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Abstract

A Generalized Image Model (GIM) is presented. Images are represented as sets of
4-dimensional sites combining position and intensity information, as well as their
associated uncertainty and joint variation. This model seamlessly allows for the
representation of both images and statistical models (such as those used for clas-
sification of normal/abnormal anatomy and for inter-patient registration), as well
as other representations such as landmarks or meshes. A GIM-based registration
method aimed at the construction and application of statistical models of images
is proposed. A procedure based on the Iterative Closest Point (ICP) algorithm is
modified to deal with features other than position and to integrate statistical in-
formation. Furthermore, we modify the ICP framework by using a Kalman filter to
efficiently compute the transformation. The initialization and update of the statisti-
cal model are also described. Preliminary results show the feasibility of the approach
and its potentialities.
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1 Introduction

A common taxonomy of image analysis techniques consists in establishing two
main groups of algorithms: those dealing with images (voxel-based, iconic,
intensity-based) and those incorporating some form of geometric information
(landmark-based, active surface methods, etc.). In order to bridge the gap
between these two classes, this paper introduces a Generalized Image Model
(GIM) aimed at unifying the representation of images, landmarks, point sets,
and other shape representations.

Central to the idea of the GIM is the explicit modeling of the uncertainty in-
herent to the available data. Such uncertainty derives not only from noise and
limitations on device resolution; we also consider the explicit representation
of prior knowledge about the anatomical variability across patients and/or
acceptable ranges for data values. Thus, both the issue of error propagation
(e.g. [1,2]) and that of statistical shape modeling [3,4] are considered.

In this paper, we introduce the GIM and discuss its benefits. We describe how
it can be used to seamlessly model images and statistical models of image
data in the same representation. In order to make them interact, i.e. exploit
the statistical model to aid in the analysis of new images and, conversely,
update the model with the contents of such new images, an image/model
registration method based on the iterative closest point (ICP) algorithm [5] is
presented. We follow the principle of the 4D-ICP algorithm [6] in regards to
taking into account intensity as well as position. Most importantly, the method
has been extended to deal with the statistical nature of the data contained in
the GIM. Thus, it applies without modification to the registration of either two
images, an image and a statistical model, or two models. Optimization of the
registration criterion is improved by modifying the classical ICP framework
by incorporating an efficient Kalman filter.

Finally, the initialization and update of the statistical model are dealt with
by computing simple statistical measures on the Voronoi tessellation defined
by the elements of the GIM. This provides a way to dynamically refine the
statistical model to incorporate new information.

A description of the GIM and its use to represent in the same framework
images and statistical models of image data are given in section 2. The ICP-
based image/model registration algorithm follows in section 3, and the use of
Kalman filters to efficiently find the solution is described in section 4. Finally,
the initialization and update of the statistical model are given in section 5.
Section 6 shows some illustrative results, and discussion and conclusions are
provided in section 7.



Fig. 1. Illustration of the Generalized Image Model. Sites contain position and in-
tensity information; a covariance matrix is associated to each site representing vari-
ability and correlation of the position and intensity components. The surface on the
right corresponds to a 2D image of the corpus callosum in MRI, where the elevation
of the surface represents image intensity.

2 Generalized Image Model (GIM)

The essence of the GIM is the explicit representation of position along with
intensity information, and the inclusion of a covariance term to model uncer-
tainty and correlation. In particular, an image A is modeled as a set of N4
sites v, each one with an associated covariance matrix ¥:

A= {(Uk:azk)}kzl..NA (1)

Each site contains position and intensity information. In the general case, the
position component of a site vy is a D,-dimensional (typically D, = 3) vector
pr. Similarly, the intensity component can be generalized as a vector i € RP%,
with D; =1 in the case of scalar-valued images. Thus:

Vg = (Dk, k) (2)

The covariance matrix 3y, of dimensions (D, + D;) x (D, + D;), models the
variance in position and intensity, and their possible correlation, at each site.

The choice of this image model is part of an attempt to seamlessly integrate
information coming from different shape representations. Thus, an image is a
particular case of GIM in which the positions are situated in a regular grid.
Additionally, images with different resolutions can be combined in a natural
fashion, as the uncertainty components can be used to model voxel sizes. More
importantly, this representation can be used to include other models, such as
point sets, landmarks or meshes (cf. discussion in section 7).



The use of the GIM to build statistical models of images is described in this
paper. The same GIM framework is used to represent both an image A =
{(ve, Zk) }r=1.n, and a statistical model M = {(Upr, Xpr) }rr=1.n,,- The key
difference between them lies within the nature of the covariance matrices. The
covariance matrix for an image models the uncertainty in the localization of
the information (which can be related for instance to the discretization steps,
i.e. the voxel size) and in the intensity information (which can be related to the
noise in the imaging process). On the other hand, the covariance matrix for a
model contains information about the variability in position and intensity of
the set of samples used for training, i.e. it contains the shape variation model.

The following two sections describe an algorithm for the registration of images
represented using the GIM, with a particular emphasis to the registration of
an image and a statistical model. Section 5 will deal on the construction of
such statistical models.

3 ICP-Based Registration of Images and Statistical Models
3.1 Introduction

In this section we will describe how to compute the affine transformation that
puts into correspondence two images represented following the GIM described
in section 2. Due to the generality of the GIM, this method applies without
modification for the registration of two images, an image and a statistical
model, or two statistical models. The registration problem, illustrated for the
case of the registration of an image and a statistical model, is as follows. Let
A be an image, with sites vy, £ = 1..N4, and M a model, whose sites are
U, k' = 1..Np;. We aim to find the transformation 7" and the correspondence
function 7 mapping points in the image to points in the model: 7(k) = k', so
that a certain similarity criterion is met. In the classical Euclidean distance
case, the least-squares criterion is:

T = arg rgin Z [(Tvk - 177r<k))t(T’Uk; - @w(k))] (3)
77r k

Note that T is also applied to the covariance matrix, i.e. the covariance associ-
ated to Tvy, is TX,T" (if T is linear, which is the case when using homogeneous
coordinates). Let us keep in mind that the information at each site contains
not only location but also intensity (and potentially other features).

Our method is based on the Iterative Closest Point (ICP) algorithm [5]. This
method was extended to 4-D as described in [6] in order to jointly match



location and intensity (a technique known as 4D-ICP). We modify this tech-
nique in order to handle the statistical information contained in the GIM, thus
allowing it to deal with statistical models.

3.2  Criterion to be minimized

The classical Euclidean distance measure employed in eq. 3 must be replaced
by a distance measure that takes into account second order statistics (i.e.
the covariance matrices in the GIM). One such distance measure is the Ma-
halanobis distance. We thus minimize the Mahalanobis distance between the
current estimate of Ty, and each point in the model (which defines a Gaussian
distribution). Thus:

77r k

Alternatively, the uncertainty in the location of v, can also be included in the
criterion by measuring the distance between the distributions defined at each
location of the model and the image. In the case of the Mahalanobis distance,
the criterion is then:

T = arg rgin Z [(T?}k — @W(k))t(TEth + iw(k))_l(TUk — @w(k))] (5)
77r k

Other distance measures, such as the Bhattacharyya distance and the Kullback-
Leibler divergence, are available. Details about these and a discussion of their
performance are available in [7,8].

Eventually, additional information can be included at each site. For example,
in the 2D case curvature can be used to further constrain the ICP evolution. A
particularly interesting case is that of an independent curvature term, which
for the case of the Mahalanobis distance gives the following criterion:

Koy, —

T = arg rrTﬂn Z (T, — @W(k))ti;(lk)(Tvk — Unry) +
77r k

where &, is the curvature at site v and o, its standard deviation in the model.
Similar criteria can be employed by incorporating information about the nor-
mal at each point (cf. results section 6.2).



3.8  Computation of the transformation via ICP

Given an initial estimate of the transformation 7', the classical ICP framework
[5] works in an iterative fashion repeating the following three steps:

(1) Apply T to the image points;

(2) Establish correspondences between the transformed image points and the
model points by finding the closest model point according to the chosen
distance;

(3) Compute a new least squares estimate of 7" based on these correspon-
dences.

This algorithm can be justified as an alternated optimization of the above cri-
teria over the correspondence function 7 and the transformation 7'. Although
simple, this method has proven to be very effective in practice. Typically, ICP
is used to compute a rigid transformation between point sets. Here, we use
it to compute an affine transformation that will act jointly on position and
intensity.

A modification of the classical approach for its use with statistical models
could be envisaged. Searching for the closest point would no longer rely on
Euclidean distance, but it would utilize one of the distance measures listed
above. However, the minimization of a term encompassing one of such dis-
tances provides no closed form solution for non-stationary covariance matrices
and thus one has to rely on iterative gradient methods [2,9]. An alternative,
efficient method to minimize the criterion is given in the following section.

4 Solving for the Transformation via Kalman Filtering

4.1 Registration as a data assimilation task

The computation of the transformation in the classical ICP algorithm is based
on the full set of point correspondences found for every point in the data
set. This is clearly not optimal from a computational point of view, as the
incremental updates of the estimate of the transformation at each iteration
are released at a very slow rate. Here, we propose a method for updating the
transformation every time a correspondence is found, thus speeding up the
computation (see [10] for a similar approach applied to tracking).

The computation of the transformation is formalized as a data assimilation
task. A Kalman filter [11] is set up to this effect. Kalman filters are classi-



cally employed for the prediction of the internal state 2 of a discrete-time
controlled process governed by the linear stochastic difference equation:

where A relates the state 2(*~") with the current state at time ¢, B relates the
optional control input u to the state x, and w is the process noise, assumed
Gaussian with zero mean and covariance matrix Q).

The external evidence of the internal state of the system is the measurement:

where H relates the internal state with the measurement, and v is the mea-
surement noise, assumed Gaussian with zero mean and covariance matrix R.

In our case, the system models the transformation to be estimated, which
we assume constant for every point. We therefore use the following system
evolution equation:

2@ =27 4y (9)

with the state vector x containing the parameters of the affine transformation
T'. For the case of a 2D scalar image the transformation parameters are:

Ty Ty T3 T4
Ty T T7 Tg
T9 T10 T11 T12

00 0 1

The image data point vy is the measure. Each data point vy is treated indi-
vidually, and an estimate of the transformation £ is computed each time a
new point is treated. The measurement function is as follows:

@k(.’L‘;’ljkl) :H(’Ukl)l‘-F’U (11)
where the matrix H (o) is set up such that H(ty )z = TUp and v is drawn

from a zero mean Gaussian distribution with covariance matrix R, modeling
the measurement noise. v and X are treated as external parameters.

The covariance matrix of the process noise () is taken to be diagonal with
very small values for variances. In fact, it could simply be removed, as we



assume that the transformation being estimated remains constant throughout
the process; however, we found that initializing the process variance to a very
small value helps reaching convergence faster. As for the matrix R, it models
the noise in the measurement process. Therefore it seems natural that the
covariance matrix Y, which contains information about the uncertainty of
the measure, should be used in its place.

4.2 Algorithm

The resulting Kalman filter is a linear one, which is solved efficiently. Fur-
thermore, the size of the matrices to be inverted is very small, as each data
point is treated separately. The update equations for the Kalman filter are as
follows [11]:

(1) Provide an initial estimate of the transformation parameters z°. We can
either initialize the transformation using a subsample of the data points
and computing a least-squares first estimate, or simply initialize it to the
identity matrix.
(2) Give an initial value to the Kalman error covariance P°. This matrix
models the certainty of the estimate: it initially has a large variance,
so the measurement has more weight than the current estimate, and it
decreases as new data are incorporated and the estimate is refined.
(3) Prediction step:
e Project the state ahead: 2 = z(*=1) where the hat means prediction.
e Project the error covariance ahead: P = pt-1) 4

(4) Measurement update (correction):
e Compute the Kalman gain: K = PO H(HPOH' + R)™
e Update estimate with measurement z: () = £® + K®(z, — Hz®)
e Update error covariance: P = (I — K H)P®

(5) Increment k£ and go to step 3 until all points have been treated or the
error covariance reaches a minimum value.

This method is easily extendible to non-linear systems, such as those arising
from the introduction of transformation classes more complex than the affine
case. The use of Extended Kalman Filters (EKF) for such non-linear systems
is explained, for example, in [11,12].

4.8 Robustness issues

Starting from an initial estimate of the transformation using a few point cor-
respondences, the method refines this estimate for each new point. One could
start from the first point with a large covariance matrix on the transformation



but it often leads to unstable results. Each update step is extremely fast, as
the size of the matrices to be inverted is very small. Thus, we obtain a good
estimate of the transformation in the order of a few iterations. However, the
system evolution equation assumes that we are considering an affine transfor-
mation that puts into correspondence every point in the two images, up to
a certain white Gaussian noise. The whole process can easily be robustified
using a M-estimator of the distance, for instance by ignoring matches that
have a Mahalanobis distance greater than a given x? threshold, e.g. following
the 30 rule. Since this amounts to saturating the distance at that value in the
original criterion, the convergence of the algorithm is still ensured.

On the contrary, systematic deviations from the assumption of a given affine
transformation being able to match the two images do affect the results. For
example, if the first half of the points being treated corresponds to a given
transformation and the second half to a different one, the final result will
depend on the values given to the Kalman covariance, which weighs the relative
contribution of the current estimate versus the new measure.

To make the method more robust to drifts in certain parts of the image, a
sampling strategy that considers points in a random order can be employed.
Another interesting alternative to be considered is the possibility of updating
the estimate based in correspondence measures on blocks of the image [13]
instead of single voxels.

5 Initializing and Updating the Statistical Model

The previous section showed how to perform the registration of a statistical
model and an image. Once the registration has been successfully estimated,
the information contained in the image can be used to update the model, or in
the case of two models being registered, the information contained in both of
them can be fused. In this section, we comment on the process of construction
of statistical models as represented by the GIM.

The initialization of a model is obtained by registering a set of training images
to one reference image which defines the number of sites used in the GIM. To
this aim, the method described in the previous section can be used (taking co-
variance matrices proportional to the voxel size of each image). Alternatively,
any other registration method can be applied.

The mean position and intensity values vy, and covariance matrices Yy are
then estimated from the set of registered images. The Voronoi tessellation
defined by the elements of the GIM determines which sites of the images are
used to compute each site in the model. That is, the set of points that are



closest to each GIM site according to the Mahalanobis distance are searched
for, and statistics are computed on them. Note that, as seen in section 3 the
transformation 7" is also applied to the covariance matrix, i.e. the covariance
associated to Ty, is TX,T".

The reference image to which all images are registered can be a rough model
representing image structure, or one of the images in the training set. In this
last case, in order to eliminate biases due to the choice of an arbitrary reference
image [3], the process is iterated using the new average image as reference.

This same procedure can be used to update the model upon arrival of a new
registered image. The means and covariances can be computed in an incre-
mental, efficient manner.

6 Results

6.1 The role of covariance matrices in registration

As a first example, we provide an illustration of the workings of the GIM to
incorporate prior knowledge into the registration process. Let us consider the
simple synthetic data in figure 2(a). It consists of a set of 2D points arranged
in the shape of a 3 x 3 grid. The covariance matrices are shown as 3o ellipses.
A second grid, consisting of a simple translation of the first one, is shown in
figure 2(b). Registration results using Euclidean and Mahalanobis distances
are shown respectively in figures 2(c) and 2(d). The covariance matrices encode
the fact that there is a systematic tendency to move in diagonal directions, and
this is used by the registration algorithm to find the correct transformation.
Clearly, this very simplistic example is intended only as an illustration of the
concept.

6.2 Landmark data

We now consider a more realistic case, and illustrate the construction and ap-
plication of a GIM. The data employed for this example was obtained from a
manual delineation of the corpus callosum (CC) in a slice of an MRI. A set of
landmarks were identified. In order to generate sufficient data for our experi-
ment, we perturbed these landmarks randomly as follows. First, we assigned
covariance matrices to a subsample of the landmarks, thus defining Gaussian
distributions on their location. We then sampled these distributions and in-
terpolated the displacements (i.e. the difference between the original data set

10
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Fig. 2. (a) Original data (circles), consisting of a simple grid with associated co-
variance matrices, (b) second grid, to be registered (plus signs), (c¢) results of reg-
istration (multiplication signs) using Euclidean distance, and (d) registration using
Mahalanobis distance. The covariance matrices provide a priori knowledge about a
systematic tendency to move in diagonal directions, which leads the algorithm to
find the correct transformation.

and the new sample) using a thin-plate spline [14] to compute the remaining
points. This effectively simulates anatomical variation in the shape of the CC.
In order to simulate differences in geometry due to patient positioning and
gross anatomy, each point set was perturbed by a randomly generated affine
transformation. Figure 3(a) shows 50 data sets constructed in this way.

We now consider the construction of the GIM, which will encode the artificially-
generated anatomical shape variation. First, we register the shapes by finding
the best affine transformation. The results of the ICP algorithm applied to
register all shapes to the first data set is shown in figure 3(b). Clearly, the
thin shape of the CC results in ambiguous point matching, which leads the
ICP to local minima. To solve this, information about the normal at each point

11



was added and used to discriminate good matches between points. Figure 3(c)
shows the improved results.

Using the sites of the first data set as starting point, the landmarks of all
data sets were clustered and their mean positions and covariance matrices
computed. The resulting GIM is shown in figure 3(d). Note that the ellipses
depict 30 confidence bounds, i.e. there is a probability of 99.86% that the
landmark be located within the ellipse.

The usefulness of the information encoded by the covariance matrices is shown
next. A new point set is generated as described above. We first attempt to
register it to the mean locations of the GIM using simple Euclidean distance
measures in an affine ICP framework. No information about the normals at
each point was employed. As shown in figure 3(e), this method fails to cor-
rectly register the frontal part (left in the figure) of the CC. On the contrary,
the use of the covariance matrices, results in a good registration, as shown in
figure 3(f). In this case, we used an ICP algorithm which utilizes Mahalanobis
distance measures between point sites and GIM sites, again not using infor-
mation about the normal. The new data set can now be used to update the
GIM by computing local statistics.

6.3 Image data

In the previous examples, what we presented could be seen as a kind of robust
and efficient ICP with a Mahalanobis distance. The main added value comes
with the introduction of image intensities in the same framework. This is
illustrated by the following example, where we tackle the construction of a
GIM from image data. In this case, we consider the construction of a model of
the appearance of the CC as seen on T1-weighted MRI. A rectangular image
region containing the CC was isolated from a central sagittal slice of each of
the 9 MRI data sets available. The sizes of such images were different for each
data set. Figures 4(a) and 4(b) show two such images.

We aim at constructing a model of shape variability of the CC after factoring
out affine transformations. The first step we perform is registering all images
using the best affine transformation. To this end, we employed the algorithm
described in [13], a block-matching multi-scale robust method. The result of
registering the image in figure 4(b) to the image 4(a) is shown in figure 4(c).

The search for corresponding points between the affinely registered images can
be seen as a non-rigid registration process. Given a voxel in an image, taken
as the reference image, we aim at searching in the vicinity of such voxel in the
rest of the images the most similar voxel. We employ the non-rigid registration
method described in [15] to robustly compute these correspondences, which

12



(a) Original data (b) ICP registered

(e) Euclidean matching (f) GIM Mahalanobis
matching

(g) Zoom on Euclidean re- (h) Zoom on Mahalanobis
sults results

Fig. 3. (a) 50 landmark point sets representing corpora callosa contours; (b) their
affine registration using ICP; (c) improved affine ICP registration using information
about the normal at each point; (d) GIM computed from the registered data; (e)
new shape registered to the positions of the GIM using Euclidean distance; (f)
new shape registered to the GIM, but this time employing the information in the
covariance matrices (Mahalanobis distance). (g) and h show enlarged views of the
results in the anterior part of the CC, which is much improved in the Mahalanobis
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(a) Reference image (b) Image to be registered

(c) Affine registration (d) Non-rigid registration

Fig. 4. (a) and (b) Two images containing the corpus callosum as seen on
T1-weighted MRI; (c) image B registered to A using an affine transformation; (d)
image C registered to A using a non-rigid transformation.

will define a local deformation field at each voxel of the reference image, which
will in turn be used to compute the statistics needed to build the GIM. The
result of registering image 4(c) to 4(a) is shown in figure 4(d).

For the construction of the GIM we consider only a subset of the voxels in the
reference image as model sites, in order to build sites that contain information
about the shape variability of a set of voxels. In our case, a subsampling step
of 100 was used. Local statistics were computed as described in section 5 on
the set of closest points to each model site, after applying the corresponding
non-rigid transformations. Two sites of the GIM are shown in figure 5. The
left figure shows a site with a marked anisotropy in position (top), showing the
local structure. The variation in intensity (bottom) is quite isotropic. Another
site is shown in the right. In this case, the variability in position is isotropic
(top), but the variation in intensity in not (bottom), showing a correlation of
the intensity with respect to the position in the image.

7 Discussion and Conclusions

Notwithstanding the methodological contributions in the registration method,
we consider that the most important element in our framework is the general-
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Fig. 5. Two sites (left and right), showing the spatial variation (top) and intensity
variation along one axis (bottom). The site on the left shows a very anisotropic
variation in position, reflecting the local structure, but a very isotropic variation in
intensity. Conversely, the site on the right has a very isotropic variation in position,
but the local variation in intensity is highly correlated to the position.

ized image model presented in section 2. Conceptually simple, it allows for the
seamless integration of different types of information, and we are but starting
to evaluate its real possibilities.

We believe that GIMs have the potential to pave the way for new approaches
for image processing and analysis techniques that maximize the use of underly-
ing image statistics. In the particular case of medical data sets, this technique
is relevant to the construction of statistical shape models to drive segmenta-
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tion methods or detect anatomical abnormalities. GIM-based registration, as
illustrated by the ICP technique presented in this paper, allows the incorpo-
ration of prior knowledge into the registration process, thus making it more
robust, potentially improving convergence rates and avoiding local minima.

The computation of a statistical model encompassing location and intensity
information is the basis of the GIM. Several promising directions of future re-
search are to be explored. The registration of point sets and meshes to images,
as well as techniques for non-distorting resampling based on the GIM are be-
ing studied. The Kalman framework can be extended to model neighborhood
interactions, and non-trivial system evolutions.

Regarding other works that share similarities with our method, we think that
the closest one is [16]. In their work they considered the creation of shape
models from unlabeled point sets. As in our case, no explicit correspondences
between points is necessary. Their method, however, does not contemplate
the construction of a representation of local structure, which is the base of
our GIM. Furthermore, they did not consider the incorporation of intensity
alongside with position at each site. Their registration method was based on
thin-plate splines, which can be incorporated in our framework quite easily
(results are forthcoming). Also, we provide a technique for incremental com-
putation of the transformation via Kalman filtering.

Active appearance models [17] also share some similarities with our represen-
tation. Namely, the joint representation of intensity and position variability.
However, their technique is based on principal components analysis and as-
sumes explicit correspondences between points. On the other hand, it implic-
itly contains the notion of correlation between sites, which will be addressed
in future work. Another work that employs a mixed position-signal represen-
tation, applied to fMRI signal analysis, can be found in [18]. This method
is used to summarize in a compact representation the fMRI signal, but no
correlation is considered between spatial and signal components.

Other future improvements of the method will focus on the extension of our
Kalman framework to other types of transformation, such as thin-plate splines.
More importantly, the issue of interpolation of the uncertainty contained in
the covariance matrices will be studied. For this, we will employ concepts
related to geostatistics, such as kriging and variogram analysis [19].
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