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Abstract. In this paper, we propose an original tree matching algorithm
for intra-patient hepatic vascular system registration. The vascular sys-
tems are segmented from CT-Scan images acquired at different time,
and then modeled as trees. The goal of this algorithm is to find common
bifurcations (nodes) and vessels (edges) in both trees.
Starting from the tree root, edges and nodes are iteratively matched.
The algorithm works on a set of matching hypotheses which is updated
to keep best matches. It is robust against topological modification, as
the segmentation process can fail to detect some branches.
Finally, this algorithm is validated on the Visible Human with synthetic
deformations thanks to the simulator prototype developed at the INRIA
which provides realistic deformations for liver and its vascular network.

1. Introduction

1.1. Motivations

Matching and registration are fields in medical imaging with a great impact on
visualization, diagnosis and surgery planning. In this paper, we focus on intra-
patient follow-up of the hepatic vascular system between two acquisitions. We
propose an automatic method which allows to match vessels and bifurcations.
This approach is motivated by the fact that the liver is a very high deformable
organ. The most reliable landmarks to estimate deformations sustained by the
liver are provided by its vascular network.

The principal application of this work is to estimate the deformation of liver
between two different times and to make a follow-up of tumors (see previous
work [2]).

1.2. Previous works

Related works propose algorithms to match and/or register vascular systems
(brain, liver and, in a similar manner, lung airway). Generally, veins are modeled
as graphs computed from segmented images and skeletons [8]. Some authors use
some tree structure notions in their algorithms to register a tree with an image [1]
or two trees [3]. Other approaches really match structures (nodes and vessels),



but use general graph matching methods [9, 4, 5] or too specific methods like
subtree isomorphism [7]. To summarize, the vascular tree matching problem is
more specific than graph matching because the structure is simpler. On the other
hand, it cannot be considered as a subtree isomorphism problem because of the
segmentation problems. As a matter of fact, the segmentation process can miss
some branches. This implies a (virtual) pruning on both trees, and thus an edge
in a tree could be represented by several successive edges on the other tree.

In our previous work [2], vascular systems are modeled as a tree and then
graph vertices have been matched together without taking into account possible
segmentation errors. The previous algorithm works well on most branches but
suffers from a lack of robustness in complex (but real) cases.

1.3. Proposal

The new algorithm proposed in this paper manages a matching hypotheses graph
(MHG) where each matching hypothesis is associated with a cost. The MHG is
updated as the matched branches set grow. This global approach allows us to find
the best match (which minimizes a cost function) and not only a local solution.

The remainder of this paper is organized as follows. The first part presents
the tree matching. We describe the generation of hypotheses and their associated
cost functions. We explain how we update the MHG by keeping the best potential
solutions.

The second part shows results and the algorithm’s efficiency. We explain the
validation protocol and we discuss tests for virtual and real patient. We finish
with a discussion on future possible improvements.

2. Tree matching

The proposed algorithm is a tree matching. Indeed, trees are a representation of
skeletons computed from segmented vascular systems. The orientation symbol-
izes blood circulation flow. Nodes represent bifurcations and edges correspond
to vessels between two bifurcations. Vessels has some geometric attributes: 3D
positions, radius, vessel path.

Our goal is to find common bifurcations in both trees. Trees represent the
same vascular system. However, their topology differ due to segmentation errors
as well as 3D positions due to deformations applied on them. Furthermore, we
assume that the tree roots are known (detection of vascular system entrance)
and that the tree deformations are small (standard case).

In the next sections, we explain this tree matching. After introducing some
notations, we see the framework used to generate all matching hypotheses. More
specifically, we detail the two steps of the algorithm. Then, we focus on the
selection of the best matching hypothesis.



2.1. Notations

We work on a tree noted T = (V,E, r) where V represents the set of vertices,
E ⊂ V ×V the set of edges and r the root. For a node u in a tree T , T (u) denotes
the subtree of T induced from u. For a vertex v, sons(v) denotes the set of their
child vertices, and father(v) its father vertex. For a vertex v, out(v) denotes the
set of out-edges of v, and in(v) its in-edge. For an oriented edge e = (v, u), we
define src(e) = v and tgt(e) = u. For two vertices v, w ∈ V , P (v, w) is the unique
path in T linking v to w. A path is a subtree of T . Let e an edge and its target
vertex v, and let DVL(e) = {u, ∀u ∈ vertices of T (v), ‖P (v, u)‖ ≤ L} denote the
descendant vertex set composed of L-first depth level vertices in subtree induced
from e. Let a vertex v, T+(v) denotes the subtree T (v) where father(v) is added
to vertex set and in(v) to the edge set.

We introduce also some notations on functions. Let A and B two set with
same size. Let BA,B the bijection class from A to B. Let Ck

A,B the function class
which defines a subset of k elements of A and subset of k elements of B. If
h ∈ Ck

A,B,then h(A) and h(B) denotes these subsets.

2.2. Framework of the algorithm

Our algorithm searches for the best tree matching between path of T1 = (V1, E1, r1)
and T2 = (V2, E2, r2) starting from roots (r1 match with r2). This algorithm pro-
cess with a depth first search on T1 and T2. Two successive steps are repeated
during the process and different hypotheses are studied (see figure 1): the first
step determines the best out-edge matching set from a vertex. The second step
determines the next best vertex matching in each out-edge subtree.

As the number of possible solutions is too large, some “bad” hypotheses are
eliminated . The difficulty with this approach is the choice of best match at each
step . This algorithm builds a research tree representing all possible matches
where only the most probable configurations are studied.

2.3. Step I: Out-edge matching set hypothesis

Assumption:

Let v1 and w1 (respectively v2 and w2) be two vertices of V1 (respectively
V2). P(w1, v1, w2, v2) denotes a path matching between P (w1, v1) and P (w2, v2).
Actually, we assume that v1 and v2 (respectively w1 and w2) represent the same
bifurcation in a vascular system. At this step, T1(v1) and T2(v2) are not yet
matched.

Generation:

First, to continue the matching process between T1(v1) and T2(v2), the best out-
edge matches between out(v1) and out(v2) have to be determined (figure 2). Let
O1 = out(v1) and O2 = out(v2). An out-edge matching set hypothesis is noted
He(v1, v2). An hypothesis is represented by an out-edge matching set Ef(v1, v2)
which characterizes a match between k elements of O1 and O2. Ef (v1, v2) =



Fig. 1. This figure shows the successive steps of tree matching process and hypotheses
generation.

{(e, f(e)), ∀e ∈ h(O1)} where f ∈ Bh(O1),h(O2) and h ∈ Ck
O1,O2

. Indirectly, this
out-edge matching set assumes that some out-edges ofO1 (respectivelyO2) noted
h(O1)

c (respectively h(O2)
c) have no association. Thus, some subtrees have no

match in the other graph.

Let φ(v,E) = {T+(u), ∀(v, u) ∈ E} the subtree induced by a vertex and a
subset of its out-edges. φ(v1, h(O1)

c) represents subtrees starting from v1 that
have no match.

If we assume that |O1| ≤ |O2|, the possible hypotheses are given by:

He(v1, v2) = {(Ef (v1, v2), φ(v1, h(O1)
c), φ(v2, h(O2)

c)} ,
∀k ∈ [0, |O1|], ∀h ∈ Ck

O1,O2
, ∀f ∈ Bh(O1),h(O2)

(1)

Combinatory:

When this association rule is respected, all out-edge matching sets can be
created. Let k ∈ [0, |O1|], the number of possible function h which choices
two subsets with k elements in O1 and O2 is |Ck

O1,O2
| = Ck

|O1|
× Ck

|O2|
. More-

over, the number of possible bijections between two subsets with k elements
is |Bh(O1),h(O2)| = k!.Thus, the number of out-edge matching set hypotheses is

|He(v1, v2)| =
∑Nmin

k=0 k!Ck
|O1|

Ck
|O2|

where Nmin = min(|O1|, |O2|).



Fig. 2. The figure shows the creation of out-edge matching set hypotheses from a ver-
tex matching. The left illustration resumes previous hypothesis. Other show 2 possible
solutions where an out-edge matching set is chosen for each solution. Hypotheses sup-
pose that few out-edges have no their equivalent in other tree and thus that the subtree
correspondent is not match.

2.4. Step II: Path matching hypothesis

Supposition:

An out-edge matching, noted E i
f (v1, v2) = (e1, e2), assumes that an edge e1 ∈

O1 and an edge e2 ∈ O2 match (represent the same start vessel). This step
purpose consist in finding the next common bifurcation in subtrees T1(tgt(e1))
and T2(tgt(e2)) closest to v1 and v2 then we restart at step I. Due to segmentation
defects, tgt(e1) and tgt(e2) not necessarily represent the same bifurcation. For
this fact, we search a vertex matching in subtrees and not only between tgt(e1)
and tgt(e2) (Fig. 3).

Generation:

The research of next vertex matching is restricted on the L first level of subtrees
T1(tgt(e1)) and T2(tgt(e2)). Thus, we search the best vertex matching between
DVL(e1) and DVL(e2).

Now, Let (w1, w2) a vertex matching with w1 ∈ DVL(e1) and w2 ∈ DVL(e2).
w1 are not necessary equal to tgt(e1) and this vertex matching imply a path
matching P(v1, w1, v2, w2) = (P (v1, w1), P (v2, w2)). This match also imply that
some subtrees starting from P (v1, w1) are not matched. We note this forest
of no matching subtrees as ψ(v, w) = {T+(u), ∀u ∈ sons(k), ∀k ∈ VP , T+(u) ∩
P (v, w) = {k}} where VP = vertices of (P (v, w))/{v, w}. The set of possible
path matching is defined as:

Hv(e1, e2) = (P(v1, w1, v2, w2), ψ(v1, w1), ψ(v2, w2)) ,
∀w1 ∈ DVL(e1), ∀w2 ∈ DVL(e2)

with v1 = src(e1) and v2 = src(e2)
(2)

Combinatory:

Many path matches can be created. Thus, if we assume that T1(tgt(e1)) and
T2(tgt(e2)) are complete on the L-first level and if in each bifurcation there



Fig. 3. Figure shows the creation of path matching hypotheses from an out-edge match-
ing. Three solutions are illustrated.

are two out-edges, the number of path matching hypotheses is |Hv(e1, e2)| =∑L

k=0 2k ×
∑L

k=0 2k = (2L+1 − 1)2

2.5. Hypotheses selection

In the previous sections, we have seen how to generate all matching hypotheses.
However, all possible tree matchings can not be explored due to huge combi-
natory and only the best hypotheses must be kept. The matching criterion is
computed on the current match and only best solutions are kept to explore sub-
graphs. In fact, we want to minimize a global cost function (sum of local criteria)
and discard temporary solutions with high cost. Nevertheless, we cannot accu-
rately compare the same matchings between hypotheses. We have introduced
a weight for hypotheses which represents the tree area already processed. It is
used to compute a relative cost and thus to compare hypotheses.

In this manner, the n best out-edge matching set hypotheses Hei must be
selected for the step I and the m best path matching hypotheses Hvi for step II.

The local cost functions are computed for each hypothesis, and are used to
distinguish two hypotheses and keep the best choices.

cost(Hei(v1, v2)) =
∑N1

i=1 cost(E
i
f (v1, v2)) +

∑N2

i=1 cost(φ
i(v1, h(O1)

c)) +∑N3

i=1 cost(φ
i(v2, h(O2)

c))

cost(Hvi(e1, e2)) = cost(P(v1, w1, v2, w2)) +
∑N1

i=1 cost(ψ
i(v1, w1)) +∑N2

i=1 cost(ψ
i(v2, w2))

(3)

In these equations, we can observe three types of cost: a matching cost be-
tween two out-edges, a cost between two paths and a cost for subtrees which are
no matched. In next sections, we detail each costs.

Out Edge Matching Cost:

To simplify notation, we note an out-edge matching cost cost(E i
f (v1, v2)) =



oemc(e1, e2). Remember that an edge e represents a vessel between two bifur-
cations. In the following expression costs, e(t) is the 3D parametric curve repre-
sentation of the vessel, r(t) represents the vessel’s radius along the curve and l
is the curve’s length. With oemc, we compare edge orientation and edge radius.

oemc(e1, e2) =

∫ lmin

0

‖e1(t) − e2(t) + e1(0) − e2(0)‖2dt +

γ

∫ lmin

0

‖1 −
r1(t)

r2(t)
‖2dt

(4)

Path Matching Cost:

P (v1, w1) denotes a path composed of successive edges (vessels). However to
simplify notations, we note P (v1, w1) = e1 where e1 represents a virtual edge.
Notations become cost(P(v1, v2, w1, w2)) = pmc(e1, e2). In this cost, weights
are added to favor path with same length and short paths, as there are many
common nodes in both studied subtrees.

pmc(e1, e2) = (1 + α
lmax

lmin

+ β
l1 + l2

2
) × (γ

∫ 1

0

‖1 −
r1(t× l1)

r2(t× l2)
‖2dt +

∫ 1

0

‖e1(t× l1) − e2(t× l2) + e1(0) − e2(0)‖2dt)
(5)

No Matching Tree Cost:

We have previously considered a cost for no inclusion subtree in the matching
solution. We have noted these costs cost(φi(u,E)) and cost(ψj(u, v)). These
subtrees T+(w) are defined by a vertex w. To simplify notations, we replace the
previous expression cost by nmtc(w). This cost is very important and the choice
for weighs is difficult. If this cost is too high then all nodes are matched and
conversely, if it is too low, we have no selected match.

nmtc(v) = (1 + δ
|T (v)|

|T |
) × pmc(e, g(e)) +

|sons(v)|∑
k=1

nmtc(wk)

with: g(e) = e but with r(t) = Rmin minimum radius to vessel segmentation
(6)

3. Experiments and validation

3.1. Validation protocol on virtual patients

To test and validate our algorithm, we have worked on a liver and its hepatic
vascular system. To work on a complex vascular system (280 nodes), the Visible
Man (cf. The Visible Human Project of the NLM) has been segmented.



To simulate deformations, we have used the minimally invasive hepatic surgery
simulator prototype (Fig. 4) developed at the INRIA [6]. The goal of this simula-
tor is to provide a realistic training framework to learn laparoscopic gestures. For
this paper, we used it only to simulate deformations of the liver and its vascu-
lar system. This simulator uses complex biomechanical models, based on linear
elasticity and finite element theory which include anisotropic deformations.

To simulate segmentation errors on our phantom, we have pruned random
tree branches. It’s more probable to loose small vessels than to loose large vessels.

Fig. 4. [Left] Surgery simulator prototype developed by INRIA. [Right] Modeling a
contact between a surgical tool and the liver soft tissue model.

3.2. Results on a virtual patient

The results on a virtual patient are good (figure 6) and fast (about 4 minutes to
register 380 nodes on 1GHz PC). We have realized 10 different deformations on
the Visible Man’s liver. For each deformation, 50 random prunings are computed
to lost approximately 20% of surface branches in both trees (figure 5). We match

Fig. 5. [Left] Example of small deformations realized with the simulator. [Right]
Example of a pruning representing 20% of the surface tree.

90% of all common nodes. The most part of matching errors (incorrect node
correspondences and lost branches) is localized on terminal edges. On these



nodes, the algorithm suffers from a lack of information (no subtree, dense node
concentrations, small vessels). This make the matching task harder.

Fig. 6. [Left] Deformation and pruning on the Visible Man computed by the INRIA
simulator. [Right] Figure shows result of our oriented tree matching, match are rep-
resented by arrows and represent 90% of all nodes.

Fig. 7. [Left] Real patient where the vascular system has been segmented between
two acquisitions. [Right] Figure shows result of our oriented tree matching, match are
represented by arrows and represent 95% of all nodes.

3.3. Results on a real patient

We have tested our algorithm on a real patient between two acquisitions during
his therapy. The trees are simpler for our virtual patient and cost weights have
been modified in order to get better matches. However, the result is good and
promising for the next validation on a database of real patients: we have matched
95% of all common nodes (figure 7).

4. Conclusions and future work

We have presented an original new method to match vascular system between
two acquisitions with a tree matching. This method is specific, fast and robust
on a complex vascular system. The early stage of validation is very encouraging:



most nodes are matched correctly. Thanks to the virtual database generated by
the INRIA simulator we could test several configurations. Nevertheless, a lot of
work needs to be done.

Presently, we concentrate our efforts on the design of cost function and its
relative cost weights to get an algorithm more robust on large deformations. We
will soon propose to apply the estimated deformations on a subtree of matched
nodes to superimpose them.

In parallel, we will validate our works on a real patients database with the
collaboration of Strasbourg hospital and also propose a new tool for automatic
diagnosis of tumors evolution in the liver. The graph matching algorithm could
ease the vessel segmentation process by detecting missed branches on the other
graph.
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