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Abstract
In this paper, we present a new method to perform 3D tomographic
reconstruction of coronary arteries from cone-beam rotational x-ray
angiography acquisitions. We take advantage of the precomputation of the
coronary artery motion, modelled as a parametric 4D motion field. Contrary to
data gating or data triggering approaches, we homogeneously use all available
frames, independently of the cardiac phase. In addition, we artificially subtract
angiograms from their background structures. Our method significantly
improves the reconstruction, by removing both motion and background
artefacts. We have successfully tested it on the datasets from a synthetic
phantom and 10 patients.

(Some figures in this article are in colour only in the electronic version)

1. Purpose

We present a new method to perform the 3D tomographic reconstruction of beating coronary
arteries from one single run of a rotating monoplane cone-beam x-ray coronarography system.

Classical tomographic algorithms make the assumption that the object to be reconstructed
remains still during acquisition. The 3D tomographic reconstruction of an object that is in
motion during sinogram acquisition remains a challenging problem. This difficulty particularly
applies to coronary artery reconstruction, for which two motions occur, namely breathing and
heart beat. To address this issue, most of the proposed approaches rely on data gating or
triggering, which indeed attempts to force the data compliance with respect to tomographic
algorithm assumptions. A different way of addressing the problem is to incorporate a motion
model in the reconstruction process. For instance, in CT acquisitions, some recent advances
allowed one to deal with moderate amplitude motions as in Grangeat et al (2002).
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In x-ray angiography imaging context, the ‘CT-like’ rotational acquisition mode has
already been used to compute 3D reconstructions of static vascular structures such as intra-
cranial or peripheral vessels (Anxionnat et al 2001). But, in the case of coronary arteries,
cardiac contraction induces a high amplitude and high speed motion that make direct
tomographic formulations irrelevant.

In Blondel et al (2003), we developed an algorithm to automatically determine a 4D
parametric motion field of coronary arteries from one rotational x-ray sequence. In this
paper, we present a dynamic tomographic algorithm that compensates for the coronary artery
motion along the cardiac contraction, by taking advantage of 4D motion field precomputation.
Contrary to previously proposed approaches, which used only a limited number of quasi-
synchronous views as in Rasche et al (2002), our method uses homogeneously all available
images, independently from the cardiac phase at which they were acquired.

The x-ray sequences are acquired on a digital flat panel coronarography system, with
a rotational planar trajectory. This trajectory is defined by a cranial/caudal angle that is
constantly 0◦ (0 rad) and a left/right anterior oblique angle amplitude ranging between
120◦ (

2π
3 rad

)
and 200◦ (

10π
9 rad

)
. The maximum rotation speed of the gantry is 40◦ s−1(

2π
9 rad s−1

)
.

2. Methods

We first describe the two main prerequisites of our dynamic tomographic reconstruction
method: artificial subtraction of background structures in angiograms and modelling
of coronary artery motion. We then design a tomographic reconstruction method that
compensates for object motion and derive a discrete resolution scheme. We finally describe a
practical tomographic reconstruction algorithm, in the context of coronary artery motion and
respiration.

2.1. Artificial subtraction

Contrary to intra-cranial or peripheral x-ray rotational angiography, a prior mask acquisition
(without contrast agent injection) cannot be performed because physiological conditions of
the acquisition, namely both respiratory and cardiac motions, cannot be exactly recovered,
nor synchronized with the acquisition system rotation. Thus, no direct data subtraction
can be done to produce images with removed background structures. However, we need
to artificially subtract the angiograms from their background structures to prevent parasite
structure backprojection during the reconstruction process. Producing subtracted images
without corresponding masks is a difficult task. In Close et al (2002), the authors propose a
subtraction method relying on layer decomposition of the angiograms. To achieve background
subtraction, only layers containing the object of interest are retained.

We use a simpler method, based on already available information: a vessel detector. The
artificial subtraction process is performed in two steps. First, a multiscale vessel detector,
described in Sato et al (1998) and Krissian et al (2000), discriminates whether pixels belong
to a vessel or not. This binary mask is then dilated to prevent vessel data loss. Second, a
morphological closure operator is applied to the angiogram (Serra 1982) and used to compute
an artificial background value. The dilated binary mask and the closure of the angiogram
are then combined: if a pixel belongs to a vessel, according to the dilated binary mask, its
artificial mask value is the corresponding value of the closure of the image, or else its artificial
mask value is the same as the original image value. Finally, the logarithmic subtraction of
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Figure 1. Top: (left) original angiogram with many visible background structures, (middle) result
of binary vessel detection (mask) on the angiogram and (right) dilated binary mask. Bottom:
(left) closure of the original angiogram, (middle) artificial mask angiogram and (right) artificially
subtracted angiogram. Most of the background structures are removed in the subtracted angiogram.

the artificial mask from the original angiogram is performed to produce the actually used
sinogram.

Figure 1 shows the effect of artificial subtraction on an angiogram from a patient dataset.
In section 3, we will show comparative results that confirm the benefit of artificial subtraction.

2.2. 4D parametric motion

The key of the presented method is the incorporation of a precomputed 4D motion field in the
tomographic reconstruction process. We briefly describe how we conduct this precomputation
step.

The primary step is the 3D reconstruction of the coronary artery centrelines, which
is performed in three phases. We first define a reference time in the cardiac cycle time.
Usually, we choose end diastole as reference time because it corresponds to the most relaxed
and most stable heart phase. We then select at least three quasi-synchronous angiograms
acquired from different points of view, at this particular cardiac cycle time. Coronary
artery centrelines in these angiograms are automatically segmented, using a multiscale vessel
detector (Krissian et al 2000). Using stereovision, 3D points are reconstructed from the
2D segmentations. To improve the consistency of the 3D reconstruction, we developed a
dedicated dynamic-programming-based matching algorithm (Blondel et al 2002). The 3D
reconstruction process typically results in a 3D centreline model, consisting of 5000–20 000
points. At this point, it should be noted that the respiratory motion has not been corrected
yet. This motion can be approximated by a 3D translation, mostly in the axial direction
(Wang et al 1995). We compensate this motion by adapting the camera acquisition parameters
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Figure 2. Schematic representation of a 4D B-solid. Indices i, j and k describe space coordinates
and index l describes time coordinate. An example 3D parameter vector pijkl at one given control
point is represented in green.

to make the projection images coherent with the 3D reconstruction. This is achieved by
performing a bundle adjustment step (Triggs et al 2000). We iterate 3D reconstruction
and bundle adjustment and end up with a stable 3D reconstruction and an estimation of
the translation due to respiratory motion at the reference time frames. These translational
corrections are finally used to estimate, using linear interpolation, the respiratory motion in
the entire sequence. Consequently, the subsequent steps will no longer have to consider the
respiratory motion effect.

We then compute the 4D motion of the coronary arteries from the 3D centreline model.
We define a reference time in the cardiac cycle, arbitrarily set to 0 at which we want to perform
the 3D reconstruction. This reference time can differ from the 3D reconstruction reference
time, but, in practice, they are chosen to be equal.

Combining this reference time and cardiac periodicity we assign to every frame, indexed
by n, a ‘normalized ECG time’ tn between 0 and 1, representing the heart phase at which the
frame was acquired. For instance, a normalized ECG time equal to 0 means that the cardiac
phase was the reference time, while a normalized ECG time equal to 0.5 indicates that the
cardiac phase was delayed by half a cardiac period from the reference time. In this way, we
allow for cardiac period changes along the acquisition, but we assume that the heart motion
remains spatially repeatable, which means that every spatial conformation is recovered at
possibly varying time offsets.

We now compute a 4D parametric motion for the x-ray sequence. The parametrization
we chose is a 4D B-solid (Radeva et al 1997). It is a 4D tensor product of B-splines, which
is a smooth and semilocal representation, that makes it adapted to cardiac motion fitting. If
we denote by {Bi}i , {Bj }j , {Bk}k the B-spline function bases along space coordinates, {Bl}l
the B-spline function basis along time coordinate and pijkl the 3D vector at control point
given by indices i, j, k, l, belonging to global parameter vector p, then the position of point
X = (x, y, z) at time t in 4D B-solid motion is given by the relationship

�(p, X, t) = X +
∑

i

Bi(x)


∑

j

Bj (y)

(∑
k

Bk(z)

(∑
l

Bl(t) · pijkl

))
 .

Figure 2 illustrates the representation of a given 3D vector pijkl at one control point. The
vector p = {pijkl}ijkl is the parameter vector of the 4D B-solid.

The motion model is then fitted to a given specific dataset using a large scale optimization
process. The optimal motion maximizes an energy function combining an external energy,
evaluating the superimposition of projected deformed 3D centreline points with vessels in the
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angiograms and an internal regularizing energy, preventing degenerated motions (Blondel et al
2003). If we denote by X the set of points describing the 3D centreline model, N the set of
images from which the motion is estimated, mn the projection matrix associated with frame n,

rn the multiscale vessel detector associated with frame n and Reg
R

3×R
�(p, ·, ·) a regularity

measure, in space and time, on motion �(p, ·, ·), the criterion we optimize is

�(p) =
∑
n∈N

∑
X∈X

rn(mn(�(p, X, tn))) + α Reg
R

3×R
�(p, ·, ·).

The 4D B-Solid motion model typically has 10 control points along each space coordinate
and 10 control points along time coordinate. As the motion model is defined by a 3D vector at
each control point, the parameter vector to be optimized is approximately of size 30 000. This
large scale optimization problem is solved using a conjugate gradient algorithm (Gill et al
1982).

Let p� be the optimal parameter vector found by the optimization process. We denote
as � : R

3 × R �−→ R
3 the optimal 4D motion field �(p�, ·, ·). �(X, t) gives the position,

at time t, of the 3D physical point that was in position X at reference time. In particular,
�(X, 0) = X. Choosing t equal to a given tn, for a given frame index n,�(·, tn) provides the
new position after motion of any 3D point, and consequently its 2D projected position in the
frame, as we have the projection matrix mi associated with the frame.

2.3. Motion compensated 3D tomographic reconstruction

In the case of cardiac structures, motion correction is mandatory to achieve sharp
reconstructions, without motion artefacts. In De Murcia (1996), the author proposes a
method that iteratively extracts the radial component of the left ventrical motion from the
projection set along the cardiac cycle and then improves the reconstruction by integrating
motion knowledge. In contrast, as our motion estimation method is based on single-pass
computer-vision algorithms, it does not require to be iterated between motion estimation
and reconstruction. Additionally, both radial and tangential components of the motion are
recovered, as the motion is estimated from 1D structures. As opposed to other proposed
approaches in coronary angiography (Movassaghi et al 2003) that compensate for motion
observed in the image plane with a tracking technique, our motion correction relies on a
motion computed over 3D space and the entire cardiac cycle.

Taking advantage of the 4D precomputed motion field, we now design a dynamic
tomographic algorithm.

The physical quantity we want to evaluate is the linear attenuation of the medium under
observation. We allow for the 3D physical point motion along time, using the precomputed
4D motion field.

We now derive our formulation of the tomographic reconstruction of an object, whose
sinogram is acquired for object motion. We denote by X any physical 3D point, t any
acquisition time, 0 is considered as the reference time, at which we want to reconstruct the
linear attenuation map. µ : R

3 × R �−→ R is the linear attenuation of any physical 3D point,
varying along time, and � : R

3 ×R �−→ R
3 is the motion application representing the position

at a given time of the physical 3D point that was in a given position at the reference time.
For any given time t, �(·, t) is denoted by �t . We suppose that �t is a diffeomorphism, for
any time t. More specifically, the Jacobian in space coordinates of �t is supposed to be such
that det(∇�t(X)) > 0, for any X. This physically means that two distinct physical 3D points
cannot move to the same position. This hypothesis is physiologically true for cardiac motion,
as myocardial material is not infinitely compressible.
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Figure 3. Effect of object motion incorporation in line integral computation: the line integral on
L(S(t), θ) becomes a curve integral on �−1

t (L(S(t), θ)).

We suppose that linear attenuation remains constant along acquisition time. This
practically means that we neglect the contrast agent propagation and diffusion effects during
the acquisition. Formally, it is equivalent to

µ(�t(X), t) = µ(�0(X), 0) = µ(X, 0). (1)

We now want to correlate the line integrals I (X, θ, t) of the linear attenuation µ(·, t) along
the line support L(X, θ) at any acquisition time t to the linear attenuation at the reference time
µ(·, 0)

I (X, θ, t) =
∫

L(X,θ)

µ(Y, t) dY

=
∫

�−1
t (L(X,θ))

µ(�t(Z), t).|det(∇�t(Z))| dZ (2)

=
∫

�−1
t (L(X,θ))

µ(Z, 0). det(∇�t(Z)) dZ. (3)

Equation (2) is given by setting the variable substitution Z = �−1
t (Y ) in the integral. It

is well defined, considering that �t is a diffeomorphism. The second step, in equation (3), is
deducted from our assumption on µ(�t(Z)) constantness along time t (equation (1)) and from
the positivity of det(∇�t(Z)) (equation (2)).

We now consider the sinogram acquisition of an object in known motion as the sinogram
acquisition of the same object considered still in its position at reference time. As shown in
figure 3, the change induced by motion incorporation lies in the fact that line integrals have
become curve integrals.

As show in figure 4, we integrate over angular sector � to define pixel value P(S(t),�, t)

as a function of µ(·, 0):

P(S(t),�, t) =
∫

�

I (S(t), θ, t) dθ

=
∫

�−1
t (L(S(t),�))

µ(Z, 0). det(∇�t(Z)) dZ.

We finally derive the practical discrete solving algorithm, corresponding to the former
continuous problem formulation. The 3D space at reference time is discretized as voxel
set {Ck}k .
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Figure 4. Illustration of pixel value P(S(t), �, t) formation.

Considering the voxel cube C in discretized 3D space at reference time, where µ(·, 0) is
now supposed to have a constant value denoted by µ(C), the contribution of voxel cube C to
pixel value P(S(t),�, t) is given by

R(P (S(t),�, t), C) =
∫

�−1
t (L(S(t),�))∩C

µ(Z, 0). det(∇�t(Z)) dZ

= µ(C)

∫
�−1

t (L(S(t),�))∩C

det(∇�t(Z)) dZ (4)

= µ(C)

∫
�t (�

−1
t (L(S(t),�))∩C)

det
(∇�t

(
�−1

t (Y )
))

. det
(∇�−1

t (Y )
)

dY

(5)

= µ(C)

∫
L(S(t),�)∩�t (C)

det
(∇�t

(
�−1

t (Y )
))

. det
(∇�−1

t (Y )
)

dY (6)

= µ(C)

∫
L(S(t),�)∩�t (C)

dY (7)

= µ(C) · vol(L(S(t),�) ∩ �t(C)). (8)

Equation (4) is deducted from µ(·, 0) constantness over C. The variable substitution
Y = (Z, t) leads to equation (5). The injectivity of �t induces equation (6). Finally,
equation (7) is given by a property of the Jacobian matrix of a reciprocal function:
det(∇f −1(f (a))) = 1

det(∇f (a))
.

As the computed contribution is linear with respect to µ(·, 0) (equation (8)), as in the
static case, we can denote by R� the matrix associated with the projection operator in motion.
µ(·, 0) is denoted µ, and the discrete subtracted sinogram data (pixels) are denoted d. The
discrete problem to be solved can be stated as

R� · µ = d.

Using index notation, let the coefficient R�
ji,k

in matrix R� be the contribution of the voxel
k to the pixel value ji , belonging to frame i. We denote by Sji

the solid angle with vertices the
corners of pixel ji and the x-ray source position S(ti). In the dynamic case, using equation (8),
we take the motion field into account by replacing the voxel cube Ck by its image under the
3D motion field �ti :

R�
ji,k

= vol
(
Sji

∩ �ti (Ck)
)
.
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Φti
−1(Sji)
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PjiSji

Φti(Ck)

Figure 5. The contribution of voxel Ck considered at time t = 0 to pixel Pji
considered at time

t = ti can be related to (left) the intersection between Sji
and �ti (Ck) at time t = ti , or to (right)

the intersection between �−1
ti

(Sji
) and Ck at time t = 0.

Figure 5 summarizes the relations between voxels at reference time t = 0 and pixels at
frame times t = ti .

As mentioned in the continuous formulation, the projection operator matrix now depends
on the motion field �. In addition, we remark that setting � to identity application I leads to
the classical static formulation of voxels to pixels contribution:

RI
ji ,k

= vol
(
Sji

∩ Ck

)
.

In practice, Sji
∩ �ti (Ck) cannot be easily estimated, we thus decide to use single

contribution matrices: a voxel is supposed to contribute to one single pixel. Indeed, the
motion of the voxel cubes is reduced to the motion of their centres. Let ck be the centre of the
voxel cube Ck , we have:

R�
ji,k

=
{

vol
(
�ti (Ck)

)
if �ti (ck) ∈ Sji

0 else.

The evaluation of quantity vol
(
�ti (Ck)

)
is still very expensive. But, we know that

variation between vol
(
�ti (Ck)

)
and vol(Ck) is bounded by det

(∇�ti

)
extremal values. We

evaluated these bounds experimentally for some precomputed motion fields, with end diastole
selected as reference time. On patient datasets, we observed that this volume variation is 0.92
in average and bounded by 0.80 and 1.04. To reduce the computational cost of our algorithm,
we decided to neglect the volume variation effect, which allows us to set

R�
ji,k

=
{

vol(Ck) if �ti (ck) ∈ Sji

0 else.

If we denote by mi the projection matrix associated with frame i, then the former statement
becomes the practical scheme we use:

R�
ji,k

=
{

vol(Ck) if mi

(
�ti (ck)

) ∈ Pji

0 else.

It is important to remark that, as the motion only impacts the projection operator
matrix computation, the former description is general enough to make it appropriate for
all classes of tomographic algorithms. In our context, we have chosen to use the additive ART
technique (Herman 1980) because of its efficiency and robustness for vascular structure 3D
reconstruction.

3. Results

First, we tried our method on a synthetic phantom, consisting of tubular structures of various
diameters, animated under a homothetic motion, coarsely modelling myocardium contraction.
We compared the results obtained with the classical static ART algorithm and with the motion
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Figure 6. (Left) original attenuation image of the beating phantom (with vessels in dark), (middle)
maximum intensity projection view of the 3D reconstruction without motion compensation and
(right) maximum intensity projection view of the 3D reconstruction with motion compensation
(with high attenuations in bright). We notice that structures coplanar to the acquisition plane
present some light reconstruction artefacts.

compensated ART algorithm. The results showed that the blur induced by the object motion is
removed by taking into account the precomputed motion, as illustrated in figure 6. Only some
light artefacts remain for tubular structures that are coplanar to the acquisition plane. This
demonstrates that our formulation is able to address the motion problem in this acquisition
context.

Then, we applied our dynamic 3D tomographic reconstruction algorithm to 10 patient
datasets. These sequences typically consist of 100 angiograms, with 17 cm field-of-view
width, providing a 120◦ (

2π
3 rad

)
angular range. The separate and combined effects of artificial

subtraction and motion compensation are shown in figure 7.
To assess the 3D reconstructions for the patient datasets, we compared their projection

to static sequences acquired on the same patient but with angles not belonging to the initial
rotational trajectory. This comparison is shown in figure 8.

As illustrated in figure 9, we also computed projections at mechanically non-reachable
angles and thus provide virtual views that cannot be acquired in practice.

From the clinical point of view, 3D reconstructions provide relevant extra information
compared to original angiogram sequences. For instance, up to third order vessels can be
visualized from any 3D point of view, and stenoses (narrowed parts of vessels that induce
myocardial infarct risks) can be quantified in terms of lumen 2D absolute surface measure (see
figure 10), instead of 1D projected diameter measures, which depend greatly on the frame’s
point of view.

Comparing the 3D reconstruction results obtained with the different patient datasets, we
characterized two key factors for the reconstruction quality:

• the angular coverage has to be at least 120◦ (
2π
3 rad

)
to prevent from obtaining anisotropic

reconstructions,
• the 4D motion field has to be accurate to obtain sharp 3D reconstructions: every defect

in the precomputed motion field induces blur in the neighbourhood of voxels having
inaccurate motion information.

We implemented our method in C++ under Linux, and parallelized it using PVM
(Geist et al 1993). When run on four clustered Xeon at 2 GHz biprocessor workstations,
the typical preprocessing time for the 4D motion computation is 30 min and the typical 3D
reconstruction time is 40 min to complete a 2563 voxel reconstruction from 100 angiograms,
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Figure 7. Orthographic maximum intensity projection views in sagittal direction of different
3D reconstructions from the same x-ray sequence, showing the separate and combined effects
of artificial subtraction and motion compensation on the tomographic reconstruction of coronary
arteries.

Figure 8. (Left) angiogram acquired at left/right anterior oblique angle 0◦ (0 rad) and
Cranial/Caudal angle −30◦ (− π

6 rad), not belonging to the dataset used for reconstruction, to
be compared to (right) the projection of the 3D reconstruction under the same acquisition system
angles.
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Figure 9. From left to right: coronal, sagittal and axial orthographic maximum intensity projection
views of a patient dataset 3D reconstruction—axial view is mechanically infeasible on a vascular
gantry. In this case, it provides a nice visualization of the left main artery of the patient, with a
curious double lumen.

Figure 10. From left to right: 2D localization of a stenosis of interest, unfolded vessel description
from the 3D reconstruction, including its mean diameter, its section and its curvilinear abscissa,
and (top) a sectional view of the proximal part of the vessel to be compared to (bottom) a sectional
view of the stenotic part of the vessel.

involving two iterations of the additive ART algorithm. During the 3D tomographic
reconstruction process, most of the computational cost is dedicated to the evaluation of the
voxel motion.

4. Conclusion

We presented a new method to compute 3D tomographic reconstructions of coronary arteries
moving under cardiac contraction, which utilizes the entire angiogram sequence, by taking
into account a precomputed 4D motion field. The 3D tomographic reconstructions of coronary
arteries are drastically improved by motion compensation and artificial subtraction.

The motion-compensated 3D tomographic reconstruction results should allow for
anatomical 3D measurements of clinical interest such as vessel and lesion length, vessel
and lesion 3D diameter and transversal section surface. This will be the subject of a more
extensive validation process.
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Our future aims are to compute more accurately the coefficients of the projection operator
matrix (by taking into account the local compression/dilatation effect and using non-single
contributions) and to test our approach with other classical tomographic methods. Another
interesting perspective of this work is its potential combination with saddle trajectories
(Pack et al 2003) that would prevent reconstruction artefacts for the vessels that are coplanar
to the acquisition plane.
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