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Abstract. We present a method for cardiac motion recovery using the
adjustment of an electromechanical model of the heart to cine MRI. This
approach is based on a proactive model which consists in a constrained
minimisation of an energy coupling the model and the data. The pre-
sented method relies on specific image features in order to constrain the
motion of the endocardia and epicardium and impose boundary condi-
tions at the base. Thus, image intensity and gradient information are
used to constrain the motion of the myocardium surfaces while a 3D
block matching technique leads to the motion estimation of base ver-
tices. Finally, we show that the implicit time integration of those forces
and personalised boundary conditions lead to a better cardiac motion
recovery from cine-MR images.

1 Introduction

Cardiovascular diseases are the number one cause of death in the industrialised
world and is projected to remain so. That’s why the modeling of the heart’s
electromechanical activity is an active research area [1–3]. Moreover, the coupling
of these models and clinical data allows us to personalise them and then to
simulate a number of pathologies or the effect of therapeutic actions, and to
analyse the cardiac function of the considered patient.

There exist several approaches in the literature to create such patient-specific
models of the heart from clinical images. The concept of deformable models is
often used to adjust a geometrical model of the heart on time series of medical
images [4–6]. In such approaches, the surface or the volumetric mesh is fitted to
the apparent boundaries of the heart in the image by minimising the sum of an
image energy and a regularising or internal energy. Those models may produce
proper segmentations and are rather efficient, however they rely on little a priori
knowledge of the heart motion which limits their ability to recover tangential
motion due to the aperture problem.

Other approaches strongly constrain the estimation of motion by coupling an
electromechanical heart model using data assimilation methods. In such a frame-
work, dynamical systems representing electromechanical models of the heart are
adjusted to time series of images by adding a filter that constrain the state vari-
ables (i.e the position and the velocity) and the model parameters to match the
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available observations. P.C Shi et al. introduced such techniques by integrating
cardiac models and Kalman filters [7, 8]. However, the use of extended Kalman
filtering is often limited since they implies the use of full covariance matrices
whose size are equal to the square of the number of state variables augmented
by the number of parameters to estimate. To avoid the curse of dimensional-
ity, some authors [9] have devised non optimal filters which do not involve any
matrix inversion (unlike Kalman filtering). This approach leads to much faster
computations and has been the inspiration of the work presented in this paper.

We showed in [14] the equivalence under some hypothesis between the method
proposed in [9] and the use of a proactive deformable model introduced in [13].
In this paper, we use the proactive deformable model which extends the concept
of deformable models by adding an active electromechanical model of the heart
motion as the regularising energy term. In this paper, we improve from our
previous work with two additional contributions. First, we provide an implicit
formulation of image forces that can better predict the image forces between two
time steps. Second, we estimate the motion of the base of the ventricles, where
the ventricles are connected to the atria and outflow tracts. This represents a
significant advance since most previous work on electromechanical modelling
of the heart consider that ventricle bases are fixed or linked to fixed points
through springs. To recover the base motion from image, we use a block matching
technique at the base points that uses intensity correlation to track points along
the cardiac cycle.

2 Electromechanical Model

As we want the complexity of the model to match the relatively sparse mea-
sures available from imaging data, we consider in this paper a fairly reduced
electromechanical model. For instance, our model relies on linear elasticity for
myocardium mechanics although a nonlinear material undergoing large strain
would be better suited. However, we found the current reduced model to be a
good trade-off in terms of computational efficiency and physiological realism.
Furthermore, this coarse level of modeling makes the estimation of the mechan-
ical state and parameters tractable and allows us to test the behaviour of the
model on several heart beats. Our cardiac model couples two biophysical com-
ponents : electrophysiology and biomechanics. Due to its efficiency, we use a
multi-front anisotropic Eikonal approach solved with a Fast Marching algorithm
on a volumetric tetrahedral mesh [10].

The depolarisation time td of the electrical wave for a given vertex of the volu-
metric mesh is computed by solving the anisotropic Eikonal equation v2(∇tTdD∇td) =
1, where v is the local conduction velocity parameter and D is the tensor defining
the conduction anisotropy. In the fibre coordinates, D = diag(1, ρ, ρ), where ρ is
the conduction anisotropy ratio between longitudinal and transverse directions.

The biomechanical model, derived from a multi-scale modelling of the my-
ocardium detailed in [11], is composed of an active contractile element controlled
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by the electrophysiology and a parallel one which represents the properties of
the tissue and is anisotropic linear visco-elastic.

The active contractile element is controlled by the depolarisation time td
computed with the Eikonal equation and creates a stress tensor σCf ⊗ f where
f is the 3D fibre orientation, ⊗ the dyadic product and σC the strength of the
contraction defined by the equation 1:

σC(t) =
{
σ0

(
1− ekAT P (td−t)

)
during depolarisation td ≤ t < tr

σC(tr)ekRS(tr−t) during repolarisation tr ≤ t < td +HP
(1)

where tr = td + APD is the repolarisation time with APD the active potential
duration, σ0 the maximum of the contraction, kATP and kRS the contraction
and relaxation rates respectively and HP the heart period. This tensor results
in a 3D contraction force fC for each vertex of each element.

Finally, the simplified dynamic law is: MŸ + CẎ + KY = FPV + FC + FB

whereM,C are the mass, Rayleigh damping matrices,K the stiffness matrix, FC ,
FPV , FB the force vectors respectively created by the active contractile elements,
corresponding to the pressure forces in the ventricles and corresponding to other
boundary conditions and Y , Ẏ = dY/dt, Ÿ = d2Y/dt2 respectively the position,
velocity and acceleration.

The four cardiac cycles (filling, isovolumetric contraction, ejection, isovolu-
metric relaxation) were simulated as presented in [13]. We compute the arterial
pressures using a 3-element Windkessel model described in [12].

The pressure forces are computed differently in the cardiac phases. In the
filling phase, they are set to the values of the pressures in the atrias. In the
ejection phase, they are set to the arterial pressures computed with the 3-element
Windkessel model. In the isovolumetric phases, the ventricular pressures are
computed in order to counterbalance the contraction forces and to keep the
ventricle volumes constant.

3 Cine MR Image Processing

Cine-MRI data consists in a sequence of 20 to 30 high resolution MR images of
the heart that describes a whole cardiac cycle. We build a myocardium mesh
that fits the mid-diastolic MRI image of the sequence when the filling of the
ventricles is almost finished, just before the atrial contraction. As described
in [14], we select this mid-diastole image based on blood pool volumes curves.
Then, an interactive tool is used to delineate the epicardium and left and right
ventricles endocardia in order to create three binary masks of the epicardium
and the endocardia. We combined these masks to obtain the binary mask of the
myocardium and create the mesh with an isosurface extraction and tetrahedral
mesh generation.

Furthermore, synthetic fibre orientations are computed by linearly interpo-
lating the elevation angle between the fibre and the short axis plane, from 80o

on the endocardium to −80o on the epicardium.
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4 Proactive Deformable Model

4.1 Image Forces

In deformable model approaches, the optimal shape corresponds to the mini-
mization of the sum of an image energy and a regularizing energy. The use of
an electromechanical model as a regularising term allows us to introduce some
a priori knowledge about the active cardiac motion and thus to recover some
movement (like the tangential motion) which cannot be obtained from classical
geometrical tracking methods. Thus, we add to the previous dynamic equation
MŸ + CẎ + KY = FPV + FC + FB an image force Fimg that derives from an
image energy.

Of course, the image forces have no physiological meaning, and then the
estimated motion is not physiological. But by coupling the model and the data
and by estimating the model parameters (which is the next step of this work),
the motion generated by the model should converge to the one observed in the
images. Thus, the intensity of image forces should decrease along the estimation
and the estimated motion should be more and more physiological.

The image energy is a metric that compares the simulated motion and the
observed one. Thus, for each vertex Yi of the epicardium or endocardium surfaces,
if we define as Zi the closest point on the apparent image boundary along the
normal direction Ni at Yi, then the image force at Yi is Fimg = 2γi(Zi−Yi) (see
[14, 13]). In this equation γi is the image gain that depends on the confidence we
have in the corresponding image point Zi. In fact, with high gains, the estimated
state will rely more on image data information than in the electromechanical
model. Conversely, with gains equal to 0, the estimation does not take into
account the data and is equivalent to the electromechanical model alone. Thus,
the choice of the gains depends on the relative confidence in the model and the
data. Furthermore, we showed in [14] how to set these gains in order to ensure
convergence. For each vertex Yi of the epicardium or endocardium surfaces, the
definition of Zi is a function of the image intensity and image gradient. More
precisely, as shown in Fig. 1 (a) and (b), we first extract the intensity profile at
Yi along Ni and then determine the closest voxel Zi whose image gradient norm
is greater than a threshold and whose intensity is within a given range value.
Those threshold and range value are set on the first image and kept constant
during the cardiac cycle. In Fig. 1 (a) and (b), the way to find the point Zi is
shown in 2D for more simplicity, but it is performed using the all 3D image.

4.2 Implicit Image Forces

The image forces then may be temporally integrated either with an explicit
or implicit scheme. In [14], we used an explicit scheme for time integration.
Thus, at each time step t, we solved the approximated equilibrium equation
K̃Y t+dt = F +F t

img to compute the position Y t+dt of the mesh at the following
time step, where K̃ is the generalised stiffness matrix, F the external physical
forces and F t

img the image force as 2γi(Zt
i−Y t

i ) if Yi belongs to the heart surfaces
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and 0 otherwise. As we know the position of the mesh at time t, we could find the
point Zt

i as explained above. This explicit scheme is computationally efficient
since the generalised stiffness matrix does not change other time. However with
such scheme, the proactive deformable model tends to lag behind the image
observation which introduces a bias especially for large time steps.

Therefore, in this paper, we introduce an implicit scheme solving K̃Y t+dt =
F + F t+dt

img , which requires predicting the next image force F t+dt
img . To this end,

we use a Taylor expansion of the image point Zt+dt
i :

Zt+dt
i = Zt

i +
(
∂Zi

∂Yi

)t

(Y t+dt
i − Y t

i ) = Zt
i +B(Y t+dt

i − Y t
i ) (2)

The B matrix is a 3×3 matrix that indicates how point Zi moves as a function of
Yi. We provide here a first order approximation of this matrix by discarding the
effect of surface curvature. Thus, we consider that Yi lies on a plane with normal
Ni while Zi lies on a plane oriented by normal N img

i . With those hypotheses,
upon a displacement dYi, Zi is determined as the intersection of the line passing
through Yi + dYi and directed by Ni through the plane P img

i . Obviously, only
components of dYi orthogonal to Ni entails a change in the point Zi. Similarly,
only components orthogonal to N img

i would entail a change in point Zi. Thus,
skipping a detailed proof, one can show that the matrix B can be written as :

B =
1

cos2β
(I3×3 −N img

i ⊗N img
i )(I3×3 −Ni ⊗Ni) (3)

where β is the angle between Ni and N img
i , I3×3 is the identity matrix and

a⊗ b = abT is the dyadic product between the vectors a and b.
Finally, we need to solve the following equation: (K̃ + Kimg)Y t+dt = F +

F̃img with F̃img a vector of size 3 × N whose 3D component f̃ img,i is equal to
2γi(Zt

i − Y t
i ) + 2γi(I3×3 − B)Y t

i if Yi belongs to the myocardium surfaces, and
0 otherwise and with Kimg a block diagonal matrix whose 3 × 3 component
(Kimg)i is equal to 2γi(I3×3−B) if Yi belongs to the myocardium surfaces, and
the null matrix otherwise.

5 Boundary Constraints Estimation

Due to the modeling of the electromechanical behaviour of the heart, we have a
lot of a priori knowledge on the motion of the ventricles. But for the base of the
ventricles, near the atria, we have little a priori knowledge of the motion, and
boundary constraints are set simply by attaching base vertices to fixed springs.
Thus, we introduce here a way to estimate these boundary constraints by using
a more complex external energy.

We cannot rely on intensity profiles to find Zi as described in the previous
section. Indeed this would only estimate displacement of base vertices along its
normal direction which is ill-defined and physically incorrect. Instead, we use a
3D search method based on 3D block matching algorithm, as in [15]. We hope



6 Florence Billet, Maxime Sermesant, Hervé Delingette, and Nicholas Ayache

therefore to better recover the real motion of the base, and not only its apparent
one. Finally, we can use the similarity measure between the image blocks as a
way to control the confidence in the point Zi.

Therefore, we attach to each base vertex of the initial mesh a surrounding
block of voxels from the reference image, which is the first image of the simulation
(see section 3). Then, we search at each time step the most similar block around
the current position in the following image of the cardiac cycle (the target image)
(see Fig. 1 (c) and (d)). This is based on the assumption that the intensity
around a given vertex of the base of the mesh should be similar in the two
images, the difference coming from noise and from the movement of the vertex
between the two images, which is not very important at the base of the heart,
near the valve. The matching voxel selected is the center of the block in the
target image maximising the chosen similarity criterion. Then, in order to take
into account that the motion at the base is mainly a vertical one, we project the
vector connecting the current point and the marching voxel on the normal of the
mesh at this current point. The external force is then proportional to the norm
of this projection and directed from the normal of the mesh at the considered
point. The search range and the search step can be changed in a coarse to fine
approach, as in [15]. In this paper, we used a similarity based on the sum of
square differences, but several other similarity measures can be used depending
of the noise and the used image modalities. Moreover, these estimated boundary
constraints could be set as inputs in further simulations with the personalised
model.

(a) (b) (c) (d)

Fig. 1. (a, b) Surface image forces and corresponding Zi point in the image. (c,d) Block
matching algorithm (c) Reference image: initialisation in the reference image of the 3D
block. (d) Target image: most similar block search around the current position.

6 Results

6.1 Validation on Synthetic Data

We generated synthetic cine-MR images using the electromechanical model with
standard values. We considered 29 instants of the second simulated cycle and
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we generated the corresponding segmented 3D images, using tetrahedra raster-
isation. We use for the different state estimation a cardiac model with same
parameters as the model used to generate the synthetic data except for the
reference position and the damping value.

We choose to estimate the state using a low damping because the effect of
the implicit forces is more visible with low damped systems. Indeed in a highly
damped system all applied forces are smoothed to a large extent which entails
a delay in the reaction of the cardiac model to new image information.

We then compare the state vector estimation (position and velocity) with no
image forces and with an explicit and implicit time integration of image forces.
The gain γ of the image forces is set to the same value for the two estimations. For
each method, we computed the root mean squared error (RMSE) between the
estimated positions and the positions of the reference simulation (see Fig. 2 (a)).
The RMSE with implicit forces is lower than the one with explicit forces (15%
lower), and much lower than the one computed without image forces. Indeed, the
average of all RMSE without image forces, with explicit and implicit image forces
are respectively 14.9mm, 4.5mm and 3.6mm. Furthermore, explicit integration
with low damping leads to large oscillation in the right ventricle (see Fig.2 (b))
due to undamped high frequencies in image forces. Finally, we can see that the
mesh obtained with implicit forces better fits the segmented contour than the
mesh obtained with explicit forces.

(a) (b)

Fig. 2. (a) RMSE between the positions of the reference simulation and the positions
estimated with implicit forces (solid) and explicit forces (dashed). (b) Image and su-
perimposed meshes estimated with implicit (blue) and explicit (yellow) image forces.

6.2 Results on Clinical Data

We used cine-MRI data of a patient with a left bundle branch block (LBBB) to
test the effect of the block matching forces. The sequence consists in 30 images
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that describe a total heart cycle. The resolution of this dataset is 1.56× 1.56×
10mm3. In order to increase the robustness of the algorithms on clinical routine
cardiac MRI, images are pre-processed. First, images are trilinearly resampled
to get isometric voxel spacing (and then the resolution becomes 1.56 × 1.56 ×
1.56mm3). Next, the contrast is enhanced by removing the extrema quantiles of
the grey-level histogram. Finally, the histogram is linearly rescaled between 0
and 255 to have consistent intensities between images.

We manually adjusted the electrical parameters using the ECG and, in this
case, with some clinically measured propagation times of the patient. If we have
no measures of this propagation times, we initialize the electrical model with
the volumes curves extracted from the images, as shown in [14]. The passive
mechanical parameters used are taken from the literature [7]. In order to calibrate
the active mechanical parameters, we use the volume curve to compute the
ejection fractions, wich are closely related to these parameters. For our data, σ0

was set to 0.09 MPa/mm2 for the left ventricle, 0.07 MPa for the right ventricle
and 0.06 for the scars. The cardiac cycle duration is 1.035s.

We did three different estimations, all using the implicit forces described
above for the epicardium and the endocardium surfaces. The first estimation uses
no image forces applied to the base and no boundary constraints. The second
one uses no image forces applied to the base, but applies boundary constraints
involving fixed springs. The last one applies block matching forces on the base
and image forces in the endocardium and epicardium surfaces.

Fig. 3 shows some short and long axis views with the contours of the three
estimated positions superimposed with the corresponding MR image.

With no boundary constraints and no image forces there is no attach points
in the model of the heart which entails that the generalised stiffness matrix may
become singular. Also we have no a priori knowledge of the base motion. Thus,
large errors in the estimation may occur, as shown in Fig. 3 (d, e and f) (the
motion of left part of the left ventricle and of the top of the right ventricle is not
well recovered).

With boundary constraints on the base, the model may be too much con-
strained, specially during the contraction as shown in Fig. 3 (c and d). For
instance, the motions of the septum (see the short axis views of Fig. 3 (c and d))
and at the top of the lateral part of the right ventricle (see the long axis views
of Fig. 3 (c and d)) are not well recovered.

Finally, the block matching forces achieve a good compromise between these
two approaches. The motion of the base vertices are determined by block match-
ing instead of being fixed with springs. We can see that the right ventricle motion
has been well recovered, even during the contraction of the heart, as shown in
Fig. 3 (b, c and d). However, we can see that the motion of the top of the
septum is not well recovered, due to a not so good intitial segmentation of the
top of the septum. This segmentation error makes the initialisation of the block
matching algorithm not good, and then, the founded appariements try to keep
this error. We can see here the need of a good segmentation for the use of the
block matching approach.
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(a) t = 0s (b) t = 0.357s (c) t = 0.465s

(d) t = 0.574s (e) t = 0.743s (f) t = 0.961s

Fig. 3. MR image short axis (top) and long axis (bottom) slices at different times of
the heart cycle, with the contrours of the estimated model position without boundary
constraints (magenta), with boundary constraints (cyan) and with a block matching
algorithm (yellow)

7 Conclusion

We presented a method which relies on specific image features to recover the mo-
tion of the myocardium and estimate boundary constraints at the base. The use
of implicit time integration of image forces allows us to ensure a better accuracy
and smoother motion tracking for low damped systems. Furthermore, the use of
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a 3D block matching algorithm for the estimation of the boundary constraints
at the base appears to be a good trade off between cardiac motion recovery with
no boundary constraints and with classical boundary constraints consisting of
fixed vertices or fixed springs and set manually. Finally, these promising results
must be extended in order to perform parameter estimation of the model which
would lead to a patient-specific electromechanical model of the heart.

Acknowledgements: INRIA Research Action CardioSense3D, European
project euHeart (FP7/2007-2013 no 224495), Microsoft Research.
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