
 

 

Personalization of Reaction-Diffusion Tumor Growth Models 

in MR images: Application to Brain Gliomas Characterization and 

Radiotherapy Planning 

Ender Konukoglu*, Olivier Clatz, Hervé Delingette and Nicholas Ayache 

Asclepios Research Project, INRIA Sophia Antipolis – Méditerranée 

*This work was partially supported by Microsoft Research Cambridge 

Abstract 

Reaction-diffusion based tumor growth models have been widely used in the literature for modeling the growth of brain 

gliomas. Lately, recent models have started integrating medical images, specifically anatomical and diffusion images, in 

their formulation. On the other hand, the adaptation of the general model to the specific patient cases has not been 

studied thoroughly yet. In this chapter we address this adaptation. This chapter is a short summary of the articles 

(Konukoglu 2009a), (Konukoglu 2009b) and the thesis (Konukoglu 2009c) that we have submitted recently. In the first 

part, we describe a parameter estimation method for reaction-diffusion tumor growth models using time series of 

medical (Magnetic Resonance) images. This method estimates the patient specific parameters of the model using the 

images of the patient taken at different successive time instances. In the second part of the chapter we focus on an 

application of the personalized models aimed to improve the tumor targeting in radiation therapy. Specifically we 

address the problem of limited visualization of medical images. We describe a method for extrapolating the invisible 

infiltration margins of gliomas in the MR images and the usage of these margins in constructing irradiation margins 

taking into account the growth dynamics of the tumor. Finally for both parts we show preliminary results demonstrating 

the power and the potential benefits of the personalization.  

1. INTRODUCTION 

 Gliomas are neoplasms of glial cells which support and nourish the brain. These tumors 

have varying histopathological features and biological behavior showing different aggressiveness 

levels, from benign -grade I- to malignant -grade IV (Glioblastoma Multiforme). There has been a 

vast amount of research in mathematical modeling to describe the growth dynamics of these tumors 

(Byrne 2006, Cristini 2003, Frieboes 2007, Patel 2001, Stamatakos 2006, Zhang 2007). Lately, a 

specific type of macroscopic models, the reaction-diffusion models, received considerable attention 

from the literature in the attempt to link glioma growth models to medical images (Tracqui 1995, 
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Swanson 2000, Clatz 2005, Jbabdi 2005, Hogea 2007, Mandonnet 2008). These recent models 

integrate information coming from medical images, specifically through anatomical and diffusion 

images, in their formulation. This integration is crucial for the transfer of mathematical models to 

the clinical applications since medical images are conventionally used for diagnosis and patient 

follow-up in the clinical routine. One of the biggest challenges in this transfer is the automatic 

adaptation of mathematical models to the patient based on images. In this chapter, first we address 

the problem of adapting the recent reaction-diffusion models to specific patient cases using time 

series of medical (Magnetic Resonance - MR) images (Konukoglu 2009a). Following this, we 

address the question of retrieving relevant information for radiotherapy planning from the 

personalized reaction-diffusion models (Konukoglu 2009c). 

1.1 Reaction-Diffusion Models 

 Reaction-diffusion models describe the evolution of gliomas via proliferation of tumor cells 

and infiltration of the surrounding healthy tissue. The building block of these models is the reaction-

diffusion type partial differential equations of this form: 

    ΩnDD(x) 
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where u represents the tumor cell density, D is the local diffusion tensor (i.e. symmetric positive 

definite 3x3 matrix), ρ is the proliferation rate, Ω is the brain domain and ∂Ω represents the 

boundaries of the brain. The two terms on the right hand side correspond to the two phenomena 

described by the model: the diffusion term  u D  models the migration of tumor cells within 

the brain tissue and the reaction term ρu(1-u) models the proliferation of tumor cells. 

 Different models proposed in the literature mostly differ by the construction of the D tensor 

and the form of the proliferation term (Tracqui 1995, Swanson 2000, Giese 1996, Clatz 2005, 

Jbabdi 2005, Hogea 2007). In this chapter we concentrate on the personalization of the growth 

models proposed in (Clatz 2005) and (Jbabdi 2005). However, the methods explained in this chapter 

are independent from the exact construction of the tensor and can be applied to both of these 

formulations as well as to other reaction-diffusion models. The two aforementioned models are 



 

 

based on Equation (1) and they construct the diffusion tensor D as follows: 
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The choice of the function f is defined differently in the two models: 
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where dw is the diffusion rate in the white matter (Clatz 2005) or along the white matter fiber tracts 

(Jbabdi 2005), dg is the diffusion rate in the gray matter, Dwater=VΛV
T
 is the diffusion tensor of  

water molecules at point x with e1 being its highest eigenvalue.  

1.2 Image-Guided Model Personalization 

 Once the mathematical model describing the general dynamics of the tumor growth process 

is created, the personalization is defined as the estimation of the model parameters based on the 

observations.  The image-guided personalization focuses on determining the reaction-diffusion 

parameters, the diffusion tensor D (dw and dg) and the proliferation rate ρ, based on the observed 

evolution of the tumor in the time series medical images.  The difficulty in this estimation is due to 

the sparsity of the available information. The reaction-diffusion models describe the temporal 

evolution of tumor cell densities while in the images we only observe the evolution of the tumor 

delineation which is assumed to correspond to an iso-density contour (Burger 1988) as shown in 

Figure 1. Therefore, reaction-diffusion models are not directly applicable for the estimation 

problem. 

[FIGURE 1 TO BE PLACED HERE – images, visibility problem] 

 The problem of parameter estimation in the context of tumor growth models is a rather 

unexplored problem. A first attempt was made by Tracqui et al. in (Tracqui 1995) where they 

optimized the parameters of their model by comparing the area of the tumor observed in CT images 

at different times and the area of the simulated tumor. The drawback of this approach was to use 

tumor cell densities requiring an initialization of the density distribution throughout the brain while 

these densities are not observable in the images ( again, we observe tumor delineations).  More 



 

4 

recently, in (Hogea 2008), Hogea et al. have optimized their parameters using two different 

methods: by comparing locations of some manually placed landmarks with the model generated 

ones and by comparing tumor cell densities extracted from the images and generated by the model. 

In addition to the parameters of the reaction-diffusion model they optimize the parameters of their 

mechanical model as well. The use of tumor cell densities in the optimization process has the same 

problems as the previously mentioned method, they are not observable. The landmarks on the other 

hand, seems to be a promising approach, however, the parameter values obtained in this approach 

depend on the assumed coupling between the mechanical and the patho-physiological model. The 

resulting parameters are not purely inherent to the tumor. Recently Swanson et al. in (Swanson 

2008) proposed a parameter estimation method for the diffusion process in petri-dish experiments, 

which is consistent with the observed information in the images as it uses the tumor boundaries 

rather than tumor cell densities. They have derived analytical approximations for the evolution of 

the tumor delineation for 2 dimensional circular growth. Using the formulation for the tumor 

delineation they have estimated the diffusion coefficient for the petri-dish experiments. The 

difficulty one would encounter if one wants to apply this method to medical images is that the 

method assumes radial symmetric growth which is not the case in the brain (in-vivo). Moreover, the 

existence of a reaction term results in a different evolution than pure diffusion.  

 In this chapter, we explain and analyze a parameter estimation method for reaction-diffusion 

based tumor growth models using time series of MR images. The method is based on the evolution 

of the tumor delineation rather than tumor cell densities and in this respect it is consistent with the 

observations in the images. It also takes into account tissue inhomogeneities, fiber structures and the 

real geometry of both the patient’s brain and the tumor while remaining consistent with the image 

information. We also present preliminary promising results on 2 sets of patient data. 

1.3 Infiltration Extent of Gliomas and Constructing Model based Irradiation Margins 

 For the diagnosis and the therapy of gliomas, clinicians rely on medical images, such as 

Magnetic Resonance (MR) and Computed Tomography (CT) images, which show the mass part of 



 

 

the tumor. Current imaging techniques are not able to expose the low density infiltration (Tovi 

1994, Tracqui 1995, Swanson 2004) posing a problem for the experts in outlining the whole tumor 

and in delineating its extent ( see Figure 1 ). In radiotherapy, this problem of visualizing low density 

infiltration is addressed by outlining a constant margin of 2 cm around the visible tumor boundary 

for irradiation and assuming the whole tumor infiltration is contained within this region (Seither 

1995, Kantor 2001). This approach does not take into account the infiltration dynamics of gliomas, 

particularly the higher motility of tumor cells in white matter compared to gray matter (Giese 1996). 

As a result, the irradiation region ignoring these dynamics might not reach the full extent of the 

tumor infiltration in white matter and irradiate healthy gray matter. The importance of this problem 

was shown by Swanson et al. in (Swanson 2002) where they compare the visible part of the tumor 

with the extent of the invisible infiltration for virtual tumors grown by reaction-diffusion models. 

Personalized tumor growth models can offer solutions to this problem by integrating clinical 

information and theoretical knowledge about tumor cell dynamics. In this chapter we describe a 

new formulation which aims to solve the problem of estimating tumor cell density distribution 

beyond the visible boundary of gliomas in the images. Starting from the tumor delineation either 

found by a segmentation algorithm or manually drawn by an expert it produces a map of possible 

tumor infiltration. It uses the anatomical MR images and diffusion tensor images (DTI) to suggest 

irradiation margins taking into account the growth dynamics. We then use the extrapolated 

infiltration extents to create variable irradiation margins. The potential benefits of such margins in 

targeting tumor cells are also described.  

2. METHODS 

2.1 Parameter Estimation and Model Personalization 

 The reaction-diffusion model given in Equations (1) and (2) describes the temporal 

evolution of local tumor cell densities. In order to solve the parameter estimation problem we need 

a formulation consistent with the image: it should model the evolution of the tumor delineation 

rather than the evolution of the cell densities. In this section, first we present the traveling time 
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formulation for tumor delineation which captures the same growth dynamics as the reaction-

diffusion models while remaining consistent with the image information. Then we formulate the 

parameter estimation problem as an optimization problem based on the MR images using the 

traveling time formulation. 

2.1.1 Traveling Time Formulation for Tumor Delineation 

 The asymptotic properties of the reaction-diffusion equations under certain conditions allow 

us to construct a formulation for the tumor delineation as described above, the traveling time 

formulation. Reaction-diffusion equations and their asymptotic properties have been well studied in 

the literature (Aronson 1978, Ebert 2000). The property on which we base our derivation is the 

existence of traveling wave solutions of the reaction-diffusion equations and the convergence of 

different initial conditions to these solutions in time. 

 The constant coefficient case of Equation (1) admits a traveling wave solution in the infinite 

cylinder given as 

)()(),( uvtutxu  xn , 

 where v is the speed of the wave (front of the u distribution), n is the direction of motion of the 

wave and vt xn  is the moving frame of the traveling wave. There are two important 

characteristics of the reaction-diffusion equations and the traveling wave solutions that are very 

useful for our derivation: 

• For the traveling wave solution, all iso-density contours of the distribution u move with the same 

speed v. 

• Any compact support initial condition u(x,0) of the reaction-diffusion equation (1) converges to 

the traveling wave solution in time ( see Figure 2 ). Therefore, the traveling wave solution serves 

as a good approximation for a certain class of solutions of the reaction-diffusion equation.  

Based on these two characteristics we can model the evolution of the tumor delineation through the 

speed of the traveling wave.  

[PLACE FIGURE 2 – convergence of the reaction-diffusion initializations to the traveling wave] 



 

 

The asymptotic speed v of the traveling wave solution is given as a function of the model 

parameters  

Dnn'2v , (3) 

 where this speed is defined in the infinite cylinder under the constant coefficient assumption. In the 

case of the tumor modeling the shape of the tumor is arbitrary and the model coefficients can be 

spatially and temporally varying. Therefore, the above assumptions should be relaxed.  Under the 

assumptions that the tumor delineation is planar and coefficients are constant within each image 

voxel, we can write a preliminary traveling time formulation for the tumor delineation using v: 

1'2  TT D , (4) 

 xx 0)( TT , (5) 

where T(x) is an implicit time function representing the time when the tumor delineation passes 

through the point x. Equation 5 represents the Dirichlet type boundary condition stating that the 

tumor delineation reaches the surface Γ in T0 time since its emergence. The value of T0 is the 

absolute time value and it is not known from the images. However, we do not need to know this 

value in order to evolve the tumor delineation with the model given in Equation (4). The 

formulation given by Equations (4) and (5) is in a sense a first order approximation. It does not take 

into account the convergence rate of the initial distribution u to the traveling wave solution - see 

Figure 2 - and the effect of the curvature of the tumor delineation on its speed. These effects can be 

included, leading to the final traveling time formulation for the tumor delineation as follows 

(Konukoglu 2009a) 
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where the term     TT 2/34   is the effect of the tumor rate of convergence and the term with 

κeff  is the effect of the tumor delineation’s curvature on its evolution. The traveling time formulation 
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given in Equation (6) describes the evolution of the tumor delineation in the MR images based on 

the same growth dynamics as the reaction-diffusion models. In the formulation given in Equation 

(6) we notice the T dependence of the equation. This means that the value of T0 becomes important 

for the simulation. As we have noted this value is cannot be known in the clinical routine this seems 

to pose a problem. However, we solve this problem by treating this value as another model 

parameter to be optimized for. 

 In Figure 3 we show an example evolution simulated using the traveling time formulation to 

show that it captures the same growth dynamics as the reaction-diffusion model given in Equations 

(1) and (2). We compare the evolution of a synthetic tumor delineation simulated by the reaction-

diffusion model (in white) and by the traveling time formulation (in black). In the case of the 

reaction-diffusion model the synthetic delineation is obtained by thresholding the tumor cell density 

distribution, which would not be available in patient cases. 

[PLACE FIGURE 3 – comparison of the traveling time with reaction-diffusion] 

2.1.2 The Parameter Estimation Formulation 

 Since we have linked the reaction-diffusion model and the evolution of the tumor 

delineation through traveling time formulation, we can formulate the parameter estimation problem 

using this link. In the reaction-diffusion model given in Equations (1) and (2) there are three 

different parameters: dw,  dg and ρ. In addition to these, in the previous section we added another 

parameter T0 in the traveling time formulation as a result of integrating the convergence 

characteristics of the reaction-diffusion solutions. This results in 4 parameters to estimate for. Our 

aim is to optimize these parameters such that the evolution simulated using the traveling time 

formulation best matches the real evolution observed in the time series of MR images.   

 As the first step we define a discrepancy measure between the simulated tumor evolution 

and the observed one for a given set of parameters. Minimizing this discrepancy then would provide 

us the optimum model parameters. Our strategy in defining this discrepancy is to use the symmetric 

surface distances between the simulated and the real delineations and also add a criterion regarding 



 

 

the initial size of the tumor in the first acquired image.  The resulting criterion becomes a quadratic 

measure as follows: 
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where N is the number of images, Γi is the delineation enclosing the tumor in the i
th

 image, dist() is 

the symmetric distance between two surfaces, Δti is the time difference between the i
th 

 and the first 

MR image, xmin is the point where the simulated T reaches its minimum and nmax is the principal 

eigenvector of D(xmin). In Equation (7) the summation measures the distance between the simulated 

and the real observations. This is obtained by running the traveling time formulation outwards 

starting from the delineation of the tumor obtained in the first image and comparing the 

corresponding simulated and observed delineations for the other images. The other term in the same 

equation, 
2

0minmin TTv  , takes into account the size of the visible tumor in the first image and 

quantifies the coherency of this size with the model parameters. We compute this value by 

simulating the traveling time evolution within the tumor delineation in the first image and compare 

the minimum T value obtained with the T0 parameter. If all the parameters of the model are coherent 

with the observations then this term should equal to zero. 

 We define the parameter estimation problem as the minimization of the error measure 

defined in Equation (7). Different optimization algorithms can be used for this purpose. Since the 

gradients of C are not trivial to find analytically we prefer to use a general algorithm which 

approximates the gradient directions. In this work we use the algorithm proposed by Powell in 

(Powell 2001) which finds the gradient directions by fitting quadratic surfaces to the underlying 

minimization surface. Computation times depend on the size of the tumor and the number of 

images. As an example for a high grade glioma with a time series of 4 images of size (256x256x53) 

the minimization takes around 50 minutes on a 2.4 GHz Intel Pentium machine with 1 Gb of RAM. 
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In Figure 4 we provide an example showing the inputs and the outputs of the parameter estimation 

method. 

[PLACE FIGURE 4 – inputs and the outputs of the parameter estimation method] 

2.2 Extrapolating Infiltration Extent and Adaptive Irradiation Margins 

 In the previous section we presented a method to personalize the reaction-diffusion type 

tumor growth models using the MR images of the patient. Here we assume that we have the 

personalized model and we present a method to extrapolate the cell density distribution of the tumor 

beyond its delineation in the image. This method produces a map of possible tumor infiltration that 

is not visible in the image. Then using this map we describe a method for constructing variable 

irradiation margins taking into account the growth dynamics of the tumor. 

2.2.1 Extrapolating Invisible Infiltration Extents of Gliomas 

 In order to formulate the extrapolation method first we need an imaging model for the 

gliomas. We assume that this imaging process can be modeled using a Heaviside function as done in 

(Tracqui 1995) and in (Swanson 2000). The imaging function Im is given as 
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we define 1 as enhanced, 0 as non-enhanced regions in the image and u0 is the tumor cell density 

threshold of the imaging modality. This simplistic model assumes that the delineations in the images 

correspond to an iso-density contour of the tumor cell density distribution. A more general imaging 

function can be used and similar ideas presented below would be applicable. Based on this 

definition the problem of extrapolating cell density distribution of a tumor beyond its delineation in 

the image is defined as  

 0)Im(|),()(~
0  xxxxx Tuu , (11) 

where u~ approximates the actual tumor distribution at a time instant T0 . Unlike the forward 

modeling of the tumor growth, the construction of the approximation u~ is a static problem and it 

does not involve the time evolution of the tumor. Moreover, in the clinical situations, the value of 



 

 

T0, which indicates the time elapsed between the emergence of the tumor and the image acquisition 

is not available.  

 The ability to personalize reaction-diffusion models give us the opportunity to construct u~

for patient images. The asymptotic properties of the reaction-diffusion equations explained in 

Section 2.1 allow us to write the following formulation 
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In this equation Γ is the tumor delineation in the image either found by a segmentation algorithm or 

drawn manually. For the derivation of this formulation we ask the reviewer to refer to (Konukoglu 

2009c). Equation (12) provides us a gradient relationship for u~ . In order to solve this equation we 

start from the enhanced part of the tumor in the image and sweep the brain tissue outwards 

computing possible tumor cell density values at every point. Since the equation is an anisotropic 

Eikonal equation and such a solution it can be rapidly constructed using Fast Marching methods 

suitable to the exact form of the equation (Konukoglu 2007). In Figure 5, for a virtual tumor grown 

by the reaction-diffusion model, we demonstrate the visible part of the tumor, the invisible 

infiltration and the reconstructed tumor cell density based only on the visible part of the tumor and 

personalized parameters. We observe the similarity between the distributions.  

[PLACE FIGURE 5] 

2.2.2 Adaptive Irradiation Margins  

 In conventional radiotherapy the irradiation margins are constructed based on the tumor 

geometry visible in the medical images. The margin takes into account the enhanced area of the 

tumor in the image plus a constant margin around the delineation to deal with the low cell density 

infiltration (Kantor 2001). This approach assumes that the tumor cells would diffuse within the 

brain tissue homogeneously around the visible tumor. It does not take into account the growth 

dynamics of the tumor especially the differential motility (Giese 1996).  

 The extrapolation method presented in the previous section gives us a map of possible tumor 
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infiltration that is not visible in the images. We can use this to construct irradiation margins adapted 

to this map. Our strategy is to first construct the conventional constant margin irradiation region Mc 

and then create the adapted margins Mv by molding Mc such that Mv takes into account the 

infiltration extent constructed as explained in the previous section. We refer the reader to 

(Konukoglu 2009c) for the details of this construction. In Figure 6 we demonstrate the two margins, 

the constant and the variable ones. For a virtually grown tumor we show the visible part of the 

tumor, its invisible infiltration and the constant and the variable irradiation margins constructed 

based on its visible part.  

[PLACE FIGURE 6 – variable irradiation margin] 

3. RESULTS 

3.1 Parameter Estimation and Model Personalization 

 The evaluation of parameter estimation for tumor growth models using real patient images is 

not easy because we do not have access to the real values of the parameters. The real values could 

be found using microscopic in-vivo analysis however, up to the best of our knowledge such a study 

has not been performed yet. In this work we perform an indirect evaluation for the proposed 

parameter estimation method using patient images. For a given patient dataset, we estimate the 

parameters using all but the image taken at the last time point. Then using the estimated parameters 

we simulate the evolution of the tumor delineation for the time elapsed between the 2 last images. 

We then compare the evolution predicted using the estimated parameters and the travelling time 

formulation with the one observed in the last image. The correlation between the prediction and the 

observed delineation provides us with a qualitative evaluation of the estimated parameters. 

 In the parameter estimation process it is shown in (Konukoglu 2009a) that estimating all the 

parameters of the model independently using the evolution of the tumor delineations in the images 

results in non-unique solutions. Therefore in this study we fix the proliferation rates ρ of the tumors 

to the values suggested in the literature. We only estimate for the diffusion rates and the initial time 

estimates. In fixing the value of ρ we assume that this value can be estimated based on the biopsy 



 

 

results and microscopic analysis using the relation between the mitotic index (MI) and the labelling 

index (LI) (Johannessen 2006).  

As a preliminary step we use two patient datasets which include anatomical and diffusion 

tensor MR images. The dataset for the first patient, who suffers from a high grade glioma 

(Glioblastoma Multiforme), includes T1-post gadolinium MR images (with the resolution of 

0.5x0.5x6.5 mm3) at three successive different time points and diffusion tensor MR image (with the 

resolution of 2.5x2.5x2.5 mm3) taken at the second time point. The second patient suffers from a 

low grade glioma  (second grade astrocytoma) and the dataset for this patient includes T2 flair MR 

images (with the resolution of 0.5x0.5x6.5 mm3) at 5 successive time points and the DT-MRI 

image (with the resolution of 2.5x2.5x2.5 mm3) taken at the first time point. For both cases the 

tumor boundaries were manually delineated by an expert in each image separately.  

[PLACE FIGURE 7 – high grade patient] 

[PLACE FIGURE 8 – low grade patient] 

The images used to estimate parameters, the estimated parameters and the predicted evolution of the 

tumor delineations along with the real delineations are given in Figures 7 and 8. In the images in 

both Figures, first we show the anatomical images at the time of detection and the intermediate 

images used in the parameter estimation. On the intermediate images we also plot the manual 

delineations for the underlying image (white contour) and the simulated evolution of the tumor 

delineation with the estimated parameters (dark contour) obtained in the course of estimation.  

Following this we start from the last image (in time) used in the parameter estimation and predict 

the evolution of the tumor delineation until the acquisition of the final image (which was not used in 

the estimation). In the corresponding images we show the anatomical MR image taken at the last 

time point showing the final state of the tumor along the tumor delineation predicted using the 

estimated parameters drawn as the dark contour. In the accompanying tables we provide the values 

of the estimated parameters. 
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 We observe in Figure 7(c) that the prediction of the tumor delineation is in very good 

agreement with the final state of the tumor. In the case of the low grade tumor shown in Figure 8, 

the correlation between the predicted tumor delineation and the final state of the tumor is in line 

with our previous arguments. We observe that the slow evolution of the tumor is well captured by 

the estimated parameters. For the proliferation rate we pick a lower value than the one in the 

previous case since it is a lower grade tumor. 

3.2 Extrapolating Infiltration Extent and Adaptive Irradiation Margins 

 In this section we assess the quality of the extrapolation method and the method for 

constructing the variable, adaptive irradiation margins. In order to understand the potential benefits 

of extrapolating the infiltration extents of gliomas and constructing irradiation margins adapted to 

these results we perform experiments on synthetic images. We create a dataset of virtually grown 

tumors using the reaction-diffusion models where the tumors are grown in the MR images of a 

healthy subject (1x1x2.6 mm
3
 resolution). Different tumors in the dataset are created using different 

model parameters and different seed points in the brain. For each tumor we construct synthetic 

images using the Im() function given in Equation 10 with u0=0.4, value consistent with (Tracqui 

1995). We assume that the detection and the first image acquisition take place when the average 

diameter of the visible tumor reaches 1.5 cm. After the detection for each tumor we construct a 

synthetic image every 50 days for 1 year (8 images in total). An example of the created synthetic 

image with the synthetic tumor is shown in Figure 6. For the tumors in the dataset we construct the 

constant and the variable irradiation margins based on their visible parts in the images. Since for the 

virtual tumors, the cell density at every location is known – even if the image does not show tumor 

at that point – we carry out a quantitative comparison. We geometrically compare these margins 

based on two criteria: 

1. R: number of tumor cells not targeted and 

2. Vol: volume of healthy tissue targeted by the irradiation margin. 

In order to compute these values we follow the values given in (Tracqui 1995) we assume that a 



 

 

voxel of 1x1x2.6 mm
3
 can hold a maximum of 9.1x10

4
 tumor cells. At the time of detection of high 

grade gliomas, isolated tumor cells can be found in any region in the brain. Therefore, there is no 

completely healthy brain. In order to compute the Vol value we need to define “healthy tissue”. In 

this work we define a voxel to be healthy if there are on the average less than 1 tumor cell in it. In 

Figure 9 for a synthetic tumor we show the comparison between the constant and the variable 

irradiation margins. We plot the R vs. time and Vol vs. time graphs. We observe that the variable 

irradiation margins adapted to the extrapolated infiltration extents targets more tumor cells and less 

healthy tissue. 

[PLACE FIGURE 9 – showing the R vs. time and Vol vs. time graph for an example tumor. Give 

the parameter values in the caption.]  

 The experiments presented above use synthetic images and virtually grown tumors. 

Validating the presented methods on real images would require the knowledge of tumor cell density 

distributions throughout the brain. This could be obtained with post-mortem analysis or with animal 

models. This would be the topic of a future study.  

4. CONCLUSION 

 In this chapter we presented methods to personalize reaction-diffusion type tumor growth 

models in MR images. Our aim was to bridge the gap between the mathematical tumor growth 

models and the clinical applications. In this spirit, first we focused on a method for personalizing 

the generic reaction-diffusion growth models based on time series of MR images. The method 

described the evolution of the tumor delineation in the images based on the growth dynamics 

captured by the reaction-diffusion models. Based on this formulation it optimized for the model 

parameters such that the resulting simulations best matches the observed evolution of the tumor 

boundaries in the MR images. The results shown in Section 3 demonstrated promising preliminary 

findings.  

 As a second part, we presented an application of personalized tumor growth models for 

radiotherapy to demonstrate clinical relevance of the personalization process. We constructed the 
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possible tumor infiltration map of gliomas starting from their visible delineation in the MR images. 

Using this map we proposed variable irradiation margins which are adapted to the modeled growth 

dynamics of the observed tumor. We also showed potential benefits of such variable irradiation 

margins compared to constant ones.  

 Although a preliminary validation was performed a thorough validation remains to be done 

on animal models and post-mortem analysis.  
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Captions 

Fig1: (Left) T2-weighted and (Middle) T1-weighted post-gad MR images showing a high grade glioma. The bulk 

tumor and the infiltrated edema are the enhanced regions in the left and the middle images respectively. (Right) 

Hypothetical distribution of tumor cell density is a smooth transition starting from the bulk tumor extending 

beyond the edema. 

Fig2: Any initial condition with compact support when evolved with reaction-diffusion equations (in the infinite 

cylinder and constant coefficients) converges to the traveling wave solution. (Left) A Heaviside initialization is 

evolved in time. (Middle)We plot the distribution at different times on the moving frame. (Right) The traveling 

wave solution has an asymptotic speed shown in dashed curve however, when we observe the speed of the tumor 

front (u=0.5 iso-density contour) we notice the low rate of convergence (solid curve). An approximation of the 

tumor front’s speed including time convergence and curvature we get a better approximation (point-dashed 

curve).  

Fig3: Comparison between the reaction-diffusion model and the Eikonal Approximation: The temporal evolution 

of the iso-density contour is demonstrated for a synthetic tumor. Contours are shown for days 400, 600, 800,  

1000 and 1200 from the innermost to outermost respectively. The synthetic tumor is virtually grown using the 

reaction-diffusion model. White contours are obtained by thresholding the tumor cell densities at u = 0.4 for the 

respective day values (400-600-800-1000-1200). Then in order to simulate the evolution of the iso-density contour 

(assumed to correspond to tumor delineation in real images) starting from day=400, without the knowledge of 

the tumor cell density distribution we use the traveling time formulation.  Black curves are the contours we 

obtain at days 600 (2nd innermost)  to 1200 (outermost). The tumors were grown in the images of a healthy 

subject for whom we also have the DT-MRIs. Parameters:  (dw = 0.25 mm2/day,dg = 0.01 mm2/day,ρ = 0.012 

day−1). The figure is Copyright © 2009 IEEE. 

Fig4: The inputs and the outputs of the parameter estimation method for a virtual tumor grown by reaction-

diffusion modes are shown. Top row shows the tumor delineations as observed in medical images and also the 



 

 

DT-MRI image of the subject. Bottom row shows the outputs of the method. The white contours are the tumor 

delineations observed in the images, the red contours are the evolution of the tumor delineation simulated by the 

traveling time formulation with optimized parameters. 

Fig5: Example of an extrapolated image for a synthetic tumor. (Left) The image of a synthetic tumor is shown, 

where the white region is the visible part. The not-imageable infiltration region is also shown in color (from 

white=high density to green=low density). (Middle) The low density infiltration extrapolated by the proposed 

method starting from the visible part. (Right) Iso-density contours of the actual distribution (red solid) and the 

corresponding ones of the extrapolated distribution (white solid). The black contour is the tumor delineation 

visible in the image. We observe the high global resemblance. 

Fig6: The proposed variable irradiation region construction takes into account the growth dynamics of the 

tumor. Figure shows the two irradiation margin construction approaches and the synthetic tumor cell 

distribution they aim to target. Figure (Left) cell distribution of the synthetic tumor. The white region is the 

visible part while the colored region is the infiltration not visible in the image. Figures (Middle) and (Right)  

show constant and variable irradiation regions overlaid on the tumor distribution respectively. Blue regions 

represent the areas to be irradiated. For the synthetic tumor the variable margin better covers the extent of the 

infiltration therefore provides a better targetting. 

Fig7: The parameter estimation method is applied to the images of a real patient suffering from high grade 

glioma. Images in columns (Left column) and (Middle column) shows different slices of the T1-post gadolinium 

images which are used to estimate the parameters of the growth model as: ρ=0.05/day (set), dw=0.66 mm
2
/day, 

dg=0.0013 mm
2
/day. In (Middle column) we also show the manual delineation of the tumor (in white) used in 

parameter estimation along with the optimum simulation obtained by the estimated parameters (in black)  (only 

white contour is shown in (Left column) since it is the same as the black one). (Right column)  The final image 

shows the final state of the tumor and the evolution of the delineation predicted by the estimated parameters as 

the black contour. The figure is Copyright © 2009 IEEE. 

Fig8: As a second case we applied our methodology to the images of a patient suffering from a low grade tumor. 

Images (First three columns) show different slices of the T2 flair images and the manual delineations (in white) 

which are used to estimate the parameters of the growth model as: ρ=0.008/day (set), dw=0.20 mm
2
/day, dg=7x10

-4
 

mm
2
/day. Also in these images we show the simulated evolution of the tumor delineation obtained by the 

estimated parameters in black contours. The simulated evolution starts from the white contour in the Image 

(Left column). Images (Right column) are the slices of the final image showing the final state of the tumor and 

the delineation predicted by the estimated parameters as the black contour. The figure is Copyright © 2009 

IEEE. 
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Fig9: For an example virtual tumor we plot the R vs. time (Left) and Vol. vs. time plots (Right). Each time point 

corresponds to an image taken in the study as explained in Section 3.2 We see that potentially variable 

irradiation margins can improve the accuracy of irradiation margins. 
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