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Abstract

A new algorithm is presented for the automatic segmentation of Multiple

Sclerosis (MS) lesions in 3D Magnetic Resonance (MR) images. It builds on

a discriminative random decision forest framework to provide a voxel-wise

probabilistic classification of the volume. The method uses multi-channel

MR intensities (T1, T2, FLAIR), knowledge on tissue classes and long-range

spatial context to discriminate lesions from background. A symmetry feature

is introduced accounting for the fact that some MS lesions tend to develop

in an asymmetric way. Quantitative evaluation of the proposed methods is

carried out on publicly available labeled cases from the MICCAI MS Lesion

Segmentation Challenge 2008 dataset. When tested on the same data, the

presented method compares favorably to all earlier methods. In an a posteri-

ori analysis, we show how selected features during classification can be ranked

according to their discriminative power and reveal the most important ones.
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1. Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory and demyelinating

disease that primarily affects the white matter of the central nervous system.

Automatic detection and segmentation of MS lesions can help diagnosis and

patient follow-up. It offers an attractive alternative to manual segmentation

which remains a time-consuming task and suffers from intra- and inter-expert

variability. MS lesions, however, show a high variability in appearance and

shape which makes automatic segmentation a challenging task. MS lesions

lack common intensity and texture characteristics, their shapes are variable

and their location within the white matter varies across patients.

A variety of methods have been proposed for the automatic segmenta-

tion of MS lesions. For instance, in (Anbeek et al., 2004) and (Admiraal-

Behloul et al., 2005), the authors propose to segment white matter signal

abnormalities by using an intensity-based k-nearest neighbors method with

spatial prior and a fuzzy inference system, respectively. A similar classifier

combined with a template-driven segmentation was proposed in (Wu et al.,

2006) to segment MS lesions into three different subtypes (enhancing lesions,

T1 black holes, T2 hyperintense lesions). A false positive reduction based on

a rule-based method, a level set method and a support vector machine classi-

fier is presented in (Yamamoto et al., 2010) along with a multiple-gray level

thresholding technique. Many general purpose brain tissue and brain tumor

segmentation approaches can be modified easily for MS lesion segmentation.

In (Bricq et al., 2008b), for example, the authors present an unsupervised

algorithm based on hidden Markov chains for brain tissue segmentation in
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MR sequences. The method provides an estimation of the proportion of

white matter (WM), grey matter (GM) and cerebro-spinal fluid (CSF) in

each voxel. It can be extended for MS lesions segmentation by adding an

outlier detector (Bricq et al., 2008a).

Generative methods were proposed consisting in a tissue classification by

means of an expectation maximization (EM) algorithm. For instance, the

method presented in (Datta et al., 2006) aims at segmenting and quantifying

black holes among MS lesions. The EM algorithm can be modified to be

robust against lesion affected regions, its outcome is then parsed in order

to detect outliers which, in this case, coincide with MS lesions (Van Leem-

put et al., 2001). Another approach consists in adding to the EM a partial

volume model between tissue classes and combining it with a Mahalanobis

thresholding which highlights the lesions (Dugas-Phocion et al., 2004). Mor-

phological postprocessing on resulting regions of interest was shown to im-

prove the classification performance (Souplet et al., 2008). In (Freifeld et al.,

2009), a constrained Gaussian mixture model is proposed, with no spatial

prior, to capture the tissue spatial layout. MS lesions are detected as out-

liers and then grouped in an additional tissue class. Final delineation is

performed using probability-based curve evolution. Multi-scale segmenta-

tion can be combined with discriminative classification to take into account

regional properties (Akselrod-Ballin et al., 2006). Beyond the information

introduced via the spatial prior atlases, these methods are limited in their

ability to take advantage of long-range spatial context in the classification

task.

To overcome this shortcoming, we propose the use of an ensemble of dis-
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criminative classifiers. Our algorithm builds on the random decision forest

framework which has multiple applications in bioinformatics (Menze et al.,

2009), and, for example, more recently also in the image processing com-

munity (Andres et al., 2008; Yi et al., 2009; Criminisi et al., 2010). Adding

spatial and multi-channel features to this classifier proved effective in object

recognition (Shotton et al., 2009), brain tissue segmentation in MR images

(Yi et al., 2009), myocardium delineation in 3D echocardiography (Lempitsky

et al., 2009) and organ localization in CT volumes (Criminisi et al., 2010).

Applying multi-channel and context-rich random forest classification to

the MS lesion segmentation problem is novel, to our knowledge. The pre-

sented classifier also exploits a specific discriminative symmetry feature which

stems from the assumption that the healthy brain is approximately symmet-

ric with respect to the mid-sagittal plane and that MS lesions tend to develop

in asymmetric ways. We then show how the forest combines the most dis-

criminative channels for the task of MS lesion segmentation.

2. Materials

This section describes the data, algorithms and notations which are re-

ferred to in the rest of the article.

2.1. MICCAI Grand Challenge 2008 dataset

The results in this article rely on a strong evaluation effort. This section

presents the MICCAI1 Grand Challenge 2008 datasets, which is the largest

1MICCAI is the annual international conference on Medical Image Computing and

Computer Assisted Intervention.
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dataset publicly available, and explains the way our method is compared

against the winner of the challenge (Souplet et al., 2008). In the rest of the

article, the MICCAI Grand Challenge 2008 on MS Lesions Segmentations

will be referred as MSGC.

2.1.1. Presentation

The MSGC (Styner et al., 2008a) aims at evaluating and comparing al-

gorithms in an independent and standardized way for the task of MS lesion

segmentation. The organizers make publicly available two datasets through

their website. A dataset of labeled MR images which can be used to train

a segmentation algorithm, and an unlabeled dataset on which the algorithm

should be tested. The website offers to quantitatively evaluate the segmen-

tation results on the unlabeled dataset using the associated private ground

truth database, and to publish the resulting scores. This project is an original

initiative to provide an unbiased comparison between MS lesions segmenta-

tion algorithms. In the rest of the article, the dataset for which labels are

publicly available will be referred to as public dataset, whereas the dataset

for which data is not available will be referred to as private dataset.

2.1.2. Data

The public dataset contains 20 cases, 10 from the Children’s Hospital in

Boston (CHB) and 10 from the University of North Carolina (UNC), which

are labeled by a CHB expert rater. The private dataset contains 25 cases, 15

from CHB and 10 from UNC. The private dataset was annotated by a single

expert rater at CHB and jointly by 2 expert raters UNC. For each case,

the centers provided 3 MR volumes: a T1-weighted image, a T2-weighted
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image and a FLAIR image. These were co-registered and sampled to fit the

isotropic 0.5× 0.5× 0.5 mm3 resolution.

Both private and public datasets gather anatomical images from two dif-

ferent centers, CHB and UNC, and shows high variability in intensity contrast

(cf. Section 5.2), image noise and bias field. Both public and private datasets

contain highly heterogeneous cases and could thus be considered as realistic

test cases.

2.1.3. Evaluation

Quantitative evaluation is carried out on the private dataset using a set

of known metrics defined in (Styner et al., 2008a) and summed up in Table 1.

The two full sets of expert segmentations were used as reference for method

comparison.

2.1.4. Top-ranked methods

The challenge results highlight four top-ranked methods each reflecting a

different approach to the task of MS lesion segmentation. A k-nearest neigh-

bor classification of brain tissue relying on spatial location and intensity value

was proposed in (Anbeek et al., 2008). This method provides a voxel-wise

probabilistic classification of MS lesions. In (Bricq et al., 2008a), the authors

present an unsupervised segmentation algorithm based on a hidden Markov

chain model. The method takes into account neighborhood information, MR

sequences and probabilistic priors in order to delineate MS lesions. Alter-

natively, the iterative method proposed in (Shiee et al., 2008, 2010) jointly

performs brain tissue classification and MS lesion segmentation by combin-

ing statistical and topological atlases. Finally, in (Souplet et al., 2008), the
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Name Definition Unit Best Worse

TNR
TN

FP + TN
% 100 0

TPR
TP

TP + FN
% 100 0

FPR
FP

FP + TN
% 0 100

PPV
TP

TP + FP
% 100 0

V O
V ol(Seg ∩GT )
V ol(Seg ∪GT )

% 0 100

V D
V ol(Seg)− V ol(GT )

V ol(GT )
% 0 < ∞

SD

∑

v∈∂(Seg)

min
u∈∂(GT )

d(u, v) +
∑

v∈∂(GT )

min
u∈∂(Seg)

d(u, v)

card(Seg ∪GT )
mm 0 < ∞

Table 1: The evaluation metrics true negative rate (TNR), true positive rate (TPR),

false positive rate (FPR) and positive predictive value (PPV ) are defined using the fol-

lowing notations: true positives (TP ), true negatives (TN), false positives (FP ) and false

negatives (FN). The volume overlap (V O) and the relative absolute volume difference

(V D) evaluates the differences between the segmentation (Seg) and the ground truth

(GT ) by computing their volume (V ol). The average symmetric surface distance (SD)

measures how close the segmentation and the ground truth are from each other using

the Euclidean distance d on the set of boundary voxels noted ∂. The best, respectively

worse, column contains the metric score of the perfect segmentation, respectively of a

completely-off segmentation.

authors show that a global threshold on the FLAIR MR sequence, infered

using an EM brain tissue classification, suffices to detect most MS lesions.

The final segmentation is then constrained to appear in the white matter by

applying morphological operations.

The method proposed in (Souplet et al., 2008) won the MICCAI MS

Segmentation Challenge 2008. For this specific method, the segmentation

results on public and private datasets were made available by the authors
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and will be used as reference. In the rest of the article, methods will be

identified by their reference.

2.2. Data preprocessing

We sub-sample and crop the images so that they all have the same size,

159×207×79 voxels, and the same resolution, 1×1×2 mm3. Sub-sampling

and cropping intend to reduce the time spent learning the classifier. The

preprocessing procedure corrects for RF acquisition field inhomogeneities

(Prima et al., 2001) and performs inter-subject intensity calibration (Rey,

2002). Spatial normalization is also performed by aligning the mid-sagittal

plane with the center of the images (Prima et al., 2002).

Spatial prior is added by registering the MNI atlas (Evans et al., 1993)

to the anatomical images, each voxel of the atlas providing the probability of

belonging to WM, GM and CSF (cf. Figure 1). The Image Fusion module

of MedINRIA (INRIA, 2010) is used to perform the affine registration of the

MNI atlas onto every single case.

2.3. Notations

The multi-channel aspect of the method presented in this article requires

to carefully define and name each channel. MR images from the MSGC

dataset will be noted Is where the index s ∈ {T1, T2, FLAIR} stands for

an MR sequence. Registered spatial priors will be noted Pt where the index

t ∈ {WM,GM,CSF} stands for a brain tissue class.

Although having different semantics, anatomical images and spatial pri-

ors will be treated under the unified term signal channel and denoted C ∈
{IT1, IT2, IFLAIR, PWM , PGM , PCSF}.
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Figure 1: Case CHB07 from the public MSGC dataset. From top to bottom: three

axial slices of the same patient. From left to right: preprocessed T1-weighted (IT1), T2-

weighted (IT2) and FLAIR MR images (IFLAIR), the associated ground truth GT and

the registered white matter atlas (PWM ).

The data consists of a collection of voxel samples described by their spatial

position x = (x, y, z). Voxels can be evaluated in all available signal channels.

The value of the voxel x in channel C is denoted C(x).

3. Methods

This section describes our adaptation of the random decision forests to

the segmentation of MS lesions and illustrates the visual features employed.

9



3.1. Context-rich decision forest

Our detection and segmentation problem can be formalized as a binary

classification of voxel samples into either background or lesions. This classifi-

cation problem is addressed by a supervised method: discriminative random

decision forest, an ensemble classifier using decision trees as base classifiers.

Decision trees are discriminative classifiers which are known to suffer from

over-fitting (Breiman et al., 1984). A random decision forest (Amit and Ge-

man, 1997) achieves better generalization by growing an ensemble of many

independent decision trees on a random subset of the training data and

by randomizing the features made available to each node during training

(Breiman, 2001).

3.1.1. Forest training

The training data consists of a set of labeled voxels T = {xk, Y (xk)}
where the label Y (xk) is given by an expert. When asked to classify a new

image, the classifier aims to assign every voxel x in the volume a label y(x).

In our case, y(x) ∈ {0, 1}, 1 for lesion and 0 for background.

The forest has T components with t indexing each tree. During training,

all observations (voxels) xk are pushed through each of the trees. Each

internal node applies a binary test (Shotton et al., 2009; Yi et al., 2009;

Lempitsky et al., 2009; Criminisi et al., 2010) as follows:

tτlow,τup,θ(xk) =





true, if τlow ≤ θ(xk) < τup

false, otherwise
(1)

where θ is a function identifying the visual feature extracted at position

xk. There are several ways of defining θ, either as a local intensity-based
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average, local spatial prior or context-rich cue. These are investigated in

more detail in the next section. The value of the extracted visual feature is

thresholded by τlow and τup. The voxel xk is then sent to one of the two child

nodes based on the outcome of this test.

During training, each node p is optimized using the partition of the train-

ing data Tp it receives as input. At the end of the training process, each node

p is assigned to the optimal binary test tλ
∗
p , where λ∗p = (τ ∗low, τ ∗up, θ

∗)p. The

optimality criterion is the information gain, denoted IG, as defined in (Quin-

lan, 1993)

IG(λ, Tp) = H(Tp)−H(Tp|(tλ(xk))k) (2)

where Tp ⊂ T and where H denotes the entropy. More precisely, the term

H(Tp|(tλ(xk))k) measures the error made when approximating the expert

labeling Y by the binary test tλ. The optimal parameter λ∗p maximizes the

information gain

λ∗p = arg max
λ

IG(λ, Tp) (3)

for node p. As a result, the optimal binary test is the test discriminating

lesion from background voxels such as maximizing the information gain.

Only a randomly sampled subset Θ of the feature space is available at

each node for optimization, while the threshold space is uniformly discretized.

The optimal λ∗ = (τ ∗low, τ ∗up, θ
∗) is found by exhaustive search jointly over

the feature and threshold space. Random sampling of the features leads to

increased inter-node and inter-tree variability which improves generalization

(Breiman, 2001).

Trees are grown to a maximum depth D. At the node level, a leaf node

is generated when the information gain is below a minimal value IGmin.
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As a result of the training process, each leaf node lt of every tree t receives

a partition Tlt of the training data. The partition Tlt can be divided into two

sets respectively containing background and lesion voxels and defined as

T b
lt = {(x, Y (x)) ∈ Tlt|Y (x) = b} (4)

where b ∈ {0, 1} stands for the background and lesion class, respectively.

Subsequently, the following empirical posterior probability is defined

plt(Y (x) = b) =
|T b

lt
|

|Tlt|
(5)

and stored at the leaf node.

Figure 2 illustrates how the decision trees partition the data in the feature

space and how resulting probabilities are stored in leaf nodes.

3.1.2. Prediction

When applied to a new test volume Ttest = {xk}, each voxel xk is prop-

agated through all the trees by successive application of the relevant bi-

nary tests. When reaching the leaf node lt in all trees t ∈ [1..T ], posteriors

plt(Y (x) = b) are gathered in order to compute the final posterior probability

defined as follows:

p(y(x) = b) =
1

T

T∑
t=1

plt(Y (x) = b) (6)

which is a mean over all the trees in the forest. This probability may be

thresholded at a fixed value τposterior if a binary segmentation is required.

A posterior map Pb is obtained by applying the same prediction procedure

to all voxels. Thus for every voxel x, Pb(x) = p(y(x) = b) is the posterior
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Figure 2: Decision trees encode feature space partitions. (a) A decision tree of

depth D = 2 is considered in this example. Decision node 1 and leaf nodes 5 and 6 are

colored to track the partitions of the training data in the feature space. The black cross

stands for an unseen sample (voxel) which is classified while propagated down the tree.

(b) A zoom on node 2 shows that its binary test, denoted by tτlow,2,τup,2,θ2 , is optimized

over a partition of the training data, denoted by T2 = {vk,2, Y (vk,2)}. The leaf node 6

encloses the class distribution of the set of voxels reaching it during training. The classes

are background in blue and lesion in red. (c) The dots stand for the training voxels and are

colored according to their class. The black cross denotes a voxel from an unseen volume

considered for prediction. Every decision node in the forest applies an axis-aligned feature

test. Here we focus on decision nodes 0 and 2 using features θ0 and θ2, respectively.

probability of belonging to the class b. This probability map can be thresh-

olded at a fixed value to obtain a segmentation. Choosing τposterior = 0.5 is

equivalent to looking for b∗ = arg max
b

Pb(x).
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Figure 3: Posterior maps learned from two distinct synthetic training sets. In

both cases, the training data consists of two classes, green and red, and is used to learn a

large forest, here T = 350. The posterior map is obtained by classifying a dense grid in the

feature space and is then overlayed with the associated training data (shown as points).

Larger opacities indicate larger probability of a pixel belonging to a class while uncertain

regions are indicated by less saturated colours. The white line plots the locus of points for

which p(y(x) = green) = p(y(x) = red). We observe that 1) forest posteriors mimic the

maximum-margin behavior, 2) uncertainty increases when moving away from the training

data.
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3.1.3. Advantages

The probabilistic random forest framework presented in this section shows

considerable advantages over other classifiers, e.g. support vector machines

(SVMs). Indeed, it combines efficient probabilistic classification and trans-

parent feature selection as detailed below.

When a new case is presented to the classifier, every voxel goes through

a sequence of decisions on different channels. As a result, the posterior

probability affected to each voxel measures the confidence of this voxel being

an MS lesions in the multi-channel space infered from training.

Trees from the same forest are all independent from one another. The

posterior map can thus be computed in parallel: each tree computes its

own posterior map, they are then combined to form the final result (cf.

Section 3.1.2). The training of the random forest can also be parallelized in

a trivial manner by learning each tree independently from the others.

Moreover, unlike more “black-box” supervised methods such as SVMs

or neural networks, the random forest framework enables us to enter the

learned trees and identify the most discriminative features. In Section 5.4,

we take advantage of this property to draw a detailed analysis of the most

discriminative visual features for the task of MS segmentation.

The following properties motivate the use of random forests framework

for the task of MS lesions segmentation: 1) when applying the random forest

the binary trees can be evaluated extremely fast in prediction; 2) thanks to

parallelism training on MR volumes is fast; 3) as a result of the training pro-

cess, an optimal sequence of decisions, including most informative channels

and visual features, is effortlessly available (cf. Section 5.4.2).
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In many applications, random forests have been found to generalize better

than SVM or boosting (Yin et al., 2010). The generalization power increases

monotonically with increasing the forest size. Unlike SVM and boosting, ran-

dom forests also estimate the confidence of the prediction as a by-product of

the training process. Figure 3 shows the feature space of an exemplary seg-

mentation problem. It illustrates that the random forest also generalizes well

in regions of the feature space with sparse data support, which is beneficial.

The uncertainty increases in those areas in feature space which have little

data support and on the boundary between classes. This is an important

expected behavior, similar to that of Gaussian Processes (Bishop, 2006).

Another interesting property of random forests lies in the way they sep-

arate the feature space. In Figure 3, probability maps show the highest

uncertainty values on voxels equidistant of the two classes. This is a feature

the random forest classifier shares with maximum-margin classifier such as

SVMs (Bernhard Schlkopf and Smola, 1999).

3.2. Visual features

This section aims at presenting the visual features and at arguing the

underlying motivation.

Two kinds of visual features are computed:

1. local features:

θloc
C (x) = C(x) (7)

where C is an intensity or a prior channel, and C(x) is the value of

channel C at position x;
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2. context-rich features comparing the voxel of interest with distant re-

gions.

The first context-rich feature compares the local voxel value in channel

C1 with the mean value in channel C2 over two 3D boxes R1 and R2 within

an extended neighborhood:

θcont
C1,C2,R1,R2

(x) = C1(x)− 1

V ol(R1)

∑

x′∈R1

C2(x
′)− 1

V ol(R2)

∑

x′∈R2

C2(x
′) (8)

where C1 and C2 are both intensity or prior channels. The regions R1 and R2

are sampled randomly in a large neighborhood of the voxel x (cf. Figure 4).

The sum over these regions is efficiently computed using integral volume

processing (Shotton et al., 2009). The random sampling of the features is part

of the random forest framework and were used in previous work (Criminisi

et al., 2009, 2010; Yi et al., 2009).

The second context-rich feature compares the voxel of interest at x with

its symmetric counterpart with respect to the mid-sagittal plane, noted S(x):

θsym
C (x) = C(x)− C(S(x)) (9)

where C is an intensity channel.

A new version of the symmetry feature loosens the hard symmetric con-

strain as the size of the neighborhood increases, in order to take into account

the fact that the brain is not perfectly symmetric. Instead of comparing with

the exact symmetric S(x) of the voxel, the minimal difference value within

a close neighborhood of S(x), denoted S, is chosen. Three different sizes are

considered for this neighborhood: 6, 26 and 32 neighbors respectively (cf.
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Figure 4). We obtain a softer version of the symmetric feature which reads:

θsym
C,S (x) = min

x′∈S
{C(x)− C(x′)} (10)

To summarize, three visual features are introduced: local, neighborhood

and symmetry features. They can be thought as meta-features to be used on

top of standard image filters, such as local moments, gradients or textures,

rather than replacing them. In our case, visual features are evaluated on

raw images and spatial priors, but any other channel could be added, e.g.

intensity gradient as described in (Yi et al., 2009).

The presented features can be applied individually to every voxel, un-

like e.g. geometric moments. This is an essential property which enables

voxel-wise image classification. The presented method not only provides a

voxel-wise classification, but also integrates neighborhood information in the

classification process thanks to context-rich features. The use of 3D boxes

to integrate neighborhood information is motivated by the fact that they are

extremely efficient through integral volume processing (Shotton et al., 2009).

4. Experiments and results

Results presented in this section aim at evaluating the segmentation re-

sults and comparing the context-rich random forest approach to methods

presented during the challenge (Souplet et al., 2008; Anbeek et al., 2008;

Bricq et al., 2008a; Shiee et al., 2008). Experiments described here are dis-

cussed in Section 5.

Exhaustive segmentation results are available for both public and private

datasets under the following url:

ftp://ftp-sop.inria.fr/asclepios/Published-Material/Ezequiel.Geremia/
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Figure 4: 2D view of context-rich features. (a) A context-rich feature depicting two

regions R1 and R2 with constant offset relatively to x. (b-d) Three examples of randomly

sampled features in an extended neighborhood. (e) The symmetric feature with respect

to the mid-sagittal plane. (f) The hard symmetric constraint. (g-i) The soft symmetry

feature considering neighboring voxels in a sphere of increasing radius. See text for details.

4.1. Results on the public MSGC dataset

For quantitative evaluation, the 20 available cases from the public dataset

are classified and compared to other methods (Souplet et al., 2008; Anbeek

et al., 2008; Bricq et al., 2008a; Shiee et al., 2008). A three-fold cross-

validation is carried out on this dataset: the forest is trained on 2
3

of the

cases and tested on the other 1
3
, this operation is repeated 3 times in order

to collect test errors for each case.

The binary classification is evaluated using two measures, true positive

rate (TPR) and positive predictive value (PPV ), both equal 1 for perfect

segmentation (cf. Table 1).

Forest parameters are fixed to the following values: number of random

regions |Θ| ' 950, number of trees T = 30, tree depth D = 20, lower bound
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for the information gain IGmin = 10−5, posterior threshold τposterior = 0.5.

Parameters T and D are set here to maximum values, Section 5.3 explains

how these parameters can be optimized in order to improve segmentation

results.

Tables in supplemental material report extensive results allowing com-

parison on every case of the MSGC public dataset. It shows that the learned

context-rich random forest achieves better TPR in all cases (cf. top bar plot),

and better PPV in 70% of the cases (cf. center bar plot). Computed p-values

for the pair-sample t-test show that these improvements are significative for

both TPR (p = 1.3 · 10−7) and PPV (p = 0.0041) scores.

Metric [%] Souplet et al. Context-rich RF RI [%] p-value

TPR 19.21± 13.68 39.39± 18.40 105 1.3 · 10−7

PPV 29.55± 16.26 39.78± 20.19 35 0.0041

Table 2: Comparison of context-rich random forests with method presented in

(Souplet et al., 2008) on the public dataset. Relative improvement over (Souplet

et al., 2008), defined as RI = (scoreRF − scoreother)/scoreother, are significant for both

TPR (p = 1.3 · 10−7) and PPV (p = 0.0041) scores. Significant improvements over

(Souplet et al., 2008) are highlighted in bold.

4.2. Results on the private MSGC dataset

A context-rich random forest was learned on the whole public dataset

from the MS Lesion Challenge, i.e. 20 labeled cases. Forest parameters are

fixed to the following values: number of random regions |Θ| ' 950, number

of trees T = 30, tree depth D = 20, lower bound for the information gain

IGmin = 10−5, posterior threshold τposterior = 0.5. Considerations that lead

to these parameter values are detailed in Section 5.3.
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The MSCG website carried out a complementary and independent evalu-

ation of our algorithm on the previously unseen private dataset. The results,

reported in Table 3, confirm a significant improvement over (Souplet et al.,

2008). The presented spatial random forest achieves, on average, slightly

larger true positive (TPR), which is beneficial (cf. Table 1), and comparable

false positive (FPR) rates but lower volume difference (V D) and surface

distance (SD) values (cf. Table 3). Pair-sample p-values were computed for

the t-test on the private dataset. Results show significant improvement over

the method presented in (Souplet et al., 2008) on SD (p = 4.2 · 10−6) for the

CHB rater, and on SD (p = 6.1 · 10−3) for the UNC rater.

5. Discussion

5.1. Interpreting segmentation results

Quantitative evaluation of segmentation results, for both public (cf. Ta-

bles 2) and private (cf. Tables 3, 4, 5 and 6) datasets, show that the presented

random forest framework compares favorably to top-ranked methods. More

specifically, they show significant improvement on the algorithm presented in

(Souplet et al., 2008). Exhaustive results are available in the supplemental

material allow case-by-case comparison with other methods.

The MSGC website (Styner et al., 2008b) gathers the results of the meth-

ods presented during the MSGC in 2008 as well as more recent methods which

results were submitted directly to the website. The resulting ranking affects

a score to each method. The score relates the performance of the method

against expected inter-expert variability which is known to be high for MS

lesions segmentation. A score of 90 would equal the accuracy of a human
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Rater Metric [%] Souplet et al. Context-rich RF RI [%] p-value

CHB

V D 86.48± 104.9 52.94± 28.63 −38.7 0.094

SD 8.20± 10.89 5.27± 9.54 −35.7 4.2 · 10−6

TPR 57.45± 23.22 58.08± 20.03 +1.0 0.90

FPR 68.97± 19.38 70.01± 16.32 +1.5 0.70

UNC

V D 55.76± 31.81 50.56± 41.41 −9.4 0.66

SD 7.4± 8.28 5.6± 6.67 −24.3 6.1 · 10−3

TPR 49.34± 15.77 51.35± 19.98 +3.9 0.54

FPR 76.18± 17.07 76.81± 11.70 +0.1 0.83

Table 3: Average results computed by the MSGC on the private dataset and

compared to the method presented in (Souplet et al., 2008). The relative mean

improvement on the algorithm presented in (Souplet et al., 2008) on the private dataset is

defined as follows RI = (scoreRF − scoreSouplet)/scoreSouplet. The RI and the p-values a

and is reported on top for each metric of the MSGC, associated p-values are reported below.

Independent quantitative evaluation confirms improvement on the algorithm presented in

(Souplet et al., 2008). Boldface highlights significant improvements. The spatial random

forest achieves, on average, slightly larger true positive (TPR), which is beneficial and

comparable false positive (FPR) rates but lower volume difference (V D) and surface

distance (SD) values.

rater. The method presented in (Bricq et al., 2008a) and our context-rich

random forest approach are first and second respectively. They show very

close scores, 82.1354 and 82.0755 respectively. A score of 82 places the ac-

curacy of the method just below that of a human expert. In addition, we

know that the reliability of automatic methods is generally higher than that

of human experts. Approaching the performance of a human rater is thus

even more interesting.
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Rater Metric [%] Anbeek et al. Context-rich RF RI [%] p-value

CHB

V D 46.93± 50.41 52.94± 28.63 +12.8 0.62

SD 7.85± 11.00 5.27± 9.54 −32.8 5.9 · 10−3

TPR 59.14± 21.79 58.08± 20.03 −1.80 0.84

FPR 78.51± 20.56 70.01± 16.32 −10.8 8.6 · 10−2

UNC

V D 100.7± 132.3 50.56± 41.41 −49.8 9.1 · 10−2

SD 9.77± 9.00 5.6± 6.67 −42.7 3.6 · 10−4

TPR 48.86± 21.64 51.35± 19.98 +5.10 0.38

FPR 83.19± 18.59 76.81± 11.70 −7.68 0.11

Table 4: Average results computed by the MSGC on the private dataset and

compared to the method presented in (Anbeek et al., 2008). The relative mean

improvement on the algorithm presented (Anbeek et al., 2008) on the private dataset is

defined as follows RI = (scoreRF − scoreAnbeek)/scoreAnbeek. The RI and the p-values a

and is reported on top for each metric of the MSGC, associated p-values are reported below.

Independent quantitative evaluation confirms improvement on the algorithm presented in

(Anbeek et al., 2008). Boldface highlights significant improvements. The spatial random

forest achieves, on average, better results on UNC than on CHB labels: higher true positive

(TPR), which is beneficial and lower false positive (FPR) rates, lower volume difference

(V D) and surface distance (SD) values.

Although segmentation results include most MS lesions delineated by the

expert (cf. Figures 5 and 6), we observe that some MS lesions are missing.

Missed MS lesions are located in specific locations which are not represented

in the training data, e.g. in the corpus callosum (cf. Figure 5, slice 38).

This is a limitation of the supervised approach. In this very case, however,

the posterior map highlights the missed lesion in the corpus callosum as

belonging to the lesion class with high uncertainty. Low confidence (or high
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Rater Metric [%] Bricq et al. Context-rich RF RI [%] p-value

CHB

V D 73.03± 78.80 52.94± 28.63 −27.5 0.19

SD 6.65± 6.55 5.27± 9.54 −20.8 0.20

TPR 46.70± 19.94 58.08± 20.03 +24.4 1.0 · 10−3

FPR 51.06± 25.23 70.01± 16.32 +37.1 8.3 · 10−5

UNC

V D 51.33± 27.00 50.56± 41.41 −1.50 0.92

SD 6.61± 5.23 5.6± 6.67 −15.2 0.17

TPR 39.50± 16.06 51.35± 19.98 +30.0 1.2 · 10−3

FPR 60.80± 22.75 76.81± 11.70 +26.3 8.6 · 10−4

Table 5: Average results computed by the MSGC on the private dataset and

compared to the method presented in (Bricq et al., 2008a). The relative mean

improvement on the algorithm presented (Bricq et al., 2008a) on the private dataset is

defined as follows RI = (scoreRF −scoreBricq)/scoreBricq. The RI and the p-values a and

is reported on top for each metric of the MSGC, associated p-values are reported below.

Independent quantitative evaluation confirms improvement on the algorithm presented in

(Bricq et al., 2008a). Boldface highlights significant improvements. The spatial random

forest achieves, on average, slightly larger true positive (TPR), which is beneficial, but also

slightly larger false positive (FPR) rates, and lower volume difference (V D) and surface

distance (SD) values.

uncertainty) reflects the incorrect spatial prior inferred from an incomplete

training set. Indeed, in the training set, there is no example of MS lesions

appearing in the corpus callosum.

On the contrary, the random forest is able to detect suspicious regions

with high certainty. Suspicious regions are visually very similar to MS lesions

and widely represented in the training data, but they are not delineated by

the expert, e.g. the left frontal lobe lesion again in Figure 5, slice 38. The
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Rater Metric [%] Shiee et al. Context-rich RF RI [%] p-value

CHB

V D 84.17± 120.8 52.94± 28.63 −37.1 0.22

SD 7.95± 16.65 5.27± 9.54 −33.5 9.0 · 10−3

TPR 55.40± 23.60 58.08± 20.03 +4.83 0.64

FPR 68.85± 23.75 70.01± 16.32 +1.69 0.76

UNC

V D 69.63± 115.2 50.56± 41.41 −27.4 0.42

SD 7.104± 8.93 5.6± 6.67 −21.1 0.15

TPR 49.79± 24.54 51.35± 19.98 +3.14 0.76

FPR 74.28± 20.08 76.81± 11.70 +3.41 0.50

Table 6: Average results computed by the MSGC on the private dataset and

compared to the method presented in (Shiee et al., 2008). The relative mean

improvement on the algorithm presented (Shiee et al., 2008) on the private dataset is

defined as follows RI = (scoreRF − scoreShiee)/scoreShiee. The RI and the p-values a

and is reported on top for each metric of the MSGC, associated p-values are reported below.

Independent quantitative evaluation confirms improvement on the algorithm presented in

(Shiee et al., 2008). Boldface highlights significant improvements. The spatial random

forest achieves, on average, slightly larger true positive (TPR), which is beneficial but

slightly larger false positive (FPR) rates, and lower volume difference (V D) and surface

distance (SD) values.

appearance model and spatial prior implicitly learned from the training data

points out that hyper-intense regions in the FLAIR MR sequence which lay

in the white matter (cf. Section 5.4) can be considered as MS lesions with

high confidence.

Recent histopathological studies have shown that grey matter regions are

also heavily affected by the MS disease (Geurts and Barkhof, 2008). In our

case, the public dataset does not show any MS lesion in the grey matter of
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the brain. Subsequently, the decision forest learns that MS lesions preferably

appear in the white matter. Adding new cases showing grey matter MS

lesions in the training set would allow the forest to automatically adapt the

segmentation to include this kind of lesions. This observation stresses the

necessity of gathering large and heterogeneous datasets for training purposes.

When focusing on quantitative measures, we observe that cases UNC01

and UNC06 from the public dataset show surprisingly low scores (cf. Ta-

ble 2). The labels by the CHB expert for these two cases are abnormal: the

ground truth is mirrored with respect to the anatomical images. This may

be considered as a label error and explains the low scores for these two spe-

cific cases. The MSGC website confirmed this observation and subsequently

corrected the online database. We also observe that learning on the whole

public dataset and testing on the private dataset (cf. Table 3) produces

better average results than the three-fold cross-validation carried out on the

public dataset (cf. Table 2). Again this illustrates the benefit of learning

the classifier on large enough datasets capturing better the variability of the

data.

5.2. Influence of preprocessing

Data normalization is critical in order to ensure that the feature are eval-

uated in a coherent way in all the images presented to the forest. The eval-

uation of context-rich features, θcont, is sensitive to rotation: spatial normal-

ization is performed using rigid registration (Prima et al., 2001). In the same

way, the evaluation of intensity-based features requires inter-case intensity

calibration.

Classification results for cases from the CHB (cf. Figures 5 and 6) and
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Figure 5: Segmenting Case CHB05 from the public MSGC dataset. From left to

right: preprocessed T1-weighted (IT1), T2-weighted (IT2) and FLAIR MR images (IF LAIR) overlayed with the associated

ground truth GT , the posterior map Posterior = (Plesion(vk))k displayed using an inverted grey scale and the FLAIR

sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with τposterior = 0.5). Segmentation results

show that most of lesions are detected. Although some lesions are not detected, e.g. peri-ventricular lesion in slice 38,

they appear enhanced in the posterior map. Moreover the segmentations of slices 38 and 42 show peri-ventricular regions,

visually very similar to MS lesions, but not delineated in the ground truth.
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Figure 6: Segmenting case UNC02 from the public MSGC dataset. From left

to right: preprocessed T1-weighted (IT1), T2-weighted (IT2) and FLAIR MR images

(IFLAIR) overlayed with the associated ground truth GT , the posterior map Posterior =

(Plesion(vk))k displayed using an inverted grey scale and the FLAIR sequence overlayed

with the segmentation (Seg = (Posterior > τposterior) with τposterior = 0.5).
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the UNC (cf. Figures 7 and 8) centers are obtained with the same forest. It is

mandatory to use the same preprocessing as during training (cf. Section 2.2).

By doing so, the cases from different datasets, e.g. T1-weighted and

FLAIR images in Figures 5 and 6, show very similar intensity values for a

specific brain tissue and a given MR sequence. However, we observe that

the contrast in the T1-weighted and FLAIR images is more marked in case

CHB05 (cf. Figure 5) than in case UNC02 (cf. Figure 6). Despite contrast

changes, classification results are coherent. This illustrates the stability of

our method, the random forest framework together with its preprocessing

step to slight inter-image contrast variations.

The trees are generated in parallel on 30 nodes and gathered to form the

forest. Cropping and sub-sampling the training images aims at reducing, by

a factor larger than 10, the execution time spent to learn a single tree. On

IBM e325 dual-Opterons 246 at a maximum frequency of 2Ghz, learning a

tree on 20 sub-sampled images and with parameters fixed in Section 4.2 on

a single CPU takes, on average, 8 hours.

5.3. Influence of forest parameters

The number of the trees and their depth, respectively denoted T and

D, characterize the generalization power and the complexity of the non-

parametric model learned by the forest. This section aims at understanding

the contribution of each of these meta-parameters.

A 3-fold cross-validation on the public dataset is carried out for each

parameter combination. Segmentation results are evaluated for each com-

bination using two different metrics: the area under the receiver operating

characteristic (ROC) curve and the area under the precision-recall curve.
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The ROC curve plots TPR vs. FPR scores computed on the test data for

every value of τposterior ∈ [0, 1]. The precision-recall curve plots PPV vs.

TPR scores computed on the test data for every value of τposterior ∈ [0, 1].

Results are reported in Figure 7.

We observe that 1) for a fixed depth, increasing the number of trees leads

to better generalization; 2) for a fixed number of trees, low depth values lead

to underfitting while high depth values lead to overfitting; 3) overfitting is

reduced by increasing the number of trees.

This analysis was carried out a posteriori. Tuning the meta-parameters

of the forest on the training data is not a valid practice. Using out-of-bag

samples for forest parametrization is indeed preferable. Due to the fact that

little training data is available for the MS lesion class, available labeled data

was exclusively used to train the forest. From this perspective, the forest

parameters were set to arbitrary but high enough values to avoid under- and

overfitting: T = 30 and D = 20.

Forest parameters were indeed selected in a safety-area with respect to

under- and overfitting. The safety-area corresponds to a sufficiently flat re-

gion in the evolution of the areas under the ROC and the precision-recall

curve. As shown in Figure 8, increasing the number of trees tends to benefit

the generalization power of the classifier. We also observe that the perfor-

mance of the classifier stabilizes for large enough forests.

5.4. Analysis of feature relevance

During training, features considered for node optimization form a large

and heterogeneous set (cf. Section 3.2). Unlike other classifiers, random

forests provide an elegant way of ranking these features according to their
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Figure 7: Influence of forest parameters on segmentation results. Both curves

were plotted using mean results from a 3-fold cross validation on the public dataset. Left:

the figure shows the influence of forest parameters on the area under the precision-recall

curve. Right: the figure shows the influence of forest parameters on the area under the

ROC curve. The ideal classifier would ensure area under the curve to be equal to 1 for

both curves. We observe that 1) for a fixed depth, increasing the number of trees leads to

better generalization; 2) for a fixed number of trees, low depth values lead to underfitting

while high values lead to overfitting; 3) overfitting vanishes by increasing the number of

trees.
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Figure 8: Influence of the number of trees on segmentation results. Both curves

were plotted using mean results from a 3-fold cross validation on the public dataset. Top:

the figure shows the influence of the number of trees on the area under the precision-recall

curve. Bottom: the figure shows the influence of the number of trees on the area under

the ROC curve. We observe that, for a fixed depth D = 14, increasing the number of

trees improves generalization as stated in (Breiman, 2001). The increase in performance

stabilizes around the value T = 30.
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discriminative power. In this section, we aim at better understanding which

are the most discriminative channels and visual cues (local, context-rich or

symmetric) used in the classification process.

5.4.1. Most discriminative visual features

The first approach consists in counting the nodes in which a given fea-

ture was selected. We observe that local features were selected in 24% of

the nodes, context-rich features were selected in 71% of the nodes whereas

symmetry features were selected in 5% of the nodes (cf. Figure 9). In this

case, no distinction is made as for the depth at which a given feature was

selected.

Context-rich features exhibit high variability (900 of them are randomly

sampled at every node). This variability combined with their ability to high-

light regions which differ from their neighborhood explains why they were

chosen. Together with local features, context-rich features learn a multi-

channel appearance model conditioned by tissue spatial priors. Symmetry

features are under-represented in the forest and thus prove to be the least

discriminative ones. This is due to the fact that a large proportion of peri-

ventricular MS lesions tend to develop in a symmetric way. Nevertheless,

symmetric features appear in top levels of the tree (up to third level) which

indicates that they provide an alternative to local and context-rich features

when these two fail.

A finer estimation of the feature importance consists in weighting the

counting process. For a given feature, instead of only counting the nodes in

which it appears, we also take into account the proportion of lesion voxels it

helps discriminating: “the larger the proportion of lesion voxels it helps to
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discriminate, the larger the weight of the feature”. This leads us to define

for a fixed depth value d, the importance of a given feature type, denoted

(IFT ), as:

IFT (α) =
1

|T 1|
∑

p

|T 1
p | · χα(θp) α ∈ {loc, cont, sym} (11)

where α denotes a feature type, p indices the nodes in layer d, T 1 is the

training set of lesion voxels which partition T 1
p reached node p, and χ is the

indicator function such that:

χα(θp) =





1, if θp is of type α

0, otherwise
(12)

The feature importance evaluates to 21.1 % for local features, 76.6 % for

context-rich features and 2.3 % for symmetry features. Results are compa-

rable to those obtained only by counting the features in the forest, but the

real advantage of this measure is to allow us to draw depth-by-depth feature

importance analysis in a normalized way.

The feature importance as a function of the depth of the tree is reported

in Figure 10. Presented results are averaged values over a forest containing

T = 30 trees. Again, we observe that context-rich features are predominantly

selected as the most discriminative, which confirms the trend reported in

Figure 9. However, as shown in Figure 10, the preponderance of context-rich

features is not uniform throughout the tree. Indeed, local features are the

most discriminative in layers 0 and 2. A careful analysis of selected channels

helps understanding why local features are selected in the top layers of the

tree (cf. Section 5.4.2).

The selected context-rich features show high variability. More specifically,

34



the long-range regions are distributed all over the neighborhood. Depth-

by-depth analysis does not show any specific pattern in the position of the

regions with respect to the origin voxel. In addition, the volume of the regions

also show high variability. The observed heterogeneity of selected context-

rich features aims at coping with the variability of MS lesions (shape, location

and size).

The symmetry feature is under-represented in the forest. Its discrimi-

native power is thus very low compared to local and context-rich features.

This observation induces two complementary interpretations to explain why

symmetry features are the least significant: 1) most of MS lesions appear

in peri-ventricular regions and in a symmetric way, 2) most of MS lesions

can be clearly identified by their signature across MR sequences and their

relative position in the white matter of the brain. However, in deeper layers

of the trees, the symmetry feature is more significant and tends to classify

ambiguous asymmetrical regions. When looking into the selected features,

we also notice that the hard symmetric constraint is preferred over the loose

symmetric constrain (cf. Section 3.2). Indeed, the feature importance eval-

uates to 1.6% for the hard symmetric feature, and to 0.7% for the loose

symmetric feature. Moreover, in the rare cases where the loose constrain is

selected, the 6-neighbors version predominates (cf. Section 3.2). This obser-

vation supports the idea that considering brain hemispheres as symmetric is

an accurate approximation in our specific setting (cf. Sections 2 and 3).

5.4.2. Most discriminative channels

The second approach focuses on the depth at which a given feature was

selected. For every tree in the forest, the root node always applies a test on
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Figure 9: Ranking features according to the proportion of nodes in which they

appear. Context-rich features are selected in 71% of the nodes, local features are selected

in 24% of the nodes whereas symmetry features are selected in 5% of the nodes.

the FLAIR sequence (θloc
FLAIR). It means that out of all available features,

containing local, context-rich and symmetry multi-channel features, θloc
FLAIR

was found to be the most discriminative. At the second level of the tree,

a context-rich feature on spatial priors (θcont
WM,GM) appears to be the most

discriminative over all trees in the forest. It aims at discarding all voxels

which do not belong to the white matter.

The optimal decision sequence found while training the context-rich forest

can thus be thought as a threshold on the FLAIR MR sequence followed by

an intersection with the white matter mask (cf. Figure 11). Interestingly,

this sequence matches the first and second steps of the pipeline proposed by

the challenge winner method (Souplet et al., 2008). Note that in our case, it

is automatically generated during the training process. Deeper layers in the

trees, then, refine the segmentation of MS lesions by applying more accurate

decisions.
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Figure 10: Type of feature selected by layer of the tree. For a fixed depth, the

red circle stands for the importance of the context-rich feature (θcont), while the green

circle stands for the importance of the local feature (θloc). For clarity, symmetry features

(θsym) are omitted as they are under-represented in the forest. The blue line monitors

the proportion of training samples of the lesion class which do not reside in leaf nodes, for

each layer of the tree. We observe that context-rich features are predominantly selected

as the most discriminative ones except in layers 0 and 2.
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Figure 11: Combination of features and channels learned by the forest to dis-

criminate MS lesions. The first layer of all trees in the forest performs a threshold on

the FLAIR MR sequence. The second one discards all voxels which do not belong to the

white matter. The posterior map is obtained by using a forest with trees of depth 2 and

thus highlights hyper-intense FLAIR voxels which lie in peri-ventricular regions.

The feature importance (cf. Equation 11) can be extended in a straight-

forward way to be parametrized not only by the type of feature (local,

context-rich, symmetric) but also by the channel. When globally looking

at the selected channels (cf. Figure 12), we notice that their importance

varies throughout the tree: first layers, as mentioned before, favor detection

of bright spots in the white matter by successively testing the FLAIR MR

sequence, spatial priors on WM and GM tissues and finally testing on the

T2 MR sequence; deeper layers take into account other modalities to adjust

the segmentation.

6. Conclusion

We demonstrated the power of the RF formulation applied to the difficult

task of MS lesion segmentation in multi-channel MR images. We presented

38



Figure 12: Channel importance as a function of the depth of the tree. Plots

draw the channel importance drawn as a function of the depth of the tree for both local

(top) and long-range features (bottom). For a fixed depth, only the most discriminative

channel is depicted. Note how successive layers of the tree test complementary channels:

the first layer performs a local test on the FLAIR MR sequence in order to detect bright

spots, the second one discards all voxels which do not belong to the white matter by using

context-rich information over the WM and GM channels. Note that a large spectrum of

available channels is tested throughout the tree.
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three kinds of 3D features based on multi-channel intensity, prior and context-

rich information. Those features are part of a context-rich random decision

forest classifier which demonstrated improved results on one of the state of

the art algorithms on the public MS challenge dataset. In addition, the

random decision forest framework provided a means to automatically select

the most discriminative features to achieve the best possible segmentation.

Future work could include the use of more sophisticated features to reduce

even further the preprocessing requirements. The context-rich random forest

framework presented in this article is generic which is an additional strength

of the method. It can be applied as is to any other segmentation task,

e.g. brain tumors segmentation in multi-sequence MR images of the brain.

Finally, one could investigate an extension of the proposed approach to larger

multi-class problems in order to try to simultaneously segment brain tissues

(WM, GM, CSF) along with MS lesions.
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