cell lineages as a function of the average 
number of cell divisions per parent cell. Each point corresponds to unique pairs of serial time 
points that cover different flowers and developmental stages. Horizontal bars show the standard 
deviation of the cell division number per parent cell. All tracking has been initialized with 26 
expert lineages (b) Percentage of daughter cells with correct ALT-identified parent cells as a 
function of the average number of cell divisions per parent cell. (c) Percentage of parent cells 
with perfect ALT-identified daughter cell lineages as a function of the number of manually 
identified lineages used for ALT initialization in the case of the T2-T3 transition in flower-A. (d) 
Percentage of parent cells with perfect ALT-identified daughter cell lineages for varying volume 
expansions and sorted by increasing standard deviation of cellular volume expansion. This shows 
the strong correlation between the accuracy of the output of the ALT algorithm and the extent of 
non-homogeneity in the volume deformation of the cells. 

Nature Methods: doi:10.1038/nmeth.1472



Imaging plant growth in 4-D (Fernandez et al.)  8 of 23 

 Supplementary Figure 8 

 

 
 
Supplementary Figure 8 | Characterizing the floral stem cell zone. (a-b) Expression patterns 
of the well-studied stem cell marker line pCLAVATA3::GFP in (a) an inflorescence meristem and 
(b) an early stage 3 flower where sepal outgrowth has just commenced. Cells were counter-
stained with the vital stain FM 4-64 to visualize cell membranes. (c-e) Magnified view of the 
CLV-expressing zone. Serial optical sections through the epidermal L1 layer (c), the sub-
epidermal L2 layer (d) and the L3 layer just below (e) showing high expression in a total of seven 
cells. (f-i') Rendering of a stage 3 flower at the last time point from the flower-A time course 
experiment (f-i), and a magnified view of its center (f'-i') upon which a similar CLV3 expression 
zone was modeled. The putative CLV3 cells were marked and removed from the L1 (g, g'), L2 (h, 
h') and L3 (i, i'). (j-l) All data and images are similar to those shown in Figure 4 of the main 
text. (j) A group of seven cells at the exact center of the flower at 70 h, in the putative expression 
domain of the stem cell identity reporter. (k) Their six lineage-tracked ancestors at 0 h are located 
abaxially with respect to the vertical summit of the flower (arrow). (l) The schematic shows the 
approximate positions of the stem cells (green) with respect to the vertical summit at 0 h and 70 
h. 
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Supplementary Figure 9 
 

 
 

Supplementary Figure 9 | Automatic segmentation of cell fate identity reporters. (a) An 
inflorescence meristem expressing a boundary marker gene (pBNDRY>>GFP). GFP expression 
is induced using the ethanol-inducible system, and observed under the confocal along with the 
vital stain FM4-64. (b) This image is then directly fed into the segmentation protocol and the 
output is rendered according to the amount of FP expressed in the cell. 
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Supplementary Table 1
 

Supplementary Table 1. Time estimate for the MARS-ALT pipelinea 
Task Time required (minutes) 

Segmentation (MARS)b Sample A 
(small) 

Sample B 
(large) 

1. Imaging (per angle) 15 20 
2. Manual positioning of anchor points 

(registration) 10 15 
3. Automated reconstruction (rigid + dense 

registration) 60 90 

4. Segmentation 15 15 
5. Manual segmentation verificationc 10-30 30-180 

Lineage Tracking (ALT)  
6. Identifying lineage references 30-45/transitiond 
7. Automatic lineage tracking 60-150/transition 

 
a The various tasks were performed on ordinary desktop computers with slightly different configurations. 
Tasks 2-5: Four 2.27GHz dual-core processors running Debian Linux 5.0.4, 17GB RAM and an NVIDIA 
Quadro FX 1800 Graphics card with 768MB RAM; Tasks 7: One 2.4GHz dual-core processor running 
Ubuntu Linux 9.4, 2GB RAM and an NVIDIA Quadro NVS 140M Graphics card with 512MB RAM. 
 
b Examples are provided of reconstructions of a small stage 1 flower (Sample A) or of a larger stage 3 
flower (Sample B). Both involve image stacks acquired from three angles at a resolution of 512 x 512 
pixels. Sample A: 65.81 µm in the X and Y axes; 33-37 Z slices at 1 µm intervals; 940 cells total, of 
which about 225 belong to the sampled flower. Sample B: 153.56 µm in the X and Y axes; 94-105 Z slices 
at 1 µm intervals; about 3050 cells total, of which about 2000 belong to the sampled flower. 
 
c The time estimate for this task depends both on the developmental stage of the flower (i.e. number of 
cells) & on the data resolution (i.e. image quality). Thus samples with fewer cells and/or better image 
quality may be validated faster than those with more cells or noisier images. 
 
d The length of this task depends on the extent of growth and volumetric increase between serial time 
points. 
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Supplementary Note 1: Reconstruction 
 
This step aims at reconstructing an isotropic 3D image (i.e. with voxels of the same dimension 
along the 3 axis) by fusing image stacks acquired at different angles. Before fusion, these image 
stacks required being co-registered, and this is achieved in a hierarchical way. The complete 
pipeline consists then in the following steps: 

1. user-assisted linear co-registration 
2. automated linear co-registration, and 
3. automated non-linear co-registration and fusion 

 
1.1. User-assisted linear co-registration 
Automated registration may fail to retrieve large transformations (for instance, rotation with an 
angle greater than 45 degrees). Therefore, we used a first transformation computed with user 
assistance as initialization for further automated registration. 
For each couple of images to be registered, the user identified correspondences by pairing a few 
anchor points (note that this is the only manual operation of the MARS pipeline).  
 
To ease this operation for the user, we reconstructed the surface of the meristem from each image 
stack1. Based on a projected view of this surface, anchor points were manually positioned on each 
2D image using a dedicated user-interface and the 3D coordinates of the points were inferred 
from it. If the points are too close to each other on the meristem surface, the registration error can 
be high. We thus chose points homogeneously distributed over the whole surface and that appear 
in all the views. A reference image is then chosen (usually the top-view image of the meristem) 
and an initial rigid transformation is computed for all other images by minimizing the mean 
squared error between the anchor points in these images and those of the reference image2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A. Registration error (in µm) between the manual rigid transformation and the optimal rigid 
transformation as a function of number of anchor points. The horizontal green dashed line indicates the 
average diameter of a cell (10 m). Using eight anchor points (or more) make it unlikely to have a final 
positioning error larger than one cell size. 
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Since anchor points have to be entered manually by the user, we tested options to minimize the 
effort involved. For this, we studied how the initial rigid transformation was altered by 
decreasing numbers of anchor points. We considered the rigid transformation obtained at the end 
of the automated rigid registration (see below) as a reference and compared it to initial rigid 
transformations obtained from varying the number of anchor points. The error between two rigid 
transformations was defined as the distance between the transformed image domain centers 
obtained by these two rigid transformations respectively. Results are presented in Fig. A. To keep 
the error smaller than the radius of a cell, we found that 8 points were a satisfactory compromise 
between manual input and positioning accuracy. 
 
1.2. Automated linear co-registration 
An automated linear registration method is used to refine the previously computed 
transformation. We chose a block-matching based method3. The principle of this method is to 
pair sub-images (or blocks) between both images to be registered and then to compute a 
transformation that explains the obtained pairings. Pairing is achieved by maximizing the 
correlation coefficient between blocks of the two images, while the rigid transformation that best 
superimposes them is computed by minimizing the squared distances between the paired blocks’ 
centers. This is iterated until convergence, and embedded into a multi-scale strategy. 
 
Parameters:  
In our experiments, the size of blocks is set to 4 x 4 x 4 voxels, block spacing is set to 3 voxels 
along each dimension, and only the 75% blocks of highest variance are kept (to avoid considering 
blocks of homogeneous intensity). Block similarity is assessed with the correlation coefficient. 
The transformation estimation is conducted with a least trimmed squares scheme, with a cut value 
of 0.75. The multi-scale pyramid starts with images of size 32 x 32 x 32 and ends at full 
resolution. 
 
1.3. Automated non-linear co-registration and fusion 
After linear co-registration, differences may still exist between image stacks that are due to slight 
deformations (Fig. 1h in the main text). To compensate for them, we used a non-linear 
registration method, initialized by the previously computed rigid transformations, that enables to 
compute a deformation field between images. The fusion of all images was done by averaging the 
voxel intensities after resampling them within a common geometry. To cancel the effect of voxel 
geometric anisotropy, the reference image was itself resampled at a higher resolution with 
smaller cubic voxels, while the other (floating) images were resampled with the combination of 
all computed transformations in the same geometry. However, the choice of a particular image 
stack as reference may bias the reconstruction result, since this image may be deformed too. 
Then, to reduce the influence of the reference image choice, the non-linear registration is 
embedded into an average image computation scheme4. As a non-linear registration method, we 
chose an extension to deformation field of the block-matching5. 
 
Parameters:  
In our experiments, the size of blocks is set to 7 x 7 x 7 voxels, and only the 90% blocks of 
highest variance are kept (to avoid considering blocks of homogeneous intensity). Block 
similarity is assessed with the correlation coefficient. The multi-scale pyramid comprises four 
levels. 
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Supplementary Note 2: Segmentation 
 
In the literature, cell segmentation has been achieved using a wide range of image processing 
methods, from deformable models6 and high-sensitivity contour detection7, to performance-based 
thresholding8. In some cases, watershed algorithms are used on two- or three-dimensional 
images1, 9. Here, we have used the latter technique, which is well-suited to our images, in which 
the objects to segment are dark areas (cell interiors) surrounded by bright and thin boundaries 
(cell walls). To apply the watershed algorithm, we first extract seeds that will serve as sources for 
the catchment basins. We then run the watershed method, and subsequently correct automatically 
obvious over-segmentation errors.
 
2.1. Seed extraction 
Generally, sources for watershed methods are the local minima of the input image. However, this 
is known that such a strategy leads to over-segmentation. We first denoise the input image to 
enhance the signal/noise ratio and eliminate high frequency noise while preserving the main 
structural properties of the image. It appeared that the denoising method has to be adapted to the 
type of processed images. Then the main local minima are extracted. 
 
 For the floral buds images, acquired with a single photon laser scanning microscope, the 

Alternate Sequential Filter (ASF) is used as denoising method10. This is a succession of 
morphological opening and closing operations with structuring elements of increasing size. 
For structuring elements, we chose discretized Euclidean sphere of radii ranging from 1 to N, 
N being equal to 4 for the high resolution images (e.g. f2), and to 2 or 3 for the normal 
resolution images (f3 and p60). 

 For the root meristem images, acquired with a multiphoton microscope, a Gaussian filtering 
(i.e. a convolution with a 3D Gaussian function) is preferred. The typical value of the standard 
deviation is 0.5 µm. 

 
The seeds are then extracted by computing the h-minima from the denoised image. The parameter 
h allows controlling the pertinence of extracted minima: two neighboring basins will be merged if 
they are separated by a “mountain” whose minimal height (with respect to the higher basin) is 
less than h. The parameter h is set for each series of image, whereas it varies between 3 and 5 (in 
intensity units) for the floral buds, and between 4 and 6 for the roots. These seeds serve as 
markers for the foreground. Eventually, an additional marker is added for the background. To that 
end, we threshold the image and keep points whose intensity value is less than the threshold (a 
typical value is 20). The largest connected component is the background marker. 
 
2.2. Watershed transformation and over-segmentation correction 
The principle of the watershed transformation is to consider the image to be segmented as an 
elevation map, and to flood water from different sources (the markers) to extract the catchment 
basins that will be separated from the watershed ridges11. The extracted cells are then 
subsequently analyzed. Cell with too small volumes (typically less than 40 µm3) are obvious 
errors. Corresponding markers are removed from the seeds, and the watershed transformation is 
computed again until convergence. 
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Supplementary Note 3: Scalability of the MARS pipeline 
 
To assess whether our method is generic (applicable to tissues other than inflorescences) and 
scalable (applicable to much larger tissues), we applied the MARS protocol to rice roots, which 
are both thicker (200-450 m) and have a more complex cellular organization (with up to 10 
cortical cell layers, Supplementary Fig. 4a), as compared with Arabidopsis roots (that are 80-
100 m thick and have a single cortical layer). 
 
We applied our multi-angle image acquisition protocol using a multi-photon microscope. We first 
acquired images of the root apex from multiple lateral views (Supplementary Fig. 5a); the first 
image stack is defined as the 'reference view' (X), one other view (X') is diametrically opposite to 
this and two others are at either end of the orthogonal diameter (Y and Y'). We then segmented 
either the reference view alone (which we call '1-view'), or the 3-D reconstructions generated by 
fusing the following combinations of image stacks: X plus X' (2-Opp-view); X plus Y or Y' (2-
Ort-view); X plus X' plus Y or Y' (3-view) or all four (4-view). The results were evaluated on a 
sample of about 800 manually segmented cells chosen in either the superficial cortical layer or 
the central meristematic zone (Supplementary Fig. 5a,d; Supplementary Video 3 online). 
Whereas 86.5% of all tested cortical cells are accurately segmented in the 1-view, in the 2-view 
(2-Opp-view and 2-Ort-view combined) and the 3-view, this increases to 91.1% and 93.4%, 
respectively (Supplementary Fig. 5g). However, the fusion of all four views did not further 
improve the results. 
 
The advantages of using multi-angle reconstruction are even more striking for the most 
inaccessible cells of the root, the central meristematic cells, located about 170 m under the root 
surface (Supplementary Fig. 5h). Of these cells, only 60.8% are accurately segmented in the 1-
view, whereas in the 4-view, this number is 88.2% (Supplementary Fig. 5h). Not surprisingly, 
we found that for these cells, the two types of 2-angle reconstructions are not equivalent. In the 2-
Ort-view, 70.6% of cells are correctly segmented, as compared to only 30.8% in the 2-Opp-view 
(Supplementary Fig. 5h) for which the wall anisotropy problem is not corrected. In this latter 
case, the walls that are clearly visible (parallel to the focal axis) are the same in both images and 
similarly, walls that are not clearly visible (perpendicular to the focal axis) are also the same both 
images. This means that two views in opposite directions amplify the discrepancy between 
clearly visible walls and those that are not, leading to a poorer segmentation result compared to 
segmentations from a single image. However, as soon as a third perpendicular angle is used 
(XX’Y), the effect is counterbalanced positively. In contrast to our results for the cortical cells, 
the fusion of all 4 views was essential to achieve good segmentation rates in the central 
meristematic zone. It is probable that the walls of these cells have different properties from those 
of the cortical layers, perhaps making them harder to visualize.  
 
In summary, the MARS algorithm was able to automatically segment 16,400 cells in the root tip 
with an estimated 88% (for central meristematic cells) to 93% (for cortical cells) of cells correctly 
segmented. These results demonstrate the scalability of MARS (see Supplementary Fig. 4-5). 
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Supplementary Note 4: Automatic Lineage Tracking (ALT) 
 
The computation of cell lineage from the target image I and the source image J consists of the 
following steps: 

1. Initialization of the algorithm (initialization of the set of high confidence lineages) 
2. Computation of a deformation field based on a set of high confidence lineages, L. 
3. Refining of the deformation field with an automated non-linear registration algorithm. 
4. Building of lineage hypotheses and solving the lineage problem. 
5. Update of the set of high confidence lineages, L 
 

As explained in the main text, steps 1-3 are performed once, while steps 4 and 5 are called 
iteratively until stability is reached. 

 
3.1. Initialization of the algorithm 
The algorithm requires defining an initial set of cell lineages to guide the computation of the 
deformation. The required number of initial cell lineages ultimately depends on the amount of 
deformation between two consecutive time frames and on the desired cell lineage detection 
accuracy. This part of the pipeline is extremely difficult to automate due to its highly 
combinatorial nature (initially, almost any cell of the first image can be paired with any cell of 
the second image, etc.) and to the critical impact this initial pairing on the quality of the algorithm 
results. In our approach, we chose to optimize the overall pipeline robustness by selecting 
manually a number of lineages on the surface of the meristem between each time frame (Fig. B). 
We made test benches to estimate the minimal number of lineages required for particular 
deformation amplitudes. Results are shown in Supplementary Fig. 7. 
 
 

 
Fig. B. Expert definition of cell lineages on the meristem surface (L1) to initialize the ALT algorithm, 
illustrated on flower-B between time frames T0 and T0+26h. The user clicks on a parent cell in the first image 
(dark bleu cell in the left-hand side image) and identifies a series of daughter cells in the second image (dark 
bleu cells in the right-hand side image). 
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3.2. Computation of a deformation field based on a set of high confidence lineages, L 
A first rigid transformation is estimated between the two images by minimizing the total square 
distance between each parent cell in the set of high confidence lineages and its descendants. After 
this rigid registration, the residual positioning error of the high confidence lineages is used to 
define non-linear transformation as a dense vector field (i.e. a vector per voxel). For this, each 
high confidence lineage is transformed into one vector that links the center of mass of the parent 
cell to the center of mass of all its descendants, and the dense vector field is computed by 
interpolating between these vectors. 
 
More precisely, a lineage ln links a parent cell at time t0 to its daughter cell at time t1 (if there are 
several daughter cells, i.e. if the parent cell has experienced some division(s), we group all of 
them into one (virtual) single cell). The vector from the center of mass mn of the parent cell to the 
center of mass dn of the daughter cel dnl, mn , indicates the local displacement from time t0 to 

time t1. Given a set of vecto ndn , a dense displacement can be interpolated. We choose here a 
Gaussian weighting but other interpolation schemes can be used as well. At voxel v

rs m
i of frame at 

time t0, the displacement vector is then computed by 
 

v vi

G vi mn
n

mndn

G vi mn
n

 

where  denotes the Gaussian function. Note that due to the weighting coefficients, this 
interpolation scheme makes it possible to estimate vectors corresponding to voxels outside the 
convex hull defined by the known parent cells. 
 
3.3. Refining of the deformation field with an automated non-linear registration algorithm 
Then, based on this initial residual field, an automated non-linear registration algorithm is used to 
refine this initial transformation by matching the voxel intensities of the two images. This refined 
registration, computed as described in section 1.3 of the supplementary data, makes it possible to 
overlap the two images, and compare their segmentations.  
 
3.4. Building of lineage hypothesis and solving the lineage problem 
Building the set of lineage hypotheses. In this common reference system, we hypothesize 
potential daughter candidates for each parent cell, based on their spatial distance. A cell j from 
the target image J (resampled after non-linear registration) is a potential daughter cell of a cell i 
of the source image I (i.e. is a likely lineage hypothesis) if the distance d(i,j) between cells i and j 
is below a specified threshold dmax. This distance is 0 if the center of mass cj of j is inside cell i, 
else a 3D line is drawn between the centers of mass of cells i and j, and the d(i,j) is defined as the 
distance between cj and the first point of cell i encountered along this line. 
 
Building a bipartite graph representing the set of hypotheses. From the identification of potential 
lineage candidates, we construct a graph containing two types of nodes. Nodes labeled i 
correspond to cells of image I and nodes j correspond to cells of image J. An edge is created 
between a pair of nodes (i,j) if j is identified as a potential daughter candidate of i. To express the 
possibility that cells in either of the images may not be mapped, two special nodes are added to 
the graph: I and J representing “void” nodes, i.e. nodes that are used to map cells that are not 
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part of a valid mapping in both images. I is connected by an edge to every node of J and 
likewise J is connected to every node of I. 
 
Defining a flow on the graph. On each edge (i,j) of the graph, a flow of 1 unit means that the two 
nodes are mapped. The flow is null otherwise. On edges, flows can only take integer values and 
are bounded by minimum and maximal values, called capacities. Here the maximal capacity Ci,j 
for each edge is 1 while the minimal capacity ci,j is 0, except for edges involving the “void” 

odes n acity. I and J that have an infinite maximal capacity and a null minimal cap
 
To sum up the flow going through all the nodes of an image, two other nodes are added, s and t, 
called source and target nodes. The source node is connected to every node of I and to I while 
each node of J and node J are connected to the target node. The minimal capacities cs,j and ci,t of 
all these edges is 1 (all the cells must be mapped either on another cell or on a void node). To 
allow only valid flows to circulate in the network different types of capacities are defined on 
these edges. The maximal capacity of the edges originating from the source node, Cs,j 
corresponds to the maximal number of divisions, NDiv, that a cell may have between two 
consecutive time-frames (NDiv is set to 8, i.e. a cell has a maximum of 8 daughter cells). The 
maximal capacity of the edges arriving on the target node, Ci,t, is 1 since a cell from the target 
image may at most have one parent cell.  
 
To express the fact that, up to cell division, the number of cells in both images should be the 
same, a conservative law must be respected at each node of the network expressing that the total 
flow entering a node must be equal to the total flow leaving this node. Finally, an edge is added 
from the target to the source to express that the total input flow entering the system equals the 
output flow. 
 
Cost of a flow. The cost ij  of the edge (i,j) is defined by d(i,j)/dmax and ranges therefore from 0 
to 1. To penalize links to void cells I  and J , the costs of edges  and  are set to 2 so 
that it is always preferred to map a cell i to j rather than to remove both i and j. Other edges (to 
and/or from source and target vertices s and t) have a cost of 0. 
 
A possible lineage mapping between cells of the two images is represented as a set of binary 
values attached to each edge: 1 for a lineage relationship and 0 otherwise. The resulting list of 
binary values for all edges defines a flow between the two images. Not all flows correspond to 
possible lineage mappings. A flow is considered as being ‘valid’ if every cell in the source image 
is mapped at least once and if every cell in the target image is mapped to at most one parent cell 
in the source image. A cost is associated with each valid flow F by summing up all the 
elementary costs ij  of mapping cells (i,j) that are defined by edges with flow value fij = 1 in F: 
 

FF J
jji

I
iij

F
ij fffF )(

 
                         

The resolution of equation (2) thus amounts to finding a valid flow F* in the above network with 
minimum cost (F*). 
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3.5. Update of the set of high confidence lineages, L 
From the optimal mapping computed above, we extend the set of high confidence lineages. A 
couple (parent cell, descendant cells)=(p,{d1,…,dp}) is added to the set if the following 
conditions are verified. 
 The parent cell p is adjacent to a parent cell already in L (lineages are added by propagation). 
 The descendant cells of a parent cell adjacent to  must be adjacent to the descendants 

{d1,…,dp} of p (adjacencies are preserved). 
 The descendant cells must be adjacent together, i.e. they form one single connected 

component (if they are split in several components, it is probably an erroneous lineage). 
 The volume of all descendant cells should be larger than the one of the parent cell. To account 

for potential errors, we check that this total volume is at least 90 % of the one of the parent 
cell. 
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Supplementary Note 5: Software tools 
 
We used a collection of online binary executables, each of them being dedicated to a specific 
task, that are gathered using a script language to yield high-level procedures.  In addition, a 3D 
image viewer allows visual inspection of images/results and to select anchor points for the user-
guided registration procedures. These components are developed on a linux platform, and are 
available online.  The different high-level tasks are listed below. 

a) Preprocessing 
 Conversion of input data (usually a series of 2D image file) into an in-house 3D image 

format, namely inrimage. 
b) Registration and fusion 

 Enhancement of the meristematic surface. 
 Selection of anchor points onto the surface thanks to a 3D image viewer.  
 Pairing of points for each couple of images, and computation of initial rigid 

transformations. 
 Iterative fusion (this involves all the needed registration procedures). 

c) Segmentation 
 Automated cell segmentation (a visual analysis of the results, thanks to the 3D image 

viewer, helps tuning the segmentation parameters). 
 User-guided segmentation correction: the user indicates over-segmented cells (one of 

the underlying watershed seed will then be suppressed) and under-segmented ones 
(and add a watershed seed at the correct location). 

d) Segmentation analysis 
 Global statistics computation (number of cells, cell volumes, etc). 
 User-guided selection of cells of interest for analysis. 
 3D rendering of cell (possibly with superimposition of the 3D image) for visualization 

purposes thanks to the 3D image viewer. 
e) Lineage computation. 

 Selection of anchor points thanks to a 3D image viewer.  
 Pairing of points between the two images, and computation of the initial non-linear 

transformations. 
 Iterative lineage computation and non-linear registration 

f) Lineage validation. 
 Graphical analysis of the segmented 4-D time series was carried out using custom 

built interface based on the Visualisation Toolkit (www.vtk.org/) and the mayavi1.5 
ivtk librarie (http://mayavi.sourceforge.net/). The software imports segmented images 
into delaunay tesselations and allows the user to manipulate the lineages in 3-D.  
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Fig. C. Segmentation user interface.
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Supplementary Note 6: Detection of segmentation errors 
 
The segmentation errors are detected by comparing the output of the automated segmentation 
MARS method against a ground truth, i.e. a segmentation validated by experts. A cell is 
considered as being well segmented by the automated method if it can be associated without 
ambiguity to a unique cell of the ground truth segmentation. These associations can be viewed as 
lineages from the automated segmentation to the ground truth, with the following specificities: 

 there is no geometric distortion between the two images, then no requirement of a 
(non-)linear registration, 

 in case of oversegmentation, two “parent” cells can be linked to a single “daughter” 
cell. 

Therefore, we reused the ALT algorithm, with the exception that the test and the reference 
segmentation did not required to be co-aligned. This also results in a few changes in the graph 
construction that are detailed below. 
 
A cell j from the reference image J can be linked to a cell i of the test image I if the cells 
intersect. The cost  of the edge (i,j) is defined by the Dice’s coefficient between the two cells. 
It is defined by  and ranges therefore from 0 (no intersection) to 1 
(cells are identical). To penalize links to void cells I  and J , the costs of edges  and  

  are set to 2. Other edges (to and/or from source and target vertices s and t) have a cost of 
0. The minimal and maximal capacities of edges ,  and   are respectively set to 0 
and 1, this allows the cells to be linked or not. The minimal and maximal capacities of edges  
and  are all set to 1, while those of edge  are respectively set to 0 and max(NJ,NI). 
The maximal feasible flow is computed using Ford-Fulkerson algorithm. Then, the cells from the 
test image that are linked to the void cell J  are considered again and linked with the reference 
cell of smallest cost. 
The well-identified cells are those for which there exists a one-to-one mapping. The over-
segmentation is assessed by the reference cells that are linked to more one test cell. The under-
segmentation is assessed by the test cells that are linked to void cell I . 
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Supplementary Note 7: Generation of the movie showing continuous growth 
After MARS-ALT methods, the pairs of successive time point acquisitions have been non-
linearly co-registered. Each of these transformations can be decomposed into a rigid 
transformation and residual deformations. By combining the rigid transformations, all volumes 
and subsequently all MARS segmentations can be resampled into the same reference pose, e.g. 
the first volume. 
 
Consider now two successive volumes Ii and Ij and the residual transformation Tij that goes from 
Ii towards Ij (and then allows to warp Ij onto Ii). To produce a movie, we have to generate 
intermediary images between Ii and Ij. Consider now that the time goes from 0 (Ii) to 1 (Ij), we 
generate warped images of both Ii and Ij at an intermediary time step t, and then blend them. 
 
The transformation Tij can be rewritten as Tij =Id+Uij where Uij is a vector field depicting the 
deformation. Therefore, if we assume the linearity of the deformation with respect to time, the 
transformation that goes from time 0 to time t is Id+t.Uij and we denote it by t.Tij. To resample Ii 
at time t, we compute its inverse, ie (t.Tij)-1. Similarly, the transformation -(t-1-1) (t.Tij)-1 allows to 
resample Ij at time t.  
 
Using the above transformation, the segmented cells of both Ii and Ij can be warped at the 
intermediary time t. Surface rendering are computed for both, resulting in two 2D views Si,t and 
Sj,t. The virtual intermediary image St of the movie is computed by blending the 2D views, i.e. 
St=(1-t)Si,t+tSj,t. Note that, with such a procedure, all cell divisions seem to occur simultaneously, 
at time t=0.5. 

 

 
Fig. D. 3-D Morphing computation between two time frames (46h and 70h). The upper diagram shows how the two images 
are mixed at any time t (blue curve). In the bottom image, colors are emphasizing cells that are dividing between the two 
time frames. 
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