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Abstract. A fully automatic algorithm is presented for the automatic
segmentation of gliomas in 3D MR images. It builds on the discriminative
random decision forest framework to provide a voxel-wise probabilistic
classification of the volume. Our method uses multi-channel MR intensi-
ties (T1, T1C, T2, Flair), spatial prior and long-range comparisons with
3D regions to discriminate lesions. A symmetry feature is introduced ac-
counting for the fact that gliomas tend to develop in an asymmetric way.
Quantitative evaluation of the data is carried out on publicly available
labeled cases from the BRATS Segmentation Challenge 2012 dataset and
demonstrates improved results over the state of the art.

1 Materials and methods

This section describes our adaptation of the random decision forests to the seg-
mentation of gliomas and illustrates the visual features employed.

1.1 Dataset

To calculate the local image features – both during training and for predic-
tions – we performed an intensity normalization [1]. For each data group (i.e.
BRATS HG and BRATS LG), we fitted the intensity histogram of each sequence
(T1, T1C, T2 and FLAIR) to a reference case. Then image features are calcu-
lated for each voxel v. Features include local multi-channel intensity (T1, T1C,
T2, Flair) as well as long-range displaced box features such as in [2]. In ad-
dition we also incorporate symmetry features, calculated after estimating the
mid-sagittal plane [3]. In total, every voxel is associated with a 412−long vector
of feature responses.

We will adhere to the following notation: the data consists of a collection
of voxel samples v = (x,C), each characterized by a position x = (x, y, z)
and associated with a list of signal channels C. Signal channels C = (I,P)
include multi-sequence MR images I = (IT1, IT1C , IT2, IFlair) and spatial priors
P = (PWM , PGM , PCSF ). Anatomical images and spatial priors, although having
different semantics, can be treated under the unified term “signal channel”. We
account for noise in MR images by averaging values over a 33 voxels box centered
on x, such an average is noted Cc(x), e.g. Cc = IFlair or PGM .



1.2 Context-rich decision forest

Our detection and segmentation problem can be formalized as a multi-class
classification of voxel samples into either background, edema or tumor core.
This classification problem is addressed by a supervised method: discriminative
random decision forest, an ensemble learner using decision trees as base learners.
Decision trees are discriminative classifiers which are known to suffer from over-
fitting. A random decision forest [4] achieves better generalization by growing
an ensemble of many independent decision trees on a random subset of the
training data and by randomizing the features made available to each node
during training [5].

Forest training. The forest has T components with t indexing each tree. The
training data consists in a set of labeled voxels T = {vk, Y (vk)} where the
label Y (vk) is given by an expert. When asked to classify a new image, the
classifier aims to assign every voxel v in the volume a label y(v). In our case,
y(v) ∈ {0, 1, 2}, 2 for the tumor core, 1 for edema and 0 for background.

During training, all observations vk are pushed through each of the trees.
Each internal node applies a binary test [6–9] as follows:

tτlow,τup,θ(vk) =
{
true, if τlow ≤ θ(vk) < τup
false, otherwise

where θ is a function identifying the visual feature extracted at position xk.
There are several ways of defining θ, either as a local intensity-based average,
local spatial prior or context-rich cue. These are investigated in more detail in the
next section. The value of the extracted visual feature is thresholded by τlow and
τup. The voxel vk is then sent to one of the two child nodes based on the outcome
of this test. Training the classifier means selecting the most discriminative binary
test for each node by optimizing over (τlow, τup, θ) in order to maximize the
information gain on the input data partition [10], noted Tp, defined as follows:
IGτlow,τup,θ(Tp) = H(Tp) −H(Tp|{tτlow,τup,θ(vk)}) where Tp ⊂ T , H stands for
the entropy.

Only a randomly sampled subset Θ of the feature space is available for inter-
nal node optimization, while the threshold space is uniformly discretized. The
optimal (τ∗low, τ

∗
up, θ

∗) is selected by exhaustive search jointly over the feature
and threshold space. Random sampling of the features leads to increased inter-
node and inter-tree variability which improves generalization. Nodes are grown
to a maximum depth D. Another stopping criterion is to stop growing a node
when too few training points reach it, i.e. when the information gain is below a
minimal value IGmin.

As a result of the training process, each leaf node l of every tree t receives a
partition Tlt of the training data. The following empirical posterior probability
is then stored at the leaf plt(Y (v) = b) = |{(v, Y (v)) ∈ Tlt |Y (v) = b}|/|Tlt |
where b ∈ {0, 1} denotes the background or lesion class, respectively.

Prediction. When applied to a new test data Ttest = {vk}, each voxel vk
is propagated through all the trees by successive application of the relevant



Fig. 1. 2D view of context-
rich features. (a) A context-rich
feature depicting two regions R1

and R2 with constant offset rel-
atively to x. (b-d) Three exam-
ples of randomly sampled features
in an extended neighborhood. (e)
The symmetric feature with respect
to the mid-sagittal plane. (f) The
hard symmetric constraint. (g-i)
The soft symmetry feature consid-
ering neighboring voxels in a sphere
of increasing radius. See text for de-
tails.

binary tests. When reaching the leaf node lt in all trees t ∈ [1..T ], posteriors
plt(Y (v) = c) are gathered in order to compute the final posterior probability
defined as follows: p(y(v) = c) = 1

T

∑T
t=1 plt(Y (v) = c). The voxel vk is affected

the class c ∈ {0, 1, 2} which satisfies c = arg maxc p(y(v) = c). For each class,
the largest connected component is selected to be the final segmentation.

1.3 Visual features

In this section, two kinds of visual features are computed: 1) local features:
θlocc (v) = Cc(x) where c indexes an intensity or a prior channel; 2) context-rich
features comparing the voxel of interest with distant regions . The first context-
rich feature looks for relevant 3D regions R1 and R2 to compare within an ex-
tended neighborhood: θcontc1,c2,R1,R2

(v) = Cc1(x) − 1
vol(R1∪R2)

∑
x′∈R1∪R2

Cc2(x′)
where c1 and c2 are two signal channels. The regions R1 and R2 are sampled
randomly in a large neighborhood of the voxel v (cf. Fig. 1). The sum over
these regions is efficiently computed using integral volume processing [6]. The
second context-rich feature compares the voxel of interest at x with its symmet-
ric counterpart with respect to the mid-sagittal plane, noted S(x): θsymc (v) =
Cc(x)−Cc ◦S(x) where c is an intensity channel. Instead of comparing with the
exact symmetric S(x) of the voxel, we consider, respectively, its 6, 26 and 32
neighbors in a sphere S (cf. Fig. 1), centered on S(x). We obtain a softer version
of the symmetric feature which reads: θsymc,S (v) = minx′∈S{Cc(x)− Cc(x′)}.

2 Results

In our experiments, forest parameters are fixed to the following values: number of
random regions per node |Θ| ' 100, number of trees T = 30, tree depth D = 20,
lower bound for the information gain IGmin = 10−5. These values were chosen
based on prior parameter optimization on synthetic data (SimBRATS HG and
SimBRATS LG) and worked well for real data too.



Table 1. Segmentation of high grade gliomas in the BRATS dataset. Dice,
TPR and PPV are reported for the segmentation of the edema only, the core only and
the whole tumor.

Edema Core Tumor

Patient Dice TPR PPV Dice TPR PPV Dice TPR PPV

HG01 0.46 0.72 0.34 0.74 0.77 0.71 0.65 0.84 0.53
HG02 0.58 0.97 0.41 0.65 0.51 0.89 0.61 0.93 0.46
HG03 0.70 0.88 0.58 0.79 0.99 0.65 0.76 0.95 0.63
HG04 0.43 0.69 0.31 0.45 0.36 0.59 0.78 0.91 0.69
HG05 0.49 0.60 0.41 0.39 0.25 0.92 0.54 0.49 0.61
HG06 0.61 0.77 0.51 0.75 0.69 0.82 0.75 0.84 0.68
HG07 0.63 0.68 0.58 0.76 0.63 0.96 0.70 0.70 0.70
HG08 0.73 0.78 0.69 0.63 0.65 0.62 0.84 0.89 0.80
HG09 0.80 0.81 0.77 0.69 0.55 0.93 0.84 0.79 0.90
HG10 0.00 0.00 0.00 0.80 0.69 0.96 0.09 0.20 0.05
HG11 0.69 0.78 0.61 0.81 0.87 0.76 0.83 0.92 0.75
HG12 0.67 0.88 0.54 0.00 0.00 0.00 0.86 0.91 0.81
HG13 0.49 0.85 0.35 0.92 0.98 0.87 0.66 0.96 0.51
HG14 0.33 0.81 0.20 0.47 0.31 0.92 0.84 0.84 0.84
HG15 0.67 0.83 0.57 0.83 0.76 0.91 0.78 0.86 0.71
HG22 0.63 0.90 0.49 0.51 0.36 0.86 0.69 0.77 0.62
HG24 0.52 0.83 0.37 0.67 0.53 0.91 0.57 0.74 0.47
HG25 0.51 0.57 0.46 0.05 0.02 0.95 0.55 0.48 0.64
HG26 0.66 0.57 0.80 0.03 0.02 0.07 0.57 0.45 0.77
HG27 0.57 0.93 0.41 0.57 0.41 0.98 0.74 0.85 0.65

mean 0.56 0.74 0.47 0.58 0.52 0.76 0.68 0.77 0.64

std 0.17 0.21 0.19 0.27 0.30 0.28 0.18 0.20 0.18

For quantitative evaluation, a three-fold cross-validation is carried out on
this dataset: the forest is trained on 2

3 of the cases and tested on the other 1
3 ,

this operation is repeated three times in order to collect test errors for each case.
Note that the random forest is trained on the preprocessed data. Prediction on
a single image lasts for approximately 10 minutes.

The binary classification is evaluated using two measures, true positive rate
(TPR) and positive predictive value (PPV), both equal 1 for perfect segmen-
tation. Formally, Dice = TP

FP+2·TP+FN , TPR = TP
TP+FN and PPV = TP

TP+FP
where TP counts the number of true positive voxels in the classification com-
pared to the ground truth, FP the false positives, FN the false negatives.
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Table 2. Segmentation of low grade gliomas in the BRATS dataset. Dice,
TPR and PPV are reported for the segmentation of the edema only, the core only and
the whole tumor.

Edema Core Tumor

Patient Dice TPR PPV Dice TPR PPV Dice TPR PPV

LG01 0.00 0.00 0.00 0.83 0.92 0.76 0.71 0.67 0.77
LG02 0.43 0.35 0.56 0.32 0.23 0.49 0.70 0.55 0.96
LG04 0.46 0.35 0.66 0.05 0.16 0.03 0.62 0.62 0.62
LG06 0.45 0.41 0.48 0.18 0.99 0.10 0.49 0.87 0.34
LG08 0.30 0.29 0.32 0.44 0.37 0.55 0.71 0.63 0.81
LG11 0.21 0.46 0.13 0.14 0.24 0.10 0.47 0.86 0.32
LG12 0.26 0.52 0.17 0.00 0.00 0.00 0.49 0.62 0.40
LG13 0.22 0.27 0.18 0.00 0.00 0.00 0.42 0.32 0.61
LG14 0.19 0.20 0.19 0.00 0.00 0.00 0.34 0.47 0.27
LG15 0.34 0.34 0.34 0.00 0.00 0.00 0.22 0.29 0.18

mean 0.29 0.32 0.30 0.20 0.29 0.20 0.52 0.59 0.53

std 0.14 0.15 0.21 0.27 0.37 0.28 0.17 0.19 0.26
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