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Abstract

Chamfer distances are widely used in image analysis and many authors have investigated the computation of optimal chamfer mask
coefficients. Unfortunately, these methods are not systematized: calculations have to be conducted manually for every mask size or image
anisotropy. Since image acquisition (e.g. medical imaging) can lead to discrete anisotropic grids with unpredictable anisotropy value,
automated calculation of chamfer mask coefficients becomes mandatory for efficient distance map computations. This article presents an
automatic construction for chamfer masks of arbitrary sizes. This allows, first, to derive analytically the relative error with respect to the
Euclidean distance, in any 3-D anisotropic lattice, and second, to compute optimal chamfer coefficients. In addition, the resulting chamfer

map verifies discrete norm conditions.
© 2004 Published by Elsevier B.V.

Keywords: Chamfer distance; Anisotropic lattice; Farey triangulation

1. Introduction

Distance transformations (DTs) turn binary images into
grey-level images where the value of each foreground pixel
corresponds to its shortest distance to the background. They
are widely used in image analysis since they allow
recovering morphometric features of a binary shape.
Among other applications, they can be used to compute
skeletons, medial axis [1], or Vorono? diagrams or assist in
shape-based interpolation [2].

The primary motivation of this work is the computation of
statistically significant morphometric parameters of the
cerebral microvasculature (the micro-vessels comprise
capillaries, small veins and arteries of the cerebral vascu-
lature). This information could help understand and/or
simulate functional imaging modalities (e.g. TEP or fMRI)
[3]. While the smallest of the micro-vessels have a diameter
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2004 route des Lucioles, BP 92, 06 902 Sophia-Antipolis cedex, France.
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of a few micrometers, we want to process large areas (a few
millimeters) in cerebral histological slices (see Ref. [4] for
details about the used material). This results in a huge
amount of data. The imaged portion of cerebral slice shown
in Fig. 1 was typically acquired with a confocal microscope
as a mosaic of 18 512X 512X 128 3-D images, with voxel
size 1.22X 1.22X 3 um’. This corresponds to a virtual image
of approximately 3400X 1400 128 voxels.! Distance
computation is used on these mosaics to extract the center
lines of the vessels and to compute their radii [5].

Clearly this volume of data cannot be entirely loaded
(and processed) in the central memory of standard
computers. This makes the adaptation of Euclidean distance
transform (EDT) algorithms [6] less attractive than chamfer
distance computation that can be easily adapted to mosaics.
Optimal chamfer coefficients for isotropic images can be
found in the literature [7]. Resampling the anisotropic
mosaic presented in Fig. 1 into an isotropic lattice will
approximately double the volume of input data (here from
450 to 900 Mb). While modern computer disk capacity is

" Overlaps of about 50 voxels exist between adjacent images for
automatic and precise realignments of all images to form a mosaic [5].
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Fig. 1. Portion (maximum intensity projection) of a cerebral histological slice, acquired as an image mosaic (corresponding to an area of 4 X 1.8 mm?) and a

detail of distance map on this mosaic.

sufficient to store typically a few anisotropic mosaics
together with the associated results, they cannot accommo-
date as many in the isotropic case (a typical acquisition
consists in a mosaic of more than 100 images, covering an
area between 25 and 100 mmz).

The computation of optimal chamfer coefficients for
anisotropic images has also been discussed in the literature
[8], but here again in a non-automated fashion. Inevitable
variations of the anisotropy factor (the ratio between
the inter-slice distance and the pixel size) between
acquisitions prompted us to develop a fully automated
algorithm to compute optimal chamfer coefficients in
anisotropic lattices.

The remainder of this article is organized as follows. In
Section 2, we recall some properties of chamfer distances
and chamfer mask, the notion of mask convexity is
introduced, and the computation of optimal chamfer
coefficients, as presented in the literature, is discussed.
The analytical derivation of the relative error between
chamfer and Euclidean distances is detailed in Section 3
while Section 4 presents the norm conditions. Section 5
describes the automatic construction of a chamfer mask and
the computation of sets of optimal chamfer coefficients.
Some results are provided in Section 6.

2. Recalls on chamfer distance

In this section, we recall the properties of chamfer masks,
as proposed in Ref. [9] and detailed in Ref. [10]. We then
describe classical ways to compute optimal chamfer mask
coefficients.

We denote R the field of real numbers, and Z the ring of
integers. A vector space is defined with a commutative field
K. Given neN*, then K" is a vector space on K. For
example R” is a vector space on R. However, since Z is a
commutative ring and not a field, Z" does not define a
vectorial space on Z.

Distances and norms are usually defined on the finite
space R" and takes real values. In discrete geometry,
however, we sometimes need to have discrete distances
defined on Z" with their values in Z. Since Z" is not a vector

IMAVIS 2143—20/8/2004—17:01—RAJA—114192—XML MODEL 5 — pp. 1-16

space, the notion of distances and norms have to be
extended.

In the following, given a subgroup F of R, we denote by
p=(pi)i=1...nan element of F" where Vi€ [l,n], p;EF. A
vector v will also be denoted by (v;);=1.. _,-

2.1. Distance and norm

Definition 2.1 (Distance) Let E be a non-empty set (e.g. Z"),
and F a subgroup of R. A distance on E, taking its value in F,
called (d, E, F), is an application d: EXEw~F which
satisfies the following properties:

(positivity) Vp.q€E dp,9)=0
(definition) VpqeEE dp,g)=0<p=gq
(symmetry) Vp.gEE d(p.q) =d(p,q)

(triangularinequality) Vp,q,r €E d(p,q) <d(p,r) +d(r,q)

dy, d> (the Euclidean distance, also denoted dg), and d,,
defined as follows, are usual distances in R" :

di(p,q) = Z |¢]i _Pi|, dy(p,q)
i=1

n
Y lai—pl’. dup.g) = max lg; —pi
i=1

A discrete distance d is defined as a distance (d,Z",Z). d,
and d, are obviously discrete distances, but not dg.
Moreover, neither the square, nor the truncature of dg are
distances (they do not satisfy triangular inequality).
Unfortunately, dg is the most commonly used continuous
distance, because of its rotation invariance. Chamfer
distances offer a way to approximate a proportional
estimation of the Euclidean distance in the discrete metric
space (Z", 7).

A norm is usually defined on a vector space. The notion
of module allows to generalize the notion of vector space to
sets as Z". A module is abstractly very similar to a vector
space although, in modules, coefficients are taken in rings
(such Z).
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Definition 2.2 (Module) Let A be a commutative ring
(e.g. Z), with identity elements noted 0 and 1. A set E
(e.g. Z") defines a module on A (or A-module) called (E, A),
if E owns a commutative group operation (+), an external
law (-) and satisfies the followings properties:

VxEE
VxEEVAiu€eEA,
(distributivity of scalar sums) Vx€EE, VA, u €A,

(identity)

(associativity)

(distributivity of vector sums) Vx,y €E,VAEA,

The main difference between a module and a vector space is
the non-invertibility (with respect to the external law) of the
elements of its associated ring (e.g. 2 € Z, but L & Z). A base
of a module of dimension »n is a family of n independent
vectors (V;);—1.._n 1.€.

Z o;v; =0,

But, a linearly independent family of n vectors may not be a
base of A”. We define a norm in a module in the same way as
in a vector space.

Definition 2.3 (Norm) Let (E, A) be a module, and F be a
subgroup of R. A norm on (E, A) taking its value in F is an
application g: E— F which satisfies:

<Viell,...,nla; =0.

(positivity) VxEE gx)=>0
(definition) VxEE gx)=0=x=0
(triangularinequality) VX, y€E gx+y)<gx)+g(y)
(homogeneity) VxeEVi€A, g(x)=|Ag(x)

2.2. Distance maps and distance transformations

We now consider an image [ as an application from a
finite set £ of Z" to Z.

Definition 2.4 (Distance map) Given a binary image I, let
X={p€E|l(p)=1} be the foreground and X={p e
E|I(p) =0} be the background. The distance map of [ is
a grey level image where the value of each point of the
foreground corresponds to its shortest distance to the
background, i.e.

E—N
DMX N S ;
p—=dp,X) = qu@g d(p,q)

Exact Euclidean maps can be computed through EDT.
Several EDT have been proposed, using morphological
operators [11,12], filters [13], several path on rows and
columns [14], propagating vectors [15,16], or Vorono?
diagrams [17]. A comprehensive review of distance
transformations can be found in Ref. [6]. Practical
implementations lead to time and/or memory consuming
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algorithms: this makes them not suitable for our aimed
application that requires extremely simple, fast, and low
memory consuming tools. Chamfer maps, first proposed
by Montanari [18] and popularized by Borgefors [19], are
then an adequate choice because of their generality,

lex=x
As(uex) = (Ap)-x
A+ p)ex = Ax + px
Ac(X+Yy) = Ax+ Ay

simplicity and efficiency. Indeed, they can be efficiently
computed with a two-scan algorithm [20] and propagation
of local distances through chamfer masks.

2.3. Chamfer masks and chamfer distances

In this section we define more precisely chamfer masks
and chamfer distances definition on a module. Let (E, A) be
a module and F be a subgroup of R.

Definition 2.5 (Chamfer mask) A chamfer mask is a finite
set M= {(vy, wp) EE XF, 1 <k<m} which contains at
least a base of E, and which satisfies the following
properties:

(positive weights) Vk w; >0 and v, #0
(central symmetry) V (v, w) € M = (Ev;), w) € N

with v = (v;)

We call C(E, A, F) the set of chamfer masks in the module
(E, A) with their coefficients in F.

Chamfer mask vectors v, represent legal displacements
in the neighborhood of the central point. Several neighbor-
hood sizes can be considered. The mask size is defined as the
number of voxels (included the central one) in this
neighborhood.

A point p €Z" is called visible (from the origin O) if
there is no point of Z" located on the line (Op) between O
and p.

Non-visible points are usually suppressed from the
chamfer masks. Indeed, consider a non-visible point p. By
definition, there exist a point ¢ which verifies Op = 10gq
with A €Z". On one hand, if op = Ad.(O, g), the mask is
redundant since there are two ways to compute d.(O,p)

(either directly with w5, by propagation from ¢g). On the

other hand, if w3, * AdC(Q, q), the distance map is no
more homogeneous along Op direction.

The suppression of non-visible points from chamfer
masks allows not only to avoid these problems but also to
simplify chamfer coefficients computation. Fig. 2 shows two
examples of 3-D 3 X3 X3 chamfer mask geometry contain-

ing only visible points.
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Fig. 2. Examples of 3-D 3 X3 X3 chamfer mask geometries.

Definition 2.6 (Path from p to q) Given a chamfer mask 771
and two points p, g€ E, a path from p to ¢ is a sequence of
vectors v, € 11l going from p to q. We obtain:

pq = Z My Vi

=T

The cost W of the path &, is defined by:
W(‘@[%]) = Z Ny * Wy
k=1

Since a mask 77l contains a base of E, such a path &,
always exists for any couple of points (p, g).

Definition 2.7 (Chamfer distance) A chamfer distance dc
between two points p and ¢ in E is the minimum of the costs
associated to paths &, linking p to g:

dc = rg::l W(P,,)

2.4. Distance and norm properties of a chamfer mask

Given a module (E, A) and a chamfer mask, the following
propositions hold.

Proposition 2.1. Let (E, A) be a module, and F be a
subgroup of R. Given a chamfer mask 1l € C(E,A, F),
then the chamfer distance dc associated to this mask is a
distance on E.

The proof can be found in Refs. [21,22]. Moreover, Thiel
proved in Ref. [10] that a chamfer distance is a norm on a
vector space.

Proposition 2.2. Let K be a commutative field, E be a vector
space on K and F be a subgroup of R. Given a chamfer mask
M- €C(E,K, F), then dy; induces a norm on (E, K).

A chamfer distance induces a norm on a vector space.
However, Z" is not a vector space but a module (because
of the non-invertibility of the external law). Thus, for a
chamfer distance to be a norm on a module, additional
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constraints have to be verified. To this end, Remy and
Thiel [9] introduced the notion of equivalent rational ball.

Definition 2.8 (Equivalent rational mask) The equivalent
rational mask mg of a chamfer mask Mc = {(v;, wy),
1 £ k £ m}, is defined by:

X, Z n
mé: = { <_k y_k _k’> E@ :((Xk,yk,Zk,...),O)k)EmC}

wk’wk’wk

Each point of the equivalent rational mask is obtained by
dividing the vector v, €17l by its associated weight w;:
it is then approximately located at unit distance (up to a
multiplicative constant) from the origin. The polyhedron
formed by a triangulation of the equivalent rational
mask is called equivalent rational ball (building a
triangulation with good properties will be addressed in
Section 3.1).

Proposition 2.3. A chamfer mask induces a norm on Z" if
and only if its equivalent rational ball is convex.

Proof of this proposition can be found in Refs. [9,10].
Fig. 3 shows equivalent rational balls of two chamfer masks:
(a) induces a norm on Z3, (b) does not.

2.5. Optimal coefficients calculation

A chamfer distance between two points p and g computed
with a chamfer mask Mg ={(vi,wy), 1<k<m} is a
discrete sum of chamfer coefficients: d¢(p, @) = > jei npwy
where pg = > L, mvy.

To obtain the best approximation of the Euclidean
distance, optimal weights, that yield the best accuracy, have
to be calculated. This is a pivotal point for chamfer
distances. The first method for this computation was
proposed by Borgefors for dimension 2, 3 or more in
cubic isotropic grids [7,23]. The maximum accuracy
depended on the mask size: to increase precision, the
number of (v;, wy) couples in the chamfer mask had to be
increased.
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(a) chamfer mask inducing a
discrete norm on Z*

(b) chamfer mask not
inducing a discrete norm on Z3

Fig. 3. Examples of 3-D 5X5X5 chamfer mask equivalent rational balls.

Some chamfer coefficients calculations are reviewed
below.

In Ref. [23], the coefficient computation for a 2-D 3 X3
isotropic chamfer mask is presented. For symmetrical
reasons, there are only two coefficients to be calculated: a
(the horizontal one), and b (the diagonal one), as shown in
Fig. 4 Moreover, only points such that 0<y<x are
considered (other cases are deduced by symmetry). To
find optimal coefficients, Borgefors minimizes the maximal
error of the chamfer distance with respect to the Euclidean
distance. The calculation is performed for the points located
on a straight line x=M (Fig. 5). For each point p(M, y)
located on the line x=M, we get the following quantities:

o the Euclidean distance, dg(0, p) = /M? + y?,

o the chamfer distance, d-(O, p) = yb + (M — y)a=y(b — a) +
Ma, and

e the absolute error, E(y)=dc(y)—dg(y)=y(b—a)t

Ma— \/M?>+y?,

under the conditions b>a and b < 2a to be sure to consider
the shortest path.

The derivative of the function E(y), dE/dy= (b — a) — y/
/M? +y* cancels for y, =M(b— a)/\/1— (b— a)*. The
error is then extremal for three values of y, {0, y;, M},

b a b
A

1
b a b

Fig. 4. 3X3 Mask.
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that corresponds respectively to the following three error
values, Eo=(a— 1M, E,=(a—+/1—(b—a)*>M, and
E,=(b—+2)M.

The maximum of these three errors is minimized,
yielding optimal real values for a and b:

14+v2v2 -2
lopr = + =~ 0.95509...
and
W2 —14++V22—-2
bopi = V2 +2 Va2 ~1.36930...

Note that aqp <1 and by < V2. Setting aq=1and b= V2
amounts to considering the error along on the horizontal

*=M | [P1
- P
T -+
..r"‘-' =
T
SpE
L POl
¥ j X—Y

Fig. 5. Coefficients computation a straight line x=M.
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P1
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Y XYy

Fig. 6. Coefficients computation on a circle R=M.

and diagonal directions only. The maximum error is located
on a direction at about 23 degrees of the horizontal
direction.

Verwer commented that this approach induces an
anisotropy in the error minimization scheme by giving too
much importance to the diagonal direction [24]. He
proposed an error computation on a unit circle (cf Fig. 6),
which is equivalent to computing a relative error on a
straight line (see Table 1 for a comparison between both
calculation schemes).

In these schemes, the calculation of the optimal
coefficients, aop and bgy, yields real values, and thus
results in a real chamfer distance (defined on the metric
space (Z",R)). To get a discrete distance, i.e. defined on
(2", Z), these optimal real coefficients, dqpe and b, have to
be approximated by integer coefficients, a;,, and b;y.

Looking for a, chamfer distance that is an approximation
of the Euclidean distance up to a real multiplicative
constant, say ¢, allows a certain freedom in the choice of
these integer coefficients. The chamfer distance can be
expressed as dc = > jo; mw; with wy €Z, and is related
to the Euclidean distance by d-/e =dg. For instance,
approximating bop/aopc by bindain, yields the popular
coefficients (3, 4).

These calculation have been extended to larger masks
[23,24] and to higher dimensions [7]. Anisotropic lattices
have also been considered [8,25,26]. However, those
calculations remain tedious, are not systematized and thus
have to be conducted manually for every mask size or
anisotropy value.

The next section presents the analytical derivation of the
relative error that will further allow the automated
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Table 1
Summary of different calculation schemes for the 3 X3 chamfer mask
Calculation
On a line x=M On a circle R=M
Point P(M.y) P(\/M?*—32,y)
coordinates
Interval yo=0, y,=M Y0=0, y, = MI2
extremities
dg(O, P) /M* + y? M
dc(O, P) yb+M—y)a yb+ (\/M? —y*> —y)a

Absolute error: E™(y)=dc(0, P)—dg(O, P)
E™(y) (b—a)y+Ma— /M>+y*

dEahs( —o ]
—O) = =b—-—aMy|—m8 8
dy 1= a) 1—(b—ay

Absolute error extrema

(b—ay+ta—
b—aM

NVt b-ar

M —y —M

E™(y0) (a—1HM @a—DM
E™(y) (a—1—(b—aP M o—a+d— 1M
E™(yy) (b— V)M (i - 1>M
V2
Relative error: E®\(y)=E"*(y)/dg(O, P)
dEabs :Mb—a _ M(b_a)
o o a N o-wra
=0

Relative error extrema

E*(y0) (a—1) (a—1
E®(y1) Vo—at+a—1 Vo—at+a—1
E™(y,) @(\/j, b) %_ 1

computation of optimal coefficients for any mask size or
anisotropy factor in 3-D.

3. Analytical expression of the error
with Euclidean distance

Given a chamfer mask, 171 = {(v;, w;)}, the relative error
of the chamfer distance with respect to the Euclidean one
depends locally only on a few coefficients. It will be
demonstrated how a well chosen decomposition of the mask
into regular cones, where the chamfer distance is locally
defined, allows to express analytically this local error, and to
find its local extrema.

Optimizing over all the local errors results in the
computation of the optimal real coefficients {w;qpc} (as
conducted in the above section). To the best of our
knowledge, this has not been addressed in the general case
(i.e. for arbitrary mask size and grid anisotropy) and is
beyond the scope of this work. However, knowledge of
the error extrema allows to compare different sets of
coefficients, and to extract the best sets {w;i,} from all
the sets of integer coefficients sorted in lexicographic
order.
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In the following, we denote the coordinates of
a point p ez, (x, y, z), and the coordinates of a vector
v, € z, (x; Vis Zi)-

3.1. Mask geometry decomposition

According to Definition 2.5, a chamfer mask is
central-symmetric. This allows considering only one
eighth of the space Z° for the error calculation, this
calculation being valid for the whole space thanks to
symmetry considerations. In the following, we consider
only the first eight §Z3 , delimited by the half-lines (O, x),
(0, y) and (O, z). The reduction of a chamfer mask 771
to this first eighth will be called a mask generator and
denoted 771%. Fig. 7 shows the generator of the mask of
Fig. 2(b).

Estimating the error between a chamfer distance and the
Euclidean one can be quite awkward when dealing with
large masks. This difficulty can be reduced if we are able to
define areas where the chamfer distance is locally defined,
that is to say where chamfer distance depends only on few
weights of the chamfer mask. To do so, we decompose the
chamfer mask into cones, a cone being defined by a triplet of
vectors, more exactly into regular cones that exhibit some
interesting properties. Such a decomposition is shown in
Fig. 8.

Definition 3.1 (Continuous cone)A continuous cone (v,, v,,
v,) represents the region of R* delimited by the vectors v;, V;
and v;. That is:

vi,vi,vi) ={M €EE : —OM

= Ai'Vi + Aj'Vj + /\k°Vk, Ai’ Aj’ Ak S [R+}

Definition 3.2 (Discrete cone) A discrete cone {v;, v;, Vi)
is the set of points in Z* included in the continuous cone
<vi, ij Vk)'

o -
/05

=5 |

Fig. 7. Reduction of the mask shown in Fig. 2(b) to the first eighth of Z3.
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Fig. 8. Mask decomposition into regular cones.

Definition 3.3 (Regular cone) A regular cone is a discrete
cone (v;, v;, v)) which verifies 4;;,= 1 where

X; x]' Xk
dije = |Yi Vi Yk
G % 2k

A regular cone exhibits the interesting property that
any point of such a cone can be reached by an integer
linear combination of its three generating vectors [18,27]
(see Fig. 9).

Given a point p(x, y, z), finding the coefficients of this
linear combination amounts to solving:

X Xio X X a

Op =av,+bvitcv, ie. [y | =¥ ¥ % b
Z i %G % c
(1)

The solution exists if 4;;,+0, i.e. the three vectors v;, v;
and v; are independent, and the coefficients of the linear

Fig. 9. Sample of regular cone.
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combination are

X x, Xk X; X Xk
1 1
a=——|y ¥ Y| b=——1y ¥y Wl
ijk ij.k
2z % 4T %
X; Xj X
1
and I R 2
ik
G % Z

If the cone (v;, v;, Vi) is regular, 4;;,= £ 1.Ifp € 73, then,
since all coordinates (x, y, z, and x;, y;, z;, for [=1, j, k) are in
Z, the three coefficients a, b, ¢ also belong to Z.

The sign of a determinant, e.g.

X; .Xj X
Yi Yi Y|
5 % oz

characterizes half-spaces that are separated here by the
plane defined by (O, v;, v;). Since the cone is nothing but the
intersection of three half-spaces, it can be shown that a, b, ¢
are positive integers for p belonging to {v;, v;, V).

In the following, we will consider only mask generators
decomposed into regular cones, i.e. built with a regular
triangulation. It will be shown in Section 5.1 that, this can be
easily achieved thanks to Farey series. Moreover, for the
sake of simplicity, 4;;,= +1 can also be assumed without
loss of generality as this corresponds to a reordering of the
vectors v;, v, and v;.

3.2. Analytical expression of the error

Given a mask generator 711¢ decomposed into regular
cones, the error of the chamfer distance with respect to the
Euclidean one can be computed. To deal with a more
isotropic error distribution, we chose a relative error instead
of an absolute one. Given that the chamfer distance is
an approximation of the Euclidean distance up fo a
real multiplicative constant ¢ (see Section 2.5), the relative
error is
_ ldc —dg dc

=" 3)

E
dE EdE

This error will allow the comparison of different sets of
coefficients to characterize the best sets to be used in the
practical computation of a chamfer distance.

To facilitate this comparison, we will exhibit the extrema
of this error, computed on the planes x=M, y=M, or z=M.
It has to be pointed out that the extrema calculation can be
conducted independently from a cone to the next, since
cones are regular.

Moreover, we will perform these calculations into
a 3-D anisotropic cubic lattice where d,, d,, and d, are
respectively the Euclidean lengths of a voxel in the x, y, and
z directions.
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3.2.1. Chamfer and Euclidean distances and relative
error expressions

Given a regular cone (v;, v;, vi) of the chamfer mask
generator 171%., a point p(x, y, z) of this cone can be expressed
as a linear combination of the three vectors v;, v;, and v;
(Eq. (1)), the three coefficients, a, b, and c, of this linear
combination being given by Eq. (2). By definition, the
chamfer distance between O and p is given by

dc(0,p) = aw; + bw; + cwy “)

Replacing a, b, and c by their values (recall that 4, ;;=1)
and reordering the terms allows to express the chamfer
distance with respect to x, y, and z:

dc(O,P) = ax + By + vz

with
a = (yjzr — Mgwi + Oz — yizw; + iz — iz ok
B = (g — xz)w; + (Gze — xz)dw; + (52 — X;z)wy

Y = Gy — xypw; + Gy — xiyw; + (g — Xy
&)

The Euclidean distance of a point p(x, y, z) of the anisotropic
grid to the origin, is simply expressed by:

dp(0.p) = \Jd2 + d2y + &2

The relative error between the chamfer and the Euclidean
distances is then

ax + By + vz

E =
s\/d.%xz +d¥y? +d2?

for p belonging to the regular cone {v;, v;, v) and «, 6, v,
given by Eq. (5).

3.2.2. Error computation on a plane

Depending on the orientation of the cone (see Fig. 8), the
error has to be minimized on either the plane x=M, ory=M
or z=M. Without loss of generality, we will only detail the
case x=M (M #0). The calculation is conducted in R*. We
can then get analytical expressions for the error extrema.
The minimum and maximum values of these expressions are
respectively minimum and maximum bounds of the error in
7% : the effective chamfer distance error is then over-
estimated by this calculation.

To compute the error on the plane x=M we consider
points p(M, y, 2)=M(1, y', 7') with y'=y/M and 7' =z/M
inside the triangle (V;, V;, V)) where

Vv, = <M,M&,Mﬁ>

X Xil
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Fig. 10. Calculation of the error function on the plan x=M.

for =i, j, k (see Fig. 10(a)). On the plane x= M, the relative
error becomes:

1 aM +By+rz

Econe(x’ )’) = - 1
JBM + &y + &2
or
1 a+p8y +77
Econe(xla y/) == 4 1

€ \/d} + diy? + d3?

BY +v2)r + (a + By; + vz)

(b)
Those derivatives cancel both at point p= M(1, 8d>/ad>,
vd?/ad?) and the value of this extremum is:
1 a2 }82 ,YZ
==ttt 6
woe\E & & ©

(2) On an edge of the triangle. There are three edges.
Without loss of generality, only the calculation for
[V;V;] is presented. A point p belonging to this edge can
be represented by p=rV;+(1—rV,, with 0<r<1,
yielding the relative error along the edge:

1
Econe(r) = —

—1 7

€ \/ (d2Y? + d2Z2)7 + 2d2yY + d25Z)r + d + d2y? + 22

Econe s continuous on the compact triangle (V;, V;, Vi).
Fig. 10(b) shows such a function for the unique cone of the

with Y=y,—y; and Z=z;—z;. The derivative of the above
expression cancels for

_ (BOZ = gY) + aZ)yyd? + (v(&Y — yZ) + aY)ydy — (BY +yZ)d;

Tmax =

following mask generator: m% ={((1,0,0),3),((1,1,0),6),
((1,1,1),8)} in an anisotropic image where d,=1, dy,=1.5,
d,=2. As E_,, 1S continuous on a compact, it is bounded
and reaches its bounds. There are three possible locations
for its extrema.

(1) Within the triangle. Such an extrema is characterized by
aEconc/ayl = aEcone/aZl = 0 with

0E cone (yl Z/) _ 5d)% —(a+ ’)’Z')y’df + ﬁZ’zdzz
ayl e(d® + d2y? + &7y

aEcone (y/ ZI) _ 'Yd)% - 7y/2dy2 —(a+ 5)")2'513
a7’ ’ e(d? + dfy’z 22"
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(BYZ — zY) + aZ)Zd> + (y(zY —y;Z) + aY)Yd;

Econe(Fmax), also denoted E7™ and whose form is too

complicated to be displayed here, is an effective error
extremum if 0<r,,<1. Similar calculations give the
expressions of the extremal errors, E3"™ and Ej™, along the
two others edges.

(3) On a vertex of the triangle. If the extremum of the error

occurs on a triangle vertex, it has one of these three
values:
Egone — l Wi —1 (8)
1
B+ B+ 2
1 w;
E](_:One — ; J -1 (9)

VB + P+ 2
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Wi

E](CIOHe — 1
B+ B+ a2

-1 (10)

Gathering the above results enables the computation of the
minimum and maximum values, 7Toun and 7., of the

relative error for a cone:

cone __ . cone cone cone cone cone cone cone
Toin = min{ER", EZ, B, Ej™, E7°, Ej°", Ex™™}

cone __ cone cone cone cone cone cone cone
Tmax = Max{ER"™, EF™, ER™, E™, 7™, E;°, E°}

3.2.3. Centering the error

The minimum and maximum values of the relative error
for a chamfer mask 77lc are computed by comparing the
minimum and maximum values of this error for all cones of
the mask generator:

Tmin = min{7ii/cone €M} and
Tmax = Max{Toay /cone € M2}

We are interested in the maximum error 7=max(|7Tmin.
|,|7max]). To minimize 7, the interval [Tpyin, Tmax] have to be
centered with respect to zero, so that 7 ,,x= —Tmin. AS
shown in the error expressions (6)—(10), 7 depends on the
multiplicative constant ¢ that acts as an additional degree of
freedom. The optimal multiplicative constant &g, that
allows to get Tiax = — Tmin €an be computed by

T min + T max
= min T_max 4
Eopt — € ( ) )

as shown in Ref. [28]. Despite the above expression, it does
not depend on ¢, the original multiplicative constant that
serves for the calculation. Indeed, by definition, we have

d d
Tmin — (i) ‘ —1 and Tmax — (i) —1

Replacing these values into the e,y expression yields

dc — dc. _
(de)min 1+ (EdE)max 1 11
2

=58+ ().

In the following, 7, denotes the optimal maximum relative
error obtained with e, as a multiplicative constant, i.e.
Topt=— Tmax(eopt) & Tmin('gopt)-

Eopt = €

4. Local norm criteria

We are interested in the automated computation of
optimal sets of chamfer coefficients. To this end, to check
whether a chamfer mask induces a norm or not, the
convexity of the equivalent rational balls has to be verified
automatically (see Section 2.4). This convexity condition
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Fig. 11. Geometry of the cone for the local convexity criterion.

means that every edge of an equivalent rational ball must be
‘turned inside out’. Let this edge be the common edge of
two adjacent cones c; and ¢, the convexity condition can be
analytically expressed by [22]:

Cy =«(V,‘,(J),‘),(Vj,&)j),(vl,(1)[)» i xj M X

Y(cy.cy), § and ’ )Z’z -zj Z 21 >0.
()
Cy :«(Vj,(L)j)7(vk,Q)k),(Vl,&)l)>) w; wj Wp W)
(11)

Fig. 11 shows the geometry of a pair of cones for the above
local convexity criterion. This edge checking can be limited
to the edges of the mask generator. Indeed, for a cone ¢, of
the mask generator, either its neighboring cone ¢, (a cone
sharing an face with c¢;) is also in the mask generator (and
condition (11) can be tested), or it is outside. In the latter
case, symmetry considerations (see Fig. 11) yield w;,=w;, v
being symmetrical to v; with respect to plane (O, v;, v)).

5. Optimal set of coefficients computation

The computation of the optimal coefficients sets is done
by testing the sets of integer coefficients (sorted in
lexicographic order) and by keeping those that have an
optimal maximum relative error inferior to the one of
previously extracted sets. This computation is twofold: first,
for the given mask size, we build the corresponding chamfer
mask together with its associated regular triangulation;
second, when parsing the integer coefficients sets, the local
norm conditions are checked and the optimal maximum
relative error is computed.

5.1. Building mask geometry

The 2-D 3X3 and 3-D 3X3X3 chamfer masks have
already been widely studied in the literature. Dealing with
larger 2-D masks is not that difficult since building a regular
triangulation is straightforward in 2-D. However, in 3-D,
the triangulation of a chamfer mask is not unique, and some
of them may be non-regular. In these cases, the error
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(111 (111

(10.0) (LLO) (L0.0)

(LLD
(LL1)

211y
22

(LLO) (L0.0) (2.L0) (LLO) (100 (2.1.0) (1.1.0)

Fig. 12. Construction of 7, from 7. The triangle are projected onto the plane x= 1. For left to right, the triangulations correspond respectively to masks 3 X

3 X3 (triangle (V;, V;, Vp) of Fig. 10(a)), 3X3X35, 3X5X35, and 5X5X35.

calculations presented above are not valid any longer. To
overcome this problem, Remy [22] introduced rules to
obtain regular cones by adding vectors to non-regular ones.
But his method imposed to already know the chamfer
coefficients at this stage and may fail to give integer
coefficients to added vectors. For this reason, we chose to
build the chamfer mask together with an associated regular
triangulation using Farey series.

5.1.1. Symmetry considerations

To reduce computations, we can restrict the triangulation
building to the first 48 of space. Indeed, the well-known 3 X
3 X3 chamfer mask gives a natural regular triangulation. Its
generator (see Fig. 7)

m%x?,)(} = {((1 > Oa O)’ (0100), ((1 > ]9 O)’ wllO)? ((1 > ]9 1)9 wlll)’
((O’ 1’ 1)’ wOll)’ ((0’ 1’ O)’ wlOl)’ ((O’ 1’ O)’ wOlO)’
((0,0, 1), wopy), ((1,0, 1), w01}

contains six cones which are: the cone {(1,0,0), (1,1,0),

(1,1,1))), its symmetric with respect to the plans y=z, their

symmetric with respect to the plan x=y, and their

symmetric with respect to the plane y=z (see Fig. 8). To

build larger masks, points have to be added to existing

regular cones that have to be divided into new regular cones.
Thanks to the above considerations, this have to be done

(LLL)

(3.3.2)
(2.2.1

2=(3.3,1)

i N L-" |

(L0,O) (3,1,0) (2,1,0) (3.2,0) (1,10

(1,0,0) (4,1,0)(3,1.0) (2,1,0)(3.2,0) (43.0) (1,1,0)

only for the first cone, the rest of the triangulation being
deduced by symmetry.

5.1.2. Farey sets
A Farey set F » order n is a set of all the irreducible points
(v/x, z/x) in @ N [0, 1] whose denominator does not exceed
n. It turns out that a Farey set contains only visible points.
The Farey set of order n corresponds to the vectors of the
generator of a 3-D chamfer mask of size (2n+1)°. For
instance, the lexicographically ordered Farey set of order 1,

{3 G 6)

corresponds to the set of vectors {(1,0,0), (1,1,0), (1,1,1)}.
The point is that Farey sets can be built recursively. The
Farey set of order n+1, 5, , can be deduced from 5, by

/ !
. . y 2\~ (Y 2
gnﬂ Zgnu{(’)'i'(/’,)
xx X x
/ !
with x +x' <n and (X,E), (y_pz_/) ES‘"H}
xx X x

the addition, -+, being defined by [27]

(E.5)4 YA (rty 24
x’x XX x+xx+x)

(LLI1)

(4.4.3)
(3.3.2)

(2.2,1)

(3.3.1)
(4.4.1)

Y T ik b

A

Fig. 13. 75 and T 4.
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Table 2 Table 3
3 X3 X3 Chamfer mask coefficients 5X5X5 Chamfer mask coefficients
a b c Eopt Topt (%) Time (ms) a b c d e f Eopt Topt Time
1 1 1 1.211 21.13 1 1 1 1 2 2 2 1.211  21.13 2 ms
1 2 2 1.207 20.71 5 1 2 2 3 3 4 1.207  20.71 8 ms
2 3 3 2.252 12.60 5 2 2 3 4 4 5 2293 14.64 11 ms
2 3 4 2.225 11.24 6 2 3 3 5 5 6 2.252  12.60 19 ms
3 4 5 3.244 8.14 7 2 3 4 5 6 7 2225 11.24 20 ms
4 6 7 4.291 7.28 9 3 4 5 7 7 9 3.167 5.56 43 ms
7 10 12 7.473 6.76 16 4 6 7 9 10 13 4.179 4.49 70 ms
11 16 19 11.740 6.73 35 5 7 9 11 12 15 5.149 2.97 80 ms
12 17 21 12.801 6.67 52 9 13 16 20 22 28 9.245 2.72 601 ms
19 27 33 20.235 6.50 82 11 16 20 25 37 34 11.288 2.62 1.5s
20 29 35 45 49 62 20.5 2.5 36s

5.1.3. Recursive construction of regular triangulations

As discussed in Section 5.1.1, the calculation for the
3X3X3 chamfer mask can be conducted in the triangu-
lation 7, that consists of one single (and regular) cone,
(1,0,0), (1,1,0), (1,1,1))), or equivalently to the Farey
triangle built with point from F 1s

1) Go)- (1)

The vertices of the Farey triangles of the triangulation 7,
are the points of the Farey set of order n. To build 7,4,
the triangles of 7, are split by adding Farey points of order
n+1 along edges. The construction of 7, is achieved
when no more Farey points of order n+ 1 can be added. Let
us describe more precisely this construction process.

The Farey triangles of 7, are put into a list L. Let us
consider a triangle {A,B,C)) of ., and its largest edge,” say
AB. Consider C' = A+B. If x4 +xz<n+1, C' is a point of
F .41, and the triangle (A, B, C)) is split into the two
triangles {A, C’, C)) and {C’, B, C). If {A, B, C)) is regular,
these two triangles are also regular. Indeed, let us consider
for instance (A, C', C)), we, have A cc= Ayaine=
Appc = Appc =0+ Ad45c=71. These two triangles,
(A, C', C) and {C', B, C), are put into the list £ for
further examination. The construction of 7, ; ends when no
more triangles of the list can be split with points of F, ;.

It should be pointed out that the intermediary triangu-
lations obtained when building 7, ; from 7, correspond to
intermediary chamfer masks that are regularly triangulated
by construction. Fig. 12 details the construction of 7,
from J; and shows such intermediary triangulations, while
Fig. 13 displays 73 and 7 4.

5.2. Depth-first search algorithm
Given that we are able to build the regular triangulation

of the chamfer mask we are interested in, we can now
compute successive integer coefficients {w;} with a

2 We consider that large discrepancies between the chamfer and the
Euclidean distances are more likely to occur along the largest edges.
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decreasing maximum relative error, and, that satisfy norm
conditions.

The, first method consists in a brute-force search: all
possible sets® {w;} are examined in lexicographic order. For
a given coefficients set {w,}, all w; being known, we check
norm conditions (Eq. (11)) and compute 7, (Section 3.2.3).
If this 7, is inferior to the previous computed optimal
maximum relative errors, the set {w;} is kept as inter-
mediary result.

5.3. Depth-first search with alpha pruning

The norm condition (or LNC, see Eq. (11)) check is local
and involves only four coefficients. If this check fails for one
set {w;}, it will also fail for the sets {’;} that have the same
four coefficients. We can then spare computation time by
checking those norm conditions as soon as possible (as soon
as the four coefficients of two adjacent cones are known),
and not when all the coefficients are known.

The search method for optimal coefficients is described
by the following pseudo-code

1: i1, ;< Wy mn" (initialisation}

2: repeat
3:  if LNCs defined with {(v;, w;)};— . ; are success-
fully checked then

4: if i=m then {all w; are set}

5: Compute 7o, print {w;} if required.

6: while i >0 AND w;=w; n.x do

7 i<—i—1 {go back to previous coefficient}

8: if i>0 then

9: w; < w;+ 1 {increment of w;}
10: else {the w; are partially set, go to next coefficient}
11: i—i+1
12: W; <~ Wi min

3 Consider that w; is associated with vector x. According to that w; is
fixed, we let w; vary from w;||v;||. to w||v;||; : there is then a finite
number of sets {w;} that are under examination for a fixed w;.

4 For the first coefficient, w;, chosen as the one associated with x, i min
and w; m,x May be provided by the user. For the other coefficients, w; min=
w1lvill @ and w; min=w;||vil|1 (see Section 5.2).
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Table 4

7X7X7 Chamfer mask coefficients

a b c d e f g h i j k ) m Eopt Topt (%) Time

1 1 1 2 2 2 3 3 3 3 3 3 3 1.211 21.13 5 ms

1 2 2 3 3 4 4 4 5 5 5 6 6 1.207 20.71 52 ms

2 2 3 4 4 5 6 6 6 6 7 7 8 2.293 14.64 87 ms

2 3 3 5 5 6 7 7 8 8 8 9 9 2.252 12.60 226 ms

2 3 4 5 6 7 7 8 8 9 10 10 11 2.225 11.24 469 ms

3 4 5 6 7 9 9 9 10 11 12 13 14 3.158 5.28 5s

4 6 7 9 10 13 13 14 15 16 17 19 20 4.179 4.49 29s

5 7 9 11 12 15 16 16 18 19 21 22 24 5.186 3.72 1min 13 s
5 7 9 11 12 15 16 17 18 19 21 22 24 5.149 2.97 1min 13s
7 10 12 16 17 21 22 23 26 27 29 31 33 7.176 2.51 16 min 3 s
8 11 14 18 19 24 25 26 29 30 33 34 38 8.184 2.30 44 min

10 14 17 22 24 30 32 33 36 37 41 43 47 10.224 2.24 4 h47 min
11 16 19 25 27 34 35 37 41 42 46 49 53 11.238 2.16 11h

12 17 21 27 29 36 38 40 44 45 49 52 56 12.245 2.04 22h

14 20 24 31 34 43 44 46 51 53 58 62 67 14.248 1.77 > 24h

(a) (b) (©

——— e
'3 %

=
Q)

)

e g

=

(d) ® ®

)

{

(

N/
=

I

Fig. 14. Examples of 2-D distance maps on taanisotropic grids: (a) Euclidean distance map; (b) chamfer map computed with a 3 X 3 mask originally devoted to
isotropic images; (c) chamfer map computed with a 3 X3 anisotropic mask whose coefficients where chosen with our method; (d) chamfer map computed with
a 5 X5 anisotropic mask whose coefficients where chosen with our method; (e) Euclidean isolines (red) together with 3 X 3 anisotropic chamfer map (c) isolines
(green); (f) Euclidean isolines (red) together with 5X5 anisotropic chamfer map (d) isolines (blue) (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.).

13:  else {go to next (partial) set}

14: while i >0 AND w;= w; n.x do

15: i<—i—1 {go back to previous coefficient}
16: if i>0 then

17: w; < w;+ 1 {increment of w,}

18: until i=0

6. Results
We present here some examples of chamfer mask
coefficients sets obtained with our method.’ This method

can be applied to isotropic grids as well as anisotropic
grids. For isotropic grids, symmetry allows to reduce

5 A Java implementation is available at http://www.cb.uu.se/~tc18/
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even more the research area, and to compute larger
masks.

6.1. Masks for isotropic grids

To simplify notations, we call Farey set points in their
lexicographic order: a(1,0,0), b(1,1,0), ¢(1,1,1), d(2,1,0),
e(2,1,1), f(2,2,1), g(3,1,0), h(3,1,1), i(3,2,0), j(3,2,1),
k(3,2,2), 1(3,3,1), m(3,3,2). We computed coefficient sets,
with w; varying between 1 and 20.

Table 2 shows the result for a 3X3X3 mask (we stop
Farey triangulation at the first order), Table 3 shows the
result for a 5X5X5 mask (we stop Farey triangulation
at the second order), and Table 4 shows the result for a
7X7XT chamfer mask (we stop Farey triangulation to the
third order). The last column indicates the time used to find
the set of coefficients with our Java code.
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1457  Table5 1513
1458 3X3X3 Chamfer mask coefficients d,=1, dy=1.2, d,=2 1514
1459 ax ay az bxy bxz byz c Eopt Topt (%) Time 1515
1460 4 1 2 1 2 2 2 1.239 23.89 3 ms 1516
1461 2 2 4 3 4 4 4 2.330 16.50 9 ms 1517
1462 3 4 6 5 6 7 7 3.486 16.20 18 ms 1518
1463 3 4 6 5 7 7 7 3.448 14.94 25 ms 1519
3 4 6 5 7 7 8 3.392 13.05 26 ms
1464 5 8 6 9 9 10 4474 11.86 38 ms 1520
1465 5 6 10 8 12 12 13 5.580 11.56 72 ms 1521
1466 8 10 16 13 18 19 20 8.897 11.21 178 ms 1522
1467 9 11 18 14 20 21 23 9.973 10.81 288 ms 1523
1463 13 16 26 21 30 31 33 14.397 10.75 698 ms 1524
15 18 30 24 34 35 38 16.899 10.66 1.2s
1469 19 23 38 30 43 45 48 21.010 10.58 3s 1525
1470 1526
1471 1527
1472 1528
1473 1529
1474  Table 6 . 1530
1475 3X3X5 Chamfer mask coefficients d,=1, d,=1.2, d,=2 1531
1476  ay ay ay bxy bxz by, c ex ey ez Eopt Topt (%)  Time 1532
1477 1 2 3 4 4 4 6 6 8 1239 23.89 4 ms 1533
1478 2 2 4 3 4 4 4 6 6 8 2330 16.50 23 ms 1534
1479 2 2 4 3 4 4 5 6 7 8 2.285 14.24 25 ms 1535
1480 3 4 6 5 7 7 8 10 12 13 3395  13.05 57 ms 1536
4 5 8 6 8 8 9 12 13 16 4521 13.03 119 ms
1481 5 8 6 9 9 10 13 15 17 4444 11.10 128 ms 1537
1482 5 6 10 8 11 12 12 16 18 22 5551 11.02 306 ms 1538
1483 5 6 10 8 11 12 13 16 19 22 5.491 9.81 310 ms 1539
1484 9 11 18 14 20 21 23 29 34 39 9.839 9.32 3s 1540
lag5 10 12 20 16 22 23 25 32 37 43 10.912 9.12 5s 1541
g 13 18 30 24 33 35 38 48 56 65 16.367 9.12 1 min 154
18 22 36 28 40 12 46 58 67 78 19.603 8.91 2 min 54 s
1487 1543
1488 1544
1489 1545
1490 1546
Table 7
1491 355 Chamfer mask coefficients d,= 1, d,=12, d.=2 1547
1492 1548
1493 % ay az bxy bxz byz c ex ey ez dxy dxz dyx dyz dzx dzy Eopt Topt Time 1549
%
1494 (%) 1550
1495 1 1 2 1 2 2 2 2 3 4 2 2 2 3 4 4 1180 17.99  24ms 1551
196 2 2 4 3 4 4 4 5 6 8 4 5 5 6 8 8 2243 1213 48ms 155
4 5 8 6 8 8 9 11 13 16 8§ 11 11 12 16 16 4474 11842 784 ms
1497 4 5 8 6 10 9 10 12 15 18 9 12 11 14 18 17 4444  11.10 868 ms 1553
1498 5 6 10 7 11 10 11 13 16 20 10 13 13 15 20 20 5540 1079 2 1554
1499 5 6 10 7 10 10 11 14 16 20 11 13 13 15 20 20 5511 1023 2 1555
1500 5 6 10 8 11 12 13 16 19 2 12 14 14 18 21 21 5509 10.17 3 1556
501 S 6 10 8 12 12 13 16 19 2 12 15 14 18 21 21 5468 937 3 1557
6 712 9 13 14 15 18 22 25 14 17 16 21 25 24 6.550 946  9s
1502 ¢ 712 9 13 14 15 18 22 25 14 17 16 21 24 25 6.542 904 95 1558
1503 7 8 14 10 15 15 16 20 24 28 15 19 18 23 28 28 7631 901  2ls 1559
1504 7 8 14 11 15 16 17 21 25 29 16 19 19 24 29 28 7617 881  26s 1560
1505 10 2 20 15 21 22 24 29 35 41 22 27 26 33 41 40 10877 877  34s 1561
1506 10 12 20 15 24 22 24 29 35 43 22 29 26 33 43 41 10856 856  34s 1562
11 13 22 16 23 24 26 32 38 44 24 30 28 36 44 44 11923 839  14minSS5s
1507 1q 13 22 17 23 24 26 32 38 44 24 30 29 36 44 44 11922 838  16minds 1563
1508 12 14 24 18 25 26 28 34 41 48 26 32 31 39 48 48 13001 834 29min9s 1564
1500 15 18 30 23 33 34 37 45 54 63 34 42 40 51 6 61 16223 815 4h23min 1565
510 16 19 32 24 35 36 39 48 57 66 36 44 42 54 65 65 17302 814 Th23min 544
s 16 19 32 25 35 36 39 48 57 66 36 44 43 54 65 65 17301 813 Thddmin o
o 17 20 34 26 37 38 4 50 60 70 38 46 45 57 70 68 18379 811  12h17min laes
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Table 8

3X3X3 Chamfer mask coefficients for d,=1, dy=1, d.=1.5

ax=ay bxy az bxz=byz ¢ Eopt T, opl(%) Time

1 1 2 2 2 1.313 3131 3 ms

1 2 2 2 2 1.222  22.20 6 ms

2 2 3 3 3 2.347  17.35 8 ms

2 3 3 4 4 2232 11.59 12 ms
4 6 6 7 8 4.393 9.83 36 ms
5 7 8 9 10 5.452 9.04 62 ms
8 11 12 14 16 8.705 8.81 234 ms
12 17 18 22 25 13.026 8.57 488 ms
16 23 24 29 33 17.347 8.42 1.28s
17 24 26 31 35 18.176 8.33 3s

Coefficients are ordered as in Ref. [8]. Sets in bold have also been found by
Sintorn.

These tables allow to choose a trade-off between
precision and computational time when computing chamfer
distances. Indeed, if we use Rosenfeld’s algorithm,

e with a 3X3X3 mask, the algorithm performs 13
operations on each pixel and the maximum error is
about 6.5%,

e with a 5X5X5 mask, the algorithm performs 37
operations on each pixel and the maximum error is
about 2.5%,

e with a 7X7X7 mask, the algorithm performs 97
operations on each pixel and the maximum error is less
than 2%.

6.2. Anisotropic masks

6.2.1. 2-D distance maps
Fig. 14 shows a distance computed from the center point
of an anisotropic 2-D image (d,=1 and d,=2).

6.2.2. 3-D chamfer masks

Here, we present results for 3-D chamfer masks
computed in an anisotropic grid with d,=1.0, d,=1.2 and
d,=2.0. The notations of coefficients as are follows:
ax(1,0,0), ay(0,1,0), az(0,0,1), bxy(1,1,0), bx,(1,0,1),
byz0,1,1), c(1,1,1), dxy(2,1,0), dxz(2,0,1), dyx(1,2,0),
dyz(0,2,1), dzx(1,0,2), dzy(0,1,2), ex(2,1,1), ey(1,2,1),
ez(1,1,2), fxr(2,2,1), fx22,1,2), fyA1,2,2).

Table 5 shows the result for a 3X3 X3 chamfer mask.
Table 6 shows the result for a 3 X3 X5 mask, which means
that we stopped the Farey triangulation at the first new point
of the second order. Table 7 shows the result for a 3 X5X5
mask.

Our results can also be compared with coefficients
found in Ref. [8]. Table 8 presents coefficients obtained for
d,=d,=1and d,=1.5.

7. Conclusion

An automated approach to compute optimal chamfer
norm coefficients for mask of arbitrary size and for lattice of
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arbitrary anisotropy has been described. It was enabled by
the automated construction of the chamfer mask together
with its regular triangulation, this step being based on Farey
series. The decomposition of the chamfer mask into regular
cones allowed us to derive analytical expressions of the
error extrema. By accumulating the error extrema values for
all the triangle, calculating the maximum relative error for a
set of chamfer coefficients became straightforward. The
above error calculation, together with the automated mask
construction, was used to compute optimal chamfer
coefficients for different mask sizes and grid anisotropies.
In addition, these coefficient sets satisfy norm constraints,
and thus yield scale invariant chamfer maps.
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