
Computing the Diameter of a Point Set

Grégoire Malandain and Jean-Daniel Boissonnat

INRIA, 2004 route des lucioles, BP 93, 06 902 Sophia-Antipolis Cedex, France
{gregoire.malandain,jean-daniel.boissonnat}@sophia.inria.fr

Abstract. Given a finite set of points P in Rd, the diameter of P is
defined as the maximum distance between two points of P. We propose
a very simple algorithm to compute the diameter of a finite set of points.
Although the algorithm is not worst-case optimal, it appears to be ex-
tremely fast for a large variety of point distributions.

1 Introduction

Given a set P of n points in Rd, the diameter of P is the maximum Euclidean
distance between any two points of P.

Computing the diameter of a point set has a long history. By reduction to
set disjointness, it can be shown that computing the diameter of n points in Rd

requires Ω(n log n) operations in the algebraic computation-tree model [PS90].
A trivial O(n2) upper-bound is provided by the brute-force algorithm that com-
pares the distances between all pairs of points. In dimensions 2 and 3, better
solutions are known. In the plane, it is easy to solve the problem optimally in
O(n log n) time. The problem becomes much harder in R3. Clarkson and Shor
gave a randomized O(n log n) algorithm [CS89]. This algorithm involves the com-
putation of the intersection of n balls (of the same radius) in R3 and the fast
location of points with respect to this intersection. This makes the algorithm
less efficient in practice than the brute-force algorithm for almost any data set.
Moreover this algorithm is not efficient in higher dimensions since the intersec-
tion of n balls of the same radius has size Θ(nb

d
2 c). Recent attempts to solve

the 3-dimensional diameter problem led to O(n log3n) [AGR94,Ram97b] and
O(n log2n) deterministic algorithms [Ram97a,Bes98]. Finally Ramos found an
optimal O(n log n) deterministic algorithm [Ram00]. All these algorithms use
complex data structures and algorithmic techniques such as 3-dimensional con-
vex hulls, intersection of balls, furthest-point Voronoi diagrams, point location
search structures or parametric search. We are not aware of any implementation
of these algorithms. We suspect that they are very slow in practice compared to
the brute-force algorithm, even for large data sets.

Some of these algorithms could be extended in higher dimensions. However,
this is not worth trying since the data structures they use have sizes that depend
exponentially on the dimension: e.g. the size of the convex hull of n points of Rd

can be as large as Ω(nb
d
2 c).

Our algorithm works in any dimension. Moreover, it does not construct any
complicated data structure; in particular, it does not require that the points are

2 Malandain and Boissonnat

in convex position and therefore does not require to compute the convex hull of
the points. The only numerical computations are dot product computations as
in the brute-force algorithm.

The algorithm is not worst-case optimal but appears to be extremely fast
under most circumstances, the most noticeable exception occuring when the
points are distributed on a domain of constant width, e.g. a sphere. We also
propose an approximate algorithm.

Independently, Har-Peled has designed an algorithm which is similar in spirit
to our algorithm [Har01]. We compare both methods and also show that they
can be combined so as to take advantage of the two.

2 Definitions, notations and geometric preliminaries

We denote by n the number of points of P, by h the number of vertices of the
convex hull of P, and by D the diameter of P. δ(·, ·) denotes the Euclidean
distance, and δ2(·, ·) the squared Euclidean distance.

A pair of points of P is called a segment. The length of a segment pq is
the euclidean distance δ(p, q) between p and q. A segment of length D is called
maximal.

For p ∈ P, FP (p) denotes the subset of the points of P that are at maximal
distance from p. The segment joining two points p and q is called a double normal
if p ∈ FP (q) and q ∈ FP (p). If pq is a maximal segment, pq is a double normal.
The converse is not necessarily true.

Observe that the endpoints of a maximal segment or of a double normal
belong to the convex hull of P. Observe also that, if the points are in general
position, i.e. there are no two pairs of points at the same distance, the number
of double normals is at most h/2.

B(p, r) denotes the ball of radius r centered at p, Σ(p, r) its bounding sphere.
The ball with diameter pq is denoted by B[pq] and its boundary by Σ[pq].

Since the distance between any two points in B[pq] is at most δ(p, q), we
have:

Lemma 1 If p, q ∈ P and if pq is not a maximal segment, any maximal segment
must have at least one endpoint outside B[pq].

As a corollary, we have:

Lemma 2 If p, q ∈ P and if P \ B[pq] = ∅, pq is a maximal segment of P and
δ(p, q) is the diameter of P.

3 Computation of a double normal

Algorithm 1 below repeatidly computes a furthest neighbour of a point of P until
a double normal DN is found. To find a furthest neighbour of p ∈ P, we simply
compare the distances between p and all the other points in P (FP scan). Point
p is then removed from P and won’t be considered in further computations.

Computing the Diameter of a Point Set 3

1: procedure DoubleNormal(p, P) // p is a point of P
2: ∆2

0 ← 0 i← 0
3: repeat // FP scan

4: increment i
5: ∆2

i ← ∆2
i−1

6: P ← P \ {p} // remove p from P from any further computation

7: find q ∈ FP (p), i.e. one of the furthest neighbours of p
8: if δ2(p, q) > ∆2

i then
9: ∆2

i ← δ2(p, q) and DN ← pq
10: p← q
11: until (∆2

i = ∆2
i−1)

12: return DN

Algorithm 1: Computes a double normal.

Lemma 3 Algorithm 1 terminates and returns a double normal.

Proof. ∆i can only take a finite number of different values and strictly
increases: this ensures that the algorithm terminates. After termination (after I
iterations) we have q ∈ FP (p) and all the points of P belong to B(p, δ(p, q)).
Since ∆I−1 = δ(p, q), all the points of P belong also to B(q, δ(p, q)) and therefore
p ∈ FP (q). �

After termination of Algorithm 1, the original set P has been replaced by
a strictly subset P ′ since some points have been removed from P (line 6 of
algorithm 1). By construction, the returned segment pq is a double normal of
the reduced set P ′ (lemma 3), and it is also a double normal of the original set
P.

Lemma 4 The only numerical operations involved in Algorithm 1 are compar-
isons of squared distances.

Lemma 5 Algorithm 1 performs at most h FP scans and takes Θ(nh) time.

Proof. The upper bound is trivial since all the points q that are considered
by Algorithm 1 belong to the convex hull of P and all points q are distinct. As
for the lower bound, we give an example in the plane, which is sufficient to prove
the bound. Consider a set of 2n+1 points p0, . . . , p2n placed at the vertices of a
regular polygon P (in counterclockwise order). For i > 0, we slightly move the
pi outside P along the ray Opi by a distance εi for some small ε < 1. Let p′i be
the perturbed points It is easy to see that the farthest point from p′i is always
p′i+n mod (2n+1) except for p′n+1. Therefore, the algorithm will perform FP scans
starting successively at pσ0 , . . . , pσ2n+1 where σi = i× n (modulo 2n + 1). �

Although tight in the worst-case, the bound in lemma 5 is very pessimistic
for many point distributions. This will be corroborated by experimental results.

4 Malandain and Boissonnat

4 Iterative computation of double normals

Assume that Algorithm 1 has been run and let Q = P \ B[pq]. If Q = ∅, pq
is a maximal segment and δ(p, q) is the diameter of P (lemma 2). Otherwise,
we have to determine whether pq is a maximal segment or not. Towards this
goal, we try to find a better (i.e. longer) double normal by running Algorithm 1
again, starting at a point in Q rather than in P, which is sufficient by lemma
1. Although any point in Q will be fine, experimental evidence has shown that
choosing the furthest point from Σ[pq] 1 is usually better.

Algorithm 2 below repeats this process further until either Q becomes empty
or the current maximal distance ∆ does not increase.

1: ∆2 ← 0 stop← 0
2: pick a point m ∈ P
3: repeat // DN scan

4: DoubleNormal(m, P) // yields a double normal pq of length δ(p, q)
5: if δ2(p, q) > ∆2 then
6: ∆2 ← δ2(p, q) and DN ← pq
7: Q ← P \B[pq]
8: if Q 6= ∅ then
9: find m ∈ Q a furthest point from Σ[pq]

10: else
11: stop← 1 // terminates with Q 6= ∅.
12: until Q = ∅ or stop = 1
13: return DN ← pq, ∆2 ← δ2(p, q)

Algorithm 2: Iterated search for double normals.

Lemma 6 Algorithm 2 can be implemented so that the only numerical compu-
tations are comparisons of dot products of differences of points.

Lemma 7 Algorithm 2 performs O(h) DN scans. Its overall time-complexity is
O(nh).

Proof. The first part of the lemma comes from the fact that the algorithm
enumerates (possibly all) double normals by strictly increasing lengths.

Let us prove now the second part of the lemma. Each time Algorithm 1
performs a FP scan starting at a point p (loop 3-11), p is removed from further
consideration (line 6). Moreover, except for the first point p to be considered, all
these points belong to the convex hull of P. It follows that the total number of
FP scans is at most h+1. Since each FP scan takes O(n) time, we have proved
the lemma. �

1 This point is the furthest point from p+q
2

outside B[pq].

Computing the Diameter of a Point Set 5

5 Diameter computation

Assume that Algorithm 2 terminates after I iterations. Since, at each iteration, a
new double normal is computed, the algorithm has computed I double normals,
noted piqi, i = 1, . . . , I, and we have δ(p1, q1) < . . . < δ(pI−1, qI−1).. Each time
Algorithm 1 is called, some points are removed from the original data set. We
rename the original data set P(0) and denote by P(j) the set of points that
remain after the j-th iteration, i.e. the one that computes pjqj . Hence set P(i) is
strictly included in P(i−1). Moreover, each segment piqi is a double normal for
all the sets P(j), j = i− 1, . . . , I 2.

It is easily seen that, at each iteration j, the length of the computed double
normal pjqj is strictly greater than the distances δ(x, FP (x)) computed so far, or
equivalently, than the lengths of all the segments in P \P(j)×P since Algorithm
1 removed the corresponding x from P .

When Algorithm 2 terminates, we are in one of the two following cases :

Case 1 : δ(pI , qI) > δ(pI−1, qI−1) and Q = P(I) \B[pIqI] = ∅.
In this case, pIqI is a maximal segment of P: by lemma 2, it is a maximal
segment of P(I), and, as mentionned above, no segment with an endpoint in
P \ P(I) can be longer.

Case 2 : δ(pI , qI) ≤ δ(pI−1, qI−1).

In this case, P(I−1) \B[pI−1 qI−1] was not empty before the computation of
[pI , qI]. We have to determine whether pI−1qI−1 is a maximal segment or not.
Thanks to lemma 1, if a longer double normal exists, one of its endpoints lies in
P(I) \ B[pI−1 qI−1]. If this last set is empty, which is checked by Algorithm 3,
pI−1qI−1 is a maximal segment of P.

Required: P(I) and pI−1qI−1 (provided by Algorithm 2)
1: Q ← P(I) \B [pI−1 qI−1]
2: if Q = ∅ then
3: pI−1qI−1 is a maximal segment of P

Algorithm 3: Checks whether Q = P(I) \B[pI−1 qI−1] = ∅.

If Q = P(I) \ B[pI−1 qI−1] 6= ∅, we have to check whether there exists a
maximal segment with an endpoint in this set. To search for such maximal
segments, we propose two methods. For clarity purpose, we will write P instead
P(I) in the following.

5.1 Exhaustive search over Q × P

The first method (Algorithm 4) simply considers all segments in Q×P.

2 Strictly speaking, as pi and qi do not belong to P(j), we should say that piqi is a
double normal for all the sets P(j) ∪ {pi, qi}, j = i− 1, . . . , I.

6 Malandain and Boissonnat

Required: ∆2 (provided by Algorithm 2) and Q (provided by Algorithm 3)
1: if Q 6= ∅ then // Exhaustive search with an endpoint in Q
2: for all points pi ∈ Q do
3: for all points pj ∈ P do
4: if δ2(pi, pj) > ∆2 then
5: ∆2 ← δ2(pi, pj)
6: return ∆2

Algorithm 4: Exhaustive search over Q×P.

5.2 Reduction of Q

As it might be expected and is confirmed by our experiments, the observed total
complexity is dominated by the exhaustive search of the previous section. It is
therefore important to reduce the size of Q. For that purpose, we propose to
reuse all the computed segments piqi, i = 1, . . . , I − 2, and pIqI .

Principle Assume that we have at our disposal an approximation ∆ of the
diameter of set P and a subset Q ⊂ P that contains at least one endpoint of
each maximal segment longer than ∆ (plus possibly other points). To identify
such endpoints in Q (i.e. to find the maximal segments longer than ∆), we may,
as in Algorithm 4, exhaustively search for a maximal segment over Q×P. The
purpose of this section is to show how this search can be reduced.

Under the assumption that the diameter of P is larger than ∆, we know, from
lemma 1, that any maximal segment will have at least one endpoint outside any
ball of radius ∆/2.

Consider such a ball B′ of radius ∆/2. The exhaustive search over Q×P can
then be reduced to two exhautive searches associated to a partition of Q into
Q ∩ B′ and Q \ B′. More precisely, if p ∈ Q, searching for a point q such that
δ(p, q) > ∆ reduces to searching q in P \Q\B′ if p belongs to B′, and searching
q in P otherwise.

This way, instead of searching over Q × P, we search over (Q ∩ B′) × (P \
Q \ B′) and (Q \ B′) × P, therefore avoiding searching a maximal segment in
(Q∩B′)× (P ∩B′).

B′ should be chosen so as to maximize the number of points in P ∩B′, which
reduces the cost of searching over (Q∩B′)×(P \Q\B′). The idea is to reuse the
already found segments piqi (which are double normals of P) and to iteratively
center the balls of radius ∆/2 at the points pi+qi

2 .

Algorithm Assume that Algorithm 2 terminates under case 2, yielding the seg-
ment pmaxqmax (i.e. pI−1qI−1) of length ∆ = δ(pmax, qmax) which is considered
as an estimation of the diameter. Moreover, we assume that the set Q computed
by Algorithm 3 is not empty.

All the double normals piqi that have been found by Algorithm 2, except
pI−1qI−1, are collected into a set S.

Computing the Diameter of a Point Set 7

Required: ∆2 = δ2(pmax, qmax) and S provided by Algorithm 2
Required: Q(0) = Q provided by Algorithm 3
1: for all segments piqi ∈ S, i = 1 . . . |S| do
2: B′ ← B

(
pi+qi

2
, ∆/2

)
3: d2 ← max δ2(p, q) (q, p) ∈

(
Q(i−1) ∩B′

)
×

(
P \ Q(i−1) \B′

)
4: if d2 > ∆2 then // A better diameter estimation was found

5: ∆2 ← d2

6: Add segment pq to set S
7: Q(i) ← Q(i−1) \B′ // new set Q
8: if Q(i) = ∅ then
9: return ∆2 // diameter has been found

Algorithm 5: Iterative reduction ofQ by successive examination of all segments
piqi.

If Algorithm 5 terminates with Q(|S|) 6= ∅, one still must run Algorithm 4
with Q = Q(|S|), i.e. the exhaustive search over Q(|S|) × P.

6 Diameter approximation

Our algorithm provides a lower bound ∆
def= ∆min on the diameter. It also

provides an upper bound ∆max = ∆min

√
3. Indeed, let pq be the double normal

whose length is ∆min. All the points of P belong to the intersection of the two
balls of radius ∆min centered at p and q.

With only slight modifications, our algorithm can also be used to compute a
better approximation of the diameter. More precisely, for any given ε, we provide
an interval [∆min,∆max] of length ≤ ε that contains the true diameter.

Since the algorithm provides a lower bound ∆, we simply need to ensure that
∆ + ε is an upper bound of the true diameter.

We will just indicate where the necessary modifications must take place.
First, during the iterative search of double normals (line 9 in Algorithm 2)

the ball centered at p+q
2 and passing through the furthest point m contains all

the points of P. The diameter ∆max of that ball is given by

∆2
max = 4−→mp.−→mq + ∆2

where ∆ = δ(p, q). Therefore, when ∆2
max ≤ (∆ + ε)2, we have found an ε-

approximation of the diameter and we stop.
Second, the intermediate step (Algorithm 3) checks if P(I) contains the end-

point of some potential maximal segment. Here the set Q has to be replaced by
P(I) \B

(
pI−1+qI−1

2 , ∆+ε
2

)
.

A better estimate than ∆ + ε of the upper bound ∆max is then obviously

2×max
q∈R

δ

(
pI−1 + qI−1

2
, q

)

8 Malandain and Boissonnat

with R = P(I) ∩
{

B

(
pI−1 + qI−1

2
,
∆ + ε

2

)
\B

(
pI−1 + qI−1

2
,
∆

2

)}
.

If Q is empty, we stop.
The exhaustive search over Q × P described in Algorithm 4 will possibly

update both ∆ and ∆max.

Required: ∆2 provided by algorithm 2,
Required: Q, ∆2

max and provided by modified algorithm 3
1: if Q 6= ∅ then // Exhaustive search with an endpoint in Q
2: for all points pi ∈ Q do
3: for all points pj ∈ P do
4: if δ2(pi, pj) > ∆2 then
5: ∆2 ← δ2(pi, pj)
6: if δ2(pi, pj) > ∆2

max then
7: ∆2

max ← δ2(pi, pj)
8: return ∆2 and ∆2

max

Algorithm 6: Modified exhaustive search over Q×P.

Finally, in Algorithm 5 (line 2), we will use ∆max instead of ∆ and update
both ∆2 and ∆2

max when necessary (lines 4-6).

7 Experiments

We conduct experiments with different point distributions in Rd:

Volume based distributions: in a cube, in a ball, and in sets of constant
width (only in 2D);

Surface based distributions: on a sphere, and on ellipsoids;

and with real inputs 3 The interested reader will find detailed results and dis-
cussion in [MB01] for our own method.

8 Comparison with Har-Peled’s method

The most comparable approach to ours is the one developed very recently by
S. Har-Peled [Har01]. Although it is similar in spirit, Har-Peled’s algorithm is
quite different from ours. We first summarize his method and then compare ex-
perimentally the two methods. Since the two methods have different advantages
and drawbacks, it is worth combining them, leading to good hybrid algorithms
with more stable performances.

3 Large Geometric Models Archive, http://www.cs.gatech.edu/projects/large models/,
Georgia Institute of Technology.

Computing the Diameter of a Point Set 9

In his approach, Har-Peled recursively computes pairs of boxes (each enclos-
ing a subset of the points). He throws away pairs that cannot contain a maximal
segment.

To avoid maintaining too many pairs of boxes, Har-Peled does not decompose
a pair of boxes if both contain less than nmin points (initially set to 40 in Har-
Peled’s implementation). Instead, he computes the diameter between the two
corresponding subsets using the brute-force method. Moreover, if the number of
pairs of boxes becomes too large during the computation (which may be due to
a large number of points or to the high dimension of the embedding space), nmin

can be doubled: however, doubling nmin increases the computing time.
Differently from our method, Har-Peled’s algorithm depends on the coordi-

nate axes (see table 2).
We provide an experimental comparison of both approaches, using the orig-

inal Har-Peled’s implementation4 which only works for 3D inputs. In order to
be able to deal with inputs in higher dimensions, we have re-implemented his
algorithm, following the same choices that were made in the original implemen-
tation.

8.1 Hybrid methods

It should be first notice that both methods can easily be modified to compute
the diameter between two sets, i.e. the segment of maximal length with one
endpoint in the first set and the other in the second set.

Both methods have quadratic parts. Ours with the final computation over
Q × P, and Har-Peled’s one when computing the diameter for a pair of small
boxes.

We have implemented two hybrid methods that combines Har-Peled’s method
and ours. We first modified Har-Peled’s algorithm by replacing each call to the
brute-force algorithm by a call to our algorithm. We also tested another hybrid
method where we modified our algorithm by replacing the final call to the brute-
force algorithm by a call to the first hybrid method. The two hybrid methods
can be tuned by setting several parameters. The experimental results presented
here have been obtained with the same values of the parameters.

The results show that the hybrid methods are never much worse than the
best method. Moreover, their performances are more stable and less sensitive to
the point distribution.

9 Discussion

Our method is based on the computation of double normals. Computing a double
normal appears to be extremely fast under any practical circumstances and in
any dimension (despite the quadratic lower bound of lemma 5). Moreover, the
reported double normal is very often the true maximal segment. This is not too

4 Available at http://www.uiuc.edu/~sariel/papers/00/diameters/diam prog.html.

10 Malandain and Boissonnat

Running time in seconds
3D Volume Based distributions

Inputs Cube Cube Cube Ball Ball Ball
Points 10,000 100,000 1,000,000 10,000 100,000 200,000

our method 0.01 0.19 0.53 0.04 0.79 1.20
HPM - original 0.01 0.18 1.96 0.31 18.16 53.88
HPM - our implementation 0.02 0.18 1.92 0.20 5.12 20.57
hybrid method #1 0.01 0.18 2.00 0.13 2.25 5.26
hybrid method #2 0.02 0.35 1.50 0.07 1.05 3.29

Table 1. CPU times for 3D volume based synthetic distributions.

Running time in seconds
3D Surface Based distributions

Inputs Ellipsoid Ellipsoid Ellipsoid Sphere Sphere Sphere
(regular) (rotated)

Points 1,000,000 1,000,000 1,000,000 10,000 100,000 200,000

our method 1.34 2.02 1.61 1.08 358.21 not computed

HPM - original 1.78 3.84 37.70 2.13 95.49 328.90
HPM - our implementation 1.81 3.51 23.88 0.63 39.97 166.26
hybrid method #1 1.82 3.38 6.38 0.33 6.99 16.75
hybrid method #2 2.30 3.10 1.79 0.44 8.58 19.75

Table 2. CPU times for 3D surface based synthetic distributions. The points sets in
the second and the third columns are identical up to a 3D rotation.

much surprising since, on a generic surface, the number of double normals is finite
and small. In any case, having a double normal provides a

√
3-approximation of

the diameter in any dimensions.

However, even if the reported double normal is a maximal segment s, it may
be costly to verify that this is indeed the case. A favourable situation is when the
point set is contained in the ball B of diameter s. The bad situation occurs when
there are many points in set P \B since we verify that none of these points is the
endpoint of a maximal segment. This case occurs with sets of constant width but
also with some real models: e.g. bunny, dragon and buddha (see tables [MB01].

For these three cases, the first double normal found by the algorithm was
the maximal segment. The second found double normal was shorter. After Al-
gorithm 3, Q contains respectively 1086, 2117, and 2659 points for the bunny,
dragon, and buddha models. For both the bunny and the buddha, the second
double normal was very close to the first one, then very few points were removed
from Q (respectively 7 and 36), and most of the points of Q will undergo the
final quadratic search. This explains why there is a so little difference between
our method with and without the reduction of Q for these two models [MB01].

Computing the Diameter of a Point Set 11

Running time in seconds

Inputs Bunny Hand Dragon Buddha Blade
Points 35,947 327,323 437,645 543,652 882,954

our method 5.73 0.29 8.51 172.91 0.49
Har-Peled’s method (HPM) - original 0.08 0.45 0.90 0.72 1.00
HPM - our implementation 0.07 0.43 0.89 0.69 0.94
hybrid method #1 0.07 0.41 0.86 0.67 0.90
hybrid method #2 0.10 0.32 1.37 1.09 0.50

Table 3. CPU times on real inputs.

For the dragon model, the second double normal is quite different from the
first one, hence the noticeable improvement of our method with the reduction
of Q.

Har-Peled’s method does not suffer from this drawback. However, it depends
on the coordinate axes (since the boxes are aligned with the axes) and on the
dimension d of the embedding space.

The first hybrid method compensates for the quadratic search between small
boxes (boxes containing less than nmin points), i.e. one major drawback of original
Har-Peled’s method.

The second hybrid method compensates for the major drawback of our
method, by building pairs of boxes from Q×P.

References

[AGR94] N. M. Amato, M. T. Goodrich, and E. A. Ramos. Parallel algorithms for
higher-dimensional convex hulls. In Proc. 35th Annu. IEEE Sympos. Found.
Comput. Sci., pages 683–694, 1994.

[Bes98] S. Bespamyatnikh. An efficient algorithm for the three-dimensional diameter
problem. In Proc. 9th Annu. ACM-SIAM Symp. Discrete Algorithms, pages
137–146, 1998.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in compu-
tational geometry. Discrete Comput. Geom., 4:387–421, 1989.

[Har01] S. Har-Peled. A practical approach for computing the diameter of a point-
set. In Symposium on Computational Geometry (SOCG’2001), pages 177–186,
2001.

[MB01] Grégoire Malandain and Jean-Daniel Boissonnat. Computing the diameter of
a point set. Research report RR-4233, INRIA, Sophia-Antipolis, July 2001.
http://www.inria.fr/rrrt/rr-4233.html.

[PS90] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.
Springer Verlag, October 1990. 3rd edition.

[Ram97a] E. Ramos. Construction of 1-d lower envelopes and applications. In Proc.
13th Annu. ACM Sympos. Comput. Geom., pages 57–66, 1997.

[Ram97b] E. Ramos. Intersection of unit-balls and diameter of a point set in R3.
Comput. Geom. Theory Application, 8:57–65, 1997.

12 Malandain and Boissonnat

[Ram00] Edgar A. Ramos. Deterministic algorithms for 3-D diameter and some 2-D
lower envelopes. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages
290–299, 2000.

Running time in seconds
volume distributions surface distributions

Inputs Cube Ball Regular Ellipsoid Ellipsoid Sphere
Points 100,000 100,000 100,000 100,000 100,000

Dimension = 6

our method 0.31 36.95 0.11 0.33 not computed

HPM - our implementation 0.85 466.44 0.97 0.87 465.08
hybrid method #1 0.67 77.20 0.79 0.73 118.06
hybrid method #2 0.66 63.31 0.19 0.65 142.38

Dimension = 9

our method 0.89 128.02 0.51 0.52 not computed

HPM - our implementation 139.23 568.99 264.96 590.14 569.08
hybrid method #1 17.42 135.90 44.54 67.27 232.39
hybrid method #2 1.21 121.91 1.25 16.03 302.86

Dimension = 12

our method 3.87 445.03 1.08 7.88 not computed

HPM - our implementation 629.37 651.56 648.88 650.98 647.74
hybrid method #1 44.45 354.14 58.53 56.11 511.41
hybrid method #2 19.72 380.41 13.00 24.62 745.60

Dimension = 15

our method 10.99 798.66 7.26 20.31 not computed

HPM - our implementation 734.69 735.26 731.76 733.70 737.51
hybrid method #1 64.49 610.70 69.11 90.35 701.18
hybrid method #2 44.37 782.20 21.30 70.41 1120.57

Table 4. CPU times for synthetic distributions in higher dimensions.

