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Abstract

Medical computer vision is a novel research discipline based on the application of computer vision
methods to data sets acquired via medical imaging techniques. This work focuses on magnetic
resonance imaging (MRI) data sets, particulatly in studies of schizophrenia and multiple sclerosis.
Research on these diseases is challenged by the lack of appropriate morphometric tools to
accurately quantify lesion growth, assess the effectiveness of a drug treatment, or investigate
anatomical information believed to be evidence of schizophrenia. Thus, most hypotheses

involving these conditions remain unproven.

This thesis contributes towards the development of such morphometric techniques. A framework
combining several tools is established, allowing for compensation of bias fields, boundary
detection by modelling partial volume effects (PVE), and a combined statistical and geometrical
segmentation method. Most importantly, it also allows for the computation of confidence bounds
in the location of the object being segmented by bounding PVE voxels. Bounds obtained in such

fashion encompass a significant percentage of the volume of the object (typically 20-60%).

A statistical model of the intensities contained in PVE voxels is used to provide insight into the
contents of PVE voxels and further narrow confidence bounds. This not only permits a reduction
by an order of magnitude in the width of the confidence intervals, but also establishes a statistical
mechanism to obtain probability distributions on shape descriptors (e.g. volume), instead of just a
raw magnitude or a set of confidence bounds. A challenging clinical study is performed using
these tools: to investigate differences in asymmetry of the temporal horns in schizophrenia. This
study is of high clinical relevance. The results show that our tools are sufficiently accurate for
studies of this kind, thus providing clinicians, for the first time, with the means to corroborate

unproven hypotheses or reliably assess patient evolution.
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Chapter 1

| ntroduction

11 Computer vision meets medicine

The times when computer science was a purely endogamic discipline, dedicated solely to its own
maturation, are long gone. The reader will find proof of this in every aspect of daily life.
Computers have become an essential part of our society, not only in highly industrialised
countries, but throughout the wotld. It is therefore not surprising that new disciplines are
emerging from the application of computer engineering concepts to all other sciences and arts.
The synergy created by such association is proving more and more successful every day, working
in a symbiotic fashion towards the growth of both computer science and the whole body of host
sciences. The area of study of this thesis falls into this multidisciplinary category, and in particular

this work contributes towards what is known as medical computer vision.

The human, social, and economic relevance of medicine is evident, so it is obvious that an effort
towards the application of computers in a medical setting is fully justified. In a sense, computers
can provide more accuracy and speed than humans, thus providing the hand that drives the scalpel
to the perfect location, the memory that remembers immensely larger amounts of data and
retrieves them at faster speed, and the eye that can see closer into the human body. This last field,

vision, is the subject of the present thesis.

The advent of medical imaging techniques such as X-rays, ultrasound, or magnetic resonance
imaging (MRI) — to mention a few — provided the physician with tools to see throngh the human
body. These developments unleashed a whole specttum of new diagnostic and treatment
possibilities. The power to inspect inside the human body zz-vv0 meant a considerable reduction
on the number of biopsies, and offered the potential to investigate pathologies that were not fully

understood to date.



The concept of computer vision was established in the 1960’s as a discipline aimed at providing
computers with an #nderstanding of visual data. This embodies a large set of operations, which can
be roughly classified in a bottom-up multilevel fashion as follows. Image enhancement is applied
to process the image to remove noise or enhance contrast. Low-level vision aims at detecting
elementary patterns in the image, such as lines or corners. High-level vision 1s dedicated to the
analysis of such elementary patterns in order to reconstruct the global structure of the image and
identify the objects present in it. Finally, at more abstract levels, artificial intelligence can be
employed to provide further understanding of the information contained in the image and, if
required, take a line of action (maybe based on prior knowledge). After a slow start, computer
vision has taken off. Early developments were necessarily basic, both in the nature of the
techniques employed and the scope of application. However, once these basic foundations were
laid the subject matured at a fast pace, and applications of computer vision to most common daily

activities are either already present or under way in the very near future.

Medical computer vision can be defined as the application of computer vision processes to
medical data sets acquired using any medical imaging technique. The added value obtained from
such association aims not only at reducing the time needed by the clinician to examine patient
scans, but also at providing useful additional information to help inform a diagnosis. The nature
of this complementary information can, for example, consist of highly accurate measurements of
the anatomical structure or lesion of interest. Thus, it is not the aim of medical computer vision to

replace the clinician, but rather to complement his/her role.

This thesis contributes towards this end by establishing new computer vision tools for the analysis
of medical images. In particular, it focuses on the problem of detecting and measuring organs or
lesions accurately and with explicit and tight bounds on the error. Although the techniques
developed here have wider application, we will pay particular attention to neurological studies
based on magnetic resonance images of the brain. Further details about such applications are
given next, and the rest of the chapter establishes the objectives of this thesis and provides an

outline of its contents.



12 Need for morphometric tools for neurological studies

121 Brain morphometry

In order to introduce the work developed in this thesis, it is first necessary to take a closer look at
the target clinical applications. An engineering approach must, of necessity, start by clearly stating
some objectives and identifying requisites and difficulties. The present work is located in the area
of brain morphometry. The word morphometry means “measurement of shape”. This concept has
two important implications. First, the concept of shape must be defined in a quantitative manner
suitable for measurement. Shape descriptors will depend on the application at hand, but typical
magnitudes such as volume, area or length can be employed as general shape descriptors. Second,
the concept of measurement suggests that any given morphometric method must pay particular

attention to issues such as accuracy, precision, and error analysis.

In particular, the techniques developed in this thesis aim at providing morphometric tools for
neurological studies of the brain. The particular anatomy and sensitivity of the human brain is a
petfect example of how medical imaging techniques have helped to better understand the human
body. Prior to non-invasive techniques such as MRI or MRS (Magnetic Resonance Spectroscopy),
diagnosis of neurological disease was extremely difficult, and life-threatening biopsies were
frequently carried out. Because of its good contrast of soft tissues, MRI has helped to understand
brain anatomy. Imaging evidence of a multitude of pathologies has been reported (Rodriguez,

1996), proving the effectiveness of MRI as a valuable diagnostic technique.

However, the analysis of certain clinical conditions remains difficult, mainly due to the fact that
the anatomical evidence is very small relative to the imaging resolution. Advanced morphometric
tools are then required to analyse these data and provide accurate measurements. Existing tools
are not well suited to such a task, and new morphometric techniques for brain studies must be

developed. This is the main objective of this thesis.

It should be noted that the social and economic relevance of this research is paramount. Diseases
such as schizophrenia and multiple sclerosis, for example, affect millions of people world-wide,

and necessitate enormous amounts of money for hospital beds, medical assistance, and drug



treatment. The critical lack of morphometric techniques was recognised by the European Union,
which in 1996 established the research project BIOMORPH, under the framework of the
BIOMED?2 programme. This project involved collaborators from Switzetland (ETH Zurich),
France (INRIA Sophia-Antipolis), Belgium (KU Leuven), and Great Britain (University of Kent at
Canterbury and University of Oxford). The work described in this thesis was developed as a
contribution to the BIOMORPH project, aimed at the establishment of new morphometric
techniques for brain studies. Although the techniques are of a more general use, primary focus
was set on applications to schizophrenia and multiple sclerosis. The particularities of these two
diseases are introduced next. Unless otherwise stated, the main clinical reference for the next two

sections 1s (Souhami and Moxham, 1994).

122 Schizophrenia

Just under 1% of the population develop schizophrenia at some point in their lives, a statistic that
appears to hold true for all cultures and countries (Souhami and Moxham, 1994; Harrison, 1998).
In the USA, 25% of all hospital beds are occupied by schizophrenic patients, and the total direct
and indirect economic costs are approximately $33 billion (Harrison, 1998). Regarding the UK,
until the move towards community care began, about half of all hospital beds were in mental
hospitals, and the majority of these were occupied by patients with a schizophrenic illness

(Souhami and Moxham, 1994).

Schizophrenia usually starts in young adulthood, and has a profound effect both on mental
processes and social interaction. Mental disturbances (see Figure 1) can be expressed as a
disruption of the normal progression of logical thought (“thought disorder”). Auditory
hallucinations are frequent, and they usually involve the voice of a “third person” commenting on
the patient’s actions. Delusions about an external agent interfering with the patient’s thoughts by
inserting, blocking, or transmitting them to other people are also common, as well as delusional
perceptions, in which an apparently irrelevant fact acquires special and often frightening
significance to the patient. Socially, patients tend to withdraw from social contact and spend many

hours in isolation, and may give up their jobs and shun their friends.



*  Delusional perception

*  Auditory hallucinations
Audible thoughts (thought echo)
Voices arguing or discussing (“third person”)
Voices commenting on the patient’s actions

*  Thought disorder
Thought withdrawal
Thought insertion
Thought broadcasting

*  Passivity experiences: delusions of control
“Made” feelings (includes somatic hallucinations)
“Made” actions
Somatic passivity (body invaded from outside)

Figure 1 Mental disturbances characteristic to schizophrenia. This classification is known as
Schneider’s first-rank symptoms.

About 30% of patients only have one episode, whereas 15% remain severely disabled and will still
be in hospital a year later. Chronically mentally ill patients are severely handicapped. Their
prospects of employment are poor, they may have little or no family support, and their capacity to

care for and occupy themselves may be very limited.

The cause of the illness is unclear, and it has even been suggested that schizophrenia is not a
single entity, but a group of related conditions. Both genetic and environmental factors seem to be
important in the actiology of schizophrenia. This is corroborated by studies showing that there is
higher probability of being affected by the illness if relatives suffer the condition, and higher
predisposition to a second relapse in situations where the patient lives in a hostile family

environment.

Anatomical evidence of schizophrenia, and in particular its relation to brain asymmetry, has been
reported in several studies (Johnstone et al., 1976; Crow, 1990; Bilder et al., 1994; Dellisi et al.,
1995). The prevailing hypothesis (Crow et al., 1989; Crow, 1995) relates anatomical and genetic
findings, proposing that schizophrenia results from a failure to develop the normal lateral (left-
right) asymmetry which resulted from evolutionary processes of functional specialisation of brain

structures. Normal brains show larger left occipital and temporal lobes, corresponding to language



areas, and this asymmetry is reversed in the frontal lobe (Figure 2). Results have been reported for
cortical volumes and internal structures, showing a reduction of this asymmetry in schizophrenic

brains.

LEFT RIGHT LEFT RIGHT

FRONT /\ nght > left /\/\ N\ FRONT

BACK BACK
e
left > right
NORMAL SCHIZOPHRENIC
(ASYMMETRIC) (SYMMETRIC)

Figure 2 Normal brain asymmetry 1s reduced in schizophrenia. This is illustrated on a top view of
the brain. Human brains present larger left volumes in the posterior (occipital) area, corresponding
to the zones of language specialisation, while the opposite holds in the anterior areas of the brain.
Reduction or even reversal of this asymmetry has been reported in several studies.

Unfortunately, in many of the published studies the measurement error is at least as large as the
effect being reported, so the ideas of lack of asymmetry sketched above remain hypotheses.
Techniques used for these clinical studies include water displacement and measurement of lengths
in (not necessarily aligned) slices of computer tomography (CT) or MRI. Additionally, the number
of subjects is usually very limited, and some studies worked on post-mortens brains, which tend to
deform considerably when extracted from the skull, so it is difficult to reliably measure their
asymmetry. The techniques developed in this thesis aim at providing accurate error-bounded
results for in-vivo studies. These techniques can be deployed to prove or refute current hypotheses

about schizophrenia, as shown in the clinical study reported in Chapter 5.



123 Multiple sclerosis

Neurons, or nerve cells, are excitable cells which are specialised for the reception, integration,
transformation and onward transmission of coded information. Neurons consist of a cell body or
soma, from which branching structures emerge. These structures may be immediate connections to
the soma, called dendrites, or conducts away from the cell body or axons. Neurons communicate
with each other through syrapses, which tend to be axodendritic or, in some instances, axosomatic.
Coarsely, the brain structure can be thought of as an interconnection switchboard where the active
clements (the somae and dendritic trees) are located on the outer surface (the cortex), and the
interior consists of axons interconnecting these somae in complex patterns. Axons are laminated
with a lipo-protein sheath of myekn. These sheaths are essentially concerned with the functional
efficiency of the nerve fibres during impulse conduction, in terms of an optimal conduction
velocity for a given diameter, and minimal energy requirements. They impart a pinkish-white
opalescence to the fresh tissue — hence the name white matter (Williams and Warwick, 1980).
Multiple sclerosis (MS) is a demyelinating disease, meaning that its primary pathological process is
the destruction of the myelin laminae around the axons, without further axonal degeneration

(Souhami and Moxham, 1994).

MS is an illness of unknown cause, in which discrete areas of demyelination develop at many sites
of the brain and spinal cord. Lesions, ot plagues, develop in different sites at different times,
usually with some capacity for regeneration and restoration of function. This leads to the
characteristic relapsing and remitting history in many patients; in others, a slowly progressive
deficit occurs. Since plaques may appear at any site in central white matter, the clinical
manifestations of MS are extremely variable. Lesions affecting the optic nerves cause a dimming
of vision and pain around the eye; involvement of the cervical spinal cord causes motor, sensory,
bladder, bowel and sexual disturbances. Vertigo is also common. Depression in long-standing MS
1s frequent and requires vigorous treatment. Widespread cerebral hemisphere demyelination leads
to intellectual impairment. In about 20% of patients there is no significant disability after 5 years,
and the average life expectancy overall from onset of symptoms 1s 20-30 years. In about 5% of

patients, the disease is rapidly progressive and fatal within 5 years.



MS presents a strong geographical variation, being essentially a disease of temperate climates. It is
rare in childhood and uncommon in eatly adolescence. There is an increasing incidence with age,
peaking at about 30 years, and it is uncommon over the age of 50. Slightly more women than men
are affected by MS. It is the most common progressive disabling neurological disease affecting
young adults in the UK. In the USA 350,000 people suffer from MS, and with the exception of
trauma it is the most frequent cause of neurologic disability (Harrison, 1998). Clinical drug trials
are being carried out and mobilise enormous amounts of economic and human resources. To
date, there was no specific treatment for MS. However, a drug called B-Interferon™ is in the last

stages of trial and is very likely to obtain approval in the very near future.

MRI shows good contrast of MS lesions! (see Figure 3), but the size of the plaques is usually very
small relative to the image resolution. Accurate detection and quantification of lesion size is crucial
for the study of patient evolution and the analysis of the effect of tested drug treatments, since it
reduces the subjectivity in their diagnosis. Therefore, the development of advanced morphometric

techniques is urgently needed, and could lead to substantial savings in time, money and lives.

Figure 3 Axial slice of a P MRI of the brain of a patient affected by multiple sclerosis. Plaques
have been marked with circles. Note that MS lesions appear as bright spots, whereas white matter
shows dark intensities. This is due to the loss of myelin in the plaques.

! Pp and FLAIR are sequences commonly used for imaging of MS lesions. It is also common to use
contrast agents, such as Gadelinum™. MRS is also heavily used for MS studies.



13 Objectives of thisthesis

The previous section sketched the clinical applications of the techniques to be developed, and
posed some of the problems inherent in these clinical requirements. We now provide a more
formal statement of the problem to be solved in this work. In a nutshell, this thesis is aimed at
providing computer tools for morphometric studies, with a special focus on schizophrenia and
MS. The key requirement is that these tools must provide sufficient accuracy in order to prove or
disprove hypotheses about the aetiology of schizophrenia and allow for a close follow-up of MS

patients.

This general problem can be subdivided into segmentation, or detection of interesting features such
as MS plaques or anatomical structures of interest for the study of schizophrenia, and measurement
or characterisation of their shape. Although the field of medical computer vision is young, there is
a relatively abundant literature concerning segmentation. On the other hand, the problem of
accuracy, precision, and error analysis of measurements has had much less attention, and the same
holds for the establishment of appropriate shape descriptors for features of interest in particular

clinical studies, such as asymmetry in the case of schizophrenia.

The lack of error analysis schemes for measurements obtained from medical computer vision
techniques 1s especially remarkable. In a field where accuracy is paramount, most methods provide
a raw magnitude (such as volume or area) and no notion of the error contained in the
measurement. Apparatus such as confidence bounds should be incorporated, and are one of the

key elements in the tools presented in the following chapters.

Another important issue is validation. The nature of the data we are dealing with poses the
problem of lack of ground truth. Validation on post-mortem MR scans — where ground truth
measurements can be made — 1s possible but prone to errot, since brains taken out of the skull
deform considerably and the chemicals used to fixate them affect the imaging process. Therefore,
validation schemes should be developed. This issue is another focus of especial attention in this

thesis.



Although this research has a marked technical inclination, it should be taken into account that any
engineering work is motivated and aimed at a practical application. The employment of our work
to medical purposes will be demonstrated by performing a clinical study about the anatomical

evidence of schizophrenia.

1.4 Overview

Chapter 2 provides background information about MRI and medical computer vision. The
principles of magnetic resonance and image formation are reviewed in section 2.2. The remainder
of the chapter sketches the processing steps commonly followed in medical computer vision and

provides literature review for them.

Chapter 3 describes an algorithmic framework for morphometric studies from MRI data. This
framework includes correction for bias fields, detection of salient features based on identification
of partial volume effects (PVE), segmentation, shape modelling, and shape description
(exemplified by volume computation). The segmentation method is novel in that it combines
statistical classification and geometry-based segmentation through active surfaces. Special
attention is paid to establishing confidence bounds on the segmentation and subsequent
measurements. This is achieved by creating a dual segmentation bounding PVE voxels. Thus, the
result of the process is an zzner and an outer surface bounding the real location of the surface of the
object being segmented. An extensive validation study is performed, and the crucial problem of
lack of ground truth measurements for validation is addressed. The particular choice of shape
model, consisting of a G'-continuous surface based on triangular patches, provides a flexible
means for representing biological shape, and this is demonstrated by segmenting the cortical
surface from a data set. Additionally, the continuity inherent in such surface model constrains the
shape of the surface and further narrows the confidence interval between inner and outer

segmentations.

Such interval, delimiting PVE voxels, commonly accounts for a large portion of the volume of the
object being segmented (typically 20-60%). Chapter 4 takes on the task of decoding the

information contained in such PVE voxels in order to further narrow confidence bounds. A

10



statistical model of PVE voxels is created and an estimation technique established. Robustness is
ensured by explicitly modelling the uncertainty on the parameters of the PVE model. Auxiliary
methods to detect PVE voxels and determine their composition are defined. The statistical nature
of our technique provides means to propagate the uncertainty on the estimation of the
composition of individual PVE voxels, in order to create statistical distributions of shape
descriptors (e.g. volume). Results are provided showing that the PVE estimation framework
described in this chapter allows for a reduction of confidence intervals by more than an order of
magnitude with respect to the ones obtained in the previous chapter (typical values are around 1-

2%).

The usefulness of the techniques described in this thesis is demonstrated by a challenging clinical
study, presented in Chapter 5. This study focuses in the temporal horns, a very thin structure part
of the lateral ventricles (section 5.2 provides anatomical background). The importance of such
structure in schizophrenia has been pointed in several studies. However, the lack of resolution of
current morphometric techniques has not allowed for conclusive results to be established, due to
the very small size of the temporal horns with respect to the voxel size. We show that the use of
our techniques makes this problem, intractable to date, feasible (confidence bounds on volume
measurements are around 6%, as opposed to 200% for voxel-based methods). This study 1s not
only a validation for our techniques, but also an important clinical contribution to schizophrenia

research.

Finally, Chapter 6 provides conclusions and ideas for future work. Several appendices are also

included for clarity, and provide the necessary detail on particular issues.

11



Chapter 2

Background

2.1 I ntroduction

This chapter provides some necessary background information. In particular, section 2.2 deals
with MRI, describing the basics of its functionality and how images are generated, and the rest of
the chapter consists of a literature review of the state of the art in medical computer vision.
Section 2.3 lists the typical computer vision processes applied to medical data sets, and the

following sections provide more detail for each of these processing steps.

2.2 Magnetic resonance imaging (MRI)

221 Basics

The magnetic properties of the nuclei of atoms commonly present in human tissues, such as 'H,
1BC, or YF constitute the basic principle of MRI. In particular, these nuclei (*H, commonly called a
proton, is the most abundant and hence the one most frequently used for imaging purposes),
when embedded in a magnetic field, can absorb the energy of radio-waves of characteristic
frequencies. The exact frequency, known as the Larmor frequency, depends on the type of
nucleus, the field strength, and the physical and chemical environment of the nucleus, and is given
by the Larmor equation (Rinck, 1993). The absorption of the energy of such radio-waves causes a
switch from the initial low-energy state (parallel to the magnetic field) to a higher, anti-parallel,
energy state. This is the basic phenomenon utilised in MR imaging. The proportion of high and

low energy spins in a sample determines its net magnetisation.

The patient is placed inside a static, stable and highly homogeneous magnetic field Bo. A radio-
frequency (RF) transmitter is used to generate short pulses of radio-waves of an appropriate

frequency to excite the nuclei of interest. These nuclet absorb the energy provided by the radio-

12



waves and liberate it when the transmitter is turned off. The released energy is captured by a
receiver coil and measured, reflecting the proton density (Pp) inside each voxel. Localisation of
each voxel is achieved by modifying the field By with the addition of gradient fields that
contribute to By linearly in one direction. Three gradients are used to encode all three spatial
dimensions inside the volume. Thus, the resulting magnetic field varies spatially, and by modifying
the magnetic field at each point of the volume, the frequencies absorbed by each particular
location inside it also vary linearly. This allows for the origin of the signals to be identified, and
makes it possible to determine the net magnetisation My at each spatial location. Images can then

be generated, as explained in the following section.

222 Image formation

A slice through the imaged volume is selected by applying a gradient field in the z direction, i.e.
parallel to the main field Bo. The contribution of this gradient produces a linear increase of the
field present in different locations of the patient (Figure 4). Only certain field strengths are excited
by the subsequent RF pulse, as stated by the Larmor equation. The strength and duration of the
application of the gradient field determines the excited area within the sample, i.e. the slice
thickness. Changes in the frequency of the gradient field bias it in the z direction, so allowing the

selection of the desired slice.

RF pulse

excited
area

Figure 4 Slice selection. A gradient field is used to modify linearly the main magnetic field B.
Only a slice through the patient will be excited, in virtue of the Larmor equation.

13



Phase is used to encode the y direction inside each slice. A short time after a magnetic field has
been applied to a sample, the spins start dephasing (cf. definition of T2 in section 2.2.3). In the
presence of a gradient magnetic field, this dephasing is dependent on the spatial location of the
spins. The phase angle induced by a gradient depends both on the duration and the amplitude of
the gradient. Figure 5 shows how amplitude (and polarity) affects phase, assuming constant

duration of the application of the gradient.

no gradient

+A

Figure 5 Lffect of a gradient on the phase of the
spins. Assuming constant duration of the application
of the gradient, the phase angle (left) can be controlled

by varying the polarity or amplitude of the gradient
(right).

BT

The 2D Fourier transform method 1s used to locate voxels in a slice. First, a gradient in the y direction
is switched on and turned off after a certain time, so modifying the phase of the sample at
different locations. Then, a gradient in the x direction is used to complete the definition of the
voxel by modifying the resonance frequency at different locations along the x axis. Thus, phase
encodes y and frequency encodes x. Since the y gradient must be applied as a preparation step
before the x gradient is used, the experiment must be repeated n times, where n is the desired
resolution in the y direction (typical protocols use 256 acquisitions per slice). The amplitude of the
signal for each location in the sampled volume is stored, and this representation is called K-space.

One line of K-space is filled for each activation of the y gradient (Figure 06).
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The K-space representation does not correspond directly to the image. In fact, it contains
frequency information, in a fashion similar to the Foutier transform of an image. Positions near
the centre of the matrix correspond to low frequencies, and points near the corners show high
frequency information. A 2D inverse Fourier transform is used to convert this representation to

an intensity image.

phase

frequency

Figure 6 K-space. One line is filled during each activation of the y gradient.

2.2.3 Rel axation times and tissue characterisation

Two characteristic times, T1 and T, enable tissue type to be identified and give complementary
information to that obtained from proton density. After a 90° RF pulse the net magnetisation of
the sample is shifted by 90°, placing it on the x,y-plane (perpendicular to the direction of By).
When this pulse is turned off, the sample will progressively relax to the former stable position,
that is, its magnetisation will be parallel to Bo. This recovery follows an exponential rate
M =M ,e '™, where My is the initial magnetisation and Ti is the spin-lattice relaxcation time.
Therefore, Ty is the time required for the system to recover 63% of its equilibrium value after it
has been exposed to a 90° pulse. The spin-spin relaxation time, Ts, is related to the phenomenon

known as transverse relaxation. After a spin has been excited by a RF pulse, it initially behaves in a
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coherent fashion, i.e., all spins precess? in phase around the direction of the external field and add
up to a net magnetisation Mp. However, as time passes, the net magnetisation starts to decrease
due to a dephasing of the spins (see Figure 7). This is partially caused by small differences in the
static magnetic fields at different locations of the samples, which determine slightly different

Larmor frequencies (Rinck, 1993). T characterises this decay in magnetisation due to dephasing
of excited spins.

BO z z
90°
e —p
X Yy X %
z z z

Figure 7 The contribution of all the spins precessing around the external magnetic field By
produces a net magnetisation Mg. When a 90° RF pulse is applied, this net magnetisation is tipped

onto the x,y-plane. Dephasing of the spins results in a quick decrease of the net magnetisation in
-t/T,

the x,y-plane, charactetised by T2. Such decay follows the equation: M =M e

A number of acquisition protocols have been designed in order to be able to measure Ty and T>
for individual voxels. They consist of series of 90° and 180° pulses that excite the sample and
permit monitoring of the decay in magnetisation due to return to equilibrium state (T4) or
dephasing of spins (T2). Partial Saturation-Saturation Recovery and Inversion Recovery sequences
are used to measure T, while the Spin Echo Pulse Sequence can be employed to obtain T». Cf.

(Rinck, 1993) or (Webb, 1988) for a detailed explanation of these and other pulse sequences.

2 When nuclei are embedded in a magnetic field, they align parallel to the direction of the field and
exhibit a complex motion known as precession. It consists of a rotational movement around their own
axis combined with a rotation around the axis of the field, in a similar fashion as a spinning top or
‘wobble’ (Rinck, 1993).
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By modifying the parameters of these sequences (mainly times and strengths of pulses) contrast
can be altered to enhance the delineation of particular tissues. In particular, there are three basic
types of images: proton density (Pp), Ti-weighted, and T>-weighted?. The information they convey
is particular of certain tissue types (Rodriguez, 1996) and, to some extent, complementary. Figure

8 shows a Pp and a T>-weighted image of the same brain.

Figure 8 P, and Tz-weighted images of the same brain. Py images give good white matter / grey
matter contrast, but CSF shows intensities very similar to grey matter (notice the complicated
delineation of the ventricles, due to the proximity of inner nuclet). T> shows excellent CSF
contrast, but poor white matter / grey matter contrast.

2.3 Processing stepsin medical computer vision

The term computer vision applies to the set of computer processes applied to an image* in order
to extract high-level information. These processes can be classified, based on the level of
understanding they provide, as follows (see Figure 9):

®= Image enhancement. Correction of image artefacts or noise, or transformation of the image

in order to enhance certain elements.

% The terms T;- and T-weighted refer to images whose intensities are related to the T, and T, times,
respectively, of the tissues.
* The term image, in the present context, refers both to 2D and 3D data.
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®= Feature detection and segmentation. This is the first abstraction step in the image
processing pipeline. Structural elements of interest are detected (feature detection), and objects
present in the image are separated from the background and located (segmentation).

= Shape modelling. The segmented objects are represented in a convenient form. This step is
closely related to segmentation, and frequently, segmentation methods take advantage of a
particular shape model, as is the case for deformable models (ct. section 2.5.2).

= Registration. This step can be applied either at the image level (after image enhancement), or
after obtaining a convenient shape representation. It brings into correspondence two images
(ot shape models) in order for them to be compared.

= Shape description. High-level information about the objects detected in the image is
obtained. This information may be qualitative or quantitative. Clearly, medical morphometric

studies should provide accurate quantitative information.

The following sections provide a review of the medical computer vision literature related to each

of the steps described above.

@ diameter
’ E— —> area

Image Segmentatlon Shape (c, ) Shape etc.
enhancement modelling description
image A mmnage B mnage B
registered to
tmage A

Figure 9 Illustration of the processing steps performed in medical computer vision. After
removing noise from the image (image enhancement), the object present in the image 1s identified
and extracted (segmentation). An appropriate shape model is obtained, in this case a circle of
centre ¢ and radius r. Shape descriptors such as diameter and area can then be obtained. The
process of image registration is also illustrated. Image B is registered to image A in order to
identify the location in image A corresponding to the cross in image B.
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2.4 I mage enhancement: application to MRI

In an ideal wotld, based on the physics of MRI, voxels containing a particular tissue type should
have neatly identical intensities, thus yielding piecewise constant images. Unfortunately, this is not
always the case, and a set of image artefacts is present in MRI acquisitions, affecting both intensity
values and the geometry of the structure being imaged. In this section we desctibe two of the
most common problems: bias fields and partial volume effects, and sketch various methods
reported in the literature to correct for them. Further discussion of these and other MRI artefacts,
such as geometric distortions, ghosting, or motion-induced noise can be found in texts dedicated

to the physics of medical imaging (Webb, 1988; Rinck, 1993).

24.1 Inhomogeneity correction

Spatial inhomogeneities, also known as “bias fields”, affect MR images by altering the intensity
measured from homogeneous tissue across the image with a multiplicative, smoothly varying
spatial contribution. The result is a correlation of the intensity present at a certain voxel and its
spatial location, showing brighter intensities in certain locations of the image, with smooth
transitions to darker regions. The effect of a bias field is highly disruptive when using surface coils,
affecting intensities with a contribution of up to 60% of the maximum image intensity (Hayton,
1998). Acquisitions using body coils, such as the ones commonly performed for brain studies,
create more uniform magnetic fields, thus reducing intensity variations to the range of 10%-20%
of image amplitudes (Sled et al., 1998). Although in some cases this spatial variation can be barely
noticeable by visual inspection, its effect on intensity-based segmentation techniques is significant,
and this has motivated the effort of many research groups towards correcting for it. (Wicks et al.,
1993) identify four sources of bias fields, namely: inhomogeneities of the By field emitted by the
transmitting RE coil, non-uniformity of the received By field due to the sensitivity of the receiving
RF coil, the effect of the recetver filter, which is an analogue filter in the receiver chain used to
limit bandwidth and hence prevent aliasing in the frequency encode direction, and uncompensated

gradient eddy currents.
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Bias fields affect the image acquisition process as a loss of high frequencies, which correspond to
locations furthest away from the centre of the K-space representation of the image (cf. section
2.2.2). Thus, the effect of the bias field can be modelled as a low-pass filter in K-space:

Kra = Kigea 0L,
where L is a low-pass filter and [is the convolution operator. After inverse Fourier transform to
generate the intensity image, this convolution becomes a multiplication:

Lo = F (K ) = F 7 (Kigeq OL) = F 7 (Kigey ) IF (L) = | g [B,

where B is the bias field observed in the image.

Most approaches to correct for bias fields rely on the assumption of spatial smoothness. (Listerud
et al., 1989) claim that variations within the bias field are negligible over a distance of a fourth of
the field of view (FOV), thus confining the spatial frequencies of the bias field to a circle of
diameter 4/FOV in the K-space representation of the image. Filtering approaches isolate this area
of low frequency and identify it to the bias field. Instead of working in frequency space, most
methods apply low-pass filters to its intensity counterpart, then divide this blurred version into the
original image (Axel et al., 1987). (Listerud et al., 1989) make use of an averaging filter, which is
equivalent to applying Gaussian smoothing to the image, to estimate the bias field. (Axel et al.,
1987) note that this sort of non-linear processing produced by dividing the image by a blurred
version of itself is equivalent to homomorphic filtering. It is commonly recognised that this type
of approach introduces edge effects, and only gives good results when applied to modalities with
low contrast, such as Pp (Dawant et al., 1993; Wicks et al., 1993). Additionally, removing all low
frequencies in the image also implies removing useful structural information. Other early
techniques for inhomogeneity correction isolate the bias field by scanning a uniform phantom and
building a model of it, which can then be removed from the patient data. (Axel et al., 1987) use
the image of a uniform phantom and divide the patient data by it. (Wicks et al., 1993) use an
exponential decay function model for the bias, while (Tincher et al., 1993) construct a polynomial
representation of its variation across the image. A crucial assumption in these approaches is that
of independence of the bias field with respect to placement of the patient in the coil, and
negligible temporal and patient-dependent variations. These assumptions do not hold in most

cases, and only acquiring a phantom for every patient would circumvent them (Dawant et al.,
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1993; Gilles et al., 1996). This does not mean that phantoms are not useful. (Hayton, 1998) uses a
phantom to remove a large proportion of the bias field (up to 90%) generated using surface coils
in breast MR, and then uses complementary techniques to remove the remaining, patient-

dependent contribution.

In a similar vein to (Tincher et al., 1993), several other techniques model the bias field as a
polynomial surface fitted to the global intensity variations of the image, but do not use a phantom
to obtain this surface. Instead, they fit the polynomial directly to homogeneous regions of the
patient data. Examples can be found using thin-plate splines (Dawant et al., 1993), B-splines
(Gilles et al., 1996), and Legendre polynomials (Brechbuhler et al., 1996). (Hayton, 1998) uses the
graduated non-convexity algorithm (Blake and Zisserman, 1987) to fit a weak membrane, allowing
discontinuities at the transitions between tissues. These spline-based methods have proven
successful for correcting intrascan inhomogeneities, but frequently require a slice-by-slice

processing in order to correct interscan intensity inhomogeneities (Wells et al., 1996).

(Wells et al., 1996) propose a completely different approach to estimate of the bias field, also
allowing for correction of interscan artefacts. Their technique is based on a statistical model of the
imaging process, the construction of a Bayesian estimator for the bias field, and the use of the EM
algorithm for iteratively interleaving the estimation of this bias field and the segmentation of the
image into tissue classes. A further improvement to the method, based on the introduction of a
uniform distribution to cater for tissues not explicitly modelled, such as air, bone and fat, or
tissues that have a high variance in intensity, is described in (Guillemaud and Brady, 1997). This
method is used in our work, and will be described in detail in Chapter 3. Several authors comment
on the need for a piecewise constant structure of the tissues in the image in order for the method
to give satisfactory results. This is a problem for breast MR studies (Gilles et al., 1996; Hayton,
1998), but the piecewise constant assumption is reasonable for brain tissues. Likewise,
(Brechbuhler et al., 1996; Hayton, 1998) claim that the method is quite sensitive to the parameters
of the tissue classes, which must be specified by the user. (Guillemaud and Brady, 1997) provide

some insight into the problem of automatically estimating the parameters for the tissue classes,
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and (Zhang et al, 1999) describe a method for iteratively updating the estimates of such

parameters within the EM framework.

Several methods to bring prior knowledge into the bias correction procedure have been devised.
(Aylward et al., 1994a; Aylward et al., 1994b) use an augmented feature space including spatial
location to characterise tissue properties. Their approach is quite interesting, and the results
reported are excellent, but it requires a considerable amount of user interaction to obtain results of
such quality. Several researchers (Rajapakse et al., 1997; Kapur et al., 1998; Zhang et al., 1999)
model the expected piecewise nature of the segmentation using Markov Random Fields (MRF) to
specify priors on neighbouring pixels. (Kapur et al., 1998) also builds a prior of relative geometry
between tissues to model relations between anatomical structures. (Van Leemput et al., 1998) use
a digital brain atlas with prior probabilities on tissue location in a standardised Talairach space.
While all these approaches go in the right direction towards specifying prior information, it
remains a difficult task to leverage the contribution of the prior to the final result. An over-
weighting of the prior with respect to the data would tend to suppress detail and create artificial
results (particularly affecting partial volume effects; cf. next section), while weighting the prior too
low would effectively not contribute to the segmentation and be a computational burden. Finally,
in the different field of aneurysm detection from angiography (MRA) data, (Wilson and Noble, to
appear) circumvent the problems associated with bias fields by estimating different tissue

parameters for different regions of the image in an oct-tree fashion.

24.2 Compensation for partial volume effects

MRI is an inherently volumetric imaging modality, in the sense that voxels are not infinitesimally
small samples of 3D space, but whole 3D regions. Our brief review of the concepts of MR image
formation (section 2.2.2) shows that the intensity corresponding to an individual voxel is a
function of the signal returned by the whole contents of the 3D region isolated by the gradient
fields in order to define the voxel’. This means that if several types of tissue are present in the

voxel, its intensity will be an average of the contribution of all the tissues. This phenomenon is

® Typical voxel sizes in present acquisition protocols are around 1mm?>.
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known as the partial volume effect (PVE). In what follows, voxels containing only one tissue type are
referred to as pure voxels, whereas voxels containing more than one tissue will be called PVE

voxels.

PVE especially affects segmentation methods based on assigning tissue type tags to voxels (see
section 2.5.1). Some of the methods described next consider PVE as a corrupting factor and try to
correct for it. On the other hand, the work described in this thesis is based on using PVE as an

important image feature, and the focus is on estimating it in order to obtain sub-voxel accuracy.

(Roll et al., 1994) use an intensity thresholding segmentation approach to assign a tissue type tag
to each voxel and establish an optimal segmentation threshold and a correction factor to take into
account PVE. The particular application is MS lesion quantification. Although complicated by the
fact that they take into account all voxels in the image, instead of only PVE voxels, their approach
is very simple, and concludes that the optimal threshold is halfway between lesion and background

intensities.

Several authors have proposed approaches for estimating PVE by solving a linear system using the
information provided by several image modalities. (Soltanian Zadeh et al., 1993) develop a method
for creating images with intensities proportional to the quantity of a certain tissue in each voxel,
while maximising signal-to-noise ratio. The method is solid and a numerically stable solving
procedure is detailed. However, it requires having at least the same number of (perfectly
registered) image modalities as the number of tissues that we are interested in segmenting.
(Thacker et al., 1998) set up a linear system with the intensities from two image modalities in order
to segment grey matter, white matter, and CSEF from neurological data sets, and provide a method
for estimating the expected accuracy of the results. (Choi et al., 1991) argue that methods that
combine different modalities linearly are prone to be very affected by noise, and they propose a
Markov random field (MRF) prior as a way to smooth out the results. This introduces the typical
problems of MRFs, i.e. determining the correct parameters and the weighting between the prior

and the data, as well as huge computational cost. It must be noted that several imaging modalities
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are not always readily available, and in such cases a single-channel PVE estimation method is

necessary.

Another approach is to model the statistical distribution of pure tissue and mixture voxels and to
fit these distributions to the image. (Santago and Gage, 1993) use a Gaussian model for the tissue
classes based on a mean intensity and a common noise variance for all the tissues, and employ a
uniform distribution to describe the behaviour of the proportion of each tissue in PVE voxels.
They describe two methods for fitting these classes to the data, namely Bayes quantification and
parameter quantification, and develop etrror measures for both techniques. The results are rather
disappointing, however, since fitting only Gaussian tissue classes gives better results than explicitly
modelling a distribution for PVE voxels. (Laidlaw et al., 1998) use the same tissue model assuming
a single common variance for all tissues, and provide a sophisticated means for fitting the
distributions to the histograms of the whole image and of single voxels, while constraining
neighbour continuity. No quantitative comparison with other methods is provided, and visual
comparison 1s performed with methods that do not give appropriate results for the example
object. Therefore, it is difficult to draw conclusions about the performance of the method.
Unfortunately, this technique is extremely time-consuming, even though it was implemented on

parallel hardware.

(Marais, 1999) proposes a different PVE estimation strategy by using a model of the width of each
tissue in profiles traversing the brain surface. His work was motivated by the need to deal with
sparse, low resolution data sets, and the assumptions taken to model anatomical structure are too

simplistic for its use on high resolution MRI.

25 Segmentation

Segmentation, even when restricted to the particular domain of medical three-dimensional images,
is a very broad subject, which has received a great deal of attention in many applications. An
exhaustive review of segmentation methods is outside the scope of this thesis, and the discussion
below is limited to the main segmentation paradigms and gives some examples of related work.

Segmentation and shape representation are closely related problems, so the reader will find a
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significant overlap in the references provided in this and the following sections. The classification
follows the taxonomy of (Marais, 1999) and (Jacob, 1999), based on the distinction between
statistical voxel classification methods and techniques that incorporate some notion of expected

shape.

25.1 Voxel classification methods

Voxel classification methods are based on establishing statistical intensity models for the different
objects in the scene. Traditionally, thresholding or region growing techniques (Gonzalez and
Woods, 1992) are applied in order to segment the data, but more complex models require more
subtle classification schemes. Examples of this approach in the medical imaging literature can be
found in (Dawant et al., 1993; Tincher et al., 1993; Maes et al., 1995; Wells et al., 1996; Guillemaud
and Brady, 1997). Classification is conceived of as a local voxel-based process, and independence
between neighbouring voxels is often assumed. Notable exceptions to this are models based on
Matkov random fields (Rajapakse et al.,, 1997; Kapur et al.,, 1998; Zhang et al., 1999), which
include the notion of local structure by modelling neighbour interactions. Other attempts to bring
a notion of shape into these approaches have been based on building probabilistic atlases for the
location of anatomical structures, and therefore tissues (Kamber et al., 1992; Van Leemput et al.,
1998). Although these last techniques aim at constraining global shape, their effect is still restricted

to voxel level, and hence they are unable to enforce large-scale shape constraints.

252 Shape-based methods

The robustness of the segmentation process can often be improved by adding a priori topological
and/or geometrical knowledge. Deformable models employ a shape representation of the surface
(contour, in 2D) incorporating constraints about the expected topology and/or geometry, and
expose it to a dynamical system which attempts to reach equilibrium between internal (shape
constraints) and external (data-driven) forces. The following discussion will focus on the
segmentation process itself, while shape representation techniques will be listed in the following

section.

25



The seminal work of (Kass et al., 1987) describes a framework for active contours (snakes) based
on 2D splines. They define a potential field combining information from the whole image. The
internal force is provided by the spline bending energy, while the external force includes intensity
and gradient information to drive the spline towards edges in the image. (Scott, 1987) proposes a
very interesting contemporary approach using Fourier snakes and penalising high-order harmonics
to ensure smoothness in the final result. Variations to the external force also abound, such as the
one introduced by (Ivins and Porrill, 1994), which defines a region energy based on texture. All
these techniques rely on global optimisation over the whole image, which is not time-effective.
(Blake et al., 1993) modify the snake framework using fast local searches perpendicular to the
contour. A parameter controls the search scale, and a statistical framework provides robustness to

outliers.

Examples of the use of deformable models in medical imaging abound (Terzopoulos et al., 1987;
Lipson et al., 1989; Delingette, 1994; Stoddart et al., 1994; Bardinet et al., 1995). A more complete
review of such methods can be found in (Mclnerney and Terzopoulos, 1996). Methods differ
mostly in the shape model used to represent the segmented structure, rather that the segmentation

framework itself or the nature of the forces used to drive the fitting process.

Internal forces can be used to provide geometrical continuity and topological consistency, but the
range of constraints that can be modelled by means of these forces is still limited. Using them, it is
difficult to represent the concept of normal shape and normal variation. (Cootes et al., 1994) propose
computing the mean shape from landmark positions on a set of manually segmented data sets,
and using principal component analysis (PCA) on the covariance matrix in order to build a model
for the normal shape variation of the structure at hand. Shape can then be constrained using a
combination of the mean shape and the largest eigenvectors of this matrix (the principal modes of
variation). This framework was originally proposed for landmarks in 2D images, but progress has
recently been achieved to incorporate it into the internal force of deformable models (Szekely et

al.,, 1996; Montagnat and Delingette, 1997; Jacob, 1999; Marais, 1999).
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25.3 Mixed methods

Voxel classification methods may provide sophisticated statistical models of image intensities, but
lack globality and tend to produce noisy or incomplete segmentations. On the other hand, shape-
based methods efficiently constrain global shape, but only a very limited amount of the target
data, namely the one located near the boundary of the object, is used. These two approaches have
classically been considered alternative, and very few efforts have been done to integrate the local
(voxel-based) and global (shape-based) information they provide.

As mentioned above, some voxel-classification schemes exist that incorporate more global
information by means of Markov random fields and probabilistic atlases, but the effect is
restricted to voxel level or small neighbourhoods. Region-driven deformable models (Ivins and
Porrill, 1994; Ronfard, 1994; Zhu and Yuille, 1995; Brady et al., to appear) perform region
growing while constraining the outer boundary of the segmentation using a snake-like approach

that can incorporate shape constraints.

The work described in this thesis combines both statistical and shape information to drive the
fitting process of a deformable model. It is also noticeable that very few segmentation methods
provide a framework for quantifying the uncertainty of the resulting segmentation. This issue, of
vital importance to medical applications, is also addressed in this thesis. A full description is

provided in Chapter 3.

2.6 Shape representation

The complexity of shapes encountered in biological structures, and in particular the ones found in
the brain, seriously challenges existing shape modelling techniques. Several attempts have been
made to build models to encompass biological shape, and this section provides a review of such
techniques. Let us first consider the characteristics that a shape representation for biological
structures should have:

= Topological flexibility. Organs such as hippocampi and the brain cortex have spherical

topology, whereas the ventricles, for example, have holes.

®= Geometrical flexibility, for representing highly irregular and convoluted shapes. The

geometrical complexity of the brain cortex is well known, not only for its convoluted shape,
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but also for its intrinsic geometry, which makes it impossible to “flatten” its surface without
introducing cuts ot local stretches (Griffin, 1994).

=  Structural simplicity. The shape model of choice is bound to be used as a deformable
model, so in order to reduce computational cost, it is important that the model be simple in
structure.

= Dense resolution. The model has to be able to closely approximate very complex shape, so
sparse shape models are not appropriate. Additionally, geometrical continuity allows
anatomical smoothness to be naturally modelled.

It should be noted that some of these constraints are somehow contradictory, so we need to

establish a trade-off between them. High flexibility (topological or geometrical) and structural

simplicity are usually at odds with dense resolution and accuracy.

The classification that is provided next is based on the structural complexity of the shape
representation. In particular, the following paradigms are described: voxel-based representations,
landmark-based methods, parametric models, representations based on meshes, and other

techniques, such as symmetry-based representations and level sets.

26.1 Voxel-based representations

The results of voxel-classification segmentation methods are usually stored as a set of voxels in a
mask, or labels for each voxel indicating the group it belongs to. If no post-processing is made to
generate a more sophisticated representation, this is the final shape model for the segmented
object. Most of the methods mentioned in section 2.5.1 fall into this category (Griffin et al., 1994;
Maes et al., 1995; Kapur et al., 1996). Extensions to this paradigm may include more information
about the tissue each voxel belongs to, such as a set of labels for each voxel (Tiede et al., 1996).
Typically, these representations require large amounts of data and handling them is highly
complex and time-consuming, thus rendering them unsuitable for applications that require
flexibility. On the other hand, the high number of voxels involved in a segmentation ensures

dense resolution (limited to the voxel size).
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2.6.2 Landmark-based methods

At the other end of the spectrum of amount of represented information, landmark-based methods
store very little data, corresponding to the locations of a set of (anatomically meaningful or
otherwise chosen) landmarks. Landmarks can be points (Cootes et al., 1994; Bookstein, 1996;
Amit, 1997), curves (Ebetly et al., 1994; Subsol et al., 1995; Lohmann et al., 1997), or even
surfaces embedded in 3D volumes (Collins et al., 1996). A more in-depth discussion on the choice
of landmarks and a description of a particular way to analyse them to establish shape comparisons
can be found in (Bookstein, 1992). These representations provide flexibility and a remarkable
structural simplicity, but are extremely limited in the resolution of the representation. In fact, their
usefulness is limited to studies where the location of the landmarks is the only important issue.
Interpolation techniques can be used (Bookstein, 1996), but the limited number of landmarks

makes it impossible to obtain true dense resolution.

2.6.3 Parametric models

Parametric surfaces, such as superquadrics (Lipson et al., 1989; Terzopoulos and Metaxas, 1991)
provide a compact shape representation that is structurally simple. However, the range of shapes
that such analytical models can represent in practice is rather limited. Extensions using free-form
deformations (Bardinet et al., 1995), fractal-based parameter spaces (Vemuri and Radisavljevic,
1994), blending schemes to smoothly combine several surfaces (DeCarlo and Metaxas, 1995), and
solid textures (Chover, 1996; Gonzalez Ballester, 1996) have been devised in order to enhance the
representational power of such schemes. However, these extensions tend to increase enormously
the number of parameters of the model, thus negatively affecting the structural load of the

parametric model.

Fourier curves (Scott, 1987) and surfaces (Szekely et al., 1996) provide a convenient continuum
between scales of detail, by decomposing the surface (curve in 2D) into harmonics. Although the
formulation is mathematically nice, the number of harmonics required to model surfaces of high

complexity, such as the brain cortex, render these methods ineffective.

29



Parametric models have no topological flexibility. The topology of the object must be known
beforchand, since it is built into the analytical definition of the shape. Although none of the
methods described above provides a completely satisfactory solution for complex biological
shapes, it should be noted that having a parameter space to index the shape is very desirable, since

it has several advantages for further shape description, as will be discussed in section 2.8.

264 Meshes

Discrete meshes are composed of a set of nodes (typically 3D points) and a connectivity function,
which determines the connections between the nodes. Because of their regularity and the
possibility to tessellate spherical topologies, triangulations have been used extensively as shape
models. The marching cubes algorithm (Lorensen and Cline, 1987; Tiede et al., 1990), creates a
triangulation from raw three-dimensional data by computing the location of an isosurface at a
given intensity value. If the location of the nodes is known, a Delaunay triangulation (Fang and
Piegl, 1995) can be built, in which the generated triangles are related to the specified nodes in that
the closest node to all points in a given triangle is the same one. Triangulations generated directly
from raw data tend to have an enormous number of nodes, making them very costly to
manipulate. However, they remain effective for rendering purposes, since dedicated hardware is

generally available.

Meshes can also be used as deformable models. In this case, the connections between nodes act as
springs that enforce shape constraints between a node and its neighbours. Such is the case for
active surfaces like the simplexc mesh (Delingette, 1994), skme (Stoddart et al., 1994; Stoddart and
Baker, 1998), or the ones described in (Nastar, 1994). The main advantage of such methods is
their flexibility, both in the geometric and topological sense. A simple change in the connectivity
function can alter the topology of the object. They are also structurally simple and easy to
manipulate. Additionally, most of these techniques include some simplification and refinement
processes, by which nodes can be dynamically removed or added, respectively, depending on the
desired level of flexibility and/or dense tresolution. Such is the case of the simplex mesh
(Delingette, 1994), which also incorporates a very sophisticated segmentation and topological

manipulation framework. Furthermore, simplex meshes are especially easy to manipulate, since
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they are regular in their structure, which is dual to the one of the triangulation, i.e. each node is

connected to exactly three other nodes.

The obvious drawback of discrete meshes is that of lack of density in their resolution. Interpolant
patches can be used to this end. (Stoddart et al., 1994) uses S-patches (Loop, 1992) to create a G!-
continuous surface interpolating the nodes of the slime mesh. (Schmitt et al., 1991) describe an
interpolating procedure based on triangular Gregory-Bézier patches, which ensures G! continuity
without the need to enforce conditions on the corners of the triangles, thus considerably reducing
the computational cost. Alternative interpolants that can be used to create a spatially continuous
mesh can be found in (Barnhill, 1974; Hoppe et al., 1994; Krishnamurthy and Levoy, 1996; Hong
and Terzopoulos, 1997). The shape model used in this thesis incorporates triangular Gregory-
Bézier patches (Schmitt et al., 1991) to the simplex mesh framework (Delingette, 1994), thus
providing G'-continuity to the mesh. A more in-depth discussion of the structure and properties

of this shape model is given in Chapter 3.

2.6.5 Other shape models

Exploiting the idea of symmetry in biological shapes has been one of the principal paradigms in
shape modelling. The seminal works of (Blum 1973) and (Brady and Asada, 1984) are examples of
early use of this idea in computer vision. Symmetry-based shape models are usually based on
computing a symmetry axis (surface, in 3D) and a function that specifies the distance to the
contour (or outer surface) for every point in the symmetry axis. (Terzopoulos et al.,, 1987)
introduced symmetry-secking deformable models. Symmetry-based representations applied to
medical data can be found in (Gauch and Pizer, 1993; Burbeck and Pizer, 1995; Naf et al., 1996).
It 1s worth noting that the extension of 2D symmetry axes to 3D symmetry surfaces is not trivial,
and the resulting model may be very complex in structure (effectively another surface, or set of
surfaces, representing the original surface), thus reducing the usefulness of these approaches for

representing 3D structures.

Another shape representation paradigm is that of /eve/ sets (Whitaker, 1995; Xiaolan et al., 1998). In

this case, the surface is modelled implicitly as the solution to a set of partial differential equations,
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and no explicit mathematical representation is given. This means that another representation
technique (voxel-based, usually) must be used to manipulate the resulting model. These methods
provide a nice framework for segmentation, but lack structural simplicity and usually require

highly time-consuming segmentation algorithms.

2.7 Registration

Although this thests is not directly related to registration issues, it is convenient to sketch the main
paradigms and introduce some concepts that may appear in what follows. An in-depth review of
present (from 1993) registration techniques can be found in (Maintz and Viergever, 1998).
Techniques prior to 1993 are reviewed in (Maurer and Fitzpatrick, 1993; van den Elsen et al.,

1993).

Several taxonomies are reported in (Maintz and Viergever, 1998). The one most frequently used
deals with the nature of the transformation used to map the two images (or shape models). Rigid
registration performs a 6 degree of freedom (translation and rotation) transformation, while affine
schemes also allow for scaling and shearing effects. Local techniques based on vector field
mappings, commonly known as #on-rigid registration, have the potential to model more complex

deformations.

2.8 Shape description

Classical quantitative shape descriptors, such as length, area and volume can be obtained from
most of the shape representations described in section 2.6. In particular, measures provided by
voxel-based models are computed by simple addition. Volume, for example, is computed by
adding up all the volumes of the voxels belonging to the object. It must be noted that a
considerable error 1s introduced due to partial volume effects (cf. section 2.4.2), especially when
dealing with complex convoluted biological structures with large surface area. Parametric models
are specially suited to obtaining accurate quantitative measures, since they are defined by
continuous analytical functions. Area and volume can be computed using concepts of differential

geometry (Boehm and Prautzsch, 1994) and results from vector calculus, such as Gauss’
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divergence theorem (Boas, 1983). These methods can also be applied to parametric interpolants
fitted onto meshes (cf. Chapter 3 for an example of this). For planar triangulations, simpler

expressions for volume and area can be obtained (see section 3.8).

Landmark-based methods do not provide full coverage of the shape of the object, but rather
concentrate on specific meaningful locations. Therefore, global measures such as volume or area
cannot be computed. Interesting measures focus on the variation of the location of these
landmarks, either relative to each other, between different time points of a same patient, or in
inter-patient studies. A detailed discussion of these techniques can be found in (Bookstein, 1992).
Point Distribution Models (PDM), introduced by (Cootes et al.,, 1994), also provide a natural
framework for studying intra- and inter-patient variation. Their landmark-based segmentation
scheme, based on principal component analysis to constrain the allowed variation of shape, results
in a set of coefficients for the eigenvectors corresponding to the principal modes of variation.
Studying these coefficients may allow for the detection of abnormal variation with respect to the
training set. This method has been applied to neurological and cardiac studies (Cootes et al.,

1994), as well as orthopaedics (Solloway et al., 1996).

Differential characteristics of the contour or surface of the object of interest can be used to
describe its shape based on concepts of differential geometry (mainly curvature). The most well
known examples of use of this type of techniques are based on finding rzdges or crest-lines. These
curves are the loci of points of maximum curvature. They can be found using standard differential
geometry on a parametric surface (Boehm and Prautzsch, 1994) or approximating differential
properties directly from image data (Monga and Benayoun, 1995; Thirion and Gourdon, 1995).
Crest-lines can be used as landmarks and compared to an atlas of normal variation (Subsol et al.,

1995).

The analysis of vector fields resulting from non-rigid registration schemes is another approach for
the study of shape differences. These vector fields establish a voxel-wise mapping between two
images. A filtering process and a subsequent statistical analysis may then be applied in order to

detect areas of significant differences. Examples of such techniques can be found applied to
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multiple sclerosis time-evolution studies (Thirion and Calmon, 1997) and the assessment of
anatomical evidence of schizophrenia (Prima et al., 1998). A similar approach is taken in

(Thompson and Toga, 1997) to study anatomical variation on parameterised brain models.

29 Summary

Background information on the basics of MRI and medical computer vision has been provided in
this chapter. The typical processing steps intervening in medical computer vision have been

presented and literature reviews given for each of them.
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Chapter 3

A Framework for Morphometric Studies of MRI
| ncluding Confidence Bounds

3.1 I ntroduction

This chapter describes an algorithmic framework for the morphometric analysis of MRI scans.
Several issues are addressed, corresponding to different stages of medical computer vision
described in 2.3, namely: image enhancement, feature detection, segmentation, shape modelling,

and shape description.

Image enhancement is performed to correct for magnetic field inhomogeneities, also known as
bias fields (section 2.4.1). This is achieved using the EM algorithm to interleave the estimation of
the bias field and the assignment of tissue tags to voxels in order to perform voxel-based
segmentation (Wells et al., 1996; Guillemaud and Brady, 1997). The method is described in detail
in section 3.2. Feature detection is accomplished by identifying voxels located at the boundaries of
tissues in the brain by detecting PVE voxels. This method is based on the results of the EM

algorithm and is outlined in section 3.3.

A mixed segmentation procedure combining the characteristics of voxel-based and shape-based
methods is used. The two main elements of the segmentation framework are the EM algorithm
and the simplex mesh (Delingette, 1994). Simplex meshes are active shape models, and will be
described in section 3.4. Next, section 3.5 shows how both methods are combined to provide

more robust segmentations.

The shape model used in this work satisfies most of the requirements stated in 2.6. In particular, it
1s given by a mesh of triangular Gregory-Bézier patches (Schmitt et al., 1991) providing G-

continuity. A detailed description is offered in section 3.6.
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Confidence bounds are a key feature of this framework. It has been noted in the previous chapters
that morphometric tools cutrently fail to provide an estimate of the error incurred during the
measurement process. The principal obstacle to obtaining high accuracy on measurements
performed in MRI is the resolution of the images and, as a direct consequence, the partial volume
effect. In the present framework, PVE voxels are considered “uncertain” and a double
segmentation is produced to generate zzner and onter bounds on the location of the surface of the

object being segmented. This is further considered in section 3.7.

Section 3.8 provides formulae for the computation of volume measurements from the simplex
mesh and the tGB mesh. This general shape descriptor offers good means of comparison with the
results of other methods. However, more sophisticated shape desctiptors should be developed to

study issues such as brain asymmetry.

Validation issues, in particular the need for ground truth to compare the results with are discussed
in section 3.9. Extensive validation results and examples of the use of the method to clinical data
are shown in section 3.10. Section 3.11 reportts results on the application of the method to the
segmentation of the cortex, proving that the shape model is flexible and useful for modelling

complex biological shapes. Finally, section 3.12 discusses these results and concludes the chapter.

The contents of this chapter are based on the previously published articles “Combined statistical
and geometrical 3D segmentation and measurement of brain structures” (Gonzalez Ballester et al.,
1998a), “Measurement of brain structures based on statistical and geometrical 3D segmentation”
(Gonzalez Ballester et al., 1998b), and “Segmentation and measurement of brain structures in MRI

including confidence bounds” (Gonzalez Ballester et al., to appear).
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3.2 Bias correction and voxel-based segmentation: the EM algorithm

321 Basic formulation

The first of the elements in our framework is based on the work of (Wells et al.,, 1996) and
(Guillemaud and Brady, 1997) on bias correction. These methods estimate and correct for the bias

field and produce a set of probability maps that will prove useful for the segmentation process.

The expectation-maximisation (EM) algorithm intetleaves the estimation of two coupled distributions
(Dempster, 1977). This is used in (Wells et al, 1996) to estimate simultaneously the
(multiplicative) bias field and the probabilities of each voxel belonging to each tissue class. As a
first step, the image is log-transformed so the multiplicative field becomes an addition. Let
v ={v}

i n be the log-transformed set of voxels in the MR volumeS. Fach voxel has an additive

contribution 3, from the bias field. Let 8 = { ,3,} denote the contributions for all voxels in

i=L.n
the image. Following the model presented in section 2.4.1 (and ignoring additive noise), the effect

of this logarithmic transform is as follows:

liw =l BO INl, =INl,, +INB=Y+.

The range of image intensities corresponding to a certain tissue type is modelled as a Gaussian
distribution with small variance around a mean intensity value, and this model 1s extrapolated to
the log-transformed intensities (further consideration of this assumption is given in the next
section). Thus, the distribution on log-intensities of voxels containing (only) tissue ; is assumed to
be Gaussian with mean log-intensity 4; and standard deviation @ . The probability that a voxel ,
which contains only tissue j (represented by ['; =1), and which is affected by a bias field

contribution [, has log-intensity value Y] is then:

p(Yi|rjnBi):G(pj (Y, —H,; -B)

where:

1]
X
N

G,, (X) = (277%J )_% exp=-

N
=
oo

O™

® For simplicity, only oneindex i is used to locate a voxel in the volume, instead of the three indexes (x,
Yy, Z) that are commonly used.

37



The formulation also allows for the extension to multiple modalities, where a number 7 of
petfectly registered images are available for the same data (for example, M= 2 for double-echo
MRI acquisitions). In this case, the log-intensity model is assumed to be an m-dimensional

Gaussian distribution:

m 1
mo1 1.
G,, (x)=(2n) 2 ‘(Pj‘ 2 eXpQ_EXT(P];X@

Likewise, in order to model the smoothness of the bias field, an #-dimensional Gaussian prior
probability density with zero mean is used:

p(B) =G, (B)

whete:

_n 1 1 )
G,, (x) =(2m) 2| o 2exp§—§xTcpﬁ1xE

Statistical independence of the voxel intensities is assumed, so the expression for the probability

of an image given the bias field is:

0
o(Y/8)= [ PO¥18) =[] 5 POV, £ o)1

Using Bayes' rule, an expression for the posterior probability of the bias field given the observed

intensity data is obtained:

B

Y) = p(Y
p(BY) = p(Y|B o)

where P(Y) is considered an unimportant normalising constant.

A zero-gradient condition on the logarithm of this posterior probability is used to estimate its
maximum. Two coupled formulae are obtained, one estimating the probability of a voxel /
belonging to tissue class j (W ;); the other computing the estimated bias field f. Both
expressions are inter-dependent, and the EM algorithm is used to interleave their estimation

iteratively. In particular, V\/I j 1s computed as:
_ P4, B)p(r))
Y YL B)R(T)
]

(3.1)
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. . . : . -1
[ is expressed as a function of the mean residual R and mean inverse covariance @~ over all

tissue classes:

J
4= %Zvvi,jqﬁj‘l ifi=k
ik — J
H O

otherwise

An additional operator H is defined as a function of the mean inverse covariance and the variance

of the bias field:
H=lp g
This operator is usually implemented as a low-pass filter. Finally, the bias field is estimated as:
B =HR (3.2)
The coupled expressions (3.1) and (3.2) are alternatively evaluated, as dictated by the EM
algorithm. Convergence is guaranteed and a good estimate is usually obtained after 4 or 5

iterations. Figure 10 shows an example of the application of this technique and the improvement

achieved in the classification by removing the bias field.

Figure 10 Bias correction process: A) original image; B) image corrected for bias field; C) and D)
segmentations corresponding to A) and B), respectively, obtained by assigning to each voxel the
tissue with largest probability. Notice the improved performance of the segmentation after bias
correction.

322 Improvements and considerations

The method developed by (Wells et al., 1996) requires that every voxel in the image be assigned to
one of the Gaussian distributions corresponding to each tissue class. (Guillemaud and Brady,

1997) argue that in most images there are a number of voxels that do not belong to the modelled
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classes. Modelling the set of such voxels as a Gaussian gives very large value for the standard
deviation, and this leads to numerical instability. An additional class ozber with uniform probability

distribution is introduced to model such voxels.

The algorithm requires the user to provide the number of tissues to be explicitly modelled, as well
as their parameters [; and ;. We estimate these values interactively, by allowing the user to
select a set of points in the tissue of interest and determining the statistics of the sample. This
method has proven reasonable for our purposes, but more refined techniques, like that described
in (Zhang et al, 1999), which introduces an update of the tissue parameters into the E-M

framework could be used.

A note of warning should be made about the Gaussian model for log-intensities of the image in
(Wells et al., 1996). The model most commonly used in MRI literature is based on Gaussian
distributions to model the intensities corresponding to a certain tissue type. The same class of
model is assumed to fit log-intensities, for practical reasons’. This simplification should have no
effect on the largest part of the intensity range of the image. However, intensities close to zero
(such as CSF in Ti-weighted images) suffer a distortion in range when log-transformed, so the

Gaussian model for log-intensities may not provide the same results as a Gaussian on intensities.

3.3 Detection of PVE voxels

We now take on the task of defining an appropriate feature to detect the boundary of structures of
interest. A careful consideration of the elements present in the imaging process leads to the
conclusion that partial volume effects (PVE) are the best choice for a feature for segmentation. In
fact, we are interested in detecting boundaries between tissues, but these are not accurately
localised in MR images due to the discretisation of the images into voxels. PVE voxels contain

more than one tissue, thus indicating that boundaries between tissues are present in them.

" Personal communication with Sandy Wells.
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In our framework, PVE voxels are detected by analysing the output of the EM-based statistical
method, which consists of: an estimation of the bias field corrupting the MR (3D) image, a
corrected version of the image after removing the bias field, and a set of probability maps for each
tissue class. The usual approach is to obtain a voxel-based segmentation of the image into tissue
classes by assigning to each voxel the tissue class with maximum probability (see Figure 10):

t; =argmaxV\/m
j

We contend that a more careful treatment of the probability maps can provide additional useful
information. In particular, for certain voxels the value of the maximum probability t; 1s not very
large, indicating that the voxel does not accord well with any of the tissue classes (including the
uniform class other). This is particulatly the case for PVE voxels. That is, a low value in the
maximum of the probability maps is often a good indicator of boundariness. Thus, we detect PVE
voxels by setting a threshold thrs on the minimum value allowed for this maximum probability:
ot if W >thrs

T = )
VE otherwise

Typically, a value of thrs in the range of 90-95% probability is used. It should be noted, however,
that the particular choice of threshold depends on the shape of probability distributions for the
tissues. In any case, the method is not very sensitive to small variations on the value of the
threshold. This means that, in practice, a visual inspection of the results suffices to assess the

adequacy of the threshold. Figure 11 shows an example of the use of the method.

34 Shape-based segmentation: the simplex mesh

Our segmentation framework is based on combining the EM voxel-based segmentation method
described in section 3.2 with a shape-based model. This section describes the characteristics of the
shape-based deformable model, and the following section shows how both methods are combined

to provide more robust segmentations.
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Figure 11 A) Original slice (coronal orientation); B) corrected slice; C) estimated bias field; D)
segmentation using a tissue model for white matter and grey matter, plus a class with a uniform
probability distribution for CSF, air, and other tissues. Voxels deemed to be places where the
PVE is significant are coloured white (thrs=0.95).

Deformable models were introduced in section 2.5.2. In our framework we employ siplex meshes
(Delingette, 1994). The fundamental property of a simplex mesh is that all its nodes have the same
number of connections to other nodes. Formally, a &-simplex mesh M of 02 is defined as a pair
{V(M),NM)}, where /(M) is a set of vertices and N(M) is a connectivity function between these
vertices. A A-simplex mesh has (£+1)-connectivity, i.e. each vertex is connected to exactly (£+1)
other vertices. A set of complementary conditions ensures the mathematical correctness of the
construction of the mesh, by not allowing loops and guarantecing the existence of a path
connecting any two nodes (Delingette, 1994). 2-simplex meshes are the appropriate choice to

model surfaces, and will be used in this work.

The topology of a simplex mesh is defined by its connectivity function N(M). A set of operations

1s defined in order to provide tools to alter the mesh topology. These operations are based on the

42



addition and removal of nodes and on changes to the connectivity between nodes. An important
property of simplex meshes is that they are dual to triangulations, i.e. a triangulation with the same
topology can always be built from a simplex mesh. The concept of a contour as a connected
subset of vertices and elements of N(M) is also introduced in order to allow for better topological

control.

Topology is independent of the embedding space, whereas geometry is highly related to the
dimension of the space in which the mesh is located. The geometry of a simplex mesh 1s uniquely
determined by its set of vertices V(M) and their corresponding simplex: angles and metric parameters.
These last two sets of variables define the position of a vertex relative to its three (in the case of 2-
simplex meshes) neighbours. Expressions for the mean and Gaussian curvatures are also derived
in (Delingette, 1994), and prove useful for enforcing certain shape constraints to the mesh, as

mentioned below.

The mesh is initialised and then exposed to a set of forces to make it lock on to the target data.
Both intrinsic (shape) and extrinsic (fit to data) forces are introduced in the model, which is

subjected to Newtonian dynamics:
d’Pp,

i dl:)i
m dt?

dt

==y + I:int + I:&-:-xt

where M is the mass of a vertex, P, is the position of the i" node at time t, and ) is the

damping factor. This is discretised assuming t; =t, +iAt and using finite differences:
P ==y UP ~ P +Fip +Foq

whete unit mass of the vertices is assumed and Fj; and F_, ate computed at time t.

Internal forces determine the response of a physically-based model to external constraints. The
response of elastic bodies may be derived by minimisation of an elastic energy. This elastic
behaviour is implemented by F;, . Rather than minimising a global elastic enetgy combining the
positions of all nodes, the internal force is expressed in terms of simplex angles and metric
parameters, so shape control is conceived as a local process of a vertex relative to its neighbours.

Following this model, different types of constraints can be implemented, such as continuity of the
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normal, surface orientation, mean curvature and shape constraint. This last constraint allows for

the specification of a template or “rest” shape.

External forces are used to fit the mesh to three-dimensional data (in our case, the brain surface or
some organ of interest contained in the MR volume). The method used in the implementation of
the simplex mesh is based on distances from each point to the closest data point, and follows the
iterated closest point approach (Besl and McKay, 1992). In particular, at each iteration and for every

vertex P; the closest data point M ¢, is searched for, and the expression for the force is:

cm‘ B —
D

——— P M IN)N;

l_.H_l_

ext :IBiG
.

where N, is the normal vector at P, and G(X)is the stiffness function, which has a constant
value of 1 in the interval X[ [0,1] and decreases exponentially from that point on. D determines
the range of influence of F_,, and can be expressed as a number of voxels around P;. The term
data point refers to some feature derived from the image data. In our case, it will be PVE voxels, as

described in the following section. See Figure 12 for an example of the fitting process.

Additional topological control is obtained by two extensions to the normal behaviour of the mesh.
First, a procedure has been implemented that adapts the mesh by moving vertices towards areas
of high curvature, where more information is needed to represent the data. As a complement to
this procedure, a method exists whereby the mesh is refined, i.e. the number of vertices is

increased, in these areas (Delingette, 1994).

35 Global segmentation scheme

Voxel-classification and shape-based segmentation methods have traditionally been regarded as
opposites, since voxel classification is a local process, whereas shape-based segmentation deals
with global shape. However, some attempts have been made to reconcile these two paradigms (cf.
2.5.3). The method described in this chapter combines characteristics of both statistical voxel

classification and shape-driven segmentation.
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Figure 12 Simplex mesh fitting process: A) Original mesh (sphere) superimposed on a 2D slice of
the MR volume; B) the mesh is locking on to the boundary; C) refined mesh; D) one slice of the
target MRI data, showing a cross-section of the object to be segmented at top (cf. section 3.10.2
for details), and E) intersection of the resulting mesh with the slice.

The essence of the method consists of using the probability maps W, ; obtained from the
application of the EM algorithm to create a pre-segmentation by classifying voxels into tissue
classes, and detecting PVE voxels as explained in section 3.3. The simplex mesh uses PVE as an

edge feature, and searches for PVE voxels to position its nodes. In-built shape constraints of the

simplex mesh ensure smooth segmentations, effectively removing the noise in the pre-
p g > y g p
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segmentation obtained from the EM algorithm and providing robustness to outliers. Figure 13
illustrates this procedure. From the results of the simplex mesh program, a surface model is built
and confidence bounds on the location of the object are computed. Next, shape descriptors are

derived. These elements are described in the following sections.

Corrected Surface
_>
> image
. Confidence
ergnal _’ El\{ || Slrnplex mesh bounds
image algorithm Probability program P>
i maps
Shape
Lp:  descriptors
9 Bias field

Figure 13 Global segmentation scheme.

3.6 Modelling complex biological shape

The simplex mesh is a powerful tool for three-dimensional segmentation, since it has great
topological flexibility; but much of this flexibility derives from the simplicity of the shape model,
consisting of a set of connected 3D points. The representation of biological shape, and in
particular the enormously complex shape of the brain surface, requires a more sophisticated
representation technique. In addition, the applications of interest demand high accuracy in the

location of the boundary of an object, and this is at odds with the simplicity of the simplex mesh.

Our approach is to construct a G*-continuous surface interpolating the positions and normals of
the nodes of the simplex mesh. A triangulation is first derived from the mesh by adding a node at
the centroid of each of its polygons and updating its position to the nearest data point by means
of a local search, in the same way that nodes are updated during the fitting process®. Then, a set
of triangular Gregory-Bézier (tGB) patches (Schmitt et al., 1991) are interpolated to the

triangulation. TGB patches are expressed, in barycentric coordinates, as follows:

8 Alternatively, a triangulation can be built by joining the centroids of all the polygons in the simplex
mesh.
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GB(u,v,W) = u3P, + V3P, + WP, +12u°WWP,,, +12uv*WP,,, +12uWW°P,,, +
3uv(1- W)Py, +3uv?(L-W)Py, +3vZ(1-u)wP,, +
3(L- u)WW?Py, +3u(L - V)W?P,, +3u®(1-V)WP,,

whete 0<u,v,w<1l, u+v+w=1 and:

\" w w u u \"
_ WPy VP _ UPpy; + WP, _ VP, +UPp,

P, = P, =—w2t T p =
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Figure 14 Triangular Gregory-Bézier (tGB) patch, defined by 15 control points. A G'-continuous
mesh of tGB patches is used to interpolate the nodes of the simplex mesh and their
corresponding normals.

Figure 14 shows a tGB patch, defined by its 15 control points. An important property of tGB
patches is that the expressions for the first derivatives with respect to U, V, and W do not share any
inner control point. In practice, this means that G' continuity can be guaranteed simply by
constraining the connection along the boundary between two adjacent patches, avoiding the
tedious process of considering continuity at corners (cf. Appendix A). G' continuity across
patches is ensured by enforcing a coplanarity constraint between the two radial first derivative

vectors

aGBR(uR!VR,WR)| and aGBL(uL1VL!WL)|
06, 06,

ug=0

u,_ =0

(where 6, and 6, take values in {U, V, W}, depending on the orientation of the patch), and the

first order detivative vector (V) of the common boundary (see Figure 15):
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Figure 15 Enforcing Gt continuity in the boundary of neighbouring tGB patches.

3.7 Estimation of confidence bounds

Confidence bounds are one of the most important elements of our framework, and to estimate
them we rely on the partial volume effect. PVE voxels can typically be seen as a band of variable
width delineating the interface between tissues (see Figure 11). We interpret this width,
corresponding to the transition from pare voxels of tissue A4 to pure voxels of tissue B, as the

confidence interval we seek for our segmentation.

The mesh is used to obtain two surfaces representing the zzner and outer estimates on the location
of the true surface of the object. The exact location of these surfaces depends on the width of the
PVE band. In particular, during each update step of the mesh, local searches in the direction of
the normal of each node of the mesh are performed. When these searches hit PVE voxels, they
produce upper and lower estimates by computing the intersection of the profile with the closest
and farthest PVE voxel boundary. By employing this process on all the vertices of the mesh, the
two bounding surfaces are built (see Figure 16). The rea/ location of the surface is contained

between these two bounding surfaces.

48



Figure 16 Outer (black) and inner (white) meshes segmenting the lateral ventricle of a patient. A)
mesh superimposed on a coronal slice of the data set; B) close-up showing that the inner bound is
contained inside the outer bound; C) intersection of both meshes with a slice. The separation
between outer and inner bounds is quite small, so it is only reflected by a slight thickening of the
white line in C).

3.8 Shape description: volume computation

Stmple shape descriptors such as volume and area have very general application to anatomical
studies. Formulae to compute the volume enclosed by a simplex mesh and a mesh of tGB patches

are now given. It is recognised, however, that their descriptive power is very limited, and more
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sophisticated shape descriptors need to be built to characterise biological shape. In particular, this

is the case for the description of symmetry differences in schizophrenia.

Volume computations on the simplex mesh are obtained by first computing the centroid of each
polygon and joining it to the neighbouring nodes, so creating a triangulation T ={P;,P},P3}._; ...
Then, the volume is determined by the following expression, which is a simplification of Gauss'

divergence theorem (Boas, 1983) when applied to triangulated surfaces:

1 n

V:EZ<P{,P;,P;>

where Pji 00° and < > denotes the scalar triple product operator. It is worth noting that
computing the volume of a simplex mesh based on a triangulation of the surface poses a problem
when it comes to establishing bounds on the surface, since undulations of the surface can
“overflow” the triangulation. We circumvent this problem by displacing the position of the centre
of each triangle to the nearest voxel boundary and updating the position of the nodes of the mesh
accordingly. Figure 17 shows a 2D representation of this process. Grey circles represent nodes of
the triangulation, and black circles are the data points found for the outer and inner bounds,
which correspond to boundaries between voxels of different tissue or farthest boundaries of PVE
voxels. A one pixel wide PVE band is shown in the 2D scheme. The real surface of the object is
represented by the curve I, while the outer and inner meshes are represented by O and i,
respectively. The flat nature of the triangulation produces an underestimation of the outer mesh.
To solve this problem, the position of the mid-point M of the line 0 in Figure 17 (centroid of the
triangle, in 3D) is updated to the nearest data point, M’, and the vertices of the outer mesh are

recomputed®.

In the case of tGB patches, the volume is determined using the divergence theorem in its full
form and the expression for the first fundamental form of a surface, found in classical differential

geometry (Boechm and Prautzsch, 1994). Generally, the volume enclosed by a parametric surface

Su,v) is:

° It should be noted that although this approach is highly conservative, “bound overflow” problems may
still be present if the density of the mesh is much lower than the one required to encompass the
curvature of the surface.
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Figure 17 2D illustration of the construction of the outer estimate on surface location using the
simplex mesh. A) the real boundary r overflows the outer bound o; B) In order to avoid this, the

mid-point M is updated to the neatest data point, M’, and a parallel surface is then built (see text
for details).

where 2 is the surface enclosing the object and N(WV) is the surface normal at the point (U,V). The
surface element dO is computed using the usual Jacobian expression from differential geometry:
do =VEG -F?dudv,

where:

e=[25F, 6=HSH =058

ug au av

Thetrefore, the expression for the volume enclosed by the surface S(U,V) is:

\Y; =HS(u,v) M(u,v)VEG - F ?dudv

Unfortunately, the tGB formula is rational, not polynomial. This means that numerical integration
procedures are required to compute the formula above, and this could incorporate round-off

errors in the computation. A polynomial interpolant would circumvent this problem.

3.9 Validation issues

MR imaging in studies of neurological diseases such as schizophrenia and MS takes place 7z vivo. It

1s therefore difficult to define ground truth with which to compare the results obtained from a
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segmentation method on clinical data. Several approaches to counter this problem are described
next. First, we generate synthetic data sets simulating MR scans by applying a recursive
subdivision procedure. This allows us to apply our segmentation and measurement method to
objects of known geometry. Another approach consists of using an MR acquisition of a phantom,
in this case developed for the study of MS lesions, with known volume. Finally, the measurement
precision on clinical MRI is tested by scanning twice, in rapid succession, a patient whose head is
oriented differently in the MRI machine (about 20° separation) and comparing the results (which

we assume should be the same). Details of these ground truths are now given.

39.1 Validation with synthetic data sets

We first simulate MR acquisitions of objects of known geometry, for which an analytic formula is
available (e.g. an ellipsoid), by means of a recursive subdivision procedure. At each voxel location,
it is determined whether the 8 corners of the voxel are inside the simulated object by evaluating its
formula. If this is the case, the voxel is assigned intensity value |;,, wheteas value |, is given to
voxels whose 8 corners are all outside the object. The remaining voxels correspond to boundaries
and their intensity values should simulate the partial volume effect. In order to determine the
proportion @ of the voxel that is inside the object, a recursive subdivision procedure is initiated
by dividing the voxel by its centre into 8 smaller cubes. Testing for inclusion continues in the
manner described above until all sub-voxels are assigned a value or a recursion limit is reached.
Then, intensity value
I =alj, +Q-a)ly,
is assigned to the voxel. The recursion limit is chosen so that the contribution to the final value of

@ in the limit is smaller than a certain small value & (typically 1x107'%). Tissue-dependent

Gaussian noise can also be applied by modelling I, and L., as Gaussian distributions.

This process effectively generates PVE. The primary interest of this validation technique is its
flexibility, since different protocols can be simulated by acting on the intensity values to simulate
image modalities (T4, T, Pp, etc.), and different voxel sizes and inter-slice gaps can be used to

simulate different spatial resolutions. Also, the fact that virtually any shape can be used for the
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simulated object provides sufficient flexibility to study the effect of size (relative to voxel size),

concavities, texture and global shape on the tested segmentation technique.

3.9.2 Validation with MRI phantoms

A phantom consisting of a group of shapes made from paraffin wax and embedded in an agarose
gel is used for the second experiment. By measuring the density of the wax, the true volume can
be derived from their weight to within a confidence interval of 2% (Roll et al., 1994). The
phantoms were developed to simulate the size and shape of MS lesions, which usually are very
small relative to the resolution of the MR acquisition. Figure 18 shows a slice through the MRI
phantom (1 mm3 voxels, no gap) and a rendering of the shapes embedded in it. This phantom was
generously provided by Dr. Fernando Bello and Prof. Alan Colchester of the NeuroMedIA group

of the University of Kent at Canterbury.

Figure 18 One slice through and a rendering of the MRI phantom. Object “cube”, for which
results are reported below, is indicated.

3.9.3 Validation with clinical data: repeatability

Ground truth can be generated using zz vivo clinical data by testing repeatability. A volunteer was
scanned twice, in quick succession, the second time with his head rotated through about 20-30°
with respect to the first (Figure 19). The data sets are Ti-weighted and each consists of 124 slices

of 256%256 voxels of size 0.781251%0.78125%1.7 mm? (TE=9000ms, TR=24000ms).
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3.10 Validation results

The measurements shown below are upper and lower bounds on the volume of the segmented
object, corresponding to the volumes of the outer and inner surface estimates, respectively.
Several methods are compared: the basic simplex mesh; the simplex mesh after applying the
refinement process to lock closer to the data; the simplex mesh with tGB patches; and voxel-
counting measurements obtained using an advanced hierarchical thresholding tool (Griffin et al.,

1994; Colchester et al., 1996).

Figure 19 Slice 56 of the MRI acquisitions used for the study: straight (left) and rotated(right).
Note the significant rotation of the right image.

For the results reported for the voxel-based thresholding tool, upper and lower estimates for the
segmentation are obtained by setting two different thresholds. The results shown below were
visually validated by an expert in the use of the tool as good segmentations of the object. Volume

measurements are obtained by simple voxel counting.

3.10.1 Results for synthetic data sets

In our experiments, we simulated several acquisition protocols in use at our laboratory. Volume
dimensions, voxel sizes, and inter-slice gaps are detailed in Table 1. For each of these protocols,
several objects are used, ranging from spheres and ellipsoids to smooth objects with concavities or

local textures simulating brain gyration.
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Protocol Dimensions Voxel size (mm) Gap (mm)
1. SUNY 256%256%20 0.9375%0.9375%5 2
2. Oxford 240%240%30 0.9375%0.9375%5 0
3. High res. 256X256X140 1x1x1 0
4. Med. res. 256X%256X70 1%1%2 0
5. Low res. 256X256%35 1%1%4 0

Table 1 Simulated acquisition protocols. Protocols 1, 2, and 3 cotrespond to real clinical practices
applied on data sets available in our data pool, whereas protocols 4 and 5 were included to
estimate the effect of voxel size on volume measurements.

Volume measurements are obtained by applying the simplex mesh, simplex mesh with tGB
patches, and voxel counting after thresholding. The real volume of the object is computed using
its analytic formula. Results are reported next for one of the simulated objects (Figure 20).
Volume measurements for the different protocols using the different tested methods are shown in

Table 2 and Figure 21.

Figure 20 Slices 8, 11, 14, and 16 of simulation of the test object for which results are reported,
using protocol SUNY. Notice the remarkable blurring in top and bottom slices due to PVE.

SUNY Oxford Low res. Med. res. High res.
sm upper 220999 221591 218653 214162 212171
voxel upper 199410 200566 197520 190968 188200
tGB upper 191130 193318 191575 191220 190156
real volume 178447 178447 178447 178447 178447
tGB lower 153555 156952 160265 168950 172774
voxel lower 151668 152473 155200 162312 166008
sm lower 146130 149576 152505 160609 164326

Table 2 Volume measurements obtained for the synthetic test object. The middle row shows the
real volume of the object. (sm = simplex mesh).

The first conclusion that can be drawn from these results is that the confidence bounds atre

correct in the sense that they bound the real volume. Also, the width of the bounds decreases as
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the resolution of the protocol increases. The use of a smooth mesh of tGB patches improves
significantly the performance of the simplex mesh. The tGB results are also better (except for the
highest resolution protocol, in this example) than those obtained by voxel count based on

thresholding. As we will see, these results hold consistently throughout our experiments.

220000 ‘—__‘\o\‘\‘
——sm upper
—.— . ~
200000 - sm upper tGB
—&—voxel upper

=@ ;cal volume

180000
® ® ® ® *® —¥—sm lower tGB
—®—yoxel lower
160000
—+—sm lower
140000
SUNY Oxford Prot2 Protl Prot0

Figure 21 Volume measurements for the test object. The horizontal axis reflects the different
simulated protocols, from lowest to highest resolution. The vertical axis shows the volume.

3.10.2 MRI phantoms

We present the (typical) results for the phantom object cube, shown in Figure 18. Simplex mesh
segmentation, tGB fitting, and simplex mesh refinement volume measures are obtained as
described above. Voxel-based volumes are derived from intensity thresholding and posterior voxel

count. Tables 3 and 4, and Figures 22 and 23 show these results.

Method Volume (mm3)
Lower simplex mesh 776
Lower refined sm 797
Lower voxel-based 821
Lower sm+tGB 823
Real volume 1028
Upper sm+tGB 1114
Upper voxel-based 1152
Upper refined sm 1228
Upper simplex mesh 1238

Table 3 Volume measurements for object cube of the MRI phantom.
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Method Width (%)
simplex mesh 449
refined sm 41.9
voxel-based 32.2
sm+tGB 28.3

. . . ) . Vupper _Vlower
Table 4 Width of the confidence interval relative to the size of the object (———————x100).
real
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Figure 22 Volume measurements, in mm?, for cube (sm = simplex mesh, U=upper, L=lower).
The real volume is plotted as a straight line.

50

25

sm ref sm voxel tGB

Figure 23 Width of the confidence interval as a percentage of the real volume. From left to right,
simplex mesh, refined simplex mesh, voxel measurements by thresholding, and tGB patches fit
over simplex mesh.
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The results show that the best volume bound estimates are obtained by using a mesh of tGB
patches interpolating the simplex mesh. This gives better volume estimates than those obtained
using voxel-based methods, while also providing a continuous surface segmenting the object,
which can be used for further shape description and processing. It is worth noting that although
the refinement method of the simplex mesh improves the volume measurement significantly, the
use of a continuous surface results in a better estimate. This is partly due to the fact that simplex
mesh nodes are updated to avoid “bound overflow” problems, while this is not the case in the
tGB mesh. It could be argued, however, that provided that the density of the mesh is extremely
high, the need for such update would be removed and the results of the refined mesh would tend
to the ones obtained by using continuous tGB patches. Results similar to the ones reported here

were obtained when applying the method to the other shapes in the MRI phantom.

3.10.3 Results using clinical data

The data set 1s first bias-corrected assuming only one tissue encompassing white matter and grey
matter, plus a uniform class modelling the rest of tissues plus CSF and air. Probability maps for
the different tissues are generated, and a pre-segmentation step labels voxels with a probability
smaller than 95% of belonging to one of the tissues as PVE voxels (see Figure 11). The left lateral
ventricle of the patient is segmented on both straight and rotated data sets and volumes are
compared. Simplex meshes are fitted to the data using the information derived from the maps to
guide it and the refinement process is used to obtain better fit to the target data. Two meshes are
fitted to obtain inner and outer bounds on the location of the surface. The numbers of vertices for
the fitted refined meshes are 1538 (771 polygons), and 1558 for the rotated set (781 polygons). A
set of tGB patches for each mesh is then built. For comparison, voxel-based segmentations are

petrformed and validated by an expert. Volume measurements are shown in Table 5 and Table 6.
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Method Straight Rotated
Upper simplex mesh 12192 11100
Upper voxel-based 10090 9770
Upper sm+tGB 9454 9574
Lower sm+tGB 7835 7998
Lower simplex mesh 7373 7483
Lower voxel-based 7314 7162

Table 5 Measured volume (in mm?) of the left ventricle (straight and rotated positions). Simplex
mesh measurements were obtained after using the refinement process.

Method Straight Rotated
simplex mesh 4819 3617
voxel-based 2776 2608
sm+tGB 1619 1576

Table 6 Width of confidence interval (U-L).

Figure 24 shows the upper and lower bounds on the volume of the ventricle, and Figure 25 shows
the width of the confidence interval. There are two main points to note about Figure 25. First,

the confidence interval is significantly smaller for the tGB model, and second, the interval is

almost invariant to the patient head rotation.
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Figure 24 Volume estimates for the left ventricle (mm?) for straight and rotated configurations.
The vertical bars show the difference between the upper and lower volume estimates.
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Figure 25 Width of the confidence interval in the straight and rotated configurations. The best
results are obtained using a mesh of tGB patches interpolating the simplex mesh. Note that the
results for the tGB patches are almost invariant to patient head rotation.

311 Flexibility of the shape model: representing the cortical surface

Finally, we investigate the flexibility of our shape model by segmenting the cortical surface of a
patient from a clinical MR data set (T1-weighted, 124 slices, voxel size 0.9375%0.9375%1.2 mm?).
The cortex is known for its highly convoluted shape, which makes it a very demanding surface for
shape modelling. The volume is first bias corrected and a prior segmentation with a tissue model
encompassing both grey matter and white matter, and another model with uniform probability
density function to cater for other tissues is created (cf. Figure 11). An ellipsoidal simplex mesh
with low number of nodes is first located roughly near the brain and the fitting process is started,
driven by the probability maps computed during the bias correction step. Additionally, the
refinement process of the mesh is enabled so more nodes are added in areas where more detail is

required to fit closely to the target data. Figure 26 illustrates the process and shows visual results.
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Figure 26 Mesh fitting process, starting from a mesh with the shape of an ellipsoid and low
number of nodes. Refinement is applied to the mesh in order to add nodes in the areas where
more detail is required. Different stages on the refinement-fitting process are shown in the first
two rows, together with the intersection of the model with one of the slices of the MRI. Enlarged
front and top views of the final model are shown in the last row.
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3.12 Discussion

This chapter has presented a method for carrying out morphometric studies of structures
embedded in MRI data. The method itself is novel in the sense of combining statistical voxel
classification and shape-based segmentation. Nevertheless, the most important point in the
technique is the establishment of confidence intervals in every measurement by bounding PVE.
This is a crucial issue in morphometry that has too often been ignored. We described above
several techniques for segmentation and compared their relative performance both in synthetic
and clinical data, concluding that the smooth surface model based on the combination of the
simplex mesh and triangular Gregory-Bézier patches provides the best results, i.e. gives narrower

confidence bounds while still ensuring that the real surface is contained between them.

Regarding the computational cost of this technique, by far the most expensive part is the EM
algorithm. When applied to data sets of size 256X%256%124, it may take up to 1.5 hours. This task
can be done as a batch process and requires no user intervention other than the prior estimation
of tissue parameters. The other components of the method are fast. In particular, mesh fitting
takes approximately 4 minutes, including refinement of the mesh, and computation of tGB
parameters is performed in less than 4 seconds. These times correspond to the ventricle example
reported in section 3.10.3, on a relatively slow machine (SGI INDY R4400, 200MHz, 64 Mb

RAM).

Our approach to bounding the real surface of the object to be segmented has so far been based
on establishing conservative outer and inner bounds. This allows for an estimation of the error
incurred in the segmentation process. It should be noted, however, that the percentage of the
volume encompassed by these bounds i1s considerably large. In the following chapter we proceed
to study the contents of the PVE area between the bounds in order to further narrow the width of

the confidence intervals.
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Chapter 4

Estimation of the Partial Volume Effect

4.1 I ntroduction

The quest for accuracy, initiated in the previous chapter, is seriously challenged by the partial/
volume effect (PVE). The reported results show that the effect of discrete sampling in boundary
locations is crucial, affecting volume measurements with an error in the range of 20-60% 1. In this
chapter we consider the task of decoding the information contained in PVE voxels in order to
reconstruct the surface with sub-voxel accuracy and provide narrower confidence bounds on the

measurements.

A framewortk is developed to model the partial volume effect and build a statistical distribution for
it. Then, the uncertainties inherent in each PVE voxel are propagated to construct a distribution
on measurements derived from the data (e.g. volume, area, etc.). This framework is novel in that it
is strongly statistical. Thus, the end product of the process is not a single value for the shape
descriptor of choice — volume will be used for the examples — but a statistical distribution from
which we can obtain its probability density function, mode, mean, etc. In addition, confidence

bounds to a certain probability value may be computed.

4.2 Mixture model

For simplicity, to date our model only considers PVE voxels containing two different types of
tissue. This assumption does not limit the number of tissues modelled for the whole image, since
the two tissues present in PVE voxels in separate locations of the image may be different. Cases in

which more than two tissue types are present in a voxel are rare in brain studies, since PVE

19 See also (Niessen, 1997) for a study of the effect of PVE using synthetic brain phantoms. Percentages
of volume encompassed by PV E voxels coincide with our estimations.
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usually appears in the boundary between two structures. Although the model for PVE voxels
developed in what follows can be extended to include such cases quite straightforwardly, the
practical improvement expected from such an extension is questionable, and it would introduce

instability and computational overhead.

The distribution of intensities generated from samples of a tissue type j is assumed to follow a
certain distribution P; (). No special assumptions are made regarding this distribution, which
can be modelled as an off the shelf analytical statistical model or be built based on histograms from a
training set. In the next section, the model is developed for the special case of Gaussian

distributions.

PVE arises from the presence of more than one tissue in a voxel (cf. section 2.4.2), which in
accordance with the physics of MRI, generates intensity values linearly dependent on the
proportion of each tissue in the voxel'! (Rinck, 1993). Following our assumption of only two
tissue types present in PVE voxels, the intensity of a voxel is determined by the following
expression:

I'=a'l; +@-a')l, @1
where 7 indexes all PVE voxels, and | '] is drawn from p;, the distribution for tissue j, | = {1,2 .

In this context, @' denotes the proportion of tissue 1 in the voxel 7, a' O [0,1] .

The distributions for individual tissue types can be combined in order to build a mixture model,
p(l' ‘a ') This distribution expresses the likelihood of a particular intensity value in a PVE voxel,
given the proportion of each tissue in it. The expression for this mixture model can be obtained

by analytical operations (cf. next section) or by means of Monte Catlo simulation.

™ This holds for most common imaging modalities. It should be noted, however, that inversion recovery
sequences may present problems in cases where one of the tissues present in the PVE voxel has negative
magnetisation, while the other tissue has positive magnetisation. In such a case, PVE voxels can have
lower intensities than the tissues present in them. This is an uncommon case, and although theoretically
possible, we did not find it in any of the imagesin our data base.
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Figure 27 A distribution for the intensities of PVE voxels, given the proportion of the two tissues
present in it, 1s built based on the two tissue distributions, p;, and p,.

In order to estimate PVE, we ate interested in obtaining p(a ! ‘I i) , i.e. the statistical distribution
of the proportion @ of each tissue given the intensity in a PVE voxel 2 Having this distribution, it
1s possible to compute its mode, which corresponds to the most likely value of a ! , as well as
confidence intervals (section 4.4). Using Bayes’ theorem, the expression for p(a“l ') s as

follows:
_p(l'a"yp(a)

' :
p(a'|") 00

(4.2)

The term p(l') is a normalising constant, and it is computed as:

p(1") = [p(1'ja") pla)da (4.3

p(a i) 1s the prior on @, and expresses the probability of a voxel 7 having a proportion & of
tissue 1 (and therefore a proportion 1—a of tissue 2). In this work we propose that, if we

consider only PVE voxels, this prior can be modelled as a uniform distribution in the range [01] .
p(@) =100 @4

Note that this assumption only holds for the set of PVE voxels. If all voxels in the image were to
be considered, a prior giving more probability to the values 0 and 1 would be more appropriate,
since pure (non-PVE, i.e. @ =0 or a =1) voxels are in general more common than PVE voxels
(see Figure 28). Examples of such distributions can be found in (Roll et al., 1994). The problem of
using a uniform distribution in the presence of many pure voxels is that small variations from 0 or
11in the @ ’s of such voxels produce considerable errors, due to the high number of pure voxels in
an image. It should be noted, however, that choosing the correct “U”-shaped prior 1s not trivial,

and a bad choice can influence the results for the estimated @ ’s. A prior with wide tails, which
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tends to “round off” too many values close to 0 and 1 will underestimate PVE, while a prior with

narrow tails will not cancel the error due to small variations from 0 or 1 in pure voxels.

p(a') p(a')

Figure 28 Distributions for p(a'). A) Uniform distribution, corresponding to a set of PVE

voxels; B) “U”-shaped distribution, corresponding to an image containing pure tissue voxels.

Let us now consider the assumptions of independence that can be made within the framework
described above. We consider that p(l “a i) 1s independent across voxels. A reminder of the
intuitive meaning of the distribution will suffice to convince that this is a reasonable assumption.
p(l “0/ ') represents the probability of an intensity value in a voxel, given the proportion of each
tissue. This only depends on the distributions of the tissues, P; and P,. The value of @ is given,
and there is no reason why neighbouring voxels should influence this distribution. Let us now
consider p(I ! ), the probability of a given intensity in a voxel. This distribution is a direct function
of p(l i‘ai) and p(a@') as stated in eq. 4.3. In addition, the effect of p(l ") in the computation

of p(a’ ‘l ') is irrelevant, since it acts as a normalising constant for the distribution.

The assumption of independence for p(a ') is more tricky. If pure voxels are taken into account
a neighbourhood relation should be incorporated, since voxels whose neighbours are pure tissue
have a higher likelihood of being pure, due to the piecewise nature of the tissues. Markov random
fields could be employed to that effect, but this is left for future work. In our case, however, only
PVE voxels are considered, which opens the possibility for assuming independence. The

variability of shapes passing through voxels is infinite (unless some assumptions are introduced to
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limit their local geometry). Hence, no reliable prediction can be made to infer @' from the values
of a at neighbouring voxels. Independence is thus a reasonable choice. Further consideration to

this argument is given in section 6.2.2.

4.3 Example: Gaussian distributions

We exemplify the framework described above for the case of a Gaussian. Here, the tissues present
in the image are modelled as Gaussian distributions of small variance, i.e. the intensities
corresponding to a given tissue / are assumed to be close to a mean value [, with a standard

deviation 0 J- around that value:

2
1 (I =x;)
p;(1)=G(u;,0;)= EXpH— > H (4.5)
Voo, H 20 H
This model is the one most commonly used in MRI studies!2. It could be argued that, assuming
that the variance around a given mean value for a tissue is very small, a Gaussian would suffice to
describe the distribution in intensities, even if the rea/ distribution of the intensities obtained from

the MRI were not perfectly symmetric.

Continuing with the case of a Gaussian, the expression for the mixture model can be computed
analytically. Given a value of @, and assuming the mixture model in eq. 4.1, the distribution for

the combined intensities follows a linear combination of two Gaussians, which is itself a Gaussian:

p(1'|a') =G(a' 14, + (- Y, e of + (- ) 0)  (46)

Given the parameters of the distributions for the two tissues present in a PVE voxel, we can plot

p(l'la’) for @' 0]0..1] . Figure 29 shows this.
g

Bayes® theorem can now be used to compute p(a’ ‘I ') (eq. 4.2). As mentioned above, p(@') is
assumed uniform in the interval [0..1], so p(a i) =1. The resulting formula has the same form as
eq.4.6 (except for the normalising constant P(l ')) However, this time it is not a Gaussian, since

it is no longer a function of the intensity I, but of the proportion @ . This function is plotted in

2 Note that (Wells et al., 1996; Guillemaud and Brady, 1997) use a Gaussian distribution on the
logarithm of the intensities. As discussed in section 3.2.2, this choice is not well suited for dark
intensities.
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Figure 30. It is simply a rotation of Figure 29, to reflect the change of variable . A few cross-

sections at chosen values of |' are shown in Figure 31. Note that the function is not symmettic.
g Y

Figure 29. p(l “a‘) plotted for all values of a' 0 [Ol] . Each cross-section for a given value of
a is a Gaussian following eq.4.6. In this example, ¢, =100, 0, =10, u, =200, and o, =40.
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Figure 30 p(a'|l") plotted for all values of |' [0[0..255| .
g P
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Figure 31 Cross-sections of p(@’ ‘l ') atvalues | =100 (), 120, 140, 160, 180 and 200 ( i,).

4.4 Confidence bounds

The information contained in the individual distributions p(a“l ') can be summarised by
computing the most likely value of o ' and upper and lower bounds at particular confidence
levels. It was shown above that p(a’ ‘I ') is not necessaily symmetric, so the mean value o o, 18
not, in general, the value of highest probability. Assuming that the distribution has only one

maximum (the mode, & a simple search starting from the mean value is sufficient to

mode)>

compute this value. O 40 tepresents the most likely value of @ given the intensity of the voxel

e

and the distributions for the tissues present in it.

Similatly, confidence intervals on & ' can be set by constraining the area below the probability
density function (pdf) of p(a i‘l '). Upper and lower bounds are found by locating the values
O ypper A0d. A > tespectively, which encompass a certain area from the mode @'oqe- This area is

the lateral confidence interval (C; ) for @ .

aTE(ai 1) (@)da = uj'mp(a‘ 1) @)da =,
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For example, an area of C, =0.45 to each side of the mode enforces a 90% confidence interval,
i.e. there is 2 90% chance that the value of @' given |' is between the bounds computed in such

a way. This point is illustrated in Figure 32.

p(@'|l")
Ay Az
0'| ower amode aupper

Figure 32 Confidence bounds on p(a’ ‘I . Qyoper A0d e are set 50 as to make the areas A

and Az equal to Cy; .

45 Propagation of uncertainty

The framework developed above is local to each PVE voxel. In order to compute global
magnitudes, a method must be devised to combine the statistical information contained in the
individual distributions and create a distribution for global descriptors:

p(a’[1").0i ~ p(v)
Common examples of the global descriptor [ are volume and area, or any other shape descriptor

that can be inferred from the local structure implied by the set {0’ i} gi -

451 Conservative bounds

The first approach towards propagating local information makes use of the confidence intervals
developed in section 4.4. In particular, upper and lower bounds on the global magnitude 1 can be
set by employing the upper and lower estimates of @ for every PVE voxel. This obviously
produces an overestimation of the confidence intervals (Pennec, 1996). The bounds computed in

such a way will be referenced to as conservative bounds.
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In the case of volume, the framework is straightforward, since I can be expressed as:

— i
\4 _Vvoxel E—‘pure + %a E
i E

where:
Vioxg 18 the volume of a voxel.

VOX

Npure 18 the number of pure voxels.
7 indexes all PVE voxels containing tissue of the object being measured.

Upper and lower estimates of the volume can then be computed as:

— i
Vupper - Vvoxel Ejpure + % aupper E
i E
— i
Vlower - Vvoxel E_‘pure + D;allcwer E
i E

This method has two drawbacks. On the one hand, it produces a considerable overestimation of
the confidence bounds. This means that using local bounds for each voxel at a confidence level
Co Will, in general, produce bounds for the global magnitude I of much greater confidence. This
implies an unnecessary loss of resolution in the results reported by this method. On the other
hand, establishing confidence bounds is a step back in the process of establishing a solid statistical
model for the PVE. In fact, what we ate after is a statistical distribution for I, not just two

confidence bounds.

452 Monte Carlo

A simple way to construct this statistical distribution for 17 is to use Monte Catlo methods. The
idea behind this scheme is to sample values from the individual distributions for each PVE voxel.
Taking a sample from each PVE voxel, it is possible to compute a sample of 7. By repeating this
process a large number of times, the distribution for I”is simulated and can thus be reconstructed.
The process is spelled out in detail in Figure 33. In order to generate samples from the

distributions, a rejection method was used (Leon-Garcia, 1994).
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Al gorit hm MONTE- CARLO
For n=1 To nunber of Mnte Carlo iterations Do
vol unme[ n] =0
For i=1 To nunber of PVE voxels Do

a' = sanple from p(a"l')
volume[n] = volume[n] + &'

End For

vol ume[n] = volume[n] * voxel vol ume
End For
pdf = normalised histogram of vol une[]

End Al gorithm

Figure 33 Algorithm for Monte Catlo propagation of uncertainty.

Monte Carlo methods are often computationally expensive, to the point of rendering them
ineffective in practical applications. In our case, however, experiments carried out for computing
volumes (cf. following section) were performed in satisfactory times (typically in the range of 2-5

minutes).

4.6 Validation with synthetic images

A synthetic data set was created using the program described in section 3.9.1. This phantom data
set contains a sphere of radius 6.5 in a voxel grid of 20X20%20 voxels of dimensions 1X1X1 each.
The dimensions of the sphere were chosen as to approximate the dimensions of the objects
contained in the MRI phantom used for validation in section 3.10.2. Only two tissues (inside and
outside the sphere) are represented. They are modelled as Gaussian distributions with the
following parameters: W;, =200, g;, =2.5, U, =100, 0, = 2. The contents of PVE voxels are

determined by means an oct-tree recursive subdivision process, as described in 3.9.1.

The ground truth volume of the sphere, computed analytically, is Vgoung teory =1190.3.
However, round-off errors in the oct-tree subdivision and the discretisation to create the image
may amount to some error in the volume of the sphere represented in the image. In order to

obtain a more accurate ground truth volume, a data set representing the same sphere but with no
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noise in the tissue distributions (i.e. always using the means) was generated. In such image, the

proportion of each tissue in a PVE voxel may be computed as follows:
a' = Hip =1
Min = Hout
=1145.7 ,

where |' is the intensity at voxel i. The volume thus computed amounts t0 Vygyng

which is the value that will be used as ground truth. The error with respect to the theoretical value

is:

Vground _theory Vground x100=0.46%
v .

ground _theory

PVE voxels are isolated by building a mask of values different than (4, and U, in the noiseless
image. The volume encompassed by these PVE voxels is 656, which establishes an area of
uncertainty based on voxels of 57.3% of V. We then proceed to create inner and outer

surface bounds as described in Chapter 3. The width of these confidence bounds is computed as:

(Vouter _Vi nner ) %100
V

ground

The additional smoothness of surface representations is bound to reduce the uncertainty area,
when compared to the one based on voxels. In particular, the width of the confidence interval on

volume using simplex meshes for this phantom data set is 36.70% of V, and this width

ground >

reduces to 23.30% when using G!-continuous tGB patches.

We run the PVE estimation framework on the noisy image, as described in the previous sections
of this chapter. The mixture model is built based on the ground truth parameters for the tissue
distributions. Using the mode values @46 of P(@ i‘l i) for every PVE voxel, the estimated

volume is V4o =1146.3. The error with respect to Vg g i 0.05%.

Conservative bounds are established as described in 4.5.1. Several confidence thresholds were
used, and results are reported in Table 7. Note that these confidence thresholds do not reflect the
confidence on the value of the volume, but on local voxel-based estimates. This means that these
confidence bounds are very conservative. In fact, the real volume is comfortably included between

the bounds even in cases when a low threshold was used. Experiments performed on real MRI

73



data suggest that a value of 80% confidence (C, =0.4) is reasonable, and a more consetrvative
estimation is obtained when using a threshold of 90% confidence. Increasing this threshold to
99% 1s exaggerated, and the width of the confidence bounds in this case 1s unreasonably high. The
values in Table 7 should be compared to the width of the confidence bounds using the simplex

mesh (36.70%) and tGB patches (23.30%). There is a reduction by an order in magnitude.

Confidence threshold Lower bound (%) Upper bound (%) Width %
80% 1131.6 (-1.23%) 1159.3 (+1.19%) 2.42%
90% 1127.6 (-1.58%) 1162.3 (+1.45%) 3.03%
95% 1121.3 (-2.13%) 1164.3 (+1.62%) 3.75%
99% 1012.4 (-11.63%) 1166.8 (+1.84%) 13.47%

Table 7 Consetrvative confidence bounds on volume for the synthetic phantom. Upper and lower
and @y, > tespectively, as described in section

=1145.7.

bounds are computed using the values of x yoper

4.5.1. Percentages are computed with respect t0 Vg ng

Finally, a Monte Catlo process is used to generate 10000 samples of volume estimates computed
from random samples of the distributions of p(a i‘l ') for every PVE voxel i, as described in
4.5.2. The sample mean was Hyc =1143.5 (-0.02% error with respect to Vgopng), and the
standard deviation was Oye =0.4559. Confidence bounds based on this values are reported in
Table 8. A further reduction by an order of magnitude in the width of the confidence intervals

was obtained, the ground truth volume still being contained between the bounds.

Confidence Lower bound (%) Upper bound (%) Width %
20 ¢ 1144.6 (-0.10%) 1146.6 (+0.08%) 0.18%
30 e 1144.1 (-0.14%) 1146.9 (+0.10%) 0.24%

Table 8 Results of the Monte Catlo simulation. Confidence intetvals were computed as a function
of the standard deviation computed from 10000 samples.

It should be emphasised that the result of this Monte Carlo simulation is not a set of bounds, but
a statistical distribution for the volume, from which bounds and other useful information can be

derived.
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47 Discussion and practical considerations

The results reported above show an impressive improvement by two orders of magnitude in the
resolution of the measurements obtained from MRI data. It should be remarked, however, that in
this synthetic example we made use of three pieces of information that are not likely to be
available for real data:
®* The exact parameters for the distribution of the tissues, p;(I).
= The composition of PVE voxels (trivial in the synthetic example, which contains only
two tissues).

= The location of PVE voxels of interest.

These issues are described in more detail in the following three sections, and solutions are offered.
In the following section, sensitivity of the method to slight deviations from the correct tissue
parameters is analysed, and a solution based on explicitly modelling the uncertainty on the
estimation of such parameters is proposed. Next, a method to enhance the PVE maps described
in section 3.3 by including information about the composition of PVE voxels is desctibed in 4.9.
This section also describes how contextual knowledge may be used to obtain good voxel-based
segmentations including PVE information. Finally, a method for generating PVE masks from the

inner and outer surfaces developed in Chapter 3 is described in section 4.10.

4.8 Sensitivity to tissue parameters. modelling uncertainty in parameter estimation

The method as it stands is quite sensitive to the tissue parameters. In fact, the method assumes
that the tissue distributions p; (1) are a petfect model. Thus, in the synthetic case presented in
the previous section we obtained very narrow bounds around the ground truth volume. However,
such extremely narrow bounds also mean that small errors on the means of the tissue distributions
will shift the distribution for the volume, yielding bounds that do not contain the ground truth.
For example, if in the synthetic phantom we change (4, from 200 to 201 and run the Monte

Catlo simulation, 30)c bounds become [1141.3, 1144.1] , which do not contain V =1145.7.

ground

Conservative bounds are not so sensitive to the parameters, and although they slightly shift when

incotrect parameters are used, V, 1s consistently between the bounds.

ground
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For our experiments with MRI data reported in this and the following chapters, tissue
distributions are built from samples obtained using a manual “picking” tool. Tissue parameters
estimated in such a way may vary in their accuracy and precision. One possible solution is to
create more accurate tissue models based on the physics of MRI. We contend that a careful
analysis of acquisition parameters and chemical properties of particular tissue types could yield a

satisfactory model. More insight into this issue 1s provided in section 6.2.1.

Another solution 1s to sacrifice some of the resolution of the method, i.e. “widen” the pdf on the
volume® p(V) in favour of accuracy. One possible approach is to model tissue parameters as
statistical variables, in order to reflect the uncertainty on the estimation of the parameters. Thus,
means and variances can have a most likely value and some standard deviation around it. This is
the approach we take. Tissue parameters are estimated from the data set as described above, i.c.
obtaining samples of the intensities of tissues by manual selection. However, this process is
repeated several times, each yielding an estimate of the tissue parameters (e.g. the mean and
standard deviation, for Gaussian models) of the distribution on intensities of the tissue. Next, the
mean and standard deviation of such parameters are computed. Therefore, this model assumes

that the distribution of the noise in the estimation of the parameters is Gaussian.

Monte Catlo simulation is performed in order to generate the final tissue model. At each iteration
of the Monte Catlo process, samples from the distributions of the tissue parameters are drawn.
This produces an instance of the intensity distribution for the tissue. A sample from such
distribution is obtained and stored, and the process 1s repeated. After a number of iterations, the
histogram of the samples is analysed to build the final intensity model for the tissue (Figure 34).

Effectively, the process sketched above is a non-parametric generation of distributions.

Since the framework described in this chapter allows for any type of tissue distribution to be used,
a mixture model is then constructed from the tissue distributions computed above and the

remaining steps in the PVE estimation framework are as described in the previous sections.

3 Volume is used as an illustrative example; it should be kept in mind that V may be any shape
descriptor.
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Figure 34 Uncertainty on the estimation of tissue parameters 1s explicitly modelled by
representing tissue parameters as statistical distributions. A Monte Carlo simulation is then used to
build the final tissue model.

49 Use of contextual information to determine the contents of PVE voxels

Commonly, brain scans contain more than two tissue types. It is therefore necessary to determine
which two tissues are contained in particular PVE voxels. This is a vital requirement, if we are to
build a mixture model to estimate the contents of PVE voxels. Section 3.3 described how the
probability maps obtained from the bias correction process can be used to identify PVE voxels.
Namely, such voxels are detected by setting a threshold on the minimum value of the maximum
probability across tissues. Therefore, if a particular voxel has a probability value greater than the
threshold for a particular tissue, the voxel is identified as containing only that tissue type, and

otherwise it is marked as PVE. An example is shown in Figure 35.

Figure 35 Voxel-based segmentation obtained as described in section 3.3. A) Original image; B)
segmentation (cerebrospinal fluid: black, white matter: light grey; grey matter: dark grey; PVE:
white).
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In the following, it will be shown that the use of contextual information noticeably improves the
results of such voxel-based classifications. Two intuitive ideas can be used to identify the contents
of voxels marked as PVE, by looking at their 26 neighbours:

1) If a voxel is marked as PVE but all non-PVE neighbours have been given the same tissue tag
t, the voxel has a large probability of having been misclassified as PVE. Tissue tag t is then
assigned to it. In order to increase the robustness of this criterion, a minimum number of
non-PVE neighbours is established (5, in our experiments).

2)  Otherwise, the two tissues present in the PVE voxel are determined as the two most frequent

tissue tags in its neighbourhood.

A further consideration may be taken in order to improve further the results. Let us focus on the
Ti-weighted MRI slice shown in Figure 35. Cerebrospinal fluid (CSF) shows dark intensities, white
matter (WM) has bright intensities, and the range of intensities of grey matter (GM) is in between.
It is obvious that the intensities of PVE voxels containing CSF and WM could fall into the

distribution of GM, thus being wrongly classified. This is illustrated in Figure 36.

p(a'|l’)
<4—— PVE(CSEWM) — p

]

Figure 36 The distribution of GM is in the range of intensities of PVE voxels containing CSF and
WM. Thus, such PVE voxels may be wrongly classified as GM.

The following criterion is used to avoid such misclassification:
3) If a voxel is classified as GM but some of its neighbours are CSF, then it must be a PVE
voxel. If the most prevalent tissue across its neighbours is WM, it is classified as

PVE(CSF,WM); if it is GM, it is identified as PVE(CSF,GM). This rule works for three tissue
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types, which proves sufficient for most practical applications. If more tissues need to be

modelled, additional criteria should be established.

Figure 37 shows the improvement on the voxel-based classification achieved using these three
criteria. Note that noise in central areas of white matter has been considerably reduced, and the
contents of PVE voxels determined. Additionally, voxels around the ventricles, which are

PVE(CSF,WM) and were wrongly classified as GM in Figure 35 are now correctly identified.

Figure 37 Improvement on the voxel-based classification by using contextual information.
Compare with Figure 35. CSF: black, WM: light grey, GM: datk grey, PVE(WM,GM): white,
PVE(CSF,GM): red, PVE(CSF,WM): green.

410 Construction of PVE masks from inner and outer surface bounds

One of the assumptions taken in our PVE prediction model is that the prior on proportions of
each tissue in 2 PVE voxel, p(a i) , is uniform. This assumption is valid for the set of PVE voxels,
since the variability in shapes passing through them is infinite. If pure voxels are introduced, the
prior should model the fact that voxels whose neighbours are pure have a high probability of
being pure, due to the piecewise constant nature of the intensities of tissues corresponding to

human organs (cf. section 4.2).

In order to isolate the PVE atrea around the structure of interest, we can make use of the surface
bounds created in Chapter 3. These surfaces are constructed to encompass the region of
uncertainty in the segmentation due to PVE. Once these inner and outer surfaces are constructed,

the problem is reduced to creating a mask with the same voxel structure as the original image,
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highlighting the region encompassed by the two bounds. Both masks are then combined and
simple region growing techniques are used to include voxels contained between the bounds
(combining the inside of the inner bound and the outside of the outer bound). We now describe
how to build the masks. The technique desctibed here is closely related to the algorithm used in
section 3.9.1 to create synthetic images for phantom validation. In that case, an analytical formula
for the object was available, and an oct-tree recursive subdivision process was used by testing the
corners of the (sub-)voxels for inclusion in the object. The main difference with respect to the
present case rests on the fact that the definition of the object was a volumetric one, whereas the

bounds to be used here are surfaces.

The method used previously for generating synthetic MRI phantoms is based on recursively
subdividing the voxel grid into smaller, more detailed sub-voxels. The criterion used for deciding
whether to subdivide or not a given voxel is based on testing the eight corners of the (sub-)voxel
for inclusion in the object. Subdivision is applied to those (sub-)voxels which had some corners

inside and some outside. The algorithm is detailed in Appendix B, section B.1.

The two-dimensional nature of the surface bounds, defined as a set of tGB patches, makes it quite
difficult to test for inclusion of a 3D point inside the object enclosed by the surface. Fortunately,
for the application in mind in this section, we only need to locate and mark the voxels the surface
passes through. To this effect, we can take advantage of the parametric definition of the surface.
In general, any surface can be defined by a parametric mapping of the form:

S(u,v) = (x(u,v), y(u,v), z(u,v)) udD,,vOD, 4.7
where D, and D, are the domains for the parameters U and V, respectively. Without loss of

generality, in the following we will assume that D, =D, = [0,1] .

For the particular case of tGB patches, a prior step must be taken in order to establish a map b
from surface coordinates in the domain [0,1] X[O,]] to barycentric coordinates, used in the

definition of tGB patches' (see Figure 38):

4 Note that a simpler approach, consisting on tessellating the triangle formed by the barycentric domain,
could be employed, avoiding the need for the map b. The description above is of a more general nature,
valid not only for barycentric definitions of the surface.
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odxod - {og~[og{od|u+v+w=3 - n*

(u,v) > b(u,v) = (U',V,w) - tGB(U,V,W)=(X,Y,2)

This prior mapping is given by the formula:

b(u,v) =(u,v[{l-u)l-u-v)

A

(v w)

k (1.v)

»

Figure 38 Mapping from surface coordinates (U,V) to three-dimensional points in a tGB patch.

First, surface coordinates must be mapped to barycentric coordinates, in order to index the
formula for the patch.

Let us then consider the more general problem of creating a mask for a surface defined
parametrically in the form of equation 4.7, for any voxel grid. A possible solution would be to
densely sample the surface guaranteeing sufficient resolution so as to not miss any voxel
However, it is difficult to establish a sampling step in the parametric space of the surface with
these characteristics, unless an extremely conservative — and computationally inefficient —

approach is taken.

A recursive subdivision technique is used. Instead of acting on the three-dimensional space of the
surface and the voxel grid, this time the subdivision is performed on the two-dimensional
parameter space. Therefore, the algorithm used is a guad-tree recursive subdivision. The approach
consists on dividing the parametric space into squares and computing the location of the 3D
points corresponding to the corners of each parametric square. The stopping criterion for the
recursive subdivision of these squates is a minimum distance between the four 3D corner points.
This minimum distance must, of course, be related to the voxel size. Typically, conservative values
around 107 times the smallest side of a voxel are used, in order to not miss any voxel. The

algorithm is illustrated in Figure 39, and detailed in section B.2.
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Figure 39 Illustration of the quad-tree subdivision process. The rectangle pr in parametric space
maps, through tGB 0D, to the surface sub-patch I in 3D space. A voxel is shown, together with
its intersection with the tGB patch. Since I does not fall completely inside the voxel, it is
subdivided into 4 smaller rectangles, by subdividing pr. The rectangle I falls completely inside the
voxel, so the voxel will be marked. The remaining patches will continue the subdivision process to
guarantee that no voxels are missed. A threshold area for the sub-patch is used as a recursion
limit.

It should be noted that by using information about the possible location of the boundary to isolate
PVE vozxels we also reduce the effect of voxels incorrectly classified as PVE. For example, voxels
which are pure but whose intensities fall in the tails of the tissue distribution may be classified as
PVL, thus biasing the results. The number of such voxels is very small, and their incidence is
spread over the whole image. Therefore, the number of such voxels occurring at the boundary (i.e.

the area isolated by the mask) will be extremely small.

411 Experimentson MRI phantoms

The PVE prediction framework is now tested on a real MRI data set. This data set was used as a
validation phantom in section 3.10.2. Then, bias field correction was performed, and inner and
outer surface bounds were fit. Volume confidence bounds were reported using voxel-based
measurements, simplex mesh, and tGB patches. These results are summarised in Table 9. The

ground truth interval is provided for reference in the last row.

PVE voxels are identified by rendering the inner and outer surfaces into the voxel grid, as

described in the previous section. Voxels contained between the bounds are included into the
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PVE mask (Figure 40). The PVE mixture model is built based on tissue parameters computed
from sampling a slice of the data set several times. As argued in section 4.8, this allows to explicitly
model the uncertainty of the estimation of tissue parameters inherent to the sampling technique.
Conservative bounds to a 90% confidence level (€, =0.45) ate established, a Monte Catlo
simulation is used to generate 10000 samples of the volume, and statistics are derived from such
samples. The mean is 1029.36, and the standard deviation is 1.47. 30 confidence bounds are

shown in Table 9.

Figure 40 A) A slice of the phantom data set; B) corresponding slice from the PVE mask
generated from the outer and inner surfaces computed in section 3.10.2.

Method Confidence interval Width %
Simplex mesh [899.6, 1264.7] 35.5 %
Voxel [821.0, 1152.0] 32.2%
tGB mesh [954.8, 1166.9] 20.6 %
PVE conservative (90% bounds) [980.9, 1112.0] 12.7 %
PVE Monte Carlo 1029.4 + 30 = [1024.6, 1033.4] 0.9 %
Ground truth 1028 £ 2% = [1007, 1049] 2.0 %

Table 9 Summary of the results obtained for the MRI phantom “cube”, described in section 3.9.2.
Percentages are computed with respect to the mean value of the ground truth confidence interval,
1028.

All the estimated bounds are correct, in the sense that they contain the range provided as ground
truth. Nevertheless, the confidence interval computed by means of Monte Carlo simulation is
smaller than the ground truth. This interval is contained inside the ground truth bounds, and the
mean is almost identical to the ground truth mean, which hints at a sensible result. Additionally,
+30 comfortably contain the ground truth mean. However, it is not possible to determine
whether the Monte Catlo bounds are correct or not, since the resolution of the ground truth

interval provided by the manufacturer of the phantom is not sufficient.
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412  Generation of PVE and intensity images from surface models

Although the algorithm designed in section 4.10 solves the problem at hand, i.e. the need for
isolating PVE voxels, the technique can be extended to provide more useful information. In
particular, a similar approach based on a quad-tree recursive subdivision of the parameter space
can be used to compute the proportion of each voxel to each side of the surface. If we assume
that this surface delimits the boundary between two different tissues, then this value corresponds
to the proportion of inside (dg) and outside (1-ag) tissue in the voxel. In other wotds, the
method described next computes estimates of PVE for an object defined by its bounding surface,

for any given voxel grid.

If the definition of the object at hand were volumetric, such as the case for the generation of
synthetic phantoms, then an oct-tree algorithm such as the one used to generate synthetic images
would suffice. However, the description of the object is a parametric surface. Several strategies
may be adopted to solve this problem. A method based on the intensive use of computational
geometry to compute the intersections of the surface with the voxels and then integrate their
volumes can be employed. However, this method is very costly, for several reasons. First, the
number of planes delimiting voxels — and hence the number of intersections to be computed — is
enormous. Second, the analytical formula for tGB is not a simple, fast, polynomial. Finally, the
integration process — to be performed in every PVE voxel — is extremely time-consuming. These

factors render this approach impractical.

Our algorithm is based on that described in section 4.10 for creating PVE masks. In fact, the
general idea consists of sub-sampling each PVE voxel into smaller sub-voxels, and then applying
the same algorithm. This creates a mask in the sub-sampling resolution, marking the location of
the surface passing through a PVE voxel. Then, a region growing algorithm is employed to fill the
“inside” part of the voxel. See Figure 41 for an illustration of the method. It could be argued that
this approach may be extremely memory consuming, due to the need for sub-sampling PVE
voxels. However, two considerations should be taken into account. First, the sub-sampling
process is not required for every voxel in the image, only for PVE voxels. Second, the storage

space can be reduced considerably by storing the sub-voxels as a height map, in a similar vein to a
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Z-buffer (Figure 41). The direction of this height is given by the normal of the first surface point

hitting the voxel.

4normal
||
4

of height

direction

height map

Figure 41 Illustration of the sub-sampling method used to create PVE images of objects defined
as parametric surfaces (tGB patches, in our case). Each PVE voxel is sub-sampled and the
intersection of the surface passing through it 1s computed. A region growing algorithm is used to
“fill in” the inner part of the voxel (determined by the normal). A 2D implementation of the
process, using height maps as Z-buffers, considerably reduces memory requirements.

Thus, PVE can be generated from the intersection of the surface and a voxel grid. Assuming that
this surface delimits the boundary between two tissues, and if a model for the intensities of the
tissues 1s at hand, intensity images can be generated. This means that MR images of any modality

may be simulated.

413 Conclusions

This chapter has presented a framework for modelling and estimation of the partial volume effect.
The mixture model allows for sub-voxel resolution in measurements obtained from MRI data.
Such mixture model is propagated to build a distribution on global shape desctiptors (e.g.
volume), or estimate confidence bounds. Results on synthetic data sets show a significant

reduction in the width of the confidence intervals, with respect to the results shown in Chapter 3.
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Three key issues for the correct use of the mixture model in real MRI data sets have been tackled,
namely: the sensitivity to the tissue prior distributions on the estimated distribution for the global
shape descriptor, and the need to isolate PVE voxels and determine their contents. Even when
taking a conservative approach, the width of confidence bounds is on the range of 1-2%, which
means an improvement by more than an order of magnitude with respect to the bounds
computed in Chapter 3. This opens the possibility to perform clinical studies on small structures
where PVE voxels contain a high percentage of the volume of the structure. A clinical study of

this kind is described in the following chapter, illustrating the use of our techniques.

Finally, section 4.12 presented a methodology to create intensity images from surface models, thus
closing the link between voxels and continuous surface representations. The importance of this
technique rests on the fact that it is a first step towards obtaining a truly sub-voxel segmentation
framework. In particular, surface fitting may be enhanced with a criterion to minimise the
difference between PVE estimates derived from voxel intensities, o ! , and PVE values determined
by the intersection of the surface with the voxel grid, & Is This point is described in more detail in

section 6.2.4.
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Chapter 5

Clinical Study: Symmetry Differences of the
Temporal Hornsin Schizophrenia

51 I ntroduction

The tools developed in the previous chapter allow for greater resolution in measurements
obtained from MRI. It is the purpose of this chapter to determine whether this additional
resolution is sufficient to support or refute hypotheses relating to schizophrenia, and in particular
its relation to brain asymmetry. The study described here is not only a clinical validation of our
method, but an important clinical contribution towards understanding the aetiology of

schizophrenia.

Asymmetry anomalies of several anatomical structures in schizophrenia have been reported, but
findings so far have been handicapped by the lack of resolution of existing morphometric
methods. This leads to a highly controversial literature, with findings that claim to corroborate or
deny correlation between schizophrenia and cerebral asymmetry. In choosing an anatomical
structure for our study, two criteria were adopted. First, clinical literature must exist relating the
structure to schizophrenia. Second, measurement of the structure must be difficult due to its size
relative to the voxel size, thus leading to inconclusive published results's. The femporal horns satisty

both criteria, and are the object of this study.

Section 5.2 provides anatomical background describing the temporal horns. Section 5.3 lists the
existing literature regarding the importance of temporal horns in schizophrenia. A formal problem

statement is given in section 5.4, and the data used in the study is described in 5.5. Methods are

2 |nfact, all structures reported in the clinical literature comply with this condition.
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described in 5.6. Sections 5.7 and 5.8 present and analyse the results, and a clinical interpretation is

provided in section 5.9. Finally, conclusions and further discussion are provided.

5.2 Anatomical background

The human brain has an extremely complex structure. It is primarily composed of grey matter and
white matter. Grey matter is formed by the nuclei of the neurons, and it is located in the outer
surface of the brain (corfex), as well as in several internal nucli. The brain’s interior is mainly
composed of white matter, which corresponds to the axons, establishing connections between
neurons. Through evolution, the human brain has grown in complexity, both in number of
neurons and, especially, connections between them. This process demanded an increase in cortical
area, to cater for more active nuclei, but also required proximity between nuclei, so connections
could be established. An optimal configuration was achieved by means of which the brain cortex
became an extremely convoluted surface of high intrinsic geometry (Griffin, 1994). The cortex
presents a large number of folds (s#/7), which delimit areas called gyr. The location of sulci and
gyri is far from random, and they determine the structural and functional organisation of the

individual brain.

Globally, brains are structured into two roughly symmetric parts called bemispheres, connected at
particular central locations in the brain, the most important of which is the corpus callosum'®. Each
hemisphere is in turn organised into /bes, defined by the location of specific sulci (Figure 42).
Brains are not perfectly symmetric. As a result of evolution, several regions of the brain grew
larger than their counterparts in the opposite hemisphere. Such is the case, for example, of the left
posterior areas (temporal and occipital lobes) of the brain, which perform language-related tasks.
The functional importance of cerebral asymmetry 1s well recognised, and literature exists relating

anomalies in such asymmetry to schizophrenia (cf. section 1.2.2).

The brain obtains structural support via the cerebrospinal fluid (CSF), in which it is embedded.

Several internal chambers, called ventricles, also contain CSF (Figure 43). The two lateral ventricles are

'8 The importance of these central areas stems from the fact that all connections between left and right
hemispheres must pass through them.

88



irregular cavities situated in the lower and medial parts of the cerebral hemispheres. They are
almost separated from each other, but each communicates with the #hird ventricle and indirectly
with each other through the interventricular foramen. Each lateral ventricle consists of a central body

and three horns, antetior, postetior and inferior (Figure 44). Inferior horns are located inside the

temporal lobe, and are also commonly known as femporal horns.

Figure 42 The brain can be partitioned into lobes, defined by the location of specific sulci. Lobes
are coloured in the figure: frontal (blue), parietal (green), occipital (yellow), and temporal (violet).
The cerebellum (pink), brain stem (magenta), and eyes (white) are also shown. Source: Digital
Anatomist Program, University of Washington (http://www.axess.com/users/ir/atlas).

Figure 43 Ventricles are internal chambers containing cerebrospinal fluid (CSF).
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Figure 44 Structure of the ventricles. There are two lateral ventricles, each one in a cerebral
hemisphere, and the medially located third and fourth ventricles. The two lateral ventricles are
divided into a main body and three horns. Our study focuses in the inferior, or temporal, horns. It
should be noted that the size of these horns increases considerably with age, and the figure
corresponds to a post-mortem brain. Temporal horns are commonly much thinner. Source:
Digital Anatomist Program, University of Washington (http://www.axess.com/users/ir/atlas).

53 Related clinical studies

Ventricular shape differences between schizophrenics and controls have been reported in several
studies. Most of them report enlarged lateral ventricles, and some report differences in asymmetry.
Some studies have hinted at the importance of studying subdivisions of the lateral ventricles, and
in particular the temporal horns. A detailed discussion of these studies falls out of the scope of
this thesis. Reviews of these and other anatomical alterations reported in schizophrenia can be

found in (Lawtie and Abukmeil, 1998; McCatrley et al., 1999).
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54 Problem statement

Clinical studies such as those mentioned in the previous section are based on creating binary voxel
masks to isolate the temporal horns, and no attempt is made to estimate PVE and obtain sub-
voxel accuracy. Figure 45 shows magnified slices through the medial part of the temporal horns. It
should be apparent that PVE accounts for most of the volume of the temporal horn. In fact, the
middle slice shows no clear trace of the temporal horn, since its diameter, when traversing that
slice, is smaller than the voxel width. Thus, it is very difficult to represent the temporal horns
using a voxel-based model. Figure 46 shows a rendering of one of such segmentations. Notice that

the temporal horns are disconnected from the main bodies of the lateral ventricles.

Figure 45 Three MRI slices (numbers 25, 29, and 47, from back to front) showing the temporal
horns. Notice that they traverse very few voxels. The middle slice, in particular, presents a very
unclear delineation of them, remarking the need for sub-voxel resolution.

Figure 46 Rendering of a voxel-based segmentation of the ventricles. Note that the temporal
horns are unconnected. It is very difficult to perform a binary classification, due to the extremely
small size of the temporal horns with respect to the voxel size.
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The purpose of this study is to accurately segment the temporal horns from MRI acquisitions of a
set of schizophrenic patients and a set of normal controls. A statistical analysis will then be
performed to assess whether there exist significant differences in left-right asymmetry of the
temporal horns. The statistical apparatus provided by the PVE estimation framework developed

in the previous chapter allows for the computation of “significance” measures.

55 Data used in the study

High resolution coronal Ti-weighted MRI data sets of 8 schizophrenic patients (SC) and 8 normal
controls (NC) are analysed. The data sets consist of 124 slices (slice thickness 1.5 mm), each
consisting of 256%256 voxels of dimensions 0.9375%0.9375 mm?. Therefore, the field of view

(FOV) is 240%240%186 mm>. A few slices through one of the data sets are shown in Figure 45.

These scans were acquired at the State University of New York (SUNY) in Stonybrook, NY, USA,
and are part of the BIOMORPH data pool. The particular details of each data set are listed in

Table 10.

Data set Age Sex Handedness!’
006_SC 36 M R
007_SC 31 F L
008_SC 29 F R
010_SC 33 F R
024_SC 28 M R
025_8C 31 M R
033_8C 22 F R
039_8C 26 F L
104_NC 30 F R
105_NC 30 M R
106_NC 42 M R
107_NC 36 F L
112 NC 29 F R
114_NC 34 M R
117_NC 31 M R
118_NC 38 F R

Table 10 Details of the subjects used in the study. Schizophrenic patients are labelled SC (all
subjects in this study are chronic patients), and normal controls are indicated with the letters NC.
M: male, F: female, L: left-handed, R: right-handed.

' Handedness has an influence in lateral brain specialisation, and therefore in symmetry.
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5.6 Methods

This section desctibes the processing steps performed in order to assess anatomical differences of
the temporal horns in the data sets included in the study. Our analysis focuses on volume as a
shape descriptor. More complex shape descriptors could be derived following the same processing

scheme. Figure 47 illustrates the processing pipeline.

| Voxel-based
bounds
. Determine Identify .
) Cons ti
Bias ﬁe.ld —» contents of (—| region of P onsetvative
correction i bounds
PVE voxels interest
Monte Catrlo
bounds
Estimate
tissue ?
parameters

Figure 47 Processing steps followed in this study. Details are provided in the following sub-
sections.

5.6.1 Bias field correction

Correction for bias fields is performed using the EM algorithm, as described in section 3.2. In
order to run the algorithm, estimates for the tissue parameters must be obtained. The algorithm
assumes that intensities for a given tissue follow a Gaussian distribution on the logarithm of the
intensity. Intensity samples are taken from a slice of the data set. Sampling is restricted to a
relatively small region in the image, to avoid intensity differences due to the bias field. This
process is performed for the tissues present in the image, namely white matter (WM), grey matter
(GM) and cerebrospinal fluid (CSF). Samples for each tissue type are log-transformed and the
sample mean and standard deviation are computed. For completeness, these are listed in

Appendix C, Table 18.
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The EM algorithm is run allowing 4 iterations of the expectation-maximisation framework.
Typical computation times are around 10 minutes. The output of the algorithm consists of an
estimate of the bias field, a bias-corrected version of the image (on which we will work from now
on), and three probability maps containing, for each voxel, the probability of it being CSF, GM

and WM (Figure 48).

Figure 48 Output of the bias correction process on slice 13 of data set Main006_SC. A) Original
image; B) estimated bias field; C) corrected image; D) CSF probability map; E) GM probability
map; F) WM probability map.

5.6.2 Determination of contents of PVE voxels

Analysis of the probability maps allows for a classification of the voxels in the image, as previously
described in section 3.3. The tissue whose probability value is highest at a given voxel is
considered. If such a probability, as indicated in its probability map, is higher than a certain
threshold (0.6 was used in the present experiment), it means that the intensity of the voxel adheres
closely to the intensity distribution for the tissue. The voxel is then marked as a pure voxel

containing only that tissue. Otherwise, the voxel is marked as PVE (Figure 49).

94



Figure 49 Initial classification into pure voxels and PVE voxels. CSF is black and PVE is
coloured white. White matter is marked with a brighter intensity than grey matter.

Contextual information is used to further improve the classification and determine the
composition of PVE voxels. Three basic ideas are employed, based on the analysis of the 26-voxel
neighbourhood of PVE and GM voxels (cf. section 4.9). The use of contextual knowledge
provides a cleaner segmentation. Additionally, it re-classifies PVE voxels, based on their
composition, as PVE(GM,WM), PVE(CSF,GM), or PVE(CSF,WM). This is illustrated in Figure

50.

Figure 50 Improved voxel-based classification obtained using contextual information. CSF: black,
GM: dark grey, WM: light grey, PVE(GM,WM): white, PVE(CSF,GM): red, PVE(CSF,WM):
green.

5.6.3 I dentification of regions of interest

The voxel-based segmentations obtained by combining the probability maps provide a high-
quality decomposition of the image into tissue types, including the composition of PVE voxels.
After this has been obtained, it is necessary to select the region of interest, i.c. those voxels that

correspond to the structure of interest. This process 1s performed using a semiautomatic region
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growing technique on the voxel segmentations, keeping an eye on the intensity images for visual
feedback. The tool used for performing the segmentations is part of the preoperative planning

software VISLAN (Colchester et al., 1996).

Seeds are selected manually and the thresholds of the region growing process are set so as to
include voxels marked as CSF (pure voxels inside the temporal horns), PVE(CSF,GM) and
PVE(CSF,WM). In most cases, the voxel-based classification provides natural boundaries for the
structures being segmented. Otherwise, the software allows for manual editing of the results to
stop the region growing process at some user-defined boundaries. Additionally, and due to the
particular anatomical complexity of the temporal horns, some central areas of the horns may
present problems. The width of the temporal horns in such areas may be extremely small with
respect to the voxel size, occupying less than one voxel (Figure 51). Based on the analysis of the
intensities of these voxels, they tend to be classified as pure GM or PVE(GM,WM). Contextual
information may not be used to provide a better classification, since the temporal horn only
traverses one voxel. Such voxels are segmented manually using the manual editing capabilities of
the segmentation tool, and re-defined as PVE(CSF,WM). It should be noted that some heuristics
could be designed to improve the detection of such cases in the central areas of the temporal
horns. However, purely intensity-based heuristics, though effective in the affected voxels, render
the voxel-based segmentation process much less robust, and worsen the results in other areas of
the brain. Clearly, the incorporation of additional anatomical knowledge could help. It should be
kept in mind that these cases are not very frequent, and for the most part of the volume of the

temporal horns basic seeding and region growing on the voxel segmentations suffices.
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Figure 51 The definition of the region of interest is complicated in some central areas of the
temporal horns, where their thickness is minimal. Slice A) is located in such a location. Probability
maps for CSF, GM and WM are shown in C), D), and E), respectively. Notice that very low CSF
probability is assigned in the areas of the temporal horns, while voxels located in these areas
present high GM probability values. This results in such voxels being classified as GM in the final

segmentation (B).

The anterior boundary of the temporal horn is naturally defined by its anatomy (Figure 44). On
the other hand, the anatomical definition of the posterior boundary of the temporal horns is quite
vague. This is a common problem when working with biological structures of non-spherical
topology, where a “cutting” criterion is required. This is very important for morphometric studies,
and should be addressed by anatomists in order to define unambiguous separations for such
structures as hemispheres, lobes, and sub-structures such as temporal horns. Consultations with
neuroanatomists lead to the decision of using the first slice before the trigone (anterior tip of the
atrium, Figure 44) appears when moving from front to back. Unfortunately, this definition is not
independent of the orientation of the patient in the scanner. Several alternative criteria were
considered, mainly based on fitting a cutting plane based on the location of anatomical landmarks
in the ventricles. However, ventricles are very smooth structures and it is difficult to
unambiguously define such landmarks. The uncertainty on locating such landmarks from voxel

images where PVE is predominant would render the estimation of the cutting plane ineffective.
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The reader may wonder why the scheme described in Chapter 3, based on the use of the simplex
mesh and tGB patches, was not employed for segmenting the temporal horns. This technique was
proven successful in segmenting ventricles (cf. 3.9.3) and even the cortical surface (section 3.11).
Experiments were performed in order to segment the temporal horns, but results were not
favourable. This is due to the fact that the technique described in Chapter 3 is guided by purely
voxel-based information, and no sub-voxel capabilities are incorporated. This means that the
mesh has problems segmenting extremely thin central areas of the temporal horn, where it
traverses a portion of a voxel. The mesh may be upgraded to take into account sub-voxel
information, as suggested in section 4.13. More detail about this possibility is provided in section

6.2.4.

5.6.4 Voxel-based volume bounds

Once the region of interest has been defined, voxel-based volume estimates may be obtained
simply by multiplying the number of voxels times the voxel volume (0.9375%0.9375%1.5 =
1.31836). A lower bound on the volume is obtained by counting only voxels classified as CSF, and

an upper bound 1s computed by including PVE voxels. Results are listed in section 5.7, Table 11.

For comparison, voxel-based segmentations performed by an expert neuroanatomist using the
region growing tool on the intensity images are available. The result is a binary mask indicating
which voxels are classified as temporal horn. The awkward nature of such purely voxel-based
segmentations is reflected by the fact that some slices in the central areas of the temporal horns do
not contain any voxel in the segmentation, again illustrating the need for analysing PVE. Volume
estimates for these segmentations are obtained by multiplying the number of marked voxels times

the voxel volume, and listed in Table 12.

5.6.5 PVE analysis: conservative bounds and Monte Carlo simulation

Following the scheme described in Chapter 4, mixture models are built in order to construct
statistical distributions for the PVE as a function of voxel intensity. Conservative bounds based

on adding voxel-based confidence limits (cf. section 4.5.1) are computed. From these, upper and
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lower volume estimates are obtained. The relative improvement of these bounds can be measured
as the difference in width (upper minus lower) with respect to the voxel-based bounds obtained in

section 5.6.4. Results are listed in Table 13 in the following section.

Next, Monte Catlo simulations are performed in order to build statistical distributions for the
volumes of the temporal horns. As mentioned in section 4.8, the uncertainty in the estimate of the
tissue parameters is modelled explicitly by computing such parameters several times and
computing their means and standard deviations (listed in Appendix C, Table 19). The mixture
model is then built and the Monte Carlo simulation initiated. 10000 iterations wete applied in our
experiments. Sample means and standard deviations were computed and are listed in the next

section (Table 14).

5.7 Results

Table 11 lists upper and lower bounds on volumes computed using voxel-based methods, as
described in section 5.6.4. For subsequent comparison, voxel-based volume estimates of
segmentations performed by an expert using the region growing tool directly on the intensity
images are shown in Table 12. Table 13 lists results using the method described in section 4.5.1 to
establish conservative bounds. Volume bounds using local confidence levels of 80% and 90% are
listed. It should be borne in mind that such local confidence levels, when propagated to compute
the bounds, produce an overestimation, thus providing volume bounds of much greater
confidence. Finally, Table 14 shows the results obtained via Monte Carlo simulation (cf. 4.5.2).
The end-product of such process is a statistical distribution on the volume, in this case following a
Gaussian model. The mean and standard deviation of such Gaussian are indicated, together with
confidence bounds obtained by adding or subtracting to the mean 3 times the value of the

standard deviation (* 30).
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Left temporal horn  Right temporal horn

Data set Lower Upper Lower Upper

006_SC 141.06 1036.23 263.67 1476.56
007_SC 113.38 822.66 87.01 878.03
008_SC 216.21 1078.42 97.56 631.49
010_SC 247.85 1236.62 152.93 924.17
024_SC 123.93 996.68 152.93 1379.00
025_SC 98.88 762.01 123.93 1095.56
033_SC 80.42 539.21 316.41 1396.14
039_SC 146.34 1202.34 47.46 487.79
104_NC 101.51 850.34 71.78 610.40
105_NC 21.09 225.44 130.52 893.85
106_NC 104.15 693.46 159.52 949.22
107_NC 50.10 452.20 233.35 1058.64
112_NC 199.07 1150.93 139.75 817.38
114_NC 84.37 557.67 118.65 711.91
117_NC 292.68 1409.33 201.71 1152.25
118_NC 75.15 512.84 72.51 568.21

Table 11 Voxel-based upper and lower bounds on volume (cf. section 5.6.4). Measurements are
expressed in mm?.

Data set Left Right

006_SC 300.59 462.74
007_SC 427.15 346.73
008_SC 242.58 123.93
010_SC 490.43 373.10
024_SC 543.16 500.98
025_SC 287.40 301.90
033_SC 188.53 561.62
039_SC 665.77 433.74
104_NC 304.54 196.44
105_NC 189.84 428.47
106_NC 264.99 299.27
107_NC 141.06 416.60
112_NC 332.23 226.76
114_NC 160.84 193.80
117_NC 738.28 477.25
118_NC 179.30 167.43

Table 12 Voxel-based volume estimates (in mm?) obtained from segmentations petformed by a
neurologist expert in the use of the region growing tool.
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Left temporal horn Right temporal horn
Data set |80% Low 80% Up [90% Low 90% Up |80% Low 80% Up |90% Low 90% Up
006_SC 31531  410.03| 304.88 42525 479.75  603.50| 46594 = 623.53
007_SC 260.17  386.96| 247.38  481.38| 27325 41795 25846  522.30
008_SC 355.89 47281 34400  539.73] 199.69 27032 19235 29821
010_SC 413.65 62895 390.57  744.17| 310.88 48329 291.72  572.80
024_SC 301.77 51042 24846  557.54] 369.51  629.62| 32134  (92.17
025_SC 22515  363.10| 189.50  385.26| 27542  464.70| 23330 = 495.82
033_SC 157.22  222.07| 100.13  229.72| 465.34  611.75| 356.62  628.94
039_SC 302.51  566.11 199.57  600.12|  149.89  243.29 83.01  254.80
104_NC 17832  290.07| 123.84  300.84| 141.87 21747 90.35  225.11
105_NC 9124  119.73 87.98  142.25| 27249  370.43| 26348  455.30
106_NC 196.65  273.26| 177.18 28355 267.70  360.54| 249.23 37297
107_NC 12730  184.32|  120.81 193.45| 37234  488.63| 359.69  507.18
112_NC 34994  448.07| 336.88  461.43] 24090  306.00] 231.98  315.01
114_NC 188.70  252.92| 18191 29030, 22431  295.02| 217.25 33641
117_NC 481.15 064750 461.35  675.23| 353.65  481.24| 33924 50248
118_NC 149.70  212.59 97.79 22079 143770  212.35] 100.65 = 220.69

Table 13 Conservative bounds on volume, in mm?3. 80% and 90% confidence values are shown.
These confidence values correspond to local bounds; global confidence on the measurements is
much higher (cf. section 4.5.1).

Left temporal horn Right temporal horn
Dataset | Mean Std. dev. |3std Low 3std Up | Mean Std. dev. |3std Low 3std Up
006_SC 364.99 298|  356.05 37393 542.85 3.42] 53259 55311
007_SC 314.04 407  301.83  326.25| 334.47 426 321.69  347.25
008_SC 400.11 2.85 39156  408.66| 227.72 215 221.27 23417
010_SC 502.81 5.10)  487.51 518.11 380.45 4.03| 36056  394.34
024_SC 421.01 3.91| 409.28  432.74] 519.04 429 50617  531.91
025_SC 305.35 3.36| 29527  31543| 388.88 4.03|  376.79  400.97
033_SC 196.09 228  189.25 20293 555.55 3.54] 54493  5066.17
039_SC 486.43 5.32| 47047 50239 213.49 297| 20458 22240
104_NC 254.75 2.89]  246.08 26342 192.10 240 18490  199.30
105_NC 102.34 1.31 98.41 106.27|  312.28 2.55|  304.63  319.93
106_NC 241.44 340 231.24  251.64| 32457 3.69] 31350  335.64
107_NC 155.76 2.04| 149.64  161.88| 433.83 290 42513 44253
112_NC 427.57 3.12| 41821  436.93| 289.06 2.50|  281.56  296.56
114_NC 214.52 196/ 208.64  220.40| 253.26 2.10{ 24696  259.56
117_NC 571.42 3.94  559.60  583.24| 422.19 3.37|  412.08  432.30
118_NC 193.57 236  186.49  200.65|  192.06 2.51 18453  199.59

Table 14 Monte Carlo results. The end-product of the Monte Catlo simulation is a Gaussian
distribution on volume. The mean and standard deviation of such distribution are indicated for
each subject, both for the left and right temporal horns. + 30 confidence bounds are also listed.
All measurements are indicated in mm?.
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5.8 Analysis of results

The first striking result is the size of voxel-based bounds (Table 11). As noted eatlier, this is due to
the fact that the temporal horns are a very thin structure, so their intersection with each slice is
very small relative to the voxel size. This means that most of the voxels they traverse are PVE
voxels. Figure 52 shows upper and lower bounds computed using the different methods employed
in this study. These results correspond to the left temporal horn of patient 006_SC. Note that

voxel bounds are much wider than those obtained with techniques that analyse PVE.

Width of the confidence intervals, given by the difference between upper and lower bounds,
undergoes a remarkable reduction when making use of an explicit model for PVE. Figure 52
clearly shows this fact. Widths expressed as a percentage of the mean Monte Carlo volume are
listed in Table 15, and averages over all patients are plotted in Figure 53. Conservative PVE
bounds considerably reduce the confidence interval, from 228.45% average width using voxel
bounds to 55.75% for a 90% local confidence level, or 35.27% for 80% confidence. Note that in
all our experiments 80% confidence bounds consistently contain the mean volume (or ground
truth, for validation studies reported eatlier). Monte Carlo estimates produce further reduction by

another order of magnitude, to 6.08%.

The problem of studying anatomical characteristics of the temporal horns from MRI data has
been considered intractable to date. This becomes clear if we take a look at the “expert” results
reported from voxel-based segmentations using the region growing tool, methodology that
exemplifies techniques used to date to segment anatomical structures from MR data. Visual
inspection of the results (cf. rendering in Figure 46) suffices to prove that such segmentations are
incomplete. Differences with respect to the mean Monte Catlo volumes are wide and follow no
predictable pattern (mean difference is 21.79%, with a standard deviation of 23.01). No conclusive
studies about asymmetry of the temporal horns have been reported to date, due to the lack of
appropriate tools. The results reported in our experiments show confidence bounds in the range
of 6% of the estimated volume. Thus, we have succeeded in transforming an intractable problem

into one that is feasible.
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Figure 52 Volume bounds, in mm?, for the left temporal horn of patient 006_SC. The top graph
shows results for voxel-bounds, conservative bounds to 90% and 80% local confidence levels, and
*+ 30 bounds computed from the results of the Monte Catlo simulation. For clatity, the bottom
graph shows a close-up of the results obtained using the last three methods. The mean value of
the Monte Catlo volume distribution is marked as a dark dot.
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Left temporal horn Right temporal horn

Data set Voxel Con90% Con80% MCarlo | Voxel Con90% Con80% MCatlo

006_SC 245.26 32.98 25.95 4.90 223.43 29.03 22.80 3.78
007_SC 225.86 74.51 40.37 7.78 236.50 78.88 43.26 7.64
008_SC 215.49 48.92 29.22 4.27 234.47 46.49 31.02 5.66
010_SC 196.65 70.32 42.82 6.09 202.72 73.88 45.32 7.30
024_SC 207.30 73.41 49.56 5.57 236.22 71.45 50.11 4.96
025_SC 217.17 64.11 45.18 6.60 249.85 67.51 48.67 6.22
033_SC 233.97 66.09 33.07 6.98 194.35 49.02 26.35 3.82
039_SC 217.09 82.34 54.19 6.56 206.25 80.47 43.75 8.35
104_NC 293.95 69.48 43.87 6.81 277.26 70.15 39.35 7.50
105_NC 199.68 53.03 27.84 7.68 244.44 61.43 31.36 4.90
106_NC 244.08 44.06 31.73 8.45 24331 38.12 28.60 6.82
107_NC 258.15 46.64 36.61 7.86 190.23 34.00 26.81 4.01
112_NC 222.62 29.13 22.95 4.38 234.43 28.72 22.52 5.19
114_NC 220.63 50.53 29.94 5.48 234.25 47.05 27.92 4.98
117_NC 195.42 37.43 29.11 4.14 225.15 38.67 30.22 4.79
118_NC 226.11 63.54 32.49 7.32 258.10 62.50 35.74 7.84

Table 15 Widths of confidence intervals established by the different methods used in this study.
All values are expressed as percentages of the mean value of the Monte Carlo simulation.

Average width (% MC mean)

250 228.45
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Figure 53 Average width of confidence intervals on temporal horn volumes. From left to right,
voxel bounds, 80% and 90% conservative bounds, and + 30 bounds on Monte Carlo results.
Values are expressed as percentages of the mean value of the Monte Carlo simulation.
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5.9 Clinical conclusions

We now analyse the results from a clinical standpoint. Symmetry is the focus of this study, so it is

necessary to define a suitable measure. We define the following normalised symmetry coefficient:
S= L-R
L+R

where L denotes the volume of the left temporal hotn, and R is the volume of the right

temporal horn.

Data set | Sym. coef.
006_SC -0.20
007_SC -0.03
008_SC 0.27
010_SC 0.14
024_SC -0.10
025_SC -0.12
033_SC -0.48
039_SC 0.39
104_NC 0.14
105_NC -0.51
106_NC -0.15
107_NC -0.47
112_NC 0.19
114_NC -0.08
117_NC 0.15
118_NC 0.00

Table 16 Symmetry coefficients for all subjects.

A t-test (Chatfield, 1983) on this data may be applied to test for significant differences between
schizophrenics and normal controls. The t-test determines the probability of two samples being
drawn from distributions with the same mean, and is especially suited for small number of sample
values. Using a two-tailed t-test, the probability of both sets of symmetry coefficients (SC and NC)
being drawn from a distribution with the same mean is 0.6. This means that no significant

differences in asymmetry of temporal horns between controls and schizophrenics were found.

The reader may be wondering, however, whatever happened to the confidence intervals. A huge

effort has been made to yield bounds on the volumes of left and right temporal horns of the

subjects under study. However, symmetry coefficients have been developed purely from the mean
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Monte Catlo values. We now proceed to propagate the standard deviations obtained from such
Monte Carlo process in order to establish an estimate of the standard deviation of the symmetry

coefficients shown above.

Volume distributions for left and right temporal horns follow Gaussian distributions, in virtue of
the central limit theorem:

L « G(u,,0,), R« G(ug,0R)

Since linear combinations of Gaussian distributions are Gaussian, we deduce that:
2 2 [ 2 2
L-R < G(U, —Ur:\O."+0g"), L+ R« G(u + Ug,\JO " +0g")

Let us introduce the following change of notation to simplify the following steps. Denote L — R

as A< G(Up,0),and L+R as B « G(Ug,0). Note that both distributions have the same

standard deviation (0 =4/0 ,_2 +0 RZ ). Now, the symmetry coefficient can be defined as:
S=f(AB)=L

Such a expression is unbiased (Chatfield, 1983), i.c.
H H —H
Us = FA_FFAL MR
Hg H_ +Hg

This means that the values in Table 16 are in fact the correct means of the distribution for the

symmetry coefficients for the subjects in the study.

In order to approximate the standard deviation of the symmetry coefficient, O, we make use of

the following formula from standard error-propagation theory (Chatfield, 1983):

Ot (aB) :\/Baigg: +%%§UBZ

PAQ

For the particular case of the symmetry coefficient:

N T s

(L+Rf* (L+R)*

Table 17 lists the mean and standard deviation of the symmetry coefficients for all subjects in the

study.
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Data set Mean sym Std sym

006_SC -0.20 0.005
007_SC -0.03 0.009
008_SC 0.27 0.006
010_SC 0.14 0.008
024_SC -0.10 0.006
025_SC -0.12 0.008
033_SC -0.48 0.006
039_SC 0.39 0.009
104_NC 0.14 0.008
105_NC -0.51 0.008
106_NC -0.15 0.009
107_NC -0.47 0.007
112_NC 0.19 0.006
114_NC -0.08 0.006
117_NC 0.15 0.005
118_NC 0.00 0.009

Table 17 Mean and standard deviation of the symmetry coefficients computed on all data sets.

The standard deviations listed in Table 17 are very small, less than 0.01, for values of the
symmetry coefficient between —1 and 1. This means that we can be very confident on the mean
values computed for the symmetry coefficients. This result was the expected one, since when
performing random effects analysis such as the one above cross-subject variance includes, and
therefore reflects, the intra-subject variance. Thus, the result of the t-test reported at the beginning
of this section still holds, i.e. there are no significant group differences in left-right symmetry
of the temporal horns between the schizophrenics and normal controls analysed in this

study.

5.10 Discussion

The study presented in this chapter shows how the morphometric tools developed in this thesis
significantly improve the resolution of measurements obtained from MRI data. Narrow
confidence bounds allowed for the temporal horns to be accurately measured and analysed,
problem which remained intractable to date. Additionally, the statistical framework allowed for a
propagation of uncertainties, which resulted in estimates of the accuracy of the symmetry

coefficients and subsequent analysis of the significance of the final results.
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Clinically, this study is an important contribution towards assessing anatomical differences
between schizophrenics and healthy subjects. However, a note of warning should be stated, for
several reasons. First, the number of subjects included in the study was rather low, and there were
differences in sex and handedness between them (cf. Table 10). Some studies have reported that
such factors may be crucial in the incidence of schizophrenia on the anatomy of the patient,
particularly relating symmetry differences. Another issue to be taken into account is the ambiguity
of the definition of the posterior boundary of the temporal horn. The need to define arbitrary
cutting planes to separate the temporal horns from the bodies of the lateral ventricles may affect
the results. Strict anatomical criteria should be established in order to allow for geometrical
definitions of boundaries between structures to be made. Finally, it should be reminded that
volume is not a powerful shape descriptor. Temporal horns with similar volumes may have very

different shapes, and this is crucial for the study of symmetry.

Clearly, similar neurological studies based on MRI could benefit from the use of the tools here
presented. In particular, the study of symmetry differences in schizophrenia is not limited to the
temporal horns. Differences in other structures have been reported, and it would be interesting to
investigate them. MS lesions, as well, could be segmented and measured with these techniques!. It
should be obvious, however, that most of the tools developed in this thesis have a broader
application, not limited to neurological studies from MRI. The use of such techniques to other

application fields or other imaging modalities is foreseeable.

18 M'S may present some problems, however. Particularly, boundaries between white matter and lesions
may not be sharp, but blurred, since plaques are demyelinated white matter. Additionally, lesions may
have texture, complicating the establishment of intensity models for them.
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Chapter 6

Conclusions and Future Work

6.1 Contributions of thisthesis

The several tools presented in this thesis have been created with specific practical applications in
mind. In particular, the need for morphometric tools to analyse neurological data contained in
MRI volumes was identified, and Chapters 1 and 2 provided clinical and technical background in

the matter.

A framework for morphometric studies was described in Chapter 3. Although some individual
components of the method are off-the-shelf existing techniques, such as the EM algorithm for bias
field correction and the simplex mesh for 3D segmentation, there were a number of novel
contributions. A new shape model for modelling complex biological surfaces based on the
combination of the simplex mesh and triangular Gregory-Bézier patches was established, showing
good flexibility and modelling power even in extremely complex examples such as the cortex
(section 3.11). A new feature for detecting boundaries between tissues in MRI, based in the
identification of PVE voxels from the probability maps obtained via the EM algorithm was
introduced in section 3.3. Additionally, the combination of statistical voxel-based segmentation
methods and geometric modelling via active shape models is interesting, and the work presented
in Chapter 3 is a contribution to the scant literature on the topic. However, we consider that the
most important element of our morphometric framework is the estimation of confidence intervals
by bounding the segmentation using an inner and outer surface encompassing the detected PVE
voxels. This uncertainty area is used to bound volume measurements in the extensive validation
study of section 3.10, which also provides some valuable insight into the problem of lack of

ground truth for the validation of these sort of techniques, and proposes some solutions.
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The volume contained between the inner and outer surface bounds is not insignificant. In fact,
even with current high resolution protocols, not less than 20% of the volume of an object is
contained in PVE voxels, and this number increases to 60% or more for structures with high
surface area relative to the volume enclosed, such as the ventricles. The PVE prediction scheme
developed in Chapter 4 allows for a considerable reduction of this uncertainty. This method is
novel not only in its algorithms and mathematical formulation, but also in its rigorous statistical
approach to modelling PVE. The use of such a framework allows for a substantial reduction in

measurement uncertainty derived from MRI data sets.

The clinical study reported in Chapter 5 describes the application of our techniques to a
challenging clinical investigation: the assessment of differences in the asymmetry of the temporal
horns in schizophrenia. This study proves that the original aims of this thesis were realised, by
constructing new morphometric methods with sufficient accuracy and resolution to assist in
neurological studies and help to prove hypotheses relating to schizophrenia and multiple sclerosis.

This study is in fact an important step in this direction, and therefore a big clinical contribution.

6.2 Future work

6.2.1 I mproved tissue models

The key idea behind the improvements reported in this thesis in order to obtain sub-voxel
accuracy is that of using prior knowledge about the intensity distributions of different tissue types
in particular acquisition protocols. The analysis of image samples allows for the construction of
rudimentary models, but a rigorous physics-based derivation of tissue models is desirable. In
essence, it should be possible to determine the shape of the intensity distribution for a given tissue
type knowing its chemical properties and the acquisition times of the protocol used for imaging

the sample.

The introduction of new tissue models in the PVE framework poses no problem. The current

implementation uses such priors to create a mixture model and then to sample @ ! given the
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intensity | " Except for the case of Gaussian distributions, where analytical expressions have been

derived, the usual approach is to build the mixture model by means of a Monte Carlo simulation.

6.2.2 Priorsfor PVE prediction

The model adopted for the prior on the proportion of each tissue in a PVE voxel, p(a i),
consisting of a uniform distribution in the range [0,1] , Is correct subject to a set of assumptions.
As discussed in section 4.2, only PVE voxels must be included in the samples. Otherwise, small
deviations from 0 or 1 in @' for pure voxels accumulate and affect significantly the results. It was
suggested in section 4.2 that it would be possible to include pure voxels if p(a ') wete modelled
as a distribution with “tails”, pushing values close to 0 or 1 to absolute O or 1. However, the shape
of these tails does matter. Tails which are too wide affect PVE voxels, whereas too narrow tails do
not have the desired corrective effect. A set of priors with the size of tails could be built by
studying synthetic images. The shape of the distribution is a function of the number of pure
voxels with respect to the number of PVE voxels. It should therefore be possible to establish a

model relating the width of the tails of p(a ! ) to the ratio (surface area)/volume.

Another crucial assumption relating to p(a ! ) is that of independence. It was argued in Chapter 4
that the range of surfaces traversing voxels is virtually infinite, so that no reliable model can be
built. There are, however, a set of simplifications that can be made in order to establish neighbour
relations in @' . If the surface passing through voxel i is assumed to be smooth at a scale greater
than the voxel size, it can be argued that values of & ' should bear some similarity to the @ values
at neighbouring PVE voxels. A Markov random field could then be employed to model such
constraints. It should be noted, however, that the assumption of small variation on @ values

across neighbours does not hold for very small structures, such as the temporal horns, analysed in

Chapter 5.

6.2.3 Use of anatomical knowledge

It cannot be stressed too often that the way forward in medical computer vision is to make use of

anatomical (and physiological) knowledge. Computer vision is a new research field, maturing at a

111



fast pace but still in its early stages of development; medicine is not. Anatomical knowledge is
available, and common clinical applications focus on localised regions of the human body. This

makes feasible the construction of anatomical priors.

For example, the previous section can be conceived as an attempt to model the piece-wise
continuous nature of brain tissues. Several approaches can be taken to model anatomical
knowledge, including deformable atlases (Christensen et al., 1993; Subsol et al., 1995; Lester and
Arridge, 1999) or heuristics such as the ones described in section 4.9 Modelling and application of
anatomical knowledge to current techniques is a challenging research, and no doubt a difficult

task. However, the expected improvement in performance fully justifies the effort.

6.2.4 Surface fitting based on PVE constraints

As part of the segmentation framework described in Chapter 3, PVE voxels are detected from the
probability maps resulting from the EM algorithm; then inner and outer surfaces are constructed
bounding these PVE voxels. Clearly, this is an extremely conservative approach. Chapter 4 dealt
with PVE voxels and established a statistical framework based on their intensities and the intensity
distributions of tissues in order to estimate the proportion of each tissue in them. It seems
obvious that the next step in this line of research is to extend the segmentation framework in

order to obtain truly sub-voxel fitting of the surface model.

An important contribution towards this end was offered in section 4.12. The technique we
described allows for a rendering of a surface model onto a voxel grid. Thus, surface-based PVE
estimates, Og, are computed as the proportion of the volume of a voxel to each side of the
surface. This, in addition to the voxel-based PVE estimation framework described in the first
sections of Chapter 4, provides the basic tools to create a sub-voxel fitting framework. In
particular, additional force constraints could be added to the active surface framework as to
minimise the difference between o IS and intensity-based estimate O " for every voxel | traversed

by the surface:

Zua‘ —ag“Z (6.
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In such framework, a IS values depend on the parameters of the surface model, which are the

variables to be updated in order to minimise (6.1). Effectively, this updates the position of the

surface as to fit to the image intensities, i.e. fits the surface based on PVE constraints.

6.2.5 Devel oping the concept of “ statistical shape”

A further extension, of a more global character, is conceivable. The shape model mentioned in the

previous section may represent just one discrete instance of a statistical continuum, defined by the

likelihood of the surface given the voxel image. Clearly, a more powerful shape model is required

in order to capture this statistical nature. Little work has been done in the field of statistical shape

(Pennec, 1996; Dryden and Mardia, 1997). The desired properties of such a model are as follows:

Local modelling of uncertainty. A parameterisation like the one employed for our model
establishes a one to one correspondence between the parameter space and the three-
dimensional space in which the surface (or volume) is embedded. This model is not
appropriate for the application in mind. However, an extension that allows for a mapping of a
point in parametric space into a statistical distribution of spatial locations is possible (see
Figure 54). Alternatively, implicit representations such as level sets provide a natural
representation of these processes. In this case, the usual approach consists of representing a
surface as the kernel of a function defined in 3D space. Such implicit functions could be
modified so that the value of the function at a spatial location indicates the probability of the
surface traversing that point. The most likely surface would then be defined as the loci of the
local maxima of such function (Figure 55).

Neighbour-level interaction. Local geometric properties such as continuity in curvature or
tangent plane (G' continuity) act as constraints on the location of the surface. Independence
across neighbours cannot be assumed. This further complicates the formulation of a statistical
shape model. A possible solution is to include such constraints in the implicit probability

function mentioned above. Markov random fields could be employed to such effect.
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Figure 54 Statistical shape modelling via parametric surfaces. Each point in parametric space
corresponds to a statistical distribution of possible 3D locations, as opposed to a single 3D point,
which is the common approach.

Figure 55 Implicit representations such as level sets allow for a natural representation of
uncertainty if the implicit function f quantifies the probability of the surface traversing a particular
point in 3D space.

* Propagation of local uncertainty to global magnitudes. Mechanisms for building global
shape descriptors from the surface definition are essential for morphometric applications. The
statistical nature of local position should be propagated to such descriptors. A model in the
lines of the probability density functions obtained via Monte Carlo simulations in section 4.5.2

seems particularly suited.
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This is a very challenging and interesting issue, with an endless range of applications in different
fields. The establishment of an appropriate shape model with the characteristics sketched above
could revolutionise the way shape modelling is conceived of, and allow for a more realistic

representation of reality and a better integration of statistics and exact sciences.

6.2.6 Anatomy-based global parameterisation

Symmetry appears to be the key issue in schizophrenia. Its study is clearly a comparative process.
Symmetry must be defined with respect to a plane or surface. A “mirror” of the structure on one
side of such surface may be obtained and compared with the structure at the other side. If we
consider other comparative processes, for example the comparison of the shape of an organ
across patients, or the time evolution in a single patient, a similar line of action (without mirroring)
should be taken. Therefore, we consider the more general case of comparing two “homologous”

structures.

In order to compare two structures, it is necessary to identify corresponding regions. The usual
approach is to perform a registration and then study the deformation field in order to obtain
shape descriptors of the difference in shape. This technique is used in methods based on
deformable atlases (Christensen et al., 1993; Lester and Arridge, 1999). The process of identifying
corresponding structures would be greatly simplified if the surfaces being registered contained in-

built anatomical information.

A re-parameterisation of the surface may be applied so anatomically meaningful locations on both
structures correspond to the same values in their corresponding parametric spaces. Thus,
establishing correspondences is conceived as an intrinsic process, rather than an extrinsic point-to-
point matching problem. Appendix D offers a more detailed explanation. This technique bears
similarities with the natural way of human recognition based on recognising landmarks. In our
case, we employ this technique to establish correspondences between surfaces (or volumes, adding
an extra parameter to map the extra dimension). The method was implemented and tested in
some simple examples. A more detailed description and algorithmic details are offered in

Appendix D. Note that this method relies on the prior localisation of useful landmarks on both
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surfaces. Although this is not difficult to establish in structures like the cortex, other organs have a

rather featureless shape, which complicates the definition of reference landmarks.

6.2.7 New shape descriptors for morphometric studies

To my knowledge, not much work has been done to date in establishing morphometric
descriptors for particular applications. Particularly, most studies relating schizophrenia and
symmetry have been performed using standard measures such as volume, area in a slice, or length
of a curve across the structure of interest. Although it is not fair to say that these traditional shape
descriptors are of little use, it should be clear that they do not portray complex concepts like

symmetry or “global shape”.

The previous section provided some insight into the problem of establishing correspondences,
and proposed an anatomy-based parameterisation. This scheme would be a great aid for shape
description, since quantitative measurements would relate directly to anatomically meaningful
concepts. The subsequent definition of particular shape descriptors is a very interesting and

complex problem, and this line of research should be followed in the future.

6.2.8 Sudy of sampling limitations

The work presented in this thesis highlights the importance of the resolution of the sampling grid
used for imaging, and attempts to overcome some of its limitations by building a model of PVE in
order to obtain sub-voxel accuracy. It would be convenient, however, to have a formal model of
the accuracy we expect to obtain as a function of the voxel size. Alternatively, the inverse question
could be asked, i.e. which voxel size would be necessary to obtain accurate quantitative
measurements (with a confidence interval *€) of a structure with certain shape characteristics. A
combination of the Nyquist theorem and the PVE model based on tissue properties could provide
an answer. The construction of such sampling model may be performed in a theoretical manner or

by experimental simulation of synthetic phantoms.
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This is an interesting issue with important practical consequences. It would provide radiologists
with a solid base to determine what sort of structures they can reliably measure with a certain

hardware. Additionally, it would help on the design of optimised MRI machines.

6.3 Concluding remarks

The field of medical computer vision enjoys an impressive momentum due to its evident social,
economic and human impact. The subject is rapidly maturing and new techniques for processing
medical images are being continuously reported. Additionally, new imaging modalities such as
functional MRI or elastography allow for the study of function in addition to anatomy, thus

opening new and exciting possibilities of research.

In parallel, medical robotics is progressing at a formidable pace, and a number of robots are being
used routinely in surgery at several institutions. Pre-operative planning tools and intra-operative
image acquisition devices allow for a better understanding of the patient’s anatomy and reduce
considerably risks during surgery. Additionally, some techniques have been devised to display
“enhanced reality” models showing the pre-operative plan overlaid on top of images acquired in

real time during surgery.

Twenty years ago, medical vision and medical robotics could only be conceived as an exercise of
science-fiction. Today, many of these utopian ideas are being realised in laboratories across the
world. These tools will be ported to hospitals in the very near future, and they will produce a
breathtaking revolution in clinical practices. Prepare for it. It is going to be exciting, and we all will

be part of it.
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Appendix A

Triangular Gregory-Bézier patches

Al Definition

Triangular patch models are used to build a smooth surface interpolating a triangulations. In this
section we will focus on how to build a G!-continuous surface, i.e. a surface ensuring continuity of
the tangent plane across patches (inside each patch, the surface will be Cl-continuous). Most
commonly, constraining continuity across the common boundary of two patches is quite
straightforward, whereas establishing such constraints at the locations of the vertices of the
triangles, where several patches meet, is quite complicated. Triangular Gregory-Bézier (tGB)
patches avoid such problems, since Gl-continuity may be enforced by solely posing edge

(common boundary) constraints.

TGB patches are a degenerate case of quartic triangular Bernstein-Bézier (tBB) patches, derived
from them by: i) degenerating the three common boundaries by one degree, and ii) replacing each
of the three inner control points by a rational combination of two other points. Thus, tGB
patches are cubic rational surfaces defined by 15 control points (Figure 56). Their expression, in

barycentric coordinates, is as follows:

GB(u,v,w) = U°P, + VP, + WP, +12u*wWP,,; +12uv’wWP,,, +12uwW?P;;, +
3u?v(l- W)Py, +3uv?(1- W)Py, +3vZ(1-u)wP,, + (A1)
3(1- u)W?Py, +3u(d - V)W?P,, + 3u®(1- v)WP,,

where 0<u,v,w<1l, u+v+w=1 and:
\" w w u u \"
_ WPy VP _ UPpy; + WP, _ VP, +UPp,

P, = , P, =—& 121 p =
211 W+V 121 u+w 112 V+u
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Figure 56 Triangular Gregory-Bézier (tGB) patch, defined by 15 control points.

A.2  G'-continuity constraints

To obtain the G' continuity connection between two adjacent patches, we need to express the
first order derivative of the patch GB(U,v,W) along the common boundary, say
I'(v) =GB(0,v1-V), in the radial direction which connect any point of I'(V) to its opposite
vertex. With this radial direction 8, =(1,0,0) = (0,v,1-V) =(L,—V,v —1), the directional derivative

takes the form:

SGRUVW - _ 4@ (L) (P~ Py) +31-V)*W(Ply,—Pp) + AL~V (P, ~ ) +§V3(F62 -R) H (A2])
og, |, 4 0

Similatly, the radial directional derivative vectors along the two other boundaries are as follows:

ORI B 1w (R ) + AL WP, P) + LW L~ + W, ~R) (A22
o6 |, o 4 u
a‘*gg;v’w)w=4§(1-u)3(al—a)+a(1—u)2u(a”21—%2)+a(1—u)u2(F’2”n—Fs])+ju3(P22—Fe)§ (A23

It should be noticed that the expressions for these first order derivatives do not share any inner
control point. In practice, this means that G' continuity can be guaranteed simply by constraining
the connection along the boundary between two adjacent patches, avoiding the tedious process of
considering continuity at corners. G' continuity across patches is ensured by enforcing a

coplanarity constraint between the two radial first derivative vectors
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aGBR(uR,vR,WR)| and aGBL(uL,vL,WL)|
06, 06,

ug=0 u =0

(where o

b, and HUL take values in {U, V, W}, depending on the orientation of the patch), and the

first order derivative vector I'Y (V) of the common boundary (see Figure 57).

Figure 57 Enforcing G' continuity in the boundary of neighbouring tGB patches.

This coplanarity condition can be expressed as follows:

aGBL(uL'VL7WL)|

V\aGBR (uR'VR'WR)|
' 26,

54 +yr®v)=0, 0svs<l (A3

a(

+BWV)

ug=0 u =0

where a(V), B(V), and y(V) are polynomial functions of V. B(V) and y(V) are chosen as linear
functions, @(V) being chosen as constant. A discussion of these choices is provided in (Schmitt et

al,, 1991). Therefore:

a(v)=1 BMV)=BA-V)+AV, y(V)=y,1-V) -V

To simplify, we use the following new notation for the control points of the two patches which

appear in the coplanarity condition (see Figure 58):
Pr,PL,PL,P;OC, Py ,Py,PL,PrOC,

i=0123
Po2. Pizi Piy. Pai O PT Py, Piig, Piyy P, O P
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Figure 58 Notation change for the control points of the two patches GB, and GBy.

Now, by replacing functions a(v), B(V) and y(V) in the coplanarity condition and developing it

on the Bernstein basis of degree 4, we obtain the following set of G! constraints on the control

points:

(Pg =Co)+Bo(Ps =Co) +,(C1—Cy) =0 (A4.D
(L =Cy)+ (PE =Co) + Bo(Ph =C)+ AR ~Co)+2 16(C2 ~C1) +3 (1o ~11)(Cy ~Co) =0 (A42)
(P5 =Co) #(PL =C.)+ Bo(PE ~Co) + AP =C) 5 0(Co ~Co)+2 (g ~M)(C2 ~CL) +3 14(Co ~CL) =0 (A4
(P5 =Co) 45 (PF =C) +A(PE ~C) 4 AolPs ~Co)+2 14(CL=C,) +3 (4~ )(C, ~C) =0 (A44)
(P =Co) + Bi(Ps =C3)+)4(C, ~C3) =0 (A49)

Note that constraint (A.4.1) and (A.4.5) involve only the control points situated along the
boundaries of the two patches, while the two couples of inner control points (Pll‘ , PlR) and
(PZL , PZR ) appear only in the three remaining constraints. Hence, we determine the control points
in two successive steps: first, constraints (A.4.1) and (A.4.5) are used to define the control points
situated along the boundaries, then the other three constraints are used to define the two couples

of inner control points.

A3 Determination of control points situated along the boundaries

In order to constrain the many degrees of freedom of equation (A.4), constraints on the normal

vector the resulting surface must have at a given vertex are imposed. In the framework presented
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in Chapter 3 such constraints were naturally derived from the definition of normal vector at a
simplex mesh vertex. (Schmitt et al., 1991) propose an alternative method of establishing normal
vectors at the vertices of the triangulation by computing the direction of minimum moment of

inertia on the set of neighbours to a given vertex.

Let us consider an edge of the 3D triangular mesh with their two 3D points C, and Cj. Let us
call Ny and N, their normal vectors estimated as described above. We want to determine the
supplementaty control points C; and C, in order to define a 3D cubic Bézier curve which could
be a “good” patch boundary candidate corresponding to this edge. Let us call @ and b the unit
tangent vectors of the Bézier cutve in Cy and Cj respectively. The control points C; and C,
can then be parameterised as follows (see Figure 59a):
C,=C,+Aa C,=C;+A,b (AYH

To completely specify C; and C,, we first determine the unit tangent vectors @ and b and then
the value of the two parameters A; and A,. To build a, we first obtain a point M by

intersecting the tangent plane defined at Cwith the projection ray passing through the point Cj.

Then a is obtained by normalising the vector C oM (see Figure 59).

Figure 59 Determination of the boundary control points.

We construct b in a similar way. To obtain a very smooth boundaty we then define A; and A,

( “B(Y) édv
!E av?

by minimising the following integral:
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where B(V) is the cubic Bézier curve defined by the control points C;,i =0,...,3, with C; and
C, parameterised as in (A.5). After some calculations, we obtain the following expressions for A,

and A,:
_2ale—(alb)(b[t) _—2bc+(al)(alt)
A = 4 2 A = 2
- (ab) 4-(alb)

where c=C3 —C,.

The points Ph . POR, Psl,' and P; can be defined with the same scheme performed at the
adjacent boundaties (see Figure 58). The constants fB,, B;, Vo and ), are then entirely

determined by the constraints (A.4.1) and (A.4.5) as follows:

(PR —C,4)x(C, -C,)|h, (Py —Cy) x(Py —Cy)|h,

Bo = Vo=

(C, _CO)X(PCI)_ —-Cy)|h, (P<|)_ —Cp) x(Cy —Cy)| [y

B, = (Pel,? —-C3)x(C, —C;)[h, y, = (Pslq _Cs)x(Psl,_ -C;)|h,
1= 1=

(C, —C3)><(P3lj —-C,)[h, (PsL —C3)x(C, -C,)[n,

The determination of the control points along the boundaries according to constraints (A.4.1) and

(A.4.5) is thus completed.

A4 Determination of the inner control points
By rewriting the constraints (A.4.2), (A.4.3), and (A.4.4) in matrix product form, we have:

R
[B/4 36,/4 0 0 1LH s
12 B2 U2 B2 LFIK,0 (A
Ho o 3/4 3p/4 iﬁ Hx . H

2

where each X;,1 =123 is a linear combination of the already fixed control points which can be

easily deduced from these three constraints. There are two cases to consider:

1. When [, # B, the rank of the 3X4 matrix is 3. We can therefore freely fix one of the 4
points (3 degrees of freedom) and find a unique solution to the 3 other points by constraints
(A.6).

2. When B, = f,, system (A.6) is reduced to only 2 independent constraints: the first and third

ones. In this case, each pair of innet control points (Pi" ,PiR),i =1,2, has one constraint to
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satisfy. We can thus freely fix one point of each couple and deduce the other point by using

the corresponding constraint equation.

We present here how the two couples of points are determined in case 1. Case 2 can be treated in
a similar way. In order to minimise undesired fluctuations, the approach taken is to compute
control points that approximate the shape of a simpler, smoother Bernstein Bézier patch of only
one cubic degree. This kind of patch has only one inner control point, which we determine as a
barycentric combination of the boundary control points (see Figure 60):

1 1
CpP= E(sz + Py + Pogg + Pigp + P + leo) + 6 (ono + Pogo + Poos)

I:)300

I:)201

P
210
I:)210

I3120 I:)21.20

PO3O I:)030

Figure 60 Determination of initial inner control points.

Then the equivalent quartic tBB patch is obtained by using a degree elevation technique. Its three
inner control points are obtained by the following expressions:

1 1 1
Iy =Z(P201 + Py + ZCP)' I =Z(P021 + Py t+ ZCP): 5 =Z(P012 + P + ZCP)

We define the two couples of inner control points (P-,P),i =12 along a common boundary
by a minimisation method. The goal is to locate these control points as close as possible to their
corresponding (closest) tBB control points, (I7,I7),i =12, while enforcing the constraints

(A.6). If we consider case 1 (B, # [B;), one of the four inner control points can be fixed freely. Let

124



it be Pll‘. By rewriting (A.4.2), (A.4.3), and (A.4.4), the remaining points are expressed as a

function of PlL as follows:

PlR :_,BoplL +Ay, PzL =P1L +A,, PzR =_181P1L +A5, (A7)
where
~ 1 a 1., 1 1
A, =(1+5,)C,y _Z(Po -Cy) _Zﬁl(PO -Cy) _EVO(CZ -Cy) _Z(Vo - 1)(C, = Cy),
1 1
A,=(C,-C)) _Z(P(IJ_ —Co) +2(P3L -C,),

1 1 1 1
A;=(C, +BC,) +§V1(C2 -C,) +Zyo(Cz -C5) +ZIB1(P(I)_ -Cy) _Z:Bo(Pslf -C,),

are vectors already known.

We then proceed to minimise distances to the computed tBB points. The function to be

minimised is:
2
L_|L2+PR_|R2D
Z 1 1 1 1 g
1=

By replacing (A.7) into this equation and differentiating it with respect to PlL we obtain:
115 AL+ Byl -1+ A8, - 15)

Py
2+ ﬁoz + ,812

PlR , PZL , and PZR can then easily be obtained from (A.7).
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Appendix B

Algorithms

B.1 Oct-tree recursive subdivision algorithm

This algorithm is used in section 3.9.1 to create synthetic data sets. Such data sets are used in

section 3.10.1 as ground truth for the validation study.

Functi on OCT- SUBDI VI DE (V)

If (volune of v < threshold_vol) Then
vol ume_i nside = volune_inside + volunme of v / 2
vol une_out side = vol une_outside + volune of v /
Ret ur n

Else If (all corners of v are inside) Then
vol une_inside = volume_i nside + volune of v
Ret ur n

Else If (all corners of v are outside) Then
vol ume_out si de = vol une_outside + volunme of v

2

Ret ur n
El se
Divide v into 8 cubes of equal
volurme (v,, i=1..8)

For i=1 To 8 Do
OCT- SUBDI VI DE (v,)
End For
End | f
End Functi on

Al gorithm OCT- TREE
For n=1 To nunber of voxels Do
OCT- SUBDI VI DE (voxel n)
End For
End Al gorithm

Figure 61 Oct-tree recursive subdivision algorithm in voxel space, used to generate MRI synthetic
phantoms for tests in section 3.10.1. Refer to section 3.9.1 for details.
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B.2 Quad-tree recursive subdivision algorithm

This is employed in section 4.9 to create PVE masks from inner and outer surface bounds. The

algorithm “marks” voxels traversed by a surface defined as a parametric map.

Functi on QUAD- SUBDI VI DE (pr)
r = 3D rectangl e given by the 3D coordinates
of the corners of pr
If (area of r < threshold _area) Then
Ret urn
Else If (all corners of r belong to the sane
voxel v) Then

Mark v
El se
Divide pr into 4 rectangl es of equal
area (pr,, i=1..4)

For i=1 To 4 Do
QUAD- SUBDI VI DE (pr,)
End For
End | f
End Functi on

Al gorithm QUAD TREE
Establish a partition of the paranetric space

[0,1]><[O,]] into N rectangles of equal area
For n=1 To N Do
QUAD- SUBDI VI DE (paranetric rectangle n)

End For
End Al gorithm

Figure 62 Algorithm for the quad-tree recursive subdivision of the parametric space of the
surface. This algorithm is used to sample the surface in order to create a voxel mask indicating the
voxels the surface passes through.
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Appendix C

Clinical Study: Tissue Parameters

Data set CSF mean CSFstd | GM mean GM std | WM mean WM std

006_SC 2.68 0.16 3.79 0.05 4.12 0.04
007_SC 217 0.38 3.33 0.10 3.64 0.07
008_SC 2.59 0.20 3.66 0.07 4.01 0.05
010_SC 2.83 0.20 3.69 0.09 4.02 0.08
024_SC 2.55 0.41 3.76 0.14 4.08 0.07
025_SC 2.67 0.32 3.76 0.12 4.09 0.07
033_SC 2.27 0.65 3.59 0.07 3.92 0.04
039_SC 2.53 0.48 3.79 0.10 4.15 0.07
104_NC 2.87 0.28 3.97 0.05 4.29 0.04
105_NC 2.52 0.15 3.61 0.08 3.90 0.05
106_NC 2.63 0.22 3.75 0.05 4.05 0.05
107_NC 2.42 0.19 3.42 0.06 3.74 0.06
112_NC 2.67 0.23 3.81 0.06 4.16 0.03
114_NC 2.68 0.19 3.68 0.09 4.07 0.04
117_NC 2.69 0.18 3.66 0.06 4.02 0.06
118_NC 2.52 0.30 3.60 0.06 3.99 0.03

Table 18 Tissue parameters as estimated by sampling intensities on a slice. These log-transformed
values are used in the bias correction process.
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Data set

CSFu CSFu CSFo CSFo

GMy GMp GMo GMo

WMp WMp WMo WMo

mean std. mean std. | mean std. mean std. | mean std. mean std.
006_SC 13.81 0.60 2.61 038 44.86 0.59 3.13 0.93] 62.04 0.66 3.18 0.68
007_SC 8.63 0.57 217 097 27.32 0.54 3.01 0.33] 38.69 0.30 321 0.55
008_SC 12.88 045 244 0.18 38.60 0.52 285 0.62| 5545 038 276 0.36
010_SC 16.08 0.66 3.85 0.71| 38.88 1.21 3.80 0.94| 54.70 1.87 459 1.41
024_SC 14.46 0.70 345 1.11| 43.96 0.71 446 090 061.47 1.44 358 0.76
025_SC 13.72 1.17 374 0.85 4399 0.85 425 043 6275 1.45 411 041
033_SC 11.40 0.67 3.79 0.88| 35.82 0.54 235 0.27[ 50.90 042 1.86 0.16
039_SC 13.82 0.79 550 047 45.69 1.05 395 048] 64.86 1.09 479 0.51
104_NC 17.65 1.56 5.84 0.74] 52.62 0.74 237 044 73.12 0.54 291 0.31
105_NC 12.68 0.21 200 0.15| 3642 042 271 043] 49.82 046 226 0.16
106_NC 13.81 0.98 3.88 148 42.02 0.53 346 0.65| 56.94 0.65 297 0.36
107_NC 11.58 0.25 1.85 0.15| 30.62 0.31 229 021 4220 0.28 241 024
112_NC 16.20 0.80 325 042 46.35 0.71 3.59 0.78| 63.87 0.59 270 057
114_NC 14.24 041 2.64 022 40.52 045 298 046 57.78 0.58 228 023
117_NC 15.15 047 279 023 38091 024 286 047 54.67 0.81 3.35 0.06
118_NC 12.52 0.70 3.38 0.50| 38.02 1.15 3.07 0.52| 54.15 043 205 022

Table 19 Tissue parameters including an explicit model of the uncertainty in theit estimation from
samples selected from images. Means (M) and standard deviations (0) for the tissue distributions
are modelled as Gaussians. The means and standard deviations for these Gaussians atre listed in

the table.
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Appendix D

Anatomy-Based Global Parameterisation

D.1 I ntroduction

The concept of establishing a global, anatomically meaningful surface parameterisation was
introduced in section 6.2.6. As described previously in this thesis (section 4.10), any surface can be
expressed as a parametric map of the form:
S(u,v) =(x(u,v), y(u,v), z(u,v)) u,vl [01] (1)
Interestingly, this definition may be extended to parameterise a 3D volume by adding another
parameter:
V (u,v,w) = (x(u,v,w), y(u,v,w), z(u, v, w)) u,v,WD[O,]] 2

Although the definition of tGB patches makes use of 3 parameters, one of them 1is expressed as a
function of the other two. Thus, the tGB formula can be simplified to the form of (1). Let us
focus on the case of a surface, and leave volumetric definitions in the form of (2) for later

discussion.

The mapping S defines the way in which correspondences between the parameter space
U= {(U,V)| O<u,v S]} and the 3D space [ are established. Many mappings may be established
for the same surface in [°. In the most common case, the particular details of the mapping are
irrelevant to the application at hand, and the parameterisation is just used as a mathematical
formalism and a way of indexing the points in the surface. However, an intelligent choice of
parameterisation, taking into account the application in mind, may be highly rewarding. Let us
illustrate this fact with the simple example of establishing a parameterisation for a circle. A
possibility is to use cartesian coordinates. In this case, indexing of the points in the circle is
cumbersome, and the definition of the domain of the parameters is complicated. On the other
hand, a parameterisation based on the use of spherical coordinates provides a much more

intuitive, simpler indexing of the surface.
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It is the purpose of this appendix to define a parameterisation suitable for surfaces representing
biological structures. In particular, we are interested in a mapping with the following
characteristics:

* Global parameterisation. The surface model used in our work is based on the combination
of triangular patches. A useful parameterisation should be transparent to this fact, i.e. global
coordinates must naturally translate into local patch coordinates, and viceversa.

* Anatomical interpretation. The location of anatomical structures should be defined in the
parametric space, as well as in physical 3D space. This means that a partition of the parametric
space into regions which are mapped into anatomical structures in 3D must be possible.

The concept of globality in the parameterisation is important from a practical standpoint, and

could be considered as an implementation issue. On the other hand, the definition of an

anatomically meaningful parameterisation is a very powerful novel idea. A number of important
advantages derive from establishing such a parameterisation:

*  Basy indexing of anatomical structures. This allows for an intuitive manipulation of the shape
model.

*  Comparison of homologous structures is conceived as an intrinsic process with the aide of the
parameter space, as opposed to an extrinsic deformation process in 3D. This helps
circumventing problems derived from the considerable anatomical variability of certain
structures, such as the brain cortex.

* This sort of model seems extremely suited for posterior shape description, since anatomy is

in-built in it.

The following section describes how a global parameterisation is obtained from the mesh of tGB
patches and establishes the algorithmic framework to translate global coordinates into local patch
coordinates and viceversa. Next, the process of establishing a global parameterisation based on a
set of anatomical landmarks is described. Finally, extensions to parameterise volumetric objects

are discussed.
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D.2  Correspondence between global parameters and local patch coordinates

Let us first consider the problem of establishing a mapping L from global parameter values to
local tGB patch coordinates. For the moment, let us assume that the global coordinates of the
three vertices of the patch are known (the process of setting global coordinate values to the
vertices will be described in the next section.). Let Py =(Xy,Y), P =(X,VY;), and
P, =(X,,Y,) be such vertices, defined in global coordinates. The goal is to determine the
barycentric coordinates (U,V,W) of a point P, given its global coordinates P =(X,y). Once a
point in the triangular parametric domain of the tGB patch is obtained, the 3D point can be
computed using the tGB formula. Thus, tGB OL defines the correspondence between global

coordinate values and 3D points.

The mapping L is given by the following formulae:
Y(Xo =X) + X(Y1 — ¥2) =X Y1 + X1 Yo
Yo(Xo = %) + Y1(Xo = X5) + Y2 (% = Xo)
v= Yo %) + X(¥2 = ¥o) = Xo¥2 + Xo¥o
Yo(Xo = %) + Y1(Xo = X5) + Y2 (% = %)
W= Y(X, = %) + X(Yo = Y1) = X1¥o + Xo Vs
Yo(Xo =X) + Y1(Xo = X5) + Y2 (% = Xo)

If P is contained into the triangle defined by (Py,P;,P,), then U+ Vv+Ww=1. This can be used

as a test to determine which tGB patch contains P .

The inverse process, i.e. finding the global parameters of a set of local tGB coordinates, can be

performed using the barycentric expression:
P=uP, +VvP, + WP,

The discussion above assumes that the global coordinates at the vertices of the tGB mesh are
known. The following section describes how these coordinates can be set and constraints on their

values at particular locations enforced.
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D.3  Re-parameterisation based on anatomical landmarks

We should bear in mind that the ultimate purpose of this section is to obtain an anatomically
meaningful parameterisation. In order to enforce such anatomical meaning, landmarks are a key
element. Such landmarks may be points, curves or surfaces, and we will be interested in setting the
values of the global parameters at such locations. Whether these landmarks are obtained using an
automatic or a manual method depends on the application and existing techniques. The automatic
identification of anatomical landmarks is a challenging problem, out of the scope of this thesis.
For our purposes, we took a manual approach and developed a program to “draw” landmarks in a

triangulation (and associate parameter constraints to them).

Once constraints along certain landmarks have been established, we can simulate a diffusion
process (a Dirichlet problem) to compute the values of the parameters in other locations of the
surface. The method bears some similarity to the work of (Brechbuhler et al., 1995). Discretising
the diffusion equation (Boas, 1983) and taking into account the constraints at the landmarks, the

following system is posed:

if P is a landmark

P=Db,
@é%_;%N(P% E:O otherwise

N(P); are neighbours of P, i.e. vertices connected to P in the triangulation

where:

d; is the distance from P to N(P);
by is the value enforced at P, following the constraints at the landmarks

Np is the number of neighbours of point P

D.4  Extension to volumetric objects

The framework described in the previous section is not only valid for surfaces. Volumetric shape
models could benefit from it. In fact, it is in volumetric applications where the concept of an
anatomy-based parameterisation seems more convenient. For example, it could permit

establishing intuitive and quantitative descriptions of the location or shape of a structure with
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respect to other relevant organs. This would help developing appropriate shape descriptors for

symmetry, and providing intuitive characterisation of the location of MS lesions.

Volumetric global coordinate systems could be defined as sets of three coordinates (X, Y, Z) . For
example, in the case of the brain, X could indicate distance from the inter-hemispheric fissure, Y
could measure distance from the central sulcus, and Z could be proportional to the distance from
the corpus callosum. Additional constraints could be established at certain landmarks, such as the

ventricles, sulci and internal nuclei.
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