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Reconstruction of Coronary Arteries from
a Single Rotational X-Ray Projection Sequence

Christophe Blondel, Grégoire Malandain, Régis Vaillant and Nicholas Ayache

Abstract— Cardiovascular diseases remain the primary cause
of death in developed countries. In most cases, exploration of
possibly underlying coronary artery pathologies is performed
using X-ray coronary angiography. Current clinical routine in
coronary angiography is directly conducted in 2-D projection
images from several static viewing angles. However, for diagnosis
and treatment purposes, coronary artery reconstruction is highly
suitable. The purpose of this study is to provide physicians
with a 3-D model of coronary arteries, e.g. for absolute three-
dimensional measures for lesion assessment, instead of direct
projective measures deduced from the images, which are highly
dependent on the viewing angle. In this article, we propose a
novel method to reconstruct coronary arteries from one single
rotational X-ray projection sequence. As a side result, we also
obtain an estimation of the coronary artery motion. Our method
consists of 3 main consecutive steps: (1) 3-D reconstruction
of coronary artery centerlines, including respiratory motion
compensation, (2) coronary artery 4-D motion computation,
and (3) 3-D tomographic reconstruction of coronary arteries,
involving compensation for respiratory and cardiac motions. We
present some experiments on clinical datasets, and the feasibility
of a true 3-D Quantitative Coronary Analysis is demonstrated.

Index Terms— Angiocardiography, Coronarography, Image
Motion Analysis, Image Reconstruction, Tomography

I. INTRODUCTION

ACcording to the World Health Organization [1, page
48], coronary heart disease is the major cause of death

worldwide. In particular, coronary artery lesions are involved
in most cases of heart failure and are thus the subject of
medical imaging examinations when a pathology is suspected.

Currently, clinical routine relies on direct analysis of X-
ray coronary angiographies acquired from several static ac-
quisitions from distinct viewing angles. It thus produces
2-D measures (e.g. QCA – Quantitative Coronary Analysis)
which suffer from well known viewing angle dependence,
magnification factor, and superimposition effects. However, to
achieve adequate therapeutic orientation, 3-D measures such
as absolute vessel cross-sectional area would be of interest as
they can be used to specify diameter and length of angioplasty
balloons or stents to be used. In this context, three-dimensional
reconstruction of coronary arteries would be of great clin-
ical and diagnostic interest as it would provide physicians
with 3-D absolute measures. Our purpose is thus to obtain
tomographic reconstructions of coronary arteries, in a CT-like
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manner, from the most widely available imaging modality for
coronary artery examination, X-ray coronary angiography.

Such 3-D information may be obtained by biplane angiog-
raphy, since this modality provides two (almost) synchronized
projections of the coronary arteries [2]–[4], or by selecting
two views from two single-plane angiograms [5]. However,
using only two projections is not sufficient to provide a precise
measure of cross-section areas. Reconstructing the coronary
arteries still remains a very challenging task, despite recent
advances in medical imaging hardware and methodologies. In
X-ray coronary angiography, the introduction of the digital
flat panel [6] combined with a rotational acquisition mode [7]
allowed for the proposal of new techniques in coronary artery
modeling. The number of projections used for reconstruction
can be increased by selecting the ones that correspond to the
same cardiac time in a rotational acquisition, as in [8], [9], but
most of the acquired images are discarded in such a procedure.
By selecting projections close to a cardiac time, the number of
used projections increases [10] but reconstruction artifacts may
appear due to motion, and a significant number of acquired
images are still discarded.

The main two difficulties that arise for the tomographic
reconstruction of coronary arteries from angiograms are indeed
the respiratory and cardiac motions that are visible in the X-
ray projection sequence. In this article, we present a study
that demonstrates the feasibility of the reconstruction of a 3-
D image of the coronary arteries from a single rotational X-ray
projection sequence, without requiring any additional measure
(e.g. ECG).

Contrary to iterative methods that alternate between mo-
tion estimation and tomographic reconstruction (e.g. [11]),
the proposed method is direct and consists of three major
steps (see Fig. 1): (1) static 3-D reconstruction of coronary
artery centerlines at one given cardiac phase, (2) estimation
of 4-D motion from resulting set of 3-D lines, and (3) 3-
D tomographic reconstruction of coronary arteries performed
by integrating cardiac motion compensation. This last step is
only sketched here, details can be found in [12].

The remainder of this article is organized as follows. In
Section II, we describe the rotational acquisition protocol that
was used and the datasets we were provided with. Sections III,
IV, and V detail, respectively, the 3-D centerlines reconstruc-
tion (which is coupled with respiratory motion correction), the
coronary artery motion estimation, and finally the tomographic
reconstruction with motion compensation. Experiments on
patient datasets are presented in Section VI, while the next
Section VII discusses the proposed method and some potential
clinical applications. Section VIII gives some perspectives.
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Fig. 1. Overview of the proposed method. The reference images (images
that are synchronous w.r.t. the cardiac cycle) are identified in a pre-processing
stage, and some data, at the extremities of the temporal sequence, are
discarded. These reference images are used to reconstruct a static 3-D
centerlines model at the reference time. This model and all the data allow the
calculation of a 4-D deformation field that estimates the cyclic heart motion.
This 4-D motion and all the data (from ref. 1 to ref. n) are finally used
to provide the tomographic reconstruction of a 3-D image of the coronary
arteries.

II. DATA AND PRE-PROCESSING

A. Data

Images were acquired on an Innova 2000 system, from
General Electric HealthCare, which is equipped with a digital
flat panel detector. The gantry performs a rotation while
acquiring the images [13]. The gantry motion is character-
ized by constant SID (Source Intensifier Distance) value,
constant CRA/CAU (Cranio/Caudal) angle value, and varying
LAO/RAO (Left/Right Anterior Oblique) angle. Thus, the ro-
tation occurs in patient axial plane, with maximum LAO/RAO
angle amplitude of 200◦. Top rotation speed is 40◦ s−1,
leading from 3 to 5 seconds long acquisitions. Angiograph
acquisition frame rate is 30 Hz. Thus, this protocol provides
us with the imaging of 3 to 7 cardiac cycles. Images acquired
at the same cardiac phase are approximately separated by a
30◦ angular shift, depending on patient heart rate.

For each patient, we have a single rotational sequence
consisting of Õ images In with spatial resolution 768 × 768
pixels and pixel size of 0.2 mm. We resampled these images
into a 512×512 lattice for computational purposes. In addition,
a precalibration step allowed to estimate the geometrical
acquisition parameters that are summarized in Õ projection
matrix applications Mn : R

3 −→ R
2, the matrix Mn being

associated to image In.

B. Preprocessing

A prerequisite for our method is the identification of a
pseudo-cardiac time (or observed cardiac phase) for all images
in the sequence. This information is computed solely from the

image sequence information, without any external measures
such as ECG signal. The basic idea is the following: along
the cardiac cycle, systole is characterized by myocardium
contraction and a global top-to-bottom motion of the coronary
tree in the axial direction, while diastole is characterized by
myocardium relaxation and a global bottom-to-top motion of
the coronary tree in the axial direction. In addition to the
cardiac motion, the coronary arteries are also subject to the
respiratory motion that consists mainly in a vertical translation
in the axial direction, but of much lower frequency than the
cardiac one. We then assumed that the high frequency part of
the global vertical motion of coronary arteries in the image
sequence is directly related to the cardiac phase.

To identify the vertical component of motion in the image
sequence, we first compute for all images In(x, y) the vector
of horizontal line integrals Hn(y) =

∑

x Īn(x, y) of an
associated local contrast image Īn(x, y) (obtained by applying
a morphological top-hat operator [14] on the initial image In)
over the horizontal coordinate. The vertical motion between
two successive frames is estimated by identifying the shift
along the vertical axis that minimizes the sum of squared dif-
ferences between the corresponding Hn. The process is carried
out over the complete sequence and leads to a nearly periodic
signal over time, whose high frequency characterizes the heart
beat. Quasi synchronous images can be easily identified by
either selecting image indices at local maxima of the integral
signal, located at end-diastole, or selecting image indices at
local minima of the integral signal, located at end-systole [41].
In practice, quasi synchronous images acquired at end-diastole
are preferred because they correspond to the most relaxed
and stable state along heart motion, and consequently reduces
superimpositions and potential asynchronism. The selected
quasi synchronous images, which correspond to the same
cardiac phase, are called reference images. The set of reference
images will be denoted by R and its cardinal by R̃.

Using reference image indices, we assign to each frame a
normalized time that encodes the observed cardiac phase, rela-
tively to cardiac phase in reference images. Normalized times
belong to the [0, 1[ interval. The computation scheme is the
following: two successive reference images are respectively
assigned to normalized time t = 0 and normalized time t = 1,
then normalized times of intermediate images are given by
linear interpolation.

Time normalization is adapted to cardiac period changes
during the acquisition, which is often the case, as contrast
agent injection usually accelerates heart motion. Indeed, we
do not assume that the number of acquired images between
two references times is fixed for a given sequence. However,
images before the first and after the last reference images
can not be assigned a normalized time. In the following, we
discard these images from the sequence to only consider the Ñ
images, Ñ ≤ Õ, between the first and last references images.
The normalized time of image In is denoted tn.

III. 3-D CENTERLINES RECONSTRUCTION

The first stage of our method is the reconstruction of 3-
D centerlines from the reference images, corresponding to
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Fig. 2. Filter response computation scheme. Filter response at pixel p is
computed by calculating an edge response on both sides of the potential
rectilinear structure, at distance σ from pixel p in direction dσ orthogonal to
the structure direction Dσ .

normalized time t = 0. These images are selected from one
single sequence and acquired at the same cardiac phase but
from distinct viewing angles. Thus, they are supposed to be
uncorrupted by cardiac motion, but are subject to respiratory
motion. The extraction of the coronary artery centerline in 2-D
images and their 3-D reconstruction, including the respiratory
motion compensation, is detailed below.

A. Vessel enhancement

Our first prerequisite is to enhance the vessels in the
angiograms. We used the approach first proposed in [15], [16]
and extended in [17]. It relies on a multiscale Hessian-based
filtering that enhances curvilinear structures.

For a given scale σ, an original image I is first convoluted
with a 2-D Gaussian Gσ with standard deviation σ. The
convoluted image is denoted by Iσ = I ∗ Gσ . The Hessian
matrix of the convoluted image is computed by:

HIσ =

(

∂2Iσ
∂x2

∂2Iσ
∂y∂x

∂2Iσ
∂x∂y

∂2Iσ
∂y2

)

(1)

where the second derivatives of Iσ are calculated by convolut-
ing I with the corresponding second derivatives of Gσ . The
eigenvalues and eigenvectors of the Hessian allow to charac-
terize the local structures [18]. It follows that the direction Dσ

of a potential locally rectilinear structure, i.e. a vessel, can be
estimated by tan(2Dσ) = 2 ∂

2Iσ
∂x∂y/

(

∂2Iσ
∂x2
− ∂2Iσ

∂y2

)

.
Let dσ be an unitary vector orthogonal to direction Dσ . A

vessel point should exhibit strong edge information (the vessel
borders) at some distance in both directions dσ and −dσ . We
evaluate this edge information as the derivative of Iσ with
respect to dσ at a distance σ, and we end up with a filter
designed for rectilinear structures:

Rσ(p) = min {∇Iσ(p+σdσ).dσ,−∇Iσ(p−σdσ).dσ}. (2)

Figure 2 shows an illustration of the filter response com-
putation scheme. This filter enhances rectilinear structures
with width close to scale σ. Moreover, it also has maximum
response at vessel center. Since the observed vessels have
highly varying sizes, the previous computation is extended to
multiple scales and conducted for a set of scales Σ, adapted
for smallest to largest vessels. In pixels length unit, for 5122

spatial resolution images, we use Σ = {1, 2, 3, 4, 5, 6}. At

each point p, the best scale σ?(p) is selected according to the
maximum filter response: σ?(p) = argmax

σ∈Σ
Rσ(p).

To compare and normalize the filter responses across scales,
the concept of γ-derivatives was used [17], [19]. The direction
and the response associated with the best local scale are
collected into a multiscale direction D? and a multiscale filter
response map R?. This multiscale filter response R? can be
considered as a likelihood for pixels to belong to the projected
centerline of a coronary artery.

B. 2-D centerlines extraction

From the above computed multiscale responses, we now
build a set of 2-D curves that represent the coronary artery
centerlines. This will be done in three steps: subpixel local
directional maxima computation, hysteresis thresholding of
local directional maxima, and points linking.

1) Subpixel local directional maxima extraction: R? ex-
hibits higher intensities in the center of a rectilinear structure
than in the vicinity of its borders. A pixel p is then likely
to belong to the vessel centerline if R? is maximal at p
along a direction orthogonal to the vessel. Such a direction
is given by dσ?(p), so pixel p is a local directional maximum
if the following conditions hold: R?(p) > R?(p + dσ?) and
R?(p) > R?(p− dσ?).

A subpixel estimation of the detected local maxima is
achieved by fitting a quadric on points (p − dσ? , R

?(p −
dσ?)), (p,R?(p)), and (p + dσ? , R

?(p + dσ?)). After some
calculations, it turns out that this subpixel maximum p̂ is given
by

p̂ = p+
R?(p− dσ?)−R?(p+ dσ?)

2(R?(p+ dσ?) +R?(p− dσ?)− 2R?(p))
dσ? . (3)

The extracted set of points contains most of the vascular but
also many non vascular structures that have to be excluded.

2) Hysteresis thresholding: most of the irrelevant local
directional maxima that do not correspond to vascular struc-
tures are characterized by a low multiscale filter response
and the small size of the connected components they belong
to. Hysteresis thresholding is suited to discard them since it
offers the possibility to retain only the elements that match
both an intensity criterion and a criterion of size of the
connected components. Hysteresis thresholding requires both
a high and a low thresholds. We compute these thresholds as
quantiles of the cumulated histogram of the multiscale filter
response maps over the complete sequence. The low threshold
is set to a typical value of the multiscale filter response on
vessels, while the high threshold is set to a typical value
of the multiscale filter response on vessel centerlines. These
quantiles can be related to relative area respectively occupied
by vessels and vessel centerlines in the images. From our
experiments, we chose the 90th percentile for the low threshold
and the 98th percentile for the high threshold. In addition,
hysteresis thresholding allows to retain only sufficiently large
connected components. The minimal connected component
size was set to 5 pixels.
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Fig. 3. Epipolar constraint. The 3D point that projects at p in image I1 is located on the 3D line Lp (that joins p to S1). Consequently, its projection in
image I2 is located on the projection `p of the line Lp. With two images (left), there are many possible 3D points as intersections of `p with vessels in I2.
However, only one of them projects on a vessel in the additional image Ia (right). This allows to penalize spurious reconstructed 3D points.

3) Points linking: local directional maxima have been ex-
tracted point-wise, but vessels projected in images have a
connected structure. We recover this structure by linking points
that belong to the same component using the method described
in [20]. We denote by CI the set of the 2-D connected
centerlines extracted from image I .

C. Multi-ocular matching

Building correspondences between the centerlines of two
reference images, I1 and I2, that are from the same cardiac
phase but acquired from two distinct viewing angles, enables
the three-dimensional reconstruction of the coronary artery
centerlines by applying triangulation and epipolar constraints.

Most of the proposed approaches for 3-D reconstruction
of coronary artery centerlines rely on only two angiographic
views [21], typically obtained by biplane angiography. The
rotational acquisition allows to get between 3 and 7 reference
frames, depending on gantry rotation speed and on patient
heart rate. We propose to use all the available images to
perform a multi-ocular matching of the extracted centerlines
in reference images, as basically described in [22]. This is
achieved by optimizing a matching criterion detailed below.

1) Asymmetric matching: let us first consider the asym-
metric problem of matching a set of linked points, denoted by
C = (p1, . . . , pN ) ∈ CI1 , in a first image I1, with the extracted
centerline points in a second image I2.

. Problem formulation: As illustrated by Figure 3, a point p
in I1 is the projection of a 3-D point M located in
3-D line Lp, joining source position S1 to projection
position p. The projection of the 3-D line Lp in I2,
denoted `p, must contain the projection q of M in I2:
this is the epipolar constraint.
Unfortunately, the epipolar constraint does not generally
yield a single match in I2 for each p ∈ I1. Indeed, in
most cases, line `p intersects more that one centerline
in I2, resulting in a set of matching candidates in I2
(see Figure 3, left). Our experiments shows an average
of 5 matching candidates per point. Let Qi denote the
set of matching candidates in I2 for point pi in I1.
Building the correspondences for a set of linked points

(p1, . . . , pN ) of I1 consists then in choosing a set of
points {q1, . . . , qN} ∈ Q1 × · · · × QN .
To compare different matching configuration, we now
design a criterion to measure the quality of a given match-
ing hypothesis (pi, qi)i=1...N . This quality measure is
composed of an external energy term, involving reference
images information, and an internal energy term, favoring
intrinsically coherent matching configurations, that are
both detailed hereafter.

. External energy term: To disambiguate between the
matching candidates, the reference images other than I1
and I2 are used. This additional information is indeed
useful: among the several matching candidates given by
the epipolar constraint, only one will be coherent with
the additional views in most cases. As shown on the right
hand side of Figure 3, to each epipolar candidate corre-
sponds a 3-D point using reconstruction by triangulation,
whose projection in additional images is on a vessel only
for the correct correspondence.
A numerical criterion that reflects the relevance of a
reconstructed 3-D point is the value of the multiscale
filter response of its projection in the additional views.
Let Ia ∈ R \ {I1, I2} be such an additional view (from
the same cardiac phase than I1 and I2 by the definition of
R). To any given matching pair (p, q) corresponds a 3-D
reconstructed point Mpq , whose projection in additional
image Ia is m = MaMpq . We recall that R?

a is the
multiscale filter response map associated to the additional
image of index a. The external energy term measuring
matching pair (p, q) quality is defined by:

AMExt(p, q) =
1

R̃ − 2

∑

Ia∈R\{I1,I2}

R?
a (MaMpq) (4)

where R̃ stands for the number of reference images.
This criterion reaches high values for matching pairs that
are coherent with additional reference images.

. Internal energy term: the above criterion is convenient for
points, but does not take into account the intrinsic linked
structure of vessel centerlines. Indeed, a linked set of
points in image I1, that represents a detected centerline,
is more likely to project as a single connected component
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Fig. 4. Results of the dynamic programming based matching process. Centerlines in the first reference image are matched with centerlines in the second
reference image (images in top row) according to the information contained in the two additional views (last images in top row). Projection of the 3-
D reconstructed points is presented in all reference images (bottom row).

in other reference images than as disconnected pieces.
Exceptions may occur in case of superimposition or
defective centerlines extraction. This constraint is called
geometrical coherence.
Let (p1, q1) and (p2, q2) denote two matching pairs,
where p2 follows p1 in a set of linked points in the
extracted centerline in I1. We define the penalty for
two successive matching point pairs as a function of the
distance ‖q1q2‖:

AMInt((p1, q1), (p2, q2)) = ρ(‖q1q2‖) (5)

with ρ(d) =







0, if d ≤ dl
d−dl
dh−dl

, if dl < d < dh
1, else

. (6)

Thresholds dl and dh are chosen such that matched points
whose distance is below dl are not penalized, and such
that the ones whose distance is above dh are not over-
penalized since they may indicate a discontinuity in the
matching points sequence. Typically, dl = 2 pixels and
dh = 50 pixels for 5122 images.

. Matching criterion: Finally, the criterion measuring the
quality of a matching configuration (pi, qi)i=1...N is
chosen to be the weighted sum of the external energy
term for all points pairs and of the internal energy term
for all successive points pairs:

AM ((pi, qi)i=1...N ) = −
∑

i=1...N

AMExt(pi, qi)

+ α
∑

i=1...N−1

AMInt((pi, qi), (pi+1, qi+1)). (7)

The optimal set of correspondences, {q̂1, . . . , q̂N} =
argminAM((pi, qi)i=1...N ), is computed by a dynamic

programming based approach [23], which enables to
find the global optimum in predictable time and low
computational complexity. We denote by ˆAM(C, CI2) =
ˆAM((p1, . . . , pN ), CI2) = AM((pi, q̂i)) the minimal

value of the asymmetric matching criterion.

This optimization is repeated for all sets of linked points of
image I1. Figure 4 shows an example of results provided by
matching process. The sum of the above matching criterion
over all the sets of linked points in I1 is assumed to be
a quality measure of the 3-D reconstruction of all vessel
centerlines: it is defined by

∑

C∈CI1
ˆAM(C, CI2) and we call

it the global asymmetric matching criterion. Note that this
criterion depends on the projection matrices M (see Eq. (4)).

2) Matching symmetrization: the above described recon-
struction method is intrinsically asymmetric. Centerlines in
image I1 are matched with centerlines in image I2 according
to the remaining images, and the result depends on the choice
of both images I1 and I2 which is undesirable.

A symmetric reconstruction is then achieved by considering
all ordered pairs of images among the reference images. With
our notations, we end up considering R̃(R̃ − 1) pairs of
images. This yields a number of 3-D reconstructed centerlines.
The ones that are supposed to represent the same 3-D vessel
may be slightly shifted from each other, mainly because of the
respiratory motion, but also of an imperfect synchronization
of reference images and of geometrical reconstruction errors.

Figure 5 shows the result of this symmetric reconstruction.
The global matching criterion after symmetrization is merely
given by the sum of all global asymmetric matching criteria
over all ordered pairs of reference images, and is defined by

∑

I1∈R

∑

I2∈R\{I1}

∑

C∈CI1

ˆAM(C, CI2). (8)
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Fig. 5. Left, symmetric reconstruction: projection in two reference images of the centerlines reconstructed by considering all the ordered pairs of four reference
images (a different greytone is associated with each asymmetric reconstruction), 3-D centerlines reconstructions appear redundant and slightly shifted. Right,
fusion of the redundant 3-D reconstructed centerlines sets presented at left: the reconstructed centerlines after applying the fusion process are projected in
two reference images. A geometrically average reconstruction has been built.

a) Respiratory motion compensation: as shown in [24]–
[27], the respiratory motion effect on the myocardium, and
thus on the coronary artery position, can be approximated
by a 3-D translation, mainly in the axial direction. From the
acquisition point of view, it corresponds to a translation of
the images in their acquisition plane, that can be encoded in
the calibration parameters, i.e. in the Mn matrices. Indeed, as
demonstrated in [28], the global matching criterion reaches its
minimum for optimal calibration parameters. We thus consider
optimizing the global matching criterion with respect to the
cameras translation in their acquisition plane, i.e.
{

M̂i

}

i/Ii∈R
= argmin

Mi

∑

I1∈R

∑

I2∈R\{I1}

∑

(p1,...,pN )∈CI1

min
{qj}⊂CI2



−
∑

j=1...N

1

R̃ − 2

∑

Ia∈R\{I1,I2}

R?
a

(

MaMpjqj

)

+α
∑

j=1...N−1

ρ(‖qjqj+1‖)



 (9)

in order to estimate the respiratory motion. As a side result, we
also obtain the 3-D reconstructed centerlines for the optimal
projection matrices.

To optimize the global matching criterion, we use a FSQP
optimization method implementation [29], [30]. It results in
a translational correction in acquisition plane for reference
images, reflecting respiratory motion effect. We propagate this
information to other than reference images by linearly inter-
polating corrections that were found for the two surrounding
reference frames.

3) Reconstruction fusion: the respiratory motion compen-
sation improved the reconstruction of 3-D centerlines, partic-
ularly by reducing the slight shift observed between asym-
metric reconstructions, but is not sufficient to yield a perfect
superimposition of the 3-D centerlines obtained from the
different asymmetric reconstruction. Keeping multiple recon-
structions of the same 3-D vessels may bias the forthcoming
4-D motion estimation since it introduces spatial imprecision.
Consequently, we fuse the distinct reconstructed centerlines
sets in a single set where previously redundant points appear
only once. We also store redundancy information, as it is a

useful indicator for confidence in reconstructed points.
The fusion relies on a threshold representing the maximum

shift distance allowed for redundant points. We set it to 5 mil-
limeters which is an approximate value for largest observable
coronary artery diameter. Two 3-D centerline sets are fused
in a geometrical manner: for each point in the first set, we
find the closest point in the second set, if their distance is
smaller than a distance threshold, then points are considered
redundant and are replaced by their barycenter, else the closest
point is added as a new point. Iterating this process for all 3-
D reconstructed centerline sets leads to a fused 3-D centerline
reconstruction. Figure 5 illustrates the effect of fusion on
redundant 3-D reconstructed centerline sets.

Additionally, redundancy of fused points is given by the
number of points that contributed to the fused point position.
In practice, we build an application Λ : M −→ R, which
associates the number of contributions Λ(M) to any point M
in the fused 3-D centerlines set M. Λ(M) can be interpreted
as the confidence value for the 3-D reconstructed point M .

At the end of this first stage, we have 3-D reconstructed
centerlines, including confidence indices, that have been cor-
rected from respiratory motion effect. This reconstruction was
obtained from a few images from the same cardiac phase.

IV. 4-D MOTION COMPUTATION

From above computations, a 3-D reconstruction of the
coronary artery centerlines at the cardiac reference time is
obtained, as well as the respiratory motion compensation for
all the rotational sequence images. This 3-D model will now
be used to estimate the cardiac motion.

Contrary to 3-D motion approaches usually involved in the
biplane case [2], [31], that estimate a 3-D motion from time
to time, we use all frames simultaneously, independently from
the cardiac phase at which they were acquired, to estimate
a global motion, parameterized over space and time, hence
called 4-D motion.

Contrary to Chen’s approach [32] that requires a 3-D recon-
struction at each cardiac cycle and the explicit establishment
of correspondences between 3-D reconstructions to compute
the 4-D motion, only one single 3-D reconstruction (at the
reference cardiac cycle) is needed here, and the 4-D motion
is inferred from image-based measures.
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A. Motion parameterization

To choose a motion parameterization, we recall some fea-
tures of coronary artery motion: spatial and temporal smooth-
ness and semi-local spatial and temporal influence.

These characteristics led us to choose a parameterization
based on B-hypersolid, which is a 4-D tensor product of 1-D
B-splines B() [33]. This parameterization is a generalization
of 3-D B-solids proposed in [34].

Extremal space coordinates are computed from the bound-
ing box of the 3-D centerlines setM. The spatial support was
sampled using control points spaced 2 centimeters apart, lead-
ing to typically 10 control points along each spatial dimension.
Time extremal values were given by the interval [0, 1[. This
interval was sampled using 10 control points. In practice, we
used cubic B-splines, providing a sufficient number of degrees
of freedom. Knots vectors on space coordinates were chosen
open uniform. This allowed one of the B-spline basis functions
to be non null on the spatial bounds of the motion, and thus the
motion may be non null on the spatial bounds of the motion
support. On the opposite, knots vector in time coordinate was
chosen uniform. This properties enforces that all B-spline basis
functions to be null on the temporal bounds, and thus that
the motion was constrained to be null at equivalent reference
times t = 0 and t = 1.

Sets I, J , and K respectively discretize x, y, and z space
coordinates, set L discretizes time coordinate. Their respective
cardinals are Ĩ, J̃ , K̃, and L̃. Under a B-hypersolid motion Φ :
R
p×R

3×R −→ R
3, parameterized by vector p ∈ R

p (the knot
points coordinates), the position of point M = (x, y, z) after
the application of the displacement, evaluated at normalized
time t, is given by:

Φ(p,M, t) = M +
∑

i,j,k,l

Bi(x)Bj(y)Bk(z)Bl(t)pijkl

with pijkl ∈ R
3 ∀i, j, k, l. (10)

B. Motion optimization

Estimating the heart motion now boils down to finding the
optimal parameter vector p̂ that will exhibit the best coherence
with the 2-D displacements observed in images In. This is
achieved through the optimization of a criterion that aims
at quantitatively evaluating the coherence of a B-hypersolid
motion Φ(p, ., .) with the angiogram sequence, through an
external energy term, and that penalizes degenerate motions,
through a regularization term.

The multiscale filter response, R?
n, is used as the likelihood

that a pixel belongs to an artery projection. Summing the
values of these responses for the projected 3-D reconstructed
points M under motion gives us the external energy term
Ψ : R

p 7−→ R of the criterion:

Ψ(p) =
1

Ñ Λ̃

∑

n∈N

∑

M∈M

Λ(M)R?
n

(

M̂n (Φ (p,M, tn))
)

with Λ̃ =
∑

M∈M

Λ(M). (11)

Note that the multiscale filter response of projected point
M is weighted by its reconstruction confidence Λ(M).

Successive steps for the evaluation of external energy term
of the criterion are then:

• motion application Φ : R
p × R

3 × R 7−→ R
3,

• projection application M̂n : R
3 7−→ R

2,
• multiscale filter response value R?

n : R
2 7−→ R, and

• weighting by confidence index Λ :M⊂ R
3 −→ R.

To prevent degenerated optimal motions, we add three inter-
nal energy terms which penalize motions with large amplitude,
motions with erratic spatial behavior, and motions with erratic
temporal behavior.

To estimate the motion amplitude, we evaluate the nor-
malized sum over the control points of the square norm of
vectors pijkl:

Γ1(p) =
1

ĨJ̃ K̃L̃

∑

i,j,k,l

‖pijkl‖
2. (12)

To estimate the motion smoothness, we evaluate the nor-
malized sum over the control points of the square norm of
the vector difference between pijkl and its spatial neighbors
VR3(pijkl) (in terms of 26-connectivity in 3-D) and its tem-
poral neighbors VT (pijkl) (in terms of 2-connectivity in 1D):

Γ2(p) =
1

ĨJ̃ K̃L̃

∑

i,j,k,l

1

ṼR3(pijkl)

∑

pi′j′k′l∈VR3
(pijkl)

‖pijkl−pi′j′k′l‖
2

(13)

Γ3(p) =
1

ĨJ̃ K̃L̃

∑

i,j,k,l

1

ṼT (pijkl)

∑

pijkl′∈VT (pijkl)

‖pijkl−pijkl′‖
2

(14)
where ṼR3(pijkl) and ṼT (pijkl) are the respective cardinals
of sets VR3(pijkl) and VT (pijkl).

The final criterion for 4-D motion optimization is:

Υ(p) = Ψ(p)− α1Γ1(p)− α2Γ2(p)− α3Γ3(p). (15)

The knot vectors properties and discretization scheme lead
to approximately 10 degrees of freedom along each coordinate,
a degree of freedom being a three-dimensional vector. Thus,
vector p typically has 30 000 components. Consequently, opti-
mizing the criterion requires a method dedicated to very large
scale nonlinear optimization problems. It can be noticed that
the four terms of Υ can be analytically derived. For instance,
the gradient of Ψ is given below:

∂Ψ(p)

∂p
=

1

Ñ Λ̃

∑

n,M

Λ(M)
∂R?

n

∂Mn

∂M̂n

∂Φ

∂Φ(p,M, tn)

∂p
(16)

As an optimization procedure, we thus chose the Polak-Ribière
variant of the nonlinear conjugate gradient algorithm [35] and
used the CONMIN implementation described in [36]. The
initial motion is set to null (p = 0). Optimization process
leads to an optimal parameterization p̂ and associated optimal
motion Φ(p̂, ., .) : R

3 × R −→ R
3 that will thereafter simply

be denoted by Φ. The motion Φ(., t) : R
3 −→ R

3 for a
given normalized time t is denoted Φt. Figure 6 presents the
results for motion computation by comparing 3-D centerlines
projection before and after 4-D motion application.
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Fig. 6. Results for 4-D motion computation. Left: projection in two images (acquired at two distinct normalized times, all differing from the reference time)
of the 3-D centerlines reconstruction before 4-D motion application. Right: projection in the same two images of the 3-D centerlines reconstruction after
4-D motion application. According to centerlines superimposition on vessels, 4-D motion has been correctly determined by the optimization process.

V. 3-D TOMOGRAPHIC RECONSTRUCTION

In our case, datasets differ from ideal tomographic condi-
tions in two ways: data truncation for background structures
that are located far from the gantry rotation center and coro-
nary artery motion occurring during the acquisition.

A. Background removal

The angiograms include not only the structure of interest,
i.e. the coronary vessels, but also background structures. Some
of these structures are not visible in all the views because the
field of view is smaller than the patient’s torso. Consequently,
they can potentially induce the so-called truncation artifacts
during the reconstruction [37]. So, we apply a subtraction
technique before the reconstruction in view of applying the
reconstruction to projection data formed only by the arteries.
A mask image is required to perform the subtraction and is
obtained by processing the angiograms.

Thus, we have to produce virtual mask angiograms from
original angiograms. This is done in four steps: binary vessel
detection, virtual background image computation, virtual mask
image computation, and virtual subtracted image computation.

The first step is done by applying an hysteresis thresholding
to the multiscale filter response maps. The low and high thresh-
olds are chosen equal to those used during centerline detection.
To manage potential detection defects near the bifurcations
or at distal parts of coronary arteries, this binary image is
dilated using mathematical morphology [14]. The second step
is achieved by applying a morphological closing to the original
image, this leads to an approximation of the corresponding
image, acquired without contrast agent injection. The third
step is performed combining these two images in the following
way: for any pixel, its virtual mask image value is given
by the virtual mask image value, if the pixel belongs to a
vessel according to the binary vessel detector image, or by the
original image value, if the pixel does not belong to a vessel.
This third image is a virtual mask of the original image. The
last step is the logarithmic subtraction of the original image In
and the virtual mask image to produce the virtually subtracted
image Jn that will be actually used as tomographic data [41].

B. Motion compensated tomography

Classical tomographic reconstruction methods make the hy-
pothesis that the observed object remains still during sinogram
acquisition, which is of course not the case for coronary
angiography. Many approaches propose to restraint the sino-
gram to the angiograms that were acquired at given cardiac
phase [8], [9] or to phases that remain close to a reference
phase [38]. This leads to few views tomographic reconstruc-
tions and often suffers from strong artifacts due to lack of
data.

On the contrary, we use all available frames, homogeneously
and independently from the cardiac phase they correspond to.
In [11], the authors propose an iterative scheme alternating
between motion estimation and tomographic reconstruction, in
the context of CT. Here, we use a single-pass reconstruction
method. We only give here a brief overview of the tomographic
reconstruction, a complete and detailed description of the
method can be found in [12].

The tomographic reconstruction is done by integrating the 4-
D motion estimation into the tomographic projection operator
matrix. Given a voxel set that discretizes the 3-D region of in-
terest, the projection operator matrix coefficient Pi,k encodes
the contribution of voxel vk to pixel pi in image n. The solid
angle with origin the X-ray source Sn at frame n passing
by pixel pi edges is denoted Ωpi . In the static case, those
contributions are estimated as the volume of the intersection
between the voxel and the solid angle, i.e.:

Pi,k = volume (Ωpi ∩ vk) (17)

After a few calculations [12], the contribution in the dy-
namic case is obtained by: PΦi,k = volume (Ωpi ∩ Φtn(vk)).

We chose to neglect the relative volume variation effect,
and to use a single contribution scheme (a voxel contributes
to only one pixel per projection image Jn):

PΦi,k =

{

volume (vk) if Φtn(c(vk)) ∈ Ωpi

0 else
(18)

where c(vk) is the center of voxel vk.
As the projection operator matrix PΦ has been corrected

for cardiac motion, we now can use an arbitrary tomo-
graphic reconstruction method. We chose the additive ART
method [39]. The initial reconstruction is set to null intensity
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Fig. 7. MIP views of tomographic reconstructions (2563, voxel size of 0.5 mm) of a panel of 4 patients.

for all voxels, then an iterative update is done pixel-wise by
additive distribution of the projection residuals for a given
pixel. More precisely, if r is a vector representing the current
reconstruction, then the sum of contributions associated to
pixel pi in image n is given by PΦi r, where PΦi is the
raw of matrix PΦ corresponding to pixel pi contributions.
The residual for pixel pi is thus given by Jn(pi) − PΦi r

and is homogeneously parted between contributing voxels
by Jn(pi)−PΦi r

‖PΦ
i
‖2

PΦ T
i , as sketched by the following update

scheme:

r←− r +
Jn(pi)−PΦi r

‖PΦi ‖
2

PΦ T
i (19)

An iteration of ART algorithm is given by performing
updates associated to all available pixels. In practice, we used
2 iterations of ART algorithm.

VI. EXPERIMENTS

A. Practical issues

There are a number of parameters in the proposed method:
scales (section III-A), thresholds (section III-B.2 and Eq. (6)),
weights (α in Eq. (7), α1, α2, and α3 in Eq. (15)), etc. Since
the aim of this study is to define and to assess a method that
can be used in a clinical environment, manual parameter tuning
is not desirable. Therefore, these parameters have been tuned
experimentally on a subset of the patient datasets at hand,
by visually inspecting intermediate and final results obtained
by different values of parameters. The obtained settings have
been retained for all the datasets, and the obtained automated
method yields, after visual inspection, satisfactory results.

To reduce the computation time, both the 4-D motion
estimation (section IV) and the tomographic reconstruction
(section V) have been parallelized using PVM [40].

Typical computational times are (for a dataset consisting in
120 images at 5122 spatial resolution, including 5 reference
images): from 10 to 50 minutes for the reconstruction of a
3-D centerline model, from 15 to 30 minutes for the 4-D
motion estimation, and about one hour for the tomographic
reconstruction.

B. Reconstruction results

The reconstruction method was experimented on synthetical
or phantom data, with a known 4-D motion. The obtained
results, available in [12], [41], shown that, for such perfect

situations where the ground truth is known, the proposed
method was able to retrieve the 4-D motion and to provide
a good tomographic reconstruction.

The reconstruction of patient’s data is more challenging,
and is also more difficult to assess. We already exemplified the
proposed approach with a number of results obtained with four
different patient datasets, respectively used in Figures 4, and
6, Figure 5, and Figure 8. This illustrates the anatomical vari-
ability that can be successfully handled by the reconstruction
method. In addition, Figure 7 depicts the Maximum Intensity
Projection views of the reconstructions of 4 different patient
datasets.

VII. DISCUSSION

We have described a tomographic reconstruction method
from one single rotational acquisition and the results obtained
so far demonstrate the feasibility of the proposed approach.
The final as well as the intermediate results have the potential
to support the image interpretation and quantification by the
physician.

• Centerline reconstruction allows to estimate the magnifi-
cation factor attached to a 2-D point (at a reference time)
which yields better measurements, as well as optimal
viewing angles to avoid overlap and vessel shortening
[9], [42].

• 4-D motion estimation allows to track a point along the
acquisition sequence. This enables a stabilized display of
a region of interest, e.g. around a lesion (see Figure 8 and
[43] for details). Moreover, by extrapolation it may give
access to kinetic information about the myocardium.

• 3-D tomographic reconstruction allows to use standard 3-
D visualization tools (isosurface, volume rendering, endo-
luminal views, etc.). It should be pointed out that, thanks
to the 4-D motion estimation, renderings from arbitrary
viewing angle and cardiac phase can be provided. More
importantly, it allows a true 3-D QCA procedure, i.e. a
quantitative 3-D measure of stenosis severity (cf Figure
9). Such a measure can be assessed with the catheter,
whose diameter is 2.0 millimeters, when it is visible in
the whole sequence [41]. In these cases, the measured
mean diameter is about 2.3 millimeters. The error is then
of the same order than the voxel size (0.25 millimeter).
However, extrapolating this measure assessement to the
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Fig. 8. Stabilized display of a stenosis. Two images that were acquired at
distinct cardiac phases, from distinct viewing angles, in which we manually
pointed the moving region of interest (a stenosis located at a bifurcation).
Bottom left in images: focused and automatically centered images around the
region of interest in the same images.

mm 24.4

mm 21.1

mm 24.1

Fig. 9. Left: original angiogram. Right: vessel cross-sections measures
(before, at, and after a stenosis).

coronary arteries is not straightforward, since the catheter
may have a more simpler motion.

Obviously, such assertions have to be verified through clin-
ical validation studies. Before initiating them, a retrospective
analysis of our experiments is currently conducted.

The presented results and computation times have been
obtained with the angiograph acquisitions being subsampled
(from 768× 768 to 512× 512 pixels), for computational pur-
poses. Additional experiments, conducted with full resolution
images, did not show any visual difference.

At this point, we systematically use the end-diastole images
as reference images to reconstruct a 3-D centerline model.
In the future, it would be interesting to automatically select
the most stable period of the cardiac cycle, which is the
appropriate period for 3-D reconstruction, and that may depend
on the heart rate.

We remark that the quality of the reconstruction (assessed
visually) is directly correlated to the number of cardiac cycles
that can be used for the processing. Typically, a number of
4 cardiac cycles (this corresponds to 5 reference times, i.e.
R̃ = 5) yields a visually good reconstruction, while artifacts or
errors (for instance, in the centerline reconstruction) are more
likely to occur when only 3 cardiac cycles are usable. The
latter situation mainly arises because of a poor synchronization
between rotation and contrast agent injection. Such defects
happened for the first acquisitions, when the physicians did
not master the rotational acquisition, but not for the last
ones because of a fast learning curve [13]. It suggests that
the quality of the reconstructions will increase for the future
experiments.

We observe that the computational time of the reconstruc-
tion of a 3-D centerline model represents about one third of
the total execution time. This is due to the re-estimation of the

camera parameters, i.e. the respiratory motion (modeled as a
translation) estimation. Since the acquisition duration is about
a few seconds, it is possible to ask for a breath hold during the
acquisition. This way, not only the total reconstruction time
will be greatly decreased, but we will make sure to avoid the
additional problems due to the respiratory motion estimation.

The roots of the coronary arteries are difficult to reconstruct
since they are perpendicular to the rotation axis. This particular
point is going to be investigated in relation with clinical
partners.

It turns out that the first improvements will come from the
design of an other acquisition protocol. Then, some quan-
titative quality measures have to be defined to assess both
the overall quality of the reconstruction and all the different
steps of the method (now excluding the respiratory motion
estimation). This will help to optimize each step separately
(e.g. the fusion of the centerline reconstructions). An other
improvement in the future could be to automatically identify
not only the heart cycles as we do now but also to identify
the most appropriate period in the heart cycle for applying the
multi-ocular algorithm. From the algorithm perspective, it has
to be the most stable period along the heart cycle.

VIII. CONCLUSION

We presented a novel and stand-alone method to suc-
cessively produce a 3-D reconstruction of coronary artery
centerlines, a 4-D motion estimation of coronary arteries, and
a 3-D tomographic reconstruction of coronary arteries from
one single rotational X-ray acquisition. In contrast to other
approaches reported in the literature, we are able to use almost
all of the acquired frames, thank to the estimation of the
coronary arteries motion.

Experiments conducted on real clinical data produced visu-
ally good reconstructions which demonstrate the practicability
of such an approach. A further analysis encourages us to
define a different acquisition protocol (with a breath hold)
to suppress artifacts due to the respiratory estimation. Future
work will consist of a clinical evaluation of the method, and
will encompass both a quantitative assessment of the quality
of the reconstruction and the identification of methodological
improvements.
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