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AbstratMathematial models and more spei�ally reation-di�usion based models havebeen widely used in the literature for modeling the growth of brain gliomas andtumors in general. Besides the vast amount of researh foused on mirosopi andbiologial experiments, reently models have started integrating medial imagesin their formulations. By inluding the geometry of the brain and the tumor, thedi�erent tissue strutures and the di�usion images, models are able to simulate themarosopi growth observable in the images. Although generi models have beenproposed, methods for adapting these models to individual patient images remainan unexplored area.In this thesis we address the problem of �personalizing mathematial tumorgrowth models�. We fous on reation-di�usion models and their appliationson modeling the growth of brain gliomas. As a �rst step, we propose a methodfor automati identi�ation of patient-spei� model parameters from series ofmedial images. Observing the disrepanies between the visualization of gliomasin MR images and the reation-di�usion models, we derive a novel formulationfor explaining the evolution of the tumor delineation. This �modi�ed anisotropiEikonal� model is later used for estimating the model parameters from images.Thorough analysis on syntheti dataset validates the proposed method theoretiallyand also gives us insights on the nature of the underlying problem. Preliminaryresults on real ases show promising potentials of the parameter estimation methodand the reation-di�usion models both for quantifying tumor growth and also forprediting future evolution of the pathology.Following the personalization, we fous on the linial appliation of suhpatient-spei� models. Spei�ally, we takle the problem of limited visualizationof glioma in�ltration in MR images. The images only show a part of the tumor andmask the low density invasion. This missing information is ruial for radiotherapyand other types of treatment. We propose a formulation for this problem based onthe patient-spei� models. In the analysis we also show the potential bene�ts ofsuh the proposed method for radiotherapy planning.The last part of this thesis deals with numerial methods for anisotropi Eikonalequations. This type of equation arises in both of the previous parts of this the-sis. Moreover, suh equations are also used in di�erent modeling problems, om-puter vision, geometrial optis and other di�erent �elds. We propose a numerialmethod for solving anisotropi Eikonal equations in a fast and aurate manner. Byomparing it with a state-of-the-art method we demonstrate the advantages of ourtehnique.





RésuméLes modèles mathématiques et plus spéi�quement les modèles basés sur l'équationde réation-di�usion ont été utilisés largement dans la littérature pour modéliser laroissane des gliomes érébraux et des tumeurs en général. De plus la grande lit-térature de reherhe qui onentre sur les expérienes biologiques et mirosopiques,réemment les modèles ont ommené intégrer l'imagerie médiale dans ses formu-lations. Inluant la géométrie du erveau et elle de la tumeur, les strutures desdi�érentes tissues et la diretion de di�usion, ils ont montré qu'il est possible desimuler la roissane de la tumeur omme 'est observé dans les images médiales.Bien que des modèles génériques ont été proposés, les méthodes pour adapter esmodèles aux images d'un patient reste un domaine inexploré.Dans ette thèse nous nous adressons au problème de �personnalisation de mod-èle mathématique de la roissane de tumeurs.� Nous nous foalisons sur les modèlesde réation-di�usion et leurs appliations sur la roissane des gliomes érébrales.Dans la première étape, nous proposons une méthode pour l'identi�ation automa-tique des paramètres �patient-spéi�ques� du modèle à partir d'une série d'images.En observant la divergene entre la visualisation des gliomes dans les IRMs et lesmodèles réation-di�usion, nous déduisons une nouvelle formulation pour expliquerl'évolution de la délinéation de la tumeur. Ce modèle �Eikonal anistropique modi-�é� est utilisé plus tard pour l'estimation des paramètres à partir des images. Nousavons théoriquement analysé la méthode proposée à l'aide d'un base donne synthé-tique et nous avons montré la apaité de la méthode et aussi sa limitation. En plus,les résultats préliminaires, sur les as réels montrent des potentiels prometteurs dela méthode d'estimation des paramètres et du modèle de réation-di�usion pour laquanti�ation de la roissane de tumeur et aussi pour la prédition de l'évolutionfutur de la tumeur.En suivant la personnalisation, nous nous onentrons sur les appliations lin-iques des modèles �patient-spéi�ques�. Spéi�quement, nous nous attaquons auproblème de la visualisation limitée d'in�ltration de gliome dans l'IRM. En e�et,les images ne montrent qu'une partie de la tumeur et masquent l'in�ltration basse-densité. Cette information absente est ruiale pour la radiothérapie et aussi pourd'autre type de traitements. Dans e travail, nous proposons pour e problèmeune formulation basée sur les modèles �patient-spéi�ques�. Dans l'analyse de etteméthode nous montrons également les béné�es potentiels pour la plani�ation dela radiothérapie.La dernière étape de ette thèse se onentre sur les méthodes numériques del'équation �Eikonal anisotropique�. Ce type d'équation est utilisé dans beauoupde problèmes di�érents tel que la modélisation, le traitement d'image, la vision parordinateur et l'optique géométrique. Ii nous proposons une méthode numériquerapide et e�ae pour résoudre l'équation Eikonal anisotropique. En la omparantave une autre méthode état-de-l'art nous démontrons les avantages de la tehniqueproposée.
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Chapter 1Introdution
Contents1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Problems Investigated . . . . . . . . . . . . . . . . . . . . 21.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . 31.1 ContextHow an we desribe the progression of tumors through mathematial models andomputer simulations? This question has been keeping sientists busy for the last 30years. Mathematiians, liniians, biologists, physiists and omputer sientists areollaborating to takle this problem. Considering the omplexity of the dynamis oftumor growth and the fat that most of the underlying phenomena have not beendisovered yet, these attempts will ontinue for a while. This thesis is a humbleontribution towards these goals.Caner is one of the leading auses of death and it is not neessary to desribe itsgraveness. The important point to note is that it is beoming more ommon and wehave not yet totally understood the reasons for its ourrene and the way to ureit. Vast amount of experimental researh in biology and mediine enlightens manydi�erent aspets of the dynamis of aner progression. They provide information inmany di�erent sales from genetis to tissue. Mathematial modeling is importantin this respet as it provides a melting pot for all these experimental results. Modelsprovide a systemati struture that brings these results together and shows us theoverall piture. This gives us the opportunity to better understand the tumor growthand interation between di�erent fators and also to help liniians in diagnosingand treating tumors.Mathematial modeling of tumor growth has reeived onsiderable attentionduring the last 30 years. Di�erent modeling attempts have been proposed spanninga large range of sales and tehniques desribing di�erent dynamis and phenomenonin the growth proess. Although lots of e�orts have been given to formulate morerealisti and detailed models, little attention has been given to the appliability ofthese models to linial data and their personalization. As the models beome moresophistiated the gap between the information linially available and needed by themodels widen. As a result adapting mathematial models to patient data beomeharder.The motivation of this thesis is therefore to study the link between mathemat-ial tumor growth models and medial images in attempt to reate tools useful in1



2 CHAPTER 1. INTRODUCTIONlinial settings. Instead of going one step further in detailing existing models andmaking them more realisti, we take a step bakward and searh for ways to applythese models to spei� patient data using images. In this manner we take a morepragmati approah to tumor growth modeling.Although tumors in di�erent parts of the body have ertain ommon hara-teristis they also di�er in many ways. Therefore, eah tumor should be studiedseparately. In this thesis we fous on the modeling of a spei� type of brain tumor,gliomas. In attempt to link medial images and the growth models, we start from anexisting model explaining the growth of gliomas, whih is based on the well knownReation-Di�usion (RD) equations, and study its link with the available informationin Magneti Resonane Images (MRI).1.2 Problems InvestigatedIn the previous setion we have set the general motivation of this thesis as studyingthe link between tumor growth models and medial images. This is a very omplexproblem with di�erent omponents suh as theoretial analysis of the models, physisof the image aquisition and biologial analysis of the tissue response to tumorgrowth. Of ourse, this thesis does not aim to provide solutions to all these problems.It is rather intended to be a part of a ollaborative work takling all these mentionedomponents. In this thesis we fous on the theoretial analysis of a type of tumorgrowth model, whih is based on reation-di�usion equations. In this respet wefous on three di�erent problems:
• Image Guided Personalization of Reation-Di�usion Type TumorGrowth Models: The �rst problem we takle is adapting the reation-di�usion tumor growth model to spei� patient images, personalizing themodel. This adaptation an also be formulated as estimating the parametersof the reation-di�usion tumor growth model using time series of medial im-ages taken from the same patient. So the exat question we try to solve is:How to estimate these patient-spei� parameters that would best explain theprogression of the tumor observed in the images? How to reate the patient-spei� model?
• Extrapolating Extents of Glioma Invasion in MRI: Medial imagesare one of the main soure of information in diagnosing and treating braintumors. Espeially in radiotherapy, images are ruial in planning the therapyand outlining the area whih will be irradiated. The images however, annotshow the whole extent of gliomas due to the invasive nature of this type oftumor. The extent of the whole tumor goes beyond the visible part in theimage and the possible diretion of this �undetetable� extension is importantin outlining the irradiation area. The seond question we takle in this thesisis: How an we extrapolate this undetetable extension from the visible part ofthe tumor in the image using patient-spei� models?
• Anisotropi Eikonal Equations: The third point of fous in this thesisarose from the �rst two questions detailed above. The mathematial formula-



1.3. ORGANIZATION OF THE THESIS 3tions we derived to solve the �rst two questions ended up to have the form ofmodi�ed anisotropi Eikonal equations. Moreover, after reviewing other typeof models for di�erent organs and pathologies we realized the importane ofthis type of equations. Therefore, the third question we ask is a more method-ologial question: How to solve anisotropi Eikonal equations in a fast andaurate manner?1.3 Organization of the ThesisThis thesis is organized around the three questions explained in the previoussetion. We �rst start by providing general information about gliomas and medialimages followed by bakground information on tumor growth modeling. Afterthe bakground we present our work on the three main questions making up theontributions of this thesis. The detailed desription of the material overed ineah hapter is given below.Chapter 2 gives some general knowledge on brain tumors and more spei�allyon gliomas. Di�erent types of gliomas, the grading onventions and di�erentbehavior of these tumors are explained brie�y. We also give some informationabout the appearane of gliomas in MRI as this is ruial for the understanding ofthe remainder of the thesis.Chapter 3 provides an overview of the literature on tumor growth modeling.In this hapter we do not distinguish between brain tumors and tumors in theother parts of the body as the modeling attempts are linked together. The mainapproahes of modeling, di�erent sales of models, di�erent tehniques and di�erentphenomena modeled are overed in this hapter. We disuss brie�y about modelsfousing on mirosopi dynamis and models working with information omingfrom medial images. In this hapter we also give a review of di�erent imageanalysis tehniques whih use tumor growth modeling to takle di�erent problemssuh as segmentation and registration.Chapter 4 explains our approah to the problem of personalizing the reation-di�usion type tumor growth models. In this hapter we fous on the disrepanybetween the information required by the reation-di�usion models and the informa-tion available in medial images. Reation-di�usion models desribe the evolutionof tumor ell density distributions however, in medial images we only observeboundaries between the enhaned/unenhaned tumoral region and the healthytissue. In order to solve this disrepany, through asymptoti approximations wederive a formulation whih desribes the evolution of tumor delineations in theimages based on the dynamis of reation-di�usion growth models. Using thismore onsistent mathematial desription, we formulate the parameter estimationproblem for reation-di�usion type tumor growth models using time series ofpatient images.



4 CHAPTER 1. INTRODUCTIONChapter 5 analyzes the parameter estimation methodology presented in Chapter4. We present experimental results on syntheti and real images. Throughsynthetially reated data sets we perform theoretial analysis of the method andshow the feasibility of the parameter estimation problem under the onstraint ofmedial images, spei�ally we show the non-uniqueness of the solution of themost general ase. We also show that under ertain assumptions the parameterestimation problem an be solved and ertain values unique to eah tumor anbe extrated from medial images, suh as the speed of progression. Followingthis analysis, on real data we present promising results showing the ability ofthe method in �nding the set of parameters whih well desribes the evolution ofthe tumor observed in MR images. Moreover, we demonstrate the power of theestimated parameters and the reation-di�usion models (or rather the formulationderived from the RD models) in prediting the future evolution of the tumor inimages.Chapter 6 explains the problem of limited visualization of gliomas in medialimages. In this hapter we propose a solution to this problem based on dynamisdesribed by the reation-di�usion models. Again through asymptoti approxima-tions we derive an extrapolation formulation whih starting from the visible partof the glioma in the MR image extrapolates the possible extents of the gliomaundetetable in the image. In other words the proposed method onstruts thetumor ell density distribution beyond the visible mass in the image.Chapter 7 presents the syntheti experiments we have performed to test theextrapolation method desribed in Chapter 6. We �rst analyze the method to see ifthe extrapolated invasion extent mathes the atual tumor ell density distributionof a synthetially grown tumor. After verifying this we turn our attention to theplanning of radiotherapy. We fous on the phase of outlining the irradiation marginsstarting from the tumor delineation in the image. In onventional radiotherapy aonstant margin of 1.5-2 m is outlined around the tumor delineation to aountfor the undetetable extent of the glioma. In this hapter we show that a variablemargin onstruted aording to the possible extent of the glioma, theoretially,may better target the tumor and harm less healthy brain tissue.Chapter 8 fouses on the numerial solutions of a type of partial di�erentialequation, the anisotropi Eikonal equations. This type of equations arise in the�rst two problems we presented in Chapters 4 and 6. Moreover, anisotropi Eikonalequations also arise in the modeling of di�erent organs and pathologies, espeiallyin ardiovasular and wound healing models. On the other hand, these equationsare not inherent to biologial/physiologial modeling, they also arise in di�erent�elds suh as geophysis and omputer vision. Therefore, fast and aurate solversfor suh equations are important for di�erent domains. In this hapter we propose anumerial method for anisotropi Eikonal equations whih extends the well knownFast Marhing method to work in anisotropi domains. We detail our method andprovide several experiments inluding omparison with one of the state-of-the-artsolvers to demonstrate the performane of the proposed algorithm.



1.3. ORGANIZATION OF THE THESIS 5Chapter 9 onludes this thesis by going over the ontributions we have proposedin eah hapter and providing the perspetives for the future work.Appendix A gives a brief overview on Hamilton-Jaobi equations whih areextensively used in this thesis. This overview is by no means omplete and itjust aims to introdue this topi oarsely to readers who are not familiar with it.Hamilton-Jaobi equations is a wide lass of partial di�erential equations and theemphasis in this appendix is given to the type of equations mentioned in this thesis.Appendix B gives the algorithmi details on the minimization algorithm used inChapter 4. This algorithm is proposed by Powell in [Powell 2002℄ and the reviewin this Appendix goes over the basi steps of the method for ompleteness of thethesis.
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Chapter 2Brain Tumors and Medial Images
Contents2.1 Brain Tumors . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Gliomas (Astroytomas) . . . . . . . . . . . . . . . . . . . 92.3 Imaging Gliomas with Magneti Resonane . . . . . . . 102.3.1 Magneti Resonane Imaging (MRI) . . . . . . . . . . . . 102.3.2 Appearane of Gliomas in MRI . . . . . . . . . . . . . . . 12ContextThe tehniques and methods presented in this work deal with the mathematialmodeling of brain tumors and the use of magneti resonane images for this purpose.Therefore, some knowledge about brain tumors, magneti resonane images andappearane of tumors in these images is neessary. In this hapter we provide briefinformation about brain tumors in Setion 2.1 and spei�ally brain gliomas inSetion 2.2 sine they are the main fous of this thesis. In Setion 2.3 we desribeshortly the magneti resonane imaging and the appearane of brain gliomas onthese images. Detailed information about any of these three topis is outside thesope of this work. Please refer to [Wilson 1999℄ for information on gliomas andbrain tumors and refer to [Westbrook 1998, Liang 2000℄ for detailed information onmagneti resonane imaging.2.1 Brain TumorsThe term �tumor� originally means abnormal swelling of the �esh and is derived fromthe Latin word tumor whih means swelling. In the urrent use tumor means a lesionwhih is formed by abnormal growth and unontrolled rapid ellular proliferationthat possesses no funtion, a neoplasm. A tumor that is loated in the brain is alleda brain tumor. Brain tumors are not very ommon pathologies, urrent statistisindiates around 100 inidenes per year in 100,000 people in the developed world.In the ase of hildren the rate of inidene is even lower, 4.5 inidenes in 100,000.Even though these values are not very high, brain tumors are among the leadingause of aner-related death for all ages [DeAngelis 2001, ABTA 2008a℄.Brain tumors an be oarsely divided into groups using two di�erent lassi�a-tions, aording to the degree of their aggressiveness and aording to their origin.In terms of aggressiveness the brain tumors are lassi�ed as benign and malignant.7



8 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGESBenign brain tumors proliferates slowly and they rarely spread to the surroundingtissue. They would have a normal appearane under the mirosope and globallythey would show distint borders between the tumor and the brain tissue. Most ofthe time, if it an be done, the tumor an be totally removed by surgery. Althoughmost of these tumors are not life threatening, they may be so depending on theirsize and their loation in the brain. Malignant brain tumors on the other hand,proliferate rapidly and invade the healthy areas of the brain. Their borders are notlear due to their in�ltrative nature making surgial removal di�ult. Moreover,they show neoangiogenesis and nerosis. Their ells an travel and olonize otherparts of the brain and the spinal ord through erebrospinal �uid. These tumors arelife-threatening with a low survival rate [Tovi 1993, Wilson 1999, DeAngelis 2001℄.The distintion between benign and malignant brain tumors is not obvious andrequires the de�nition of a set of riteria and grading systems. In order to failitatethe diagnosis and the therapy planning, tumors are graded based on their aggres-siveness. The most ommonly used grading system is the one proposed by the WorldHealth Organization (WHO). Grading of a tumor takes into aount di�erent fatorssuh as mitoti index, vasularity, presene of a neroti ore, invasive potential andsimilarity to normal ells. In the WHO system 4 grades are used to lassify tumorwhih are summarized in the Table 2.1Table 2.1: WHO Tumor Grades and CharateristisGrade CharateristisGrade I - slow proliferation - ells look like normal - long survivalrate - e.g.. piloyti astroytomasGrade II - relatively slow proliferation - ells look like almost normal- may invade - may reur as grade II or a higher gradeGrade III - rapidly reproduing - ells look abnormal - vasular pro-liferation - invade surrounding tissue - tends to reur - e.g..Anaplasti astroytomasGrade IV - very rapid proliferation - very abnormal appearane of ells- invasion of large areas - reurs - neroti ore - forms newvasularization to support growth - e.g. Glioblastoma Mul-tiformeThe lassi�ation of brain tumors in terms of their origin also has two groups:primary and metastati. Primary tumors are the ones that originate from the brainells and stay in the brain. They an our at any age however, statistially they aremore ommon in hildren and in older adults. These tumors an be benign or malig-nant. Di�erent tumors in this group are named based on the type of ells they origi-nate from. Examples of these tumors are gliomas, meningiomas, medulloblastomas,ependymomas and pituitary tumors. Among these the most important ones aremeningiomas as they form the biggest part of all primary brain tumors and gliomasbeause they represent the majority of the malignant brain tumors [DeAngelis 2001℄.Metastati brain tumors are formed by aner ells whih began growing in anotherpart of the body and then traveled to the brain. These tumors are by nature malig-



2.2. GLIOMAS (ASTROCYTOMAS) 9nant and they are the most ommon type of brain tumors. Majority of the anerswhih metastasize to the brain are lung and breast.2.2 Gliomas (Astroytomas)In this thesis we mainly fous on a spei� type of brain tumor, the gliomas. Gliomasare the neoplasms of glial ells whih support and nourish the brain. These tu-mors appear most ommonly in the erebral hemisphere but they an also be foundanywhere else in the brain like the erebellum. They an arise either alone oras a reurrene of a pre-existing tumor. The fators that ause glial tumors ismostly unknown but the only identi�ed risk for these tumors is the ionizing radia-tion [DeAngelis 2001℄.Gliomas have varying histopathologial features and biologial behavior. Theyover a large range aggressiveness and grades from benign grade I, piloyti astroy-tomas, to malignant grade IV, glioblastoma multiforme (GBM). The di�erent fatorsanalyzed for grading these tumors inlude mitosis rates, mirovasular proliferation,nulear atypia and nerosis [Wilson 1999℄. The lowest grade gliomas, namely thepiloyti astroytomas, stand a little di�erent than the other ones. These tumorsdo not in�ltrate and they grow very slowly by means of mitosis. Although they anbeome large, they are not life-threatening and most of them are urable. Grade Igliomas are most ommonly seen in pediatri ases. The higher grade gliomas fromII to IV are alled di�use gliomas and they share ertain harateristis. Thesetumors in�ltrate into the surrounding tissue and invade the healthy brain. Thegrade II ones, di�usive astroytomas, grow slowly however they show malignantprogression despite therapy. The higher grade ones, anaplasti astroytomas andglioblastoma multiforme, grow very rapidly and invade the brain in tentales pene-trating into the brain parenhyma. They are usually surrounded by edema and thegrade IV ones reate extensive network of blood vessels and ontain neroti ore.Due to their rapid growth and the edema they exert pressure on the brain tissueand ause loal mass e�et [Wilson 1999, DeAngelis 2001℄.The most important dynami in the growth of di�use gliomas is the invasion ofthe healthy brain. The in�ltration into the surrounding tissue is seen in di�erentgrades of di�use gliomas and it is a very omplex moleular proess [Demuth 2004℄.The tumor ells in�ltrate mostly through the white matter trats but also useerebrospinal �uid and the vasular onduits [Wilson 1999℄. The myelinated �bertrats at as a route of invasion on whih the migration apabilities of ells en-hane [Giese 1996℄. Di�use gliomas also show ortial in�ltration demonstratingthat they an invade the gray matter as well. However, the gray matter in�ltrationis slower than the white matter one.The other two high grade spei� harateristis seen in the growth of gliomasare the formation of the neroti ore and the vasularization [Wilson 1999℄. Whenthe tumor grows very rapidly, the ells ompete for the limited nutrition and oxygen.In the ase of gliomas the tumor starts growing as a spheroid getting the neessarynutrition from the periphery. Due to the rapid growth and the ompetition less andless nutrition beomes available for the tumor ells in the enter. As a result ells in



10 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGESthe enter undergoes nerosis and a neroti ore forms. The existene of nerotiore is used in distinguishing between grade III and grade IV gliomas. Therefore byde�nition it only exists in the ase of glioblastoma multiforme. The other dynamithat takes plae as a result of the extensive need of nutrition of the rapidly growingtumor is the vasularization. As the tumor needs more blood �ow it forms its ownblood vessel systems within the tumor. These systems are either formed throughangiogenesis or remodeling of the existing vasulature. The vasular systems in thelow grade gliomas are similar to the one of the brain while it is muh more prominentin the ase of higher grade gliomas.The treatment ourse of brain gliomas inludes surgery, radiation therapy andhemotherapy. The exat planning of the treatment and the type of therapy to beapplied depend on the grade and the loation of the tumor. The treatment strate-gies of grade I gliomas and the others di�er due to the in�ltration present in thehigher grade tumors. The grade I gliomas have distint boundaries therefore sur-gial removal when total resetion is possible might su�e. When total resetionis not possible, due to the loation or the size of the tumor, then additional radio-therapy and/or hemotherapy is applied to the remaining part [ABTA 2008b℄. Ingeneral the average survival rates for patients of grade I gliomas is pretty high. Thetreatment of grade II to grade IV gliomas on the other hand is muh more di�ult.The �rst step is again surgial removal when it is possible. However, the total re-setion is not possible due to the in�ltrative nature of di�use gliomas. Even whenthe visible tumor is totally reseted, removal of mirosopi in�ltration into thebrain parenhyma is not possible [Wilson 1999, DeAngelis 2001℄. Therefore, patientfollow-up with additional treatment in the form of radiotherapy and/or hemother-apy is applied. The in�ltration also poses problems for the additional treatmentsand as a result the tumor reurs. In the ase of grade II gliomas the tumor mayreur as a higher grade glioma showing malignant progression. The average survivalrates for patients of these tumors is 5-10 years however, the variability is large. Forgrade III and IV gliomas the applied treatment is muh more aggressive howeverthe progression of the disease is muh faster as well. The prognosis for these ases isreally low, the average survival rates remain around 3 years and 1 year for the gradeIII and grade IV gliomas respetively. In the view of this senario extensive researhis being onduted on di�erent hemotherapeuti agents and radiation therapyshemes [Riard 2007, Bathelor 2007, Fiveash 2003, Mahajan 2005, Nandi 2008℄.2.3 Imaging Gliomas with Magneti Resonane2.3.1 Magneti Resonane Imaging (MRI)Magneti Resonane (MR) is an imaging tehnique whih uses the the nulear mag-neti resonane (NMR) signals emitted from the objets themselves. In this respetit di�ers from the other imaging tehniques like X-ray Computed Tomography (CT)or Positron Emission Tomography (PET), where either a beam is irradiated or aradioative agent is given to the body. The priniple of MRI is based on the naturalspinning of nulei present in every objet. In addition to this spinning, the nuleiof ertain atoms present in the human body (suh as hydrogen, arbon, oxygen,...)



2.3. IMAGING GLIOMAS WITH MAGNETIC RESONANCE 11reates a natural magneti �eld when ombined with the spin. Clinial MR fouseson the hydrogen whih is the most abundant atom in the human body. The mag-neti moments of hydrogen nulei in the body are randomly oriented under normalonditions. In the presene of an external magneti �eld these nulei align them-selves along the external �eld and ontinue their preessing around the diretion of�eld. This relationship forms the basis of MRI.During MR imaging a onstant base magneti �eld B0 is applied to the bodyaligning the nulei, whih keep preessing at a frequeny alled as preession fre-queny. When a Radio Frequeny (RF) pulse with the same frequeny as the pre-ession is applied, the nulei resonate, gain energy, hange their alignment and goin phase with eah other. As every element has a di�erent preession frequeny aspei� RF pulse only resonates with the nulei of spei� elements. As the RF isstopped the nulei relax and lose their energy. This proess is alled relaxation andthe energy emitted in relaxation is the MR signal we detet. There are two impor-tant properties of the applied RF pulse, the repetition time (TR) and the eho time(TE). The repetition time is the time di�erene between eah RF pulse and the ehotime is the time elapsed between appliation of an RF pulse and the peak signalobtained. The relationship between TR and TE reates the ontrast visible in theMR images and gives the ontext in MR. By hanging this relationship one obtainsdi�erent images suh as T1-weighted and T2-weighted. Based on similar ideas anMR image an be made to be a spatial map of density of the spins, of the relaxationtimes or of the water di�usion. As a result di�erent images suh as di�usion tensor(DT) MRI, MR spetrosopy (MRS) or funtional MRI (fMRI) an be obtained.MR is very good in soft tissue disrimination ompared to other imaging teh-niques. The two extreme ases in terms of ontrast di�erene in MR are the fatand the water. In T1-weighted images the fat tissue is enhaned while the water isnot, showing the �uid around the ortial areas and within the ventriles as darkregions. On the other hand, in T2-weighted images free water and water embeddedin the tissue is strongly enhaned and appears bright, see Figures 2.1(a) and (b).Although this high intrinsi ontrast di�erenes are very useful in disriminatingbrain tissues, they may not always be enough to detet pathologies aurately. Inorder to inrease the ontrast between pathologies and the brain tissue, enhane-ment agents may be given to the patient and additional images might be aquired.One important agent that is widely used for imaging brain tumors is Gadolinium(Gd). Gadolinium injetion is followed by a T1-weighted image aquisition and ithelps inreasing the enhanement of water moleules neighboring tissue. In the MRimages this is espeially visible in highly vasular regions (vessels themselves or re-gion with abnormal angiogenesis). Tumors and other lesions are therefore stronglyenhaned due to the injetion [Westbrook 1998℄. Another modality whih is veryuseful in the ase of pathologies is the FLAIR. The important property of the �airis that the erebrospinal �uid (CSF) is not enhaned as in the T2-weighted images.Therefore, the pathologies adjaent to the CSF are seen muh more learly.In the methods presented in this thesis, besides the anatomial MR images, wealso fous on the di�usion tensor MR images (DT-MRI). The DT-MRI is not anaquired modality but it is rather onstruted from the di�usion weighted images(DWI). DWIs give loal diretional information on the di�usivity of water inside



12 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGES

(a) (b) ()Figure 2.1: (a) An axial slie of a T1-weighted image of a healthy brain. (b) Thesame axial slie of the T2-weighted image of the same brain. We see that in T1-weighted images the fat tissue is enhaned while the water is not. On the other hand,in T2-weighted images the appearene of fat and water are inverse. This �exibilityin MR imaging gives us the opportunity to have a very di�erent appearane of thesame brain in two di�erent modalities. () An axial slie of a DT-MRI image of thesame brain as shown in Figures (a) and (b). Eah tensor is visualized as an ellipsoidand the image is subsampled for a learer visualization. The olors of the ellipsoidsrepresent the diretion of their major axis.the brain tissue. Using these images we an understand how muh a water moleulean migrate along eah diretion in a given loation. Through aquiring DWIsalong di�erent diretions we an onstrut loal estimates of ovariane matriesrepresenting the loal diretional di�usion information of water. These ovarianematries are alled di�usion tensors and the image onsisting of these matries indi�erent loations is alled DT-MRI. In Figure 2.1() we show a single slie of anexample DT-MRI image where eah point onsists of a tensor desribing the loaldi�usivity of the water moleule.2.3.2 Appearane of Gliomas in MRIThe MR images are one of the most important radiologial information in the diag-nosis and grading of brain gliomas and tumors in general [DeAngelis 2001, Tovi 1994,Prie 2007℄. The appearane of gliomas in MR images di�er depending on the gradeof the tumor and the modality of the image. The most important property of thetumors that is visualized in the anatomial MR is the exessive ontent of freewater. Due to this gliomas appear as hyper-intense regions in the T2-weighted im-ages and hypo-intense in the T1-weighted, as shown in Figures 2.2 and Figures 2.3.When gadolinium is injeted the highly vasularity in the tumor gets enhaned inthe T1-weighted image and we get hyper-intensity regions inside the tumor for theT1-weighted images, Figure 2.3().Appearane of low grade gliomas (grade I and II) are pretty homogeneous un-
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(a) (b) () (d)Figure 2.2: In the images above we show axial slies of (a) T1-weighted, (b) T2-weighted, () T1-weighted post gadolinium injetion and (d) FLAIR images of apediatri patient with a di�usive astroytoma of grade II. We see that the tumor isenhaned in the T2-weighted and the FLAIR images.der MR images. In Figure 2.2 we show axial slies of MR images of a di�usiveastroytoma (grade II) deteted in a pediatri patient. We observe that the tu-mor is enhaned in the T2-weighted and the FLAIR images with lear boundariesseparating the tumor from the healthy tissue. On the other hand we only observehypo-intense regions in the T1-weighted and the T1-weighted after gadolinium in-jetion images. The lear boundaries seen in the T2-weighted images in the aseof grade-II-astroytoma might be misleading due to the in�ltrative nature of thetumor [DeAngelis 2001℄. Although we see suh lear separation, the tumor mighthave penetrated the brain parenhyma beyond the enhanement of the MR sig-nal [Wilson 1999, Johnson 1989, Tovi 1994℄.

(a) (b) ()Figure 2.3: In the images above we show axial slies of (a) T1-weighted, (b) T2-weighted and () T1-weighted post gadolinium injetion images of a patient su�eringfrom a grade IV glioma, glioblastoma multiforme. The appearane of GBM is veryirregular in the MR images.In the ase of high grade gliomas, espeially the grade IV gliomas, the MR



14 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGESappearane of the tumor is very irregular. In the T1-weighted image again we donot see any enhanement in the tumor region. In T2-weighted images on the otherhand we see several ompartments of the tumor whih are well enhaned. Lookingat Figure 2.3(b), we observe the very highly enhaned middle part of the pathologywhih inludes the highly ative part of the tumor and the neroti ore. However,the neroti ore annot be distinguished. Around this part we observe anotherhighly enhaned part, whih orresponds to the edema. The edema region is alsoin�ltrated with tumor ells however, the number of tumor ells per volume is muhlower than the ative part [Johnson 1989, Tovi 1994℄. In the T1-weighted imageafter gadolinium injetion we learly see the most ative part of the tumor and theneroti ore. The dark area inside the pathology is the neroti ore where thereare no live ells. The bright rim around this area is the atively proliferating regionof the tumor where the vasularization is very dense and the tumor ell density ishigh. In the ase of grade III gliomas these images look di�erent as there is noneroti ore and the there might not be any edema region.One of the most ruial points of MR appearane of gliomas is the in�ltrationof the tumor whih beyond a ertain ore region is not enhaned in the images.Di�erent experiments omparing histopathologial analysis with MR images haveshown that tumor ells exists beyond the enhaned region in the T1-weighted imageand the T2-weighted image [Tovi 1994, Johnson 1989℄. In the images the di�erenebetween the tumorous region and the brain tissue seems abrupt. However, thehypothetial distribution of tumor ell density is smoother. In Figure 2.4 we showthe hypothetial ross setion of a GBM where the tumor ell density is representedby the height of the blue urve. The T1 and T2 image intensities are shown in the�gure as di�erent thresholds on the tumor ell density [Swanson 2008b℄. We see thathypothetially the transition between the enhaned region in the post gadoliniumT1-weighted image and the enhaned region in the T2-weighted image is smooth.Moreover, the tumor ell density ontinue to drop after the T2 threshold suggestingin�ltration beyond the enhaned region in the image. This detetion problem posesdi�ulties for the treatment of the tumor espeially in the ase of radiotherapy whereimages guide the irradiation. In order to deal with this problem in radiotherapy anormal looking band around the tumor is also irradiated [Kantor 2001℄. However,these e�orts seem to be not enough beause di�use gliomas tend to reur due to thein�ltration [Wilson 1999, DeAngelis 2001℄.Reent researh on other MR modalities suh as DT-MRI and MRS haveshown that these images an also be used to gather information about the tu-mor harateristis and its spatial distribution. As the tumor invades the brainthrough white matter it damages the underlying �ber strutures. DT-MRI im-ages have shown to be useful in deteting this damage by using di�erent measures[Lu 2003, Lu 2004, Roberts 2005, Sinha 2002, Prie 2003℄.. The �rst hange thatours is that the mean di�usivity (MD) inreases in the regions invaded by thetumor or by edema, see Figure 2.5(b). Moreover, as the �ber strutures are dam-aged the diretional organization of the �bers is lost and this an be quanti�ed bythe frational anisotropy (FA) 2.5(). MR spetrosopy on the other hand, givesinformation about the metaboli ativity inside and around the tumor. Ativitiesregarding ertain moleules are spei� to brain tumors therefore, use of MRS an



2.3. IMAGING GLIOMAS WITH MAGNETIC RESONANCE 15

Figure 2.4: The MR images of grade II to grade IV gliomas are not able to showthe whole in�ltration of the tumor inside the brain parenhyma. In the plot weshow hypothetial distribution of the tumor ell density and the relation of it to theenhaned region in the MR images. We see that tumor ell density drops smoothlysuggesting in�ltration beyond the enhaned region in the T2-weighted image.

(a) (b) ()Figure 2.5: The DT-MRI images an show di�erent e�ets of the tumor to the �berstrutures providing us another mean to visualize the pathology. (a) FLAIR imageof a grade II astroytoma, (b) Mean Di�usivity (MD) image of the same patientderived from the DT-MRI, () Frational anisotropy (FA) image of the same patientagain derived from the DT-MRI. We observe that in the tumor region the MD imageshows extra enhanement while the FA image shows degradation in the same region.help us gather some information about the tumor and its extent [Devos 2005℄. Theproblems with these two modalities, DT-MRI and MRS, is the resolution of theimages whih are inferior to the anatomial images. Aurate loal information is



16 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGESnot very possible to obtain however, as the MR tehnology improve these problemswill be solved as well.There are also other imaging tehniques whih provide di�erent informationabout gliomas than MRI. Positive emission tomography for instane gives loalmetabolial information about the tumor. In PET a radioative agent is injetedand the uptake of this material is orrelated with the existene of tumor ells.Di�erent studies have analyzed and shown disrepanies and similarities betweenthe appearane of gliomas in PET and MRI [Ogawa 1993, Kraht 2004, Kato 2008,Miwa 2004℄. They have demonstrated that the appearane in both imaging teh-niques might be di�erent. Therefore, using these images together might be theoptimum hoie.



Chapter 3Tumor Growth Models: LiteratureReview
Contents3.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 Classi�ation . . . . . . . . . . . . . . . . . . . . . . . . . . 193.3 Mirosopi Models . . . . . . . . . . . . . . . . . . . . . . 203.3.1 Avasular Growth/Solid Tumor . . . . . . . . . . . . . . . 213.4 Marosopi Models . . . . . . . . . . . . . . . . . . . . . . 313.4.1 Di�usive Models . . . . . . . . . . . . . . . . . . . . . . . 313.4.2 Mehanial Models . . . . . . . . . . . . . . . . . . . . . . 343.5 Image Guided Tools for Therapy Planning . . . . . . . . 373.6 Appliations to Registration and Segmentation . . . . . 383.6.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 393.6.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 423.7 Disussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43ContextIn this hapter we present an overview of mathematial tumor growth modeling.We explain the main approahes by going through di�erent models proposed. Wetalk about mirosopi models, di�erent stages of tumor growth and their modeling,marosopi models and some image analysis tools using these models.3.1 IntrodutionThe domain of mathematial tumor growth modeling in the researh ommunityis vast. There is extensive existing researh both on brain tumors and on tumorsin other parts of the body. In order to situate the methods presented in this worka good understanding of the literature is neessary. In this hapter we provide anoverview of the literature published on tumor growth models. A omplete review ofall the works on this topi would be too long therefore, we provide the main stepsand the researh orientations. For further reviews on the topi refer to [Araujo 2004,Mantzaris 2004, Sanga 2007℄.The main aim of tumor growth modeling is to develop mathematial models ex-plaining interations of tumor ells with eah other and with the surrounding tissue,17



18 CHAPTER 3. LITERATURE REVIEWwhih lead to the growth of the tumor, via mathematial abstrations. In orderto explain the underlying mehanisms as aurately as possible, suh abstrationstake into aount many di�erent biologial fators, whih were observed throughexperimentation. Suh fators inlude internal dynamis of anerous ells, theirinterations with eah other and with healthy tissue, nutrition and oxygen trans-port from the extraellular matrix (ECM) and from the vasular network, hemialssereted by tumor ells, type of the underlying tissue, and many more. Modelsaim to ombine all these fators in a uni�ed mathematial framework, whih wouldagree with the observed results. While most of the work in the literature has beenonentrated in modeling the growth proess in a general framework, there has beensome reent attempts to develop patient spei� models. These developments aredireted more on desribing the growth of the tumor using the observations obtainedfrom the patient.Bene�ts of desribing the tumor growth mathematially are numerous. Firstof all, suh desriptions would help us to ombine experimental �ndings made inmany diverse �elds of aner researh in a ommon mathematial ground. Thesemodels allow us to interpret experimental results and understand the underlyingmehanisms of tumor growth and behavior of anerous ells. Virtual experimentsand simulations give us the opportunity to observe e�ets of di�erent treatmentson anerous ells, and would lead us to improve these treatments or suggest newones. On the other hand, patient-spei� models ould be used in treating patients.Suh models ould be used for therapy planning, suggesting radiotherapy marginsadapted to the growth dynamis or helping the onologist make a hoie betweendi�erent types of drugs that would best suit the patient. Virtual realizations of thetumor and the brain strutures ould help neurosurgeons during operations, provid-ing preise loations of vital strutures. Another bene�t of tumor growth models isthat they ould allow us to make preditions. The shape and invasion margins ofan existing tumor in a future time ould be predited using suh models and om-puter simulations. The preditions would give the medial dotor the opportunityto foresee the problems the patient might undergo and also would help him deideon the best time of operation if neessary. Inluding the geneti information in suhmodels, one ould even produe the probability of ourrene of a brain tumor inthe future.As we said the mathematial work on tumor growth modeling is trying to de-velop mathematial abstrations that would best explain the observed phenomenon;hene, it is very losely assoiated with the experimental and linial work beingdone in aner researh. Most growth models use observations oming from di�er-ent soures like in-vitro experiments, in-vivo experiments done on animal subjets,biopsy results, autopsy results and medial images of patients like Computed To-mography (CT) sans or Magneti Resonane Images (MRIs). These experimentsand images are keys to developing models desribing the tumor growth proessaurately. Observations used an be lassi�ed in two groups based on the sale:marosopi and mirosopi sales. Experiments onentrated on the ellular ativ-ities an be plaed under the mirosopi lass, like in-vitro and in-vivo experiment,while larger sale views like medial images an be plaed under marosopi lass.Although the marosopi and mirosopi lassi�ation an be done in other man-



3.2. CLASSIFICATION 19ners, in this thesis we make distintion based on the use of medial images.There has been great advanes in tumor growth modeling, there are several prob-lems on the way of developing more aurate models. The most ruial problem isthe lak of knowledge on the behavior of tumor ells in the living tissue. Observa-tions oming from in-vitro and in-vivo experiments gives us insight on the behaviorof tumor ells on laboratory set-ups like petri dish or on animal subjets. However,in-vivo observations on human beings, whih is the ase the tumor models aim todesribe, are sare. The best one an do is to propose assumptions on the behaviorof tumor ells in the human brain, using observations available at hand. Anotherproblem related to observations is limitations in marosopi imaging tehniques,[Tovi 1994℄. Medial imaging tehniques are able to enhane and detet regionsontaining tumor ells, only if the number of tumor ells are above some threshold.There are several estimates given in the literature on the lowest detetion thresholdof CT images (1-40 % of the maximum number of tumor ells brain parenhymaan handle), [Traqui 1995, Swanson 2008b℄. Although there is no work being doneon the detetion threshold of MRIs for tumor ells, the extent of the tumor (inva-sion margin) in these images are very similar to the one in CT images thus, it is aommon pratie to aept the same threshold.In the rest of this hapter we will give general information about tumor growthmodels, summarize some of the milestones in tumor growth modeling and also reviewreently proposed tumor growth models trying to give an overview on the state ofthe art. In Setion 3.2 we will introdue a lassi�ation of tumor growth modelswhih we will use throughout this hapter to analyze di�erent models proposed.Based on this lassi�ation we review the orresponding literature of mirosopimodels in Setion 3.3 and marosopi models in Setion 3.4. In Setions 3.5 and 3.6we fous on the appliations on medial images and explain some of the modelsproposed for therapy planning and other works whih use models for segmentationand registration.3.2 Classi�ationResearh being done on tumor growth modeling an be oarsely lassi�ed into twolarge groups. This lassi�ation is based on the sale of the model and there are twolasses: mirosopi models and marosopi models. The main di�erene betweenthese lasses is the sale of observations they are trying to explain and formulate.Mirosopi models onentrate on observations in the mirosopi sale, like in-vitroand in-vivo experiments. They try to explain the growth phenomena at the miro-sopi level by desribing the interations between di�erent ells, di�erent hemialssereted by ells, nutrition soures, oxygen and nearby vessels. Marosopi modelson the other hand, are onentrated on observations at the marosopi sale likethe ones provided by medial images. They formulate the average behavior of tumorells and their interations with underlying tissue strutures, whih are visible atthis sale of observation (gray matter, white matter, bones, ...). These models tryto desribe the behavior of the tumor as a whole, onsisting of lusters of ells.Further lassi�ation within these groups an be made based on the stage of the



20 CHAPTER 3. LITERATURE REVIEWtumor growth being analyzed or the e�et of the growth on the brain. Classi�ationbased on the stage riteria is more suitable for the mirosopi models and will beused for those models only. On the other hand the e�et riteria will be used forthe marosopi models.The lassi�ation based on stages of the tumor growth onsists of three lasses,whih are basially three di�erent phases of the growth: the avasular growth,the angiogenesis and the vasular growth. At this point, we would like to givevery simpli�ed explanations for these stages for ompleteness. The avasular growthorresponds to the stage where the proess is mostly governed by the proliferationof tumor ells. In this stage the tumor is onsidered to be a solid mass, whih isgrowing by means of mitosis. Although not ompletely known, it is thought thatthere is no invasion of the healthy tissue. The interations between tumor ellsand the healthy tissue is also thought to be limited, [Araujo 2004℄. The tumorannot grow inde�nitely in the avasular stage beause as the tumor mass grows,less and less nutrition is available for the ells deep inside the avasular mass. Asa result nerosis begins, tumor ells that are not getting enough nutrition die, andonly ells on the outer perimeter of the tumor ontinue to proliferate. At one pointnerosis and the proliferation balanes eah other and the avasular tumor reahesa limiting size, whih is assumed to be around 1-3 mm in diameter, [Orme 1996b℄.Angiogenesis (vasularization) is the stage where tumor ells in the avasular massmodify the existing vasular struture, to reate new vessels that would feed them.Through this proess the tumor an overome its limit size, grow muh faster andinvade the surrounding tissue. Due to the ruial role of angiogenesis on the tumorgrowth, its underlying mehanism has aptured attention and many models havebeen proposed trying to explain it. The third stage of the tumor growth, vasulargrowth, has been paid less attention than two previous stages. The omplexity ofthe tumor growth in this stage is higher beause there are several proesses going onsimultaneously. In addition to ellular and hemial interations going on in the �rsttwo stages, tumor ells start to invade the surrounding tissue via mehanisms notlearly known yet. At this stage, the tumor beomes di�usive and is not onsideredto be solid anymore. While the di�erene between anerous and healthy regionsare lear in the avasular stage, this di�erene vanishes during the vasular growthbeause tumor ells move towards healthy regions.Classi�ation based on the e�et of tumor growth on the brain is more appro-priate for marosopi models. We an distinguish two major groups: mehanialmodels, whih onentrate on the mass-e�et of the tumor and di�usive models,whih onentrate on the in�ltration of the brain tissue. In following setions wewill go over some of important and reent models that have been proposed. Whilementioning di�erent models we will try to make use of lassi�ation types explainedabove, whih is summarized in �gure 3.2.3.3 Mirosopi ModelsTumor growth models, whih an be named as mirosopi, aim to desribe thetumor growth proess at the ellular level using experimental observations at this
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MODELSFigure 3.1: Classi�ation of tumor growth modelslevel. They take into aount physial and hemial interations between ells andthe ECM, and build a ause-result relationship between the tumor growth and theseinterations using mathematial formulation. Mehanial phenomenon like ohesionfores, adhesion fores and pressures are often inluded to desribe physial inter-ations between anerous and healthy ells. As for hemial interations, theyinlude proesses like di�usion of nutrition and oxygen, seretion of di�erent fa-tors by tumor ells and their e�ets on the ECM, blood vessels and other ells.Mathematial systems obtained are usually very detailed as they try to take intoaount all the fators observed to a�et the tumor growth. Formulations used inreating mirosopi models enjoy a large variety of mathematial methods. Mostommonly used methods are partial di�erential equation (PDE) systems, ellularautomata and statistial models.3.3.1 Avasular Growth/Solid TumorMost of the modeling work at the mirosopi sale has been onentrated on theavasular stage of the growth. In the beginning it was thought that the whole proessof tumor growth was only governed by the proliferation of ells. Models using onlypopulation growth dynamis like exponential growth or Gompertzian growth wereproposed. In table 3.1 we give some of the population growth equations ommonlyused. u in these equations is the normalized density of tumor ells (normalized bythe maximum tumor ell density the underlying tissue an handle), ∂u/∂t denotesthe hange of u in time and ρ is the proliferation rate of tumor ells whih istaken to be ρ = 1 in the �gures. One of the �rst papers employing this idea waspublished by Mayneord in 1932, [Mayneord 1932℄. This work explained the e�et ofdi�erent distributions of atively dividing ells on the growth, based on histologialexperiments telling that viable ells are only found on the outer periphery of the



22 CHAPTER 3. LITERATURE REVIEWTable 3.1: Commonly used population growth terms

Exponential (green) Gompertz (red) Logisti (blue)
∂u/∂t = ρu ∂u/∂t = ρu ln(1/u) ∂u/∂t = ρu(1− u)solid tumor.In light of further experiments, di�usion and onsumption of oxygen was inludedin the model as a fator in the mitosis rate and nerosis. Models proposed byThomlinson et al. and Burton [Thomlinson 1955, Burton 1966℄ examined this e�etand showed that when the blood supply (as a supply of oxygen) was limited tothe perimeter of the tumor, formation of the neroti part ould be explained as aresult of lak of oxygen. These developments showed that the Gompertzian modelbetter �ts the tumor growth. Although these models were able to math the growthrate of the tumor, they were not able to explain its ompatness. Greenspan in[Greenspan 1972℄, inluded surfae tension among living ells on the periphery, inorder to obtain a ompat tumor. In this paper, he assumed that neroti ells weredissolving and due to the surfae tension, ells on the periphery were pushed towardsthe neroti region. He also tried to explain the inhomogeneity in the mitosis ratethroughout the tumor via the seretion of growth inhibiting fators (GIF) by tumorells in a spatially uniform manner. The tumor radius evolution followed an integro-di�erential equation, whih was oupled to reation-di�usion equations explainingthe distribution of nutrition and GIFs. Although inluding the oxygen onsumptionin the model was a big step, it was unable to explain the slow thinning of the viablerim following the formation of a neroti ore. Deakin in [Deakin 1975℄ inludedinhomogeneous onsumption of oxygen in the tumor explaining this phenomenon.Besides the ell loss in the tumor due to nerosis, MElwain et al. [MElwain 1978℄inluded another ell loss mehanism, apoptosis, following the experiments showingthat tumor ells may die even though they do not lak nutrition nor oxygen. Theonstant ell loss rate oming from apoptosis, was also ausing the tumor to stay ata limit size.



3.3. MICROSCOPIC MODELS 23Besides the deterministi models of growth that has been proposed there has alsobeen some stohasti ones emphasizing the probabilisti nature of the growth. One ofthe �rst works in this ontext is of Wette et al. in [Wette 1974a, Wette 1974b℄. Themain argument of suh models is that �utuations around the average behavior maybe more important than the average behavior itself, when the population assumessmall values. These models simply add the possibility that average values like mitosisrate or di�usion of fators may deviate a lot.Later on, the e�et of GIFs on the growth proess was analyzed by Adam etal. in [Maggelakis 1990℄. They showed that GIFs indeed play a ruial role on thedormany of the tumor in the avasular stage. In their model they inluded inho-mogeneity of nutrition onsumption and GIF prodution using spatially dependentfuntions, assuming GIFs were produed more in the neroti ore and dereaselinearly towards the perimeter. Even though they did not inlude the volume lossin the neroti ore, they were able to obtain limiting sizes, showing GIFs alonean also ause dormany in solid tumors. By inluding both inhomogeneous forma-tion of GIFs and onsumption of oxygen they ombined all previous ideas in oneformulation.Following experiments suggesting that ells in solid tumors tend to grow towardsblood vessels, MElwain et al., [MElwain 1993℄ introdued an ative migration to-wards nutrition gradient in their model. Desribing the motion of ells with twoparts: passive motion towards the neroti ore aused by pressures and the hemo-taxis towards nutrition soures. However, experiments showed that not all ellsfollowed the ative migration. Pettet et al. [Pettet 2001℄ proposed to use the ellyle to explain this. In this model, ells that were going through mitosis were nothemotatially ative. Only quiesent ells were a�eted by the hemotaxis towardsthe nutrition gradient.As models desribing the motion of a single element, tumor ells, are gettingmore and more elaborate, some attention has started to be given to multiphasemodels to be applied to tumor growth. Please et al. in [Please 1999℄ used thetheory of multiphase to model the tumor growth using two phases: tumor ells andextraellular matrix. They modeled physial interations between these two phasesand analyzed the e�et of mehanial stresses in the tissue on the formation of theneroti region. Both phases in this model were assumed to be invisid. Lateron, Landman et al. added the interphase drag fores in this formulation and usingthe model, showed the e�et of surfae tension on the formation of the nerotiore and also on the stable limiting size of the tumor, [Landman 2001℄. Brewardet al. in [Breward 2002℄, also used two phases, however, they took into aountthe interations between tumor ells by modeling ellular ohesion between them.Hene, the pressure in the tumor di�erentiated from the pressure of the extraellularmatrix, due to these interations. Byrne et al. in [Byrne 2003℄ took a di�erentapproah to two phase models. They used theory of mixtures to model the tumoras an organi balloon reating a solid-ellular phase and the surrounding media as aliquid ontaining nutrition and di�erent growth fators. The dynamis of the growthwere desribed by mass and momentum balanes in addition to the onstitutive laws.The mehanial interation ombined with the mass exhange between two phasesenabled them to ompute loal stress indued within in the tumor. In their work,



24 CHAPTER 3. LITERATURE REVIEWthey study the e�et of this stress on the rate of proliferation and the equilibriumon�guration of the avasular tumor. Consistent with in-vitro experiments theyshow that external loads and stress exerted on tumor ells a�et the size of theavasular tumor. As a result they demonstrated that avasular tumors an reahtheir limiting size either through nutritious equilibrium or stress equilibrium.Most of the previously mentioned models use exponential, Gompertz or logistigrowth for the proliferation of tumor ells. There has also been some reent work ontype of growth equation that would best �t tumor mitosis. Tabatai et al. proposedto use a di�erent set of growth models alled hyperbolasti models, [Tabatai 2005℄.They say that the inrease in the number of tumor ells an be better explainedusing suh a model with more �exibility.Tumor-Indued AngiogenesisTumor-indued angiogenesis is a very omplex proess inluding lots of hemialand mehanial phenomena, whih has not been totally understood. Mantzaris etal. in [Mantzaris 2004℄ reviewed some of the known biologial proesses taking plaein angiogenesis. The basi observable onsequene is that tumor ells a�et nearbyblood vessels to sprout new vessels towards themselves reating new vasular stru-ture as a soure of nutrients and oxygen, see �gure 3.2. As a result of angiogenesisthe tumor reeives extra nutrition and the growth speeds up. Mathematial formu-lations modeling angiogenesis, usually takes into aount motion of endothelial ells(ECs), tumor angiogenesis fator (TAF), �bronetin strutures of extraellular ma-trix (ECM), vasular endothelial growth fator (VEGF) and angiogenesis inhibitorfators.There have been some attempts to model the initial phase of angiogenesis. The pro-ess starts by prodution of VEGF by tumor ells and their binding to nearby vessels.This fator initiates the detahing of ECs from the vessel, moving of ECs towardsthe tissue by means of haptotaxis (ells move up a gradient of adhesion) and begin-ning the formation of buds. Orme et al. [Orme 1996a℄ tried to model this proess in1D, using reation-di�usion equations for the motion of ECs, based on haptotaxis.The bud formation was formulated as a ombination of reation, di�usion and taxis,surprisingly having no relation to the density of VEGF. In [Levine 2000℄ using thismodel as a basis, Levin et al. formulated a very omplex system ontaining 31parameters to model the angiogenesis initialization. They formulated omplex in-terations between TAFs, ECs, protease and �bronetin. Although the model wasreated to be very realisti, some inluded interations are not observed yet.Later stages of the angiogenesis have reeived more attention from the mathe-matial ommunity. One of the �rst models, whih inluded fators like TAF, wasproposed by Byrne et al. in [Byrne 1996℄. The 1D model inluded two di�erentpopulations of ECs: ells at the tip and ells forming the sprout. The reason forthis is that, EC proliferation and the branhing of the vessel only ours at the tip.The model inluded the e�et of TAF in EC proliferation and branhing of the tip.Chaplain et al. extended this model in 2D, inluding EC density, onentration ofTAF and �bronetin in their model in [Chaplain 1998℄. Motion of ECs were modeledas haptotaxis using �bronetin strutures of ECM. The ommon feature of most of
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Figure 3.2: Sketh of the angiogenesis proess showing di�erent stages of the proessstarting from (a) to (), image taken from [Mantzaris 2004℄.the later models is that TAF onentration was assumed to be at steady state, sinethis fator di�uses muh faster than ECs. This model showed the importane ofhaptotaxis for a suessful angiogenesis.Anderson et al. tried to model the angiogenesis proess in the absene of ECproliferation, [Anderson 2000℄. The aim was to show that angiogenesis would beinomplete without the proliferation. In their 1D model they inluded di�usionof TAF and ECs, with the e�et of haptotaxis with �bronetin and hemotaxistowards TAF gradient. Chaplain et al. in [Chaplain 2000℄ extended this model in2D, showing that ECs do not reah the tumor in the absene of proliferation. E�etof angiogenesis inhibitor fators was inluded in another model of Anderson et al.in [Anderson 2000℄. They have formulated the seretion of angiogenesis inhibitorfators from an existing tumor to prevent the vasularization of a seond tumor. Inthe model, they showed that under the e�et of inhibitor fators, vasularizationwas eased for the seond tumor.While most of the models proposed for angiogenesis used only reation-di�usionsystems, taking into aount the hemial interations, some models formulated thephysial interations between EC and ECM. The hemial interations between ECand ECM were desribed by haptotaxis through �bronetin. On the other hand, ECells exert tration fores on the ECM �bers reating displaement of the matter.Holmes et al. inluded this mehanial interation besides the hemial interationsof previous works in their model in [Holmes 2000℄. They observed that below aritial tration value, the struture of vasular network was homogeneous, whileabove this value the struture was highly heterogeneous. This is a ritial step,



26 CHAPTER 3. LITERATURE REVIEWsine, heterogeneity of vasular strutures, would a�et the growth proess greatly.Besides the models explained above, some disrete models were also proposedto predit the vasular struture itself. One of the most important work in thiswas proposed by Stokes and Lau�enburger in [Stokes 1991℄. In their model theytreat eah sprout individually and trak the motion of growing tips in 2D. Theirformulation inluded position and veloity for every tip, where evolution of theveloity of a tip was given by a stohasti di�erential equation adding a white noiseto take into aount the randomness. The position and the veloity of the a tip wasa�eted by the TAF onentration through the phenomena of hemotaxis. Theyhave taken the TAF onentration at steady state in their model, whih was laterrelaxed by Tong and Yuan in [Tong 2000℄.Anderson and Chaplain also proposed a model to predit the vasular struture,[Anderson 1998℄. Their model start by alulating values of EC density, TAF and�bronetin onentration using the formulation they proposed in [Chaplain 1998℄.Using these values, they assign probabilities to ells moving to di�erent grid points.Based on these probabilities they have visualized the vasular strutures in 2D.Sine probabilities inluded the information oming from di�usion, hemotaxis andhaptotaxis, so did vasular strutures.Reently, Habbal formulated a Nash game for the angiogenesis proess,[Habbal 2005℄. The vasularization is been modeled as a ompetition between thetumor, whih tries to provide itself an optimal drainage, and the host tissue, whihwants to keep its strutural integrity, not letting any blood vessels to form. Theagents of the game are TAFs sereted by the tumor and antiangiogeni fators. Using�nite elements Habbal solved for the Nash equilibria and visualized the formationof the vasularate struture in 2D. This model is unique in the sense that the ECMis modeled expliitly as a resistane to tumor-indued angiogenesis.Vasular Growth/Invasive TumorMost of the reent work on mirosopi tumor growth modeling onentrates on thevasular growth. Moreover, they ombine all three phases of the growth. We inludesuh uni�ed works in this part. The di�erene between vasular and avasulargrowth is the existene of blood vessels within the tumor. These vessels might havebeen formed by angiogenesis or the tumor might have initialized around a vessel,as in the ase of tumor ords. Sine the nutrition soure of tumor ells is not justlimited to di�usion from the perimeter, as opposed to avasular tumors, formationof neroti regions is muh more omplex, if they exist at all. Moreover, due to thesame reason, vasular tumors are not ompat masses of anerous ells, they don'thave a limiting size and an grow inde�nitely. They are invasive and tend to di�usetowards the surrounding tissue. The tumor region and the healthy tissue regionare not separated with a boundary as in the ase of avasular tumors, due to thisinvasive nature.Works on modeling the tumor invasion began by trying to explain the dynamisof the metastati proess, whih auses the tumor to spread to other tissues bymeans of traveling through the vasular system. Saidel et al. [Saidel 1976℄ beganby onsidering the metastasis from a solid tumor, reating a model taking into



3.3. MICROSCOPIC MODELS 27aount di�erent populations like tumor ells inside the vessel, around the vesseland in the metastati foi. In their work they foused on desribing the interationsbetween vessel surfaes and tumor ells. Although metastases is not a ritial issuefor brain tumors, modeling work on this proess initialized other works trying tomodel di�usion of tumor ells. One of the �rst models desribing the di�usionwas proposed by Liotta et al. in [Liotta 1974℄. Using oupled di�usion-reationequations, they tried to explain the hange in tumor ells density and the hangein vessel surfae area (in the form of density) inside the tumor, whih was not avery aurate model for migration of vessels in the tumor. In this model, tumor elldi�usion and proliferation were dependent on the vessel surfae area. Neroti oreformation was also analyzed in this work, as a result of low levels of nutrition auseby not enough vasularization.In [Orme 1996b℄, Orme et al. ontinued to use di�usion systems to model vas-ular tumor growth, where they inluded an ative di�usion of tumor ells towardsblood vessels (up gradient of vessels) and also explained the formation of nerotiore by too muh proliferation of tumor ells resulting in ollapse of vessels. Us-ing a similar idea Byrne et al. proposed a non-neroti tumor growth model, alsobased on di�usion-reation systems, [Byrne 1995℄. Besides inluding di�usion ofnutrients from vessels towards tumor ells, they have also inluded di�usion and se-retion of growth inhibitor fators and analyzed e�ets of them. Unlike most otherworks, they have also onsidered apoptosis as a tumor ell death, and inluded itin their model. One alternative to the di�usion-reation formalism was proposedin [Perumpanani 1999℄ by Perumpanani et al.. They modeled the tumor invasionand growth, based on the idea that the invasion is governed by proteolysis and hap-totaxis. In their formalism the random motion of ells did not exist, ells movedtowards extraellular gradient. This was di�erent than all the previous models intwo ways. The �rst di�erene was that the ell motion was based on haptotaxisinstead of being dominated by di�usion towards blood vessels. The other di�erenewas in the type of resulting mathematial system; the direted ell motion resultedin a reation-advetion system rather than a reation-di�usion system.Besides di�erent fators that have been proposed to a�et tumor growth likenutrition and oxygen onentration, growth inhibiting fators, physial fores andell yle, aidity of the extraellular matrix was also used in some models to af-fet the tumor invasion. One of the �rst models that examined the aid-mediatedinvasion was proposed by Gatenby et al. in [Gatenby 1996℄. They formulated theobservation that tumor ells produe H+ ions during their metabolismi reationsand by releasing them to the extraellular matrix, they inrease the aidity of theenvironment. This in turn help their invasion in three ways: killing healthy ells,stimulating the prodution of aidi enzymes for proteolysis and reduing the ohe-sion between tumor ells, setting them free to move. They modeled these e�ets byreating a reation-di�usion system desribing densities of eah hemial omponentlike H+ ions and gluose. Patel et al. [Patel 2001℄ used a similar formulation forthe aidity in simulating early tumor growth and examining the e�et of existingvasular network and tumor ell metabolism in the growth proess. They reated ahybrid ellular automaton (CA) model, where motion, seretion and onsumption ofgluose and H+ ions were modeled by reation-di�usion systems and the dynamis



28 CHAPTER 3. LITERATURE REVIEWof ells were set by CA rules. Using this model they were able to simulate tumorsstarting from several ells and growing up to huge sizes, giving the opportunity toexamine the early growth, see Figure 3.3.

Figure 3.3: Example of an early growth proess where vasularity of the tumor isoming from existing vessels. Tumor's size inrease several sales of magnitude,image taken from [Patel 2001℄.In [Athale 2005℄, Athale et al. proposed a 2D disrete model whih foused onthe experimental observations of Giese et al. stating that glioma ells either migrateor proliferate but they do not show both phenotypes at the same time [Giese 1996℄.They have inluded this in their model as a deision proess for eah ell. Theymodeled the gene-protein interations using di�erent ligands and epidermal growthfator reeptors (EGFR). They showed that using a EGFR related deision networkone an simulate the dihotomy between migrating and proliferating ells observedin reality. In their following artile [Athale 2006℄ they examined the e�et of theEGFR density on the growth patterns of the tumor. Zhang et al. have built on thismodel and arried the omputation in 3D [Zhang 2007℄.Bertuzzi et al. examined the dynamis of anerous ells in tumor ords, whereells simply grow surrounding a vessel, forming a vasular tumor, [Bertuzzi 2003℄.In their model, they took into aount that viable ells in a tumor an onsist ofquiesent and proliferating populations. To get a more realisti model, they alsoonsidered the ell-yle of a proliferating ell and integrated it in the model. Whilethe vessel ating as the nutrition soure, death of tumor ells were modeled eitherdue to insu�ient nutrient supply or apoptosis. This model was one of the �rstones, integrating ell yles in the growth proess. Later on, Alarón et al. reateda model using ellular automata, to examine the e�et of oxygen and nutrition



3.3. MICROSCOPIC MODELS 29inhomogeneity on the growth proess indued by the blood �ow through vasularnetwork, [Alarón 2004℄. Besides modeling the blood �ow, vasular adaptation anddi�usion of oxygen and nutrition towards ells, they have also taken into aounte�et of ell yles in the invasion and proliferation proesses. E�ets of extraellularoxygen levels on ell yles were modeled expliitly for the �rst time, using theinformation that tumor ells an adapt their yle better than healthy ells in aseof low oxygen. Reently Byrne et al. have used this model to analyze the e�et ofhemotherapy on vasular growth of tumors [Byrne 2006℄.In [Cristini 2003℄, Cristini et al. reformulated the model in [Greenspan 1972℄to model non-neroti tumors. While the model of Greenspan only span avasu-lar tumors, the model presented by Cristini et al. is able to simulate vasular andavasular growth, through adding apillary density within the tumor in their model.They have used reation-di�usion system to formulate dynamis of nutrients andGIFs, where blood is the main soure of all hemials. One of the most importantontributions of the paper is the observation that the invasive growth an ourwithout any �ngerings of the tumor. They have onluded that in order to obtain�ngerings in the growth proess, some kind of anisotropy oming from the tissueshould be inluded. Later on, Zheng et al. in [Zheng 2005℄, extended this by adding
(a) (b)Figure 3.4: Zheng et al. were able to simulate the growth starting from an initialavasular tumor with a surrounding vasular struture, (a), going to an invasive andvasular tumor, (b). Blak boundary shows the extent of the tumor and thin linebundles represent blood vessels, whih are away from the tumor in (a) and insidethe tumor after angiogenesis (b). (Image taken from [Zheng 2005℄)a formulation to model the transition through avasular to vasular tumor, angio-genesis. Moreover, they also added the onset of nerosis to the previous model.Reation-di�usion formalism was used to formulate growth proesses while a om-bined disrete-ontinuum model was used to desribe angiogenesis. Distint partsof the model used to explain di�erent stages of the growth are not as sophistiatedas some of the models explained above. However, the signi�ane of this work liesin the ompleteness of the model proposed, whih ombines all three stages of thetumor growth. This way, one an observe how ongoing vasularization would a�etthe tumor invasion and also simulate the growth starting from a multi-ell spheroidgoing to an invasive tumor, see �gure 3.4.



30 CHAPTER 3. LITERATURE REVIEWIn the aim of ombining all stages of the tumor growth Frieboes et al. ontinuedon the model proposed by Cristini et al. [Frieboes 2007℄. In this work the authorsexplain the tumor morphology and the invasion pattern in the tissue sale by linkingthe dynamis to phenotype of ells, moleular fators and phenomena in the miro-environment. In this sense their model is one of the �rst multi-sale models. Thelink onsists of omplex nonlinear relationships and funtionals whih are said tobe based on experimental results. In their invasion dynamis they have inludedhemotaxis, haptotaxis and the mehanial pressure due to proliferation. They alsooupled their growth model with a model of angiogenesis given in [Plank 2004℄.In order to set the values of some parameters, suh as the proliferation rate andthe apoptosis rate, they used in-vitro ell lines and ex-vivo patient data. For theother parameters, like the rate of di�usion of vital parameters, they solve the modelnumerially and determine the values that result in growth and invasion.Following a similar path Lloyd et al. in [Lloyd 2007℄ also proposed a growthmodel whih aims at ombining all three stages of the tumor growth. Espeiallythey onentrate on oupling the angiogenesis proess with the vasular growth.Besides taking into aount the di�erent fators a�eting the tumor growth suhas oxygen di�usion and di�erent enzymes sereted, they also model the vasulatureexpliitly. This expliit sheme inludes a 3D �nite element model where the angio-genesis proess is modeled in detail. Biomehanial e�ets of the tumor growth onthe vasulature is taken into aount expliitly. Later on, in [Lloyd 2008℄ they en-large their modeling framework by inluding ellular-level simulation of the oxygendi�usion into the tissue and di�erent mehanisms of vessel remodelling due to shearstress.There have also been some multiphase models proposed for vasular tumorgrowth, with the most reent one being from Breward et al., [Breward 2004℄. Theyhave extended their previous work for avasular tumors, by introduing blood ves-sels as a third phase. Physial interations between di�erent phases are modeledexpliitly in terms of pressures. In their model they have also inluded the ollapseof blood vessels due to pressure exerted on them, reating a better realization of thetumor dynamis.We have seen that most models explained above either use disrete or ontinuumformulation, and in some ases both. The link between the disrete and ontinuumformulation has also been studied however, muh less than the models themselves.In [Stevens 2000℄, Stevens et al. have started from a disrete set of tumor ellsmigrating under the e�et of hemial agent, performing hemotaxis. They haveshown that in the limiting ase when the number of tumor ells inrease one andesribe the hemotaxis using advetion-reation-di�usion equations, notably a on-tinuum formulation. Later on Hillen et al. have ahieved the same result for anotherinvasion dynamis, mesenhymal motion [Hillen 2006℄. In this type of motion thetumor ells moves in a �ber network following the �ber diretions. These worksstand di�erent than the models explained however, they have a big importane forthe models as they an be the link between di�erent sales of tumor modeling.



3.4. MACROSCOPIC MODELS 313.4 Marosopi ModelsObservations at the marosopi sale onsists of medial images like Computed To-mography sans (CT), Magneti Resonane Images (MRI) and MR di�usion tensorimages (MR-DTI). Sine the resolution of these observations is limited, typiallyaround 1mm × 1mm × 1mm in the best ase, observable fators are limited. Dueto this reason, ompared to the models explained in Setion 3.3 marosopi mod-els inlude fewer fators and their formulations are usually simpler. On the otherhand, while mirosopi models simulate the tumor growth in theoretial settings(in�nite boundaries, known loation of di�erent strutures,...), marosopi modelsuse real settings, e.g. real boundaries of the brain, gray-white matter segmentation,geometry of the tumor.To review the reent marosopi models we are going to use a di�erent lassi�-ation than the one used in Setion 3.3. Based on the targeted e�et of the tumor onthe brain, marosopi models an be lassi�ed into two di�erent lasses: mehanialmodels, whih onentrate on the mass-e�et of the tumor on the brain tissue, anddi�usive models, whih onentrates on the invasion of surrounding tissue by tumorells. In terms of mathematial formulations, unlike mirosopi models, almost allmarosopi models use ontinuum formulations, where tumor ells are assumed tobe a ontinuum. As a result, formulations ontain several ordinary and/or partialdi�erential equations to desribe the growth proess.3.4.1 Di�usive ModelsAlmost all marosopi models, formulating the growth proess onentrating onthe di�usive nature of the tumor, use the reation-di�usion formalism [Murray 2002,Mandonnet 2008℄. This formalism models the invasive tumor by adding a di�usionterm to the simple solid tumor growth models, whih formulate proliferation ofells, see table 3.1. The `building blok' equation of this formalism is the partialdi�erential equation (PDE) given as:
∂u

∂t
= ∇ · (D∇u) +R(u, t) (3.1)

(η · ∇)u = 0 (3.2)where in equation 3.1 u is the tumor ell density, ∂/∂t is the di�erentiation operatorwith respet to time, D is the di�usion tensor for tumor ells and R(u, t) is theso-alled reation term. This equation isolates two di�erent harateristis of thetumor growth in two terms: di�usion and proliferation. The �rst term on the righthand side, ∇ · (D∇u) desribes the invasion of tumor ells by means of a Brownianmotion, whih is haraterized by the di�usion tensor D. The seond term in theequation, R(u, t), desribes the proliferation of tumor ells. For this term populationgrowth equations are ommonly as summarized in Table 3.1. In marosopi models,Equation 3.1 is usually solved using real geometries therefore, boundaries should beinluded in the model. Equation 3.2 is the no-�ux boundary ondition whih isapplied at the brain boundary and at the ventriles with the normal diretions η,formulating the fat that tumor ells do not di�use in these strutures.



32 CHAPTER 3. LITERATURE REVIEWOne of the �rst models using the reation-di�usion formalism for the tumorgrowth was proposed by Cruywagen et al. in [Cruywagen 1995℄. They argue that, agrowth model that uses equation 3.1 and whih onsists only a single ell populationwas not able to apture the growth dynamis seen in CT images. Hene, theyproposed to use a model with two populations of tumor ells, whih is formulated byoupling two equations of the form 3.1, eah one desribing a di�erent population.Through the oupling terms they were able to desribe the ompetition betweenpopulations for nutrients and growth fators. The seond population of tumor ells,were assumed to be a mutation of the �rst type. The ourrene of these ells wasattributed to the use of hemotherapy and/or radiotherapy, ausing ells to mutateinto a more resistant type. They also inluded the e�et of treatment in their modelas a onstant ell loss mehanism, whih is basially another reation term. Their�nal formulation had the form:
∂u1

∂t
= Du1

∇2u1 + f(u1, u2)− C1(u1, t)

∂u2

∂t
= Du2

∇2u2 + g(u1, u2)− C2(u2, t)where reation terms f and g desribe the oupling between tumor populationsgiven by u1 and u2, while C1 and C2 formulate e�ets of therapy. In their model,Cruywagen et al. formulated the invasion of tumor ells as an isotropi-homogeneousdi�usion where speed of di�usion was given by oe�ients Du1
and Du2

.In [Swanson 2000, Swanson 2002b℄, Swanson et al. revised the hypothesis thattumor ells di�use homogeneously in the brain made in the previous works. In thelight of the experimental results of Giese et al. regarding the di�erential motility oftumor ells on gray and white matters [Giese 1996℄, they formulated the invasion oftumor ells by isotropi-nonhomogeneous di�usion. In this formulation the di�usiontensor D in Equation 3.1 was assumed to be isotropi and nonhomogeneous (spa-tially varying). Its form was given as: D = d(x)I, where I is an identity matrix and
d(x) is the di�usion rate. d(x) took two di�erent values in the white matter,dw , andin the gray matter, dg, where dw >> dg orresponding to the observation that tu-mor ells move faster on myelin sheath. In this work, only one population was usedand the no-�ux boundary onditions were applied. For the reation term, authorsused exponential growth, taking into aount only the proliferation of tumor ells(see Table 3.1). Later on, Swanson et al. in [Swanson 2002a℄ inluded the e�et ofhemotherapy through a negative reation term. Instead of modelling the e�et oftherapy via a onstant ell loss, they took into aount the temporal e�etivenessof drugs used and also the possible spatial heterogeneity of drug e�ay. In bothworks CT and MR images were used and the attention for validating the model wasgiven to prediting survival times after diagnosis.Extending the idea of Swanson et al. regarding the di�erential motility of tumorells on di�erent tissues, Clatz et al. and later Jbabdi et al. inluded anisotropy tothe invasion mehanism of tumor ells, [Clatz 2005℄ and [Jbabdi 2005℄. They mod-elled the di�usivity of tumor ells through an anisotropi-nonhomogeneous di�usion.The assumption they have made is that tumor ells not only move faster on myelin,but also follow the white matter �ber trats in the brain. They have onstruted



3.4. MACROSCOPIC MODELS 33Table 3.2: Di�erential motility between white and gray matter. The �ber tratis along the y-axis in the seond image. (Images taken from [Clatz 2005℄) In theonstrution of D, α is the multipliative onstant between gray and white mattermotility and f is the relation between water di�usion and tumor di�usion.

Dg = dI Dw = αdf(Dwater)the tumor di�usion tensor (TDT) from the water di�usion tensor using magnetiresonane di�usion tensor images (MR-DTI). Although methods of onstrution ofthe TDT were di�erent in these works, the main idea was to assign isotropi di�u-sion in the gray matter and anisotropi di�usion in the white matter having greaterdi�usion along the �ber diretion as given in table 3.2. By inluding the anisotropyof tumor di�usion in the formulation, these models were able to apture the �spiky�and �ngering patterns of tumors observed in the images, see Figure 3.5. Both ofthe works proposed an evaluation of their models by omparing visible tumors inthe MR images with the ones simulated with the model. Reently Hogeaet al. builton the anisotropi reation-di�usion model and inluded the observation that oneof the mehanisms tumor ells migrate is that they push eah other [Hogea 2007℄.They inluded this rather mehanial dynamis of invasion in their model by addingan advetion term in the Equation 3.1.The reation-di�usion models as proposed in [Swanson 2000, Clatz 2005,Jbabdi 2005, Hogea 2007℄ are appropriate for explaining the invasive parts of thetumor whih are far away from the ore of the tumor. The growth of the entralpart of the tumor, where tumor ells are very dense, is not well aptured by thedi�usion proess. This region grows rather like a ompat ball, exponentially rapidat the beginning and then linearly. Stein et al. deals with this problem for thease of in-vitro experiments, [Stein 2007℄. Instead of applying the reation-di�usionmodel to the whole tumor they use two reation-di�usion models desribing theore and the invasive regions as two di�erent populations. The two populations areoupled by a veloity bias applied on the invasive region suh that the tumor ellstry to move away from the ore of the tumor. They show that a two populationmodel suh as the one they propose, is able to apture the di�erent dynamis of theinvasive region and the ore of the tumor in the ase of petri dish experiments.Besides the ontinuum formulations explained above, reently Stamatakos et al.
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Figure 3.5: Di�usive models inluding anisotropy in the tumor di�usion are able toapture spiky nature of tumor growth. Figures show evolution of the tumor in twodi�erent axial slies. First two olumns show the initial image and initial state ofthe model respetively, while the third olumn shows the tumor after 6 months andthe fourth olumn shows the evolved tumor using the model given in [Clatz 2005℄.proposed to use a ellular automata based algorithm to model tumor growth in med-ial images [Stamatakos 2006a℄ and [Stamatakos 2006b℄. Their model disretizes thevisible tumor volume in the post gadolinium T1-weighted MR image into mesh ellsontaining groups of tumor ells. They explain growth by assigning ertain proba-bilisti set of rules to every mesh ell, whih de�ne ell yle dynamis for the groupof ells inside that mesh ell. These rules take into aount nutrition distributionthroughout the tumor, e�et of abnormal p53 gene expression and type of metaboliativity of the ell in assigning transition probabilities between di�erent phases ofthe ell yle, mitosis, apoptosis (ontrolled death of ells) and nerosis (infeteddeath of ells). As a result, the growth phenomena is explained by the ell yle,governed by probabilisti transition rules. Although some of these features are notwell observable in medial images they model them based on assumptions omingfrom biologial experiments. As an example, the nutrition distribution is taken tobe dereasing homogeneously from the periphery of the tumor to the enter. Theirmodel does not take into aount the in�ltration of tumor ells, but rather only thegrowth through mitosis. Through the probabilisti nature of their model they wereable to obtain realisti looking di�erentiated tumor growth.3.4.2 Mehanial ModelsMehanial models, whih onentrate on the mass-e�et of the tumor, ontain twodistint formulations, one for the tumor growth and one for the mehanial har-ateristis of the brain tissue. These models ombine these formulations through



3.4. MACROSCOPIC MODELS 35oupling, to desribe the mehanial interations between the brain tissue and thetumor growth leading to deformations. There have been many works on hara-terizing the mehanial properties of the brain tissue, whih is deformable but notelasti. In [Wasserman 1996℄ it is said that the brain tissue is a sponge like material,possessing instantaneous properties of elasti materials and time-dependent prop-erties of the visoelasti ones. Moreover, there is a great variation between elastiparameters of brain tissue within similar tissues as well as between di�ering tissues.Instead of formulating these omplex mehanial harateristis, almost all modelsuse assumptions to simplify brain tissue's harateristis.Wasserman et al. proposed one of the �rst mehanial models in[Wasserman 1996℄. In this 2D model they assume the brain tissue is a linear elastimaterial for whih stress-strain relations an be given by generalized Hooke's law.Moreover the amount of strain aused on a given volume, by a spei� amount ofstress, was proportional to the density of brain tissue in that volume. For the tumorgrowth part, they assumed a very simple formulation inluding only the proliferationof ells, in whih the rate of mitosis was set to be onstant. The oupling betweenthe growth and onstitutive equation of the tissue was established by assigning a ho-mogeneous pressure proportional to the number of tumor ells per volume. Throughthis oupling they were able to model the growth of the tumor under mehanialonstraints and interations in CT images. In [Kyriaou 1999℄, Kyriaou et al. as-sumed that brain tissue an be better haraterized by a nonlinear elasti materialthan a linear one. They modelled white, gray and tumor tissue as nonlinear elas-ti solids obeying equations of an inompressible nonlinearly elasti neo-Hookeanmodel. With the introdution of nonlinear elastiity into the model and the useof nonlinear geometry, they were able to desribe large deformations through theirformulation. Tumor growth was kept as a pure proliferation proess with uniformgrowth ausing uniform outward strain. They have applied this model in register-ing images of patients with tumor indued deformations to brain atlases. Their 2Dmodel was applied on individual ross-setional images obtain by CT or MR.Mohamed and Davatzikos extended this model by modelling the brain tissue asan isotropi and homogeneous hyperelasti material, [Mohamed 2005℄. With thisthey relaxed the inompressibility assumption made in [Kyriaou 1999℄ and ignoredthe visous e�et, keeping in mind that times related to deformations was very largeompared to visosity time onstants. In addition to modeling the mass e�et dueto bulk tumor growth they have also taken into aount the expansion aused bythe edema and the fat that part of the mass e�et should be attributed to edema.They have also assumed a proliferation model for the tumor growth, whih had aonstant mitosis rate. Coupling of tumor growth and mehanial interations wasdone the same way as in Wasserman's model. As in the work of Kyriaou et al., thismodel was also able to desribe large deformations. In [Hogea 2006℄, Hogea et al.reformulated the model within a general Eulerian framework, with a level-set basedapproah for the evolving tumor aiming at a more e�ient method, see Figure 3.6.They have also mentioned that for patient spei� models, parameters should befound via solving an inverse problem. However this work was aiming to generatelarge number of brain anatomies deformed by simulated tumors, hene they did notonentrate on the patient spei� modelling. In order to validate their model they



36 CHAPTER 3. LITERATURE REVIEWhave ompared deformations seen in MR images with the ones simulated with theirmodels.Tumor growth proess has been kept very simple and has been assoiated withonly proliferation of tumor ells in all previous marosopi models, whih onen-trate on the mass-e�et of the tumor. Clatz et. al ombined two approahes of themarosopi modelling in [Clatz 2005℄ in reating a formulation for glioblastomamultiforme (GBM). They have formulated the invasive nature of the tumor growth,besides proliferation, and the deformation this auses on the brain tissue. Theyassumed that brain tissue is a linear visoelasti material, whih an be modeledusing a stati equilibrium equation, sine the time sale of tumor growth is verylarge. The oupling of the growth with the mehanial deformation on brain tissuewas established using two di�erent mass-e�ets: one for the bulk tumor and theother for the tumor in�ltrated edema. The e�et of bulk tumor was set as a homo-geneous pressure aused by the volume inrease as a result of ell proliferation. The

Figure 3.6: Models an model large deformations due to tumor growth and edema.Simulated tumor growth in a normal brain template, starting from a small ini-tial seed, orbital-frontal left, using the modeling framework in [Mohamed 2005℄and [Hogea 2006℄. Left: original healthy segmented brain template (axial, sagit-tal, oronal) with a small tumor seed; Right: orresponding deformed templatewith the grown tumor at the end of the simulation. Large deformations an belearly observed.



3.5. IMAGE GUIDED TOOLS FOR THERAPY PLANNING 37mass-e�et of the tumor in�ltrated edema inluded the e�et of invasion through astress term whih ontained tumor ell density as given in Equation 3.3.
∇ · (σ − λI3c) + fext = 0 (3.3)where ∇· is the divergene operator, σ is the strain tensor, c is the tumor ell densityat a loation, fext is the external fore and λ is the oupling fator. With this modelthey were able to simulate both the invasion and the mass e�et simultaneously.Previous works on marosopi modeling have onentrated on reating realistimodels and foused on the modeling framework. Garg and Miga in [Garg 2008℄preferred to build on these existing models and foused on the inhibitory e�etsof the mehanial stress on the tumor growth. In their work they have added theinhibitory e�et of the mass e�et for the reation-di�usion tumor growth models.They have shown that this e�et has a big impat on suh modeling frameworksand it should not be left aside.3.5 Image Guided Tools for Therapy PlanningThe tumor growth models explained in the previous setion an be very useful fordiagnosis and therapy planning in the linial pratie [Mandonnet 2008℄. Usingthe dynamis of the tumor growth, they an provide realisti simulations of thetherapy or predit the extent of the tumor. Suh tools aim at helping the dotorin planning the therapy ourse by quantifying and prediting the e�ay of a givensheme. The e�et of therapy on the tumor and on the brain tissue is extremelyomplex and not known totally. In order to inlude all the known information in themodel one needs to ombine mirosopi and marosopi approahes beause interand intra ell dynamis play important role [Gardner 2003℄. Several authors haveinluded the e�et of therapy in their marosopi models, spei�ally hemotherapy.Cruywagen et al. for example modeled the e�et of drugs through a onstant ellloss mehanism using a negative reation term.One of the �rst elaborate marosopi models fousing on therapy was proposedby Swanson et al. [Swanson 2002a, Swanson 2004℄. They improved the idea of in-tegrating the therapy as ell loss mehanism and formulated temporal e�etivenessof the drugs and spatial heterogeneity of their e�ay. Inluding these two e�etsthey were able to get more realisti simulations of the growth of the tumor underthe e�et of hemotherapy.Reently in [Stamatakos 2006a℄ Stamatakos et al. have modeled the e�et ofhemotherapy based on their ellular automata growth model, whih was explainedin the previous setion. The e�et of the drug is inluded as a damage to eah ell,whih if large enough drives the ell to apoptosis. The relation between drug doseadministered orally (D) and the plasma onentration (Cp) the tumor enounters isgiven by the relation

Cp =
FDka

Vd(ka − kel)
(e−kelt − e−kat) (3.4)where F is the fration of drug reahing the irulation, Vd total volume the drugwill distribute in, t time elapsed sine drug administration, ka and kel are the



38 CHAPTER 3. LITERATURE REVIEWabsorption and elimination rate respetively. For those parameters that are notobservable through linial situations and medial images, like ka, population meanvalues proposed in the literature are used. The damage given to a ell is omputedthrough survival fration
SF = e−KSF TSF Cp , (3.5)whih depends on KSF survival fration onstant and TSF exposure of tumor ellsto the drug. Equation 3.5 depends on the type of drug used and the given form is forthe drug alled Temozolomide (TMZ), whih the authors used in their simulations.Using this model they simulated two di�erent oral administration shemes with 3di�erent doses and ompared the outomes in terms of the number of proliferatingtumor ells. Using probabilities for ell yle and drug damage they aptured thestohasti nature of the therapy and tumor growth. In their simulations they usethe drug TMZ and a patient data with a high grade glioma. They start using thereal tumor delineation and demonstrate a virtual realisti evolution, see Figure 3.7.In another work of the same group [Stamatakos 2006b℄, Stamatakos et al. haveused their ellular automata based model in modeling the e�et of radiotherapy andsimulating therapy. They have inluded in the model the damage aused in a tumorells (group of ells in their ase) due to irradiation. This is explained by survivalprobabilities given by the linear-quadrati model

S(D) = exp[−(αD + βD2)]. (3.6)
S(D) is the survival probability of a ell given that it takes D dose of irradiation(in Gy). The α and β parameters de�ne the radiosensitivity of the ell and theyare varying aording to the phase of the ell-yle, p53 gene expression and themetaboli ativity type of the ell (oxi or hypoxi). Parameters not observed frommedial images are set by assumptions and mean values oming from experiments inbiology. Their model was able to demonstrate onformal shrinkage of the tumor dueto irradiation, whih is observed in real ases. Using their model, they simulatedstandard and hyper frationation of irradiation and ompared these two strategiesthrough simulation. Although they obtained realisti results several phenomena arenot taken into aount in their model suh as in�ltration of tumor ells and the e�etof irradiation on the surrounding healthy tissue. As in the ase of the hemotherapymodeling, simulations start from the real tumor delineation and demonstrates avirtual evolution.3.6 Appliations to Registration and SegmentationTumor growth models, besides being used to reate therapy planning tools, havebeen used to aid registration and segmentation tools as well. Problems of braintissue segmentation and atlas to patient registration in the presene of a pathologyhave reeived attention from the medial imaging ommunity for a long time. Latelythere have been several works proposed for these purposes using the tumor growthdynamis. These works an be lassi�ed into two related groups: atlas to patientregistration and syntheti brain image reation onsisting of a tumor.
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Figure 3.7: Left: An MRI axial slie depiting a glioblastoma multiforme tumour.Both the gross volume of the tumour and its entral neroti area have been de-lineated. The same proedure has been applied to all MRI slies. Right: 3D visu-alization of the simulated response of a linial glioblastoma multiforme tumor toone yle of hemotherapeuti sheme (150 mg/m orally one daily for 5 onseutivedays/28-day treatment yle, [frationation sheme A)℄. (A) External surfae of thetumor before the start of hemotherapy, (B) internal struture of the tumor beforethe start of hemotherapy, (C) external surfae of the tumor 20 days after the startof hemotherapy, and (D) internal struture of the tumor 20 days after the startof hemotherapy. Pseudoolor Code: red: proliferating ell layer, green: dormantell layer (G0), blue: dead ell layer. The following �99.8 %� riterion has beenapplied: �If the perentage of dead ells within a geometrial ell of the disritizingmesh is lower than 99.8 % then [if perentage of proliferating ells > perentage ofG0 ells, then paint the geometrial ell red (proliferating ell layer), else paint thegeometrial ell green (G0 ell layer)℄ else paint the geometrial ell blue (dead elllayer)� [Stamatakos 2006a℄.3.6.1 RegistrationThe registration of an anatomial atlas to a patient with a brain tumor is a di�ulttask due to the deformation aused by the tumor. Registration algorithms proposedfor normal to normal registration fail due to this reason. Reently, several authorsproposed to inlude the tumor growth models in their registration algorithms totakle this di�ult task. The important ingredient the growth models an add isthe quanti�ation of the tumor-indued deformation on the brain strutures throughmodel parameters. Proposed algorithms use these model parameters in separatingthe deformation �eld between the atlas and the patient image into the tumor-indued



40 CHAPTER 3. LITERATURE REVIEWdeformation and the normal inter-subjet variation.Kyriaou et al. proposed one of the �rst atlas to patient registration algorithmsbased on the tumor growth dynamis [Kyriaou 1999℄. Starting from the patientimage, their algorithm �rst simulates the biomehanial ontration in the ase ofthe removal of the tumor to estimate patient anatomy prior to the tumor. A normalto normal registration between the atlas and the tumor-free patient brain follows theontration. At this point instead of deforming the registered atlas with the inverseof the deformation �eld obtained during the ontration, they perform a nonlinearregression in order to estimate the tumor growth parameters that would best �t theobserved tumor-indued deformation. These parameters onsist the enter and theamount of expansion of the tumor. One the parameters are estimated they performthe biomehanial tumor growth inside the registered atlas to obtain the �nal atlasto patient registration, whih was performed in 2D.In ontrast to separating the deformation aused by the tumor and the deforma-tion explaining inter-subjet variability, in [Cuadra 2004℄, Cuadra et al. proposed toombine these two in a nonlinear demons based registration algorithm [Thirion 1998℄for the atlas to patient registration. The algorithm starts by plaing the two brainson the same frame and sale using a global a�ne registration. An expert manu-ally plaes the tumor seed on the a�nely registered atlas, whih orresponds to theplae of it in the patient image. The seeding is followed by a nonlinear registrationalgorithm with adaptive regularization. The tumor growth is modeled as an out-ward pressure ausing radial displaement of the surrounding strutures. Authorsinluded this displaement �eld in their registration algorithm to take into aountthe tumor-indued deformation.Mohamed et al. took a statistial approah for the atlas to patient registrationproblem in [Mohamed 2006℄. They propose a statistial model on the deformationmap reated by applying a nonlinear elasti registration to math an atlas with thepatient image. This model is based on the fat that although normal registrationtehniques would fail in the viinity of the tumor, they will provide the right defor-mation �eld for the other parts. Their statistial model uses the spae of displae-ment �elds and deomposes any deformation �eld on two orthogonal hyperplanes,one desribing the tumor-indued deformations and other inter-subjet variability.The formulation of the hyperplanes is done by prinipal omponent analysis (PCA)assuming linearity of the governing spae and that displaement �elds are realiza-tions of two independent Gaussian random vetors. The training of the PCA for theinter-subjet variability is done by samples oming from registering the atlas to adataset of healthy subjets. On the same dataset they grow arti�ial tumors usingtheir growth model explained in Setion 3.4 for di�erent sets of growth parameters,inluding enter of the tumor, expansion of the tumor and the edema extent. Theseinstanes serve as the training samples of the PCA for the tumor-indued deforma-tion. When a new patient image is enountered, they deompose the deformation�eld and �nd the tumor growth parameters spei� for the patient as
Uf ≈ µc + Vca + µd + Vdb (3.7)where Uf is the total displaement �eld, µc and Vc are the mean and ovarianematrix displaement �elds for inter-subjet registration, and µd and Vd are the
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(a)
(b)Figure 3.8: Left to right: the atlas image with manually labeled regions, the pa-tient image, the atlas to patient registration result using the algorithm explainedin [Mohamed 2006℄, whih inludes tumor growth modeling. (b) The seleted labelsin the atlas are warped and orrespondingly superimposed on the patient's imagesame identities orresponding to tumor-indued deformation. One the deformation�eld linking atlas to subjet and tumor growth parameters are found, the atlas isregistered and the tumor is grown in it. Zaharaki et al. in [Zaharaki 2006℄ pro-posed to improve the registration algorithm used in this work by a more �exibleone, based on HAMMER algorithm [Shen 2002℄, taking into aount the fat that



42 CHAPTER 3. LITERATURE REVIEWaround the tumor region the deformation �eld is distorted when the tumor modelparameters are not optimal. To takle this, they introdued a patient-spei� opti-mization framework based on similarity mathing and smoothness properties of thedeformation around the tumor, see Figure 3.6.1.3.6.2 SegmentationAnother appliation of tumor growth modeling is the syntheti dataset reation forvalidating segmentation algorithms. Presene of a tumor is a big hallenge for thesegmentation algorithms. Algorithms are ompared with expert manual segmenta-tions for validation and performane analysis. Manual segmentations however, showhigh inter-expert variability and ontains human error due to fatigue and other rea-sons. In order to takle this problem, several works proposed to generate synthetirealisti MR images ontaining tumors, for whih ground truths are known and anbe used for validation and analysis. There are two di�erent subproblems for thegeneration. One of them is to simulate the tumor growth realistially. The otherone is to mathematially desribe the e�et of tumor growth on MR signal intensi-ties. In other words, how the image intensities hange in di�erent parts of the image(e.g. edema, atively proliferating tumor region, tumor free part,...).

Figure 3.9: Upper row shows the syntheti images generated of a patient with gliomausing the algorithm proposed in [Prastawa 2005℄. T2w, ontrast enhaned T1w andT1w images from left to right. Bottom row shows the same images oming from areal patient.Rexilius et al. proposed one of the �rst models for this problem in [Rexilius 2004℄.They have modeled the tumor with three ompartments: the ative tumor tissue,the neroti (dead) tumor ore and the edema. The ative tissue and the neroti



3.7. DISCUSSIONS 43part are drawn in the desired loation with the desired size. Later on reasonable grayvalues are assigned to these regions inluding Gaussian noise to make the intensitiesrealisti. As an example, in the ase of ontrast enhaned T1w image the realistivalues inluded ontrast aumulation in the ative tumor part. The mass e�et ofthe drawn tumor is applied to the underlying healthy subjet MR image assuminglinear elasti material properties for tissues. The growth is simulated by a radialdisplaement applied to surrounding tissues using �nite element methods. Lastlyfor the edema, they use the distane transform of the tumor on the white mattermask of the underlying image and deform it with the same mass e�et applied tothe brain. Based on the resulting distane transform values they assign intensityvalues orresponding to edema in�ltration.In order to reate more realisti MR images, Prastawa et al. [Prastawa 2005,Prastawa 2008℄ have takled the same problem using a more sophistiated tumorgrowth model and adding ontrast aumulation properties of di�erent tissues. Theyhave adopted the growth model proposed by Clatz et al. [Clatz 2005℄. In additionto this model, in their formulation they took into aount the displaement anddestrution of white matter �bers using image warping and nonlinear interpolation,based on the observations of Lu et al. [Lu 2003℄. For the image generation part,they have modeled the ontrast agent di�usion inside the brain using the reation-di�usion formalism. Using suh a formulation they were able to simulate the highontrast aumulation in CSF and in ative tumor regions. As a result they obtainedrealisti looking syntheti data with ontrast irregularities as in Figure 3.6.2.3.7 DisussionsIn this hapter, we have reviewed some works on mathematial tumor growth mod-eling and its appliations proposed by the medial image analysis ommunity. Awaybeing from a omplete review on this subjet, this hapter is an attempt to highlightthe main approahes and appliations.In terms of realistially modeling the growth phenomena, some solid attemptshave been taken. However, there are very exiting hallenges awaiting to be solved.Tumor growth is a very omplex phenomena, inluding di�erent sales of ingredientsfrom geneti to marosopi. The biggest laking point at the moment is the linkbetween these sales. Observations that an be obtained from medial images arelimited and obtaining mirosopi observations for a large view-area is not possibleat the moment. One approah that an be taken to takle this problem wouldbe to inluded information oming from di�erent modalities of images in growthmodels. Inluding tehniques like positron emission tomography (PET), magnetiresonane spetrosopy (MRS) and funtional-MRI (fMRI) would yield informationabout nutrient, oxygen and metabolite levels in the tumor giving an opportunityto integrate mirosopi phenomena in marosopi models and for patient spei�models.Personalization of the tumor growth models and therapy models summarized inthis hapter is an important missing link between mathematial methods and linialappliations. Inter-patient variation of parameters an be large, hene obtaining the



44 CHAPTER 3. LITERATURE REVIEWneessary parameters automatially through inverse problems is a required step inadapting general growth models to individual patients. Suh inverse problems alsoserve as quanti�ation tools that an assess the e�ay of a therapy or understandingthe amount of deformation aused as we have seen in Setion 3.6.1. Moreover, intra-patient variation of these parameters has also not been studied yet. Variation withinthe same tumor might result in di�erent growth patterns than the one expeted bythe growth models formulating the average behavior of the tumor. The heterogeneityin a single tumor might be high strengthening the need for stohasti approahesfor tumor growth models.One other big hallenge for reating more aurate models, is the lak of a properquantitative validation tehnique. For marosopi models the omparison is donewith observed medial images, whih are not able to visualize the whole tumor.Although some quantitative validation methods were proposed by some authors,[Clatz 2005, Mohamed 2005, Prastawa 2008℄, the �eld still laks a golden standardin validation methodology.Improving imaging tehniques and more aurate models will yield valuable toolsfor linial onology in the future. Patient-spei� models ombining informationfrom di�erent sales will enable us to perform patient-spei� simulations. Suhsimulations, either for therapy or simple growth will aid in patient treatment andhopefully improve prognosis.



Chapter 4Traveling Time Formulation forTumor Delineation and ParameterEstimation for Reation-Di�usionModels Using Time Series ofImages: Method
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ContextReation-di�usion based tumor growth models have been widely used in the litera-ture for modeling the growth of brain gliomas. Lately, reent models have startedintegrating medial images, spei�ally anatomial and di�usion atlases, in theirformulation. Inluding di�erent tissue types, geometry of the brain and the dire-tions of white matter �ber trats improved the spatial auray of reation-di�usionmodels. The adaptation of the general model to the spei� patient ases on theother hand have not been studied thoroughly yet. In this hapter we address thisadaptation. We propose a parameter estimation method for reation-di�usion tu-mor growth models using time series of medial (Magneti Resonane) images. Thismethod estimates the patient spei� parameters of the model using the imagesof the patient taken at di�erent suessive time instanes. The proposed methodformulates the evolution of the tumor delineation visible in the images based onthe reation-di�usion dynamis therefore it remains onsistent with the informationavailable. 45



46 CHAPTER 4. PARAMETER ESTIMATION: METHOD4.1 IntrodutionThe reation-di�usion models provide a general framework where the integration ofinformation oming from medial images is possible. We have seen in Chapter 3some of these models and how they integrated information oming from images intotheir formulation. The general formulation for the reation-di�usion models arebased on the equations
∂u

∂t
= ∇ · (D(x)∇u) + ρu(1− u) (4.1)

D∇u · n∂Ω = 0, (4.2)where u is the tumor ell density, D is a loal di�usion tensor (i.e. symmetripositive de�nite 3x3 matrix), ρ is the proliferation rate, Ω is the brain domain,
∂Ω represents the boundaries of the brain and n∂Ω is the normal diretion to theboundary. Equation 4.1 desribes the temporal evolution of tumor ell density whileEquation 4.2 represents the no-�ux boundary onditions. One the integration ofmedial images in this model is ahieved the next step is to adapt the model tospei� patients data, in other words to personalize the model. This an be donevia estimating the parameters of the general model, D and ρ, whih best simulatesthe evolution of the tumor observed in the time series of images (images of the samepatient taken at suessive time instanes). The di�ulty in this estimation is dueto the sparsity of the available information. The reation-di�usion models desribethe temporal evolution of tumor ell densities while in the images we only observethe evolution of the tumor delineation whih is assumed to orrespond to an iso-density ontour [Burger 1988℄, as shown in Figure 4.1. In this hapter and in otherparts of the thesis the terms tumor delineation, tumor front and tumor boundaryare used interhangeably to desribe the boundary of the visible part of the tumorin the medial images.The problem of estimating parameters from time series of images in the ontextof tumor growth models is a rather unexplored problem. A �rst attempt was madeby Traqui et al. in [Traqui 1995℄ where they optimized the parameters of theirmodel by omparing the area of the tumor observed in CT images at di�erent timesand the area of the simulated tumor. The drawbak of this approah was to usetumor ell densities requiring an initialization of the density distribution through-out the brain while these densities are not observable in the images. More reently,in [Hogea 2007℄, Hogea et al. have optimized their parameters by omparing loa-tions of some manually plaed landmarks with the model generated ones. In additionto the parameters of the reation-di�usion model they optimize the parameters oftheir mehanial model as well. However, they also use tumor ell density distribu-tion in their optimization proess whih is not available in the images. Moreover,a detailed analysis of the estimated parameters and their minimization frameworkis not provided. Reently Swanson et al. in [Swanson 2008a℄ proposed a param-eter estimation method for the di�usion proess in petri-dish experiments, whihis onsistent with the observables in the images as it uses the tumor boundariesrather than tumor ell densities. They have derived analytial approximations forthe evolution of the tumor delineation for 2 dimensional irular growth. Using the
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(a) (b)Figure 4.1: MR Flair images of a grade II astroytoma: (a) image at the �rstexamination (b) image at the seond examination. In the anatomial MR imageswe observe the boundary of the visible part of the tumor rather than the tumor elldensities.formulation for the tumor delineation they have estimated the di�usion oe�ientfor the petri-dish experiments. The di�ulty one would enounter if one wants toapply this method to medial images is that the method assumes radial symmetrigrowth whih is not the ase in the brain (in-vivo). Moreover, the existene of areation term results in a di�erent evolution than pure di�usion.In this hapter, we propose and analyze a parameter estimation method forreation-di�usion based tumor growth models using time series of medial images.The method is based on the evolution of the tumor delineation rather than tumorell densities and in this respet it is onsistent with the observations in the images.In Setion 4.2, we explain our method, detail the anisotropi Eikonal approximationwe use for desribing the temporal evolution of the tumor delineation and formulatethe parameter estimation problem.4.2 MethodThe parameter estimation methodology and the hoie of the estimated pa-rameters depend naturally on the exat formulation of the underlying reation-di�usion model. In this work we fous on the spei� formulation proposedin [Clatz 2005, Jbabdi 2005℄. However, due to the similarities of reation-di�usionmodels the ideas we present here an be adjusted for other formulations. The modelfor tumor growth proposed in [Clatz 2005℄ is formulated by the system given inEquations 4.1 and 4.2. The di�usion tensor D is an anisotropi tensor taking intoaount two di�erent phenomena: di�erential motility of tumor ells in di�erenttissues and diretional preferene of tumor ell di�usion. The onstrution of D,



48 CHAPTER 4. PARAMETER ESTIMATION: METHODwhih is obtained from the DT-MRI, is as follows:
D(x) =

{
dgI , x ∈ gray matter
dwDwater , x ∈ white matter (4.3)where tumor ells are assumed to di�use isotropially in the gray matter with a rate

dg and di�use along the white matter trats proportional to the di�usion tensor forthe water moleules Dwater through a oe�ient dw. Dwater in this onstrution isobtained from DT-MRI and normalized suh that the highest di�usion rate in thebrain would be 1.We note that in [Clatz 2005℄ the authors also ouple the evolution of the tumorwith its mass e�et on the brain but for this work, as a �rst step, we fous onlyon the reation-di�usion part ignoring the mehanial e�et. One the problem forthe growing tumor is solved and understood then the parameter estimation an alsotake into aount the mehanial model.The reation-di�usion model given by Equations 4.1, 4.2 and 4.3 desribes thetemporal evolution of loal tumor ell densities. As we have noted before, thisreates an inonsisteny with the observables in the images, see Figure 4.1. In orderto solve the parameter estimation problem we need a formulation onsistent with theimages in whih the evolution of the tumor delineation instead of the evolution ofthe tumor ell densities will be mathematially desribed. In setion 4.2.1 we detailthe onstrution of suh a formulation, whih is a projetion of the reation-di�usionequation. One suh a formulation is available then one an optimize the parametersusing di�erent error measures and optimization shemes. In setion 4.2.2 we detailour hoie for the error measure and the optimization sheme.4.2.1 Eikonal Approximation for Reation-Di�usion ModelsThe asymptoti properties of the reation-di�usion equations under ertain ondi-tions allow us to onstrut a traveling time formulation for the tumor delineation.Reation-di�usion equations and their asymptoti properties have been well studiedin the literature [Aronson 1978, U. Ebert 2000℄ and these properties have been usedfor di�erent appliations [Maini 2004, Murray 2002, Keener 1998, Sermesant 2007℄.Here we wish to summarize some of the relevant results in these works.At large times, the onstant oe�ient ase of Equation 4.1 admits a travelingwave solution in the in�nite ylinder. In other words, when the hange of u is non-zero in only one diretion, n, for very large times the solution of Equation 4.1 anbe given in the form:
u(x, t) = u(n · x− vt) = u(ξ) as t→∞. (4.4)where v is the asymptoti speed of the front and ξ = (x ·n−vt) is the moving frameof the traveling wave. The enter of the moving frame ξ is at u = 0.5. Pluggingthis asymptoti form of the solution into the reation-di�usion equation given inEquation 4.1 we obtain an ordinary di�erential equation (ODE)

n′Dn
d2u

dξ2
+ v

du

dξ
+ ρu(1− u) = 0 (4.5)



4.2. METHOD 49This is a onstant oe�ient nonlinear equation and in order to have admissiblesolutions the asymptoti speed v should depend on the di�usion tensor D and ρ,and also on the shape of the initial ondition u(x, 0). When the initial onditionhas a ompat support the asymptoti speed of the traveling wave an be given as,[Aronson 1978, Murray 2002℄:
v = 2

√
ρn′Dn (4.6)The planar initial ondition with ompat support onverges to a travelling plane
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asymptotic(b)Figure 4.2: (a) The tumor distribution evolving with the onstant oe�ientreation-di�usion equation (ross-setion of the tumor ell density distribution inthe in�nite ylinder) is plotted at di�erent times (non-dimensional). We see thatthe shape of the tumor ell density distribution approahes a onstant shape in timeand beomes a traveling wave. (b) The speed of a single iso-density ontour (u = 0.5)is plotted in time along with the asymptoti speed v. In the non-dimensional form ofthe Equation 4.1 the oe�ients are unit therefore v = 2. We observe that the speedthe iso-density ontour onvergene to the asymptoti one but the rate of onver-gene is not very high, in O(1/t). The onvergene harateristis of the speed alsodepends on the iso-density value. For eah u value the urve given in (b) will be dif-ferent. However, this dependene is on the order of O(1/t2) therefore, the di�erenebetween the urves will die out faster and will not be signi�ant [U. Ebert 2000℄.with speed v in time. As the speed of the travelling plane onverges to v its shapealso onverges to a onstant shape, whih depends on the reation term and doesnot have an analytial form for the term we use (logisti growth term). Figure 4.2illustrates the onvergene of the front shape and the speed of the traveling wave intime.The fat that reation-di�usion equations admit traveling wave solutions in er-tain ases (onstant oe�ients and in the in�nite ylinder) states that any iso-density ontour of u at large times under ertain onditions will move with a speedof v. Therefore, we an formulate the speed of the tumor delineation observed inthe images using v. Although this gives the general idea, it is not omplete beausethe onvergene of the observed speed of an iso-ontour to v is slow, in O(1/t).



50 CHAPTER 4. PARAMETER ESTIMATION: METHODEbert et al. have studied this onvergene behavior and derived the rate analyti-ally [U. Ebert 2000℄. In their study they notied that the onvergene rate an beapproximated with a time varying funtion whih does not depend on the value of
u on the iso-density ontour. This approximation assumes that all the iso-densityontours of u behaves like the u = 0.5 one, whih is the origin of the moving frame.Following these studies we inlude the e�et of onvergene in v and have a timevarying estimate of the speed of the u = 0.5 iso-density ontour as

v(t) =
√

n′Dn
4tρ− 3

2t
√
ρ
. (4.7)The speed variation of the u = 0.5 iso-density ontour with time is di�erent fromthe other ones. However, the e�et of the value of the iso-density ontour is shownto be O(1/t2) and therefore we ignore it [U. Ebert 2000℄. The di�erenes betweenthe observed speed of the moving frame, the asymptoti speed and time varyingestimate is shown in Figure 4.3(a). In Figure 4.3(b) we show the integrals of thesespeeds starting from the same initial ondition to demonstrate the e�et of theonvergene on the loation of the moving frame (whih orresponds to the tumordelineation in the ontext of this work). At this point we an readily formulate the
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(b)Figure 4.3: (a) The traveling wave has an asymptoti speed shown with a dashedurve. However, when we observe the speed of an iso-density ontour in time wenotie the low rate of onvergene to this speed (see the solid urve). An approxima-tion of the speed of the iso-density ontour inluding the onvergene e�et yields aloser urve to the the observed on (see point-dashed urve). (b) Starting from thesame point the integrals of the speed urves, namely the distanes to the initial pointas a funtion of time, are shown. Notie that we get a muh better approximationwhen we add the onvergene e�et. All axis are in non-dimensional oordinates.traveling time formulation for the tumor delineation. Based on the ideas presentedin using [Sethian 1999℄, v(t) an seen as
|∇T | = 1/v(t) =

[

2
√
ρn′Dn− 3

2T

√
n′Dn

ρ

]−1 (4.8)



4.2. METHOD 51where T is an impliit time funtion suh that it embeds the loations of the tumordelineation as iso-time surfaes (T (x) is the funtion representing the time when thetumor delineation passes over the point x). As a result of this n an be written as
∇T/|∇T | and we an write the traveling time formulation as

√
∇T ′D∇T =

2
√
ρT

4ρT − 3
, (4.9)where the equation has the Eikonal form (: F√∇T ′D∇T = 1 with F being a generalspeed funtion.) This equation alone only gives the relation of suessive iso-timesurfaes of T . In order to build the solution throughout the domain we need aDirihlet type boundary ondition, namely an initial surfae for whih we know the

T value. In the ontext of the tumor growth modeling this surfae is given as thetumor delineation in the �rst image. Using this we an write the neessary Dirihletondition as
T (x) = T0 ∀x ∈ Γ (4.10)where T0 is the initial time and Γ is the tumor delineation found in the �rst image.As a result the �nal traveling time formulation is given by the equations

√
∇T ′D∇T =

2
√
ρT

4ρT − 3
(4.11)

T (x) = T0 ∀x ∈ Γ (4.12)where in the ontext of tumor growth T0 is the time elapsed sine the tumor hasstarted di�using until the aquisition of the �rst image. The value of T0 is notavailable in the images but as we are going to explain in Setion 4.2.2 it an beregarded as another parameter of the model. Here we would like to note a limitingase of this formulation when T0 = ∞. In this ase we do not take into aountthe time onvergene of the speed of the tumor delineation and model the evolutionof the tumor delineation only using the asymptoti behavior of reation-di�usionmodels. The limiting ase formulation has the form
2
√
∇T ′ρD∇T = 1, (4.13)where the T dependene of the equation is gone. We see that if we do not onsiderthe onvergene e�et and use the asymptoti speed v then T0 is not neessary inthe problem. We also observe that in the equation, ρ and D appear in the produtform and annot be separated. In this formulation the pairs ρ,D with the sameprodut will give us exatly the same evolution of the tumor delineation.The formulation given in Equations 4.11 and 4.12 is valid in the in�nite ylinderwhere the evolution is in one diretion (in this ase the traveling wave is a plane).In the ase of the growth of a tumor, the delineation is urved therefore its evolu-tion is not similar to an evolution in the in�nite ylinder. We an still apply theformulation found in the in�nite ylinder to more general ases (non-planar ases)in 3D by assuming that within a voxel the tumor delineation is planar and themodel oe�ients are onstant. Then by starting from the initial tumor delineationand sweeping the domain outwards we an onstrut the solution. However, suh



52 CHAPTER 4. PARAMETER ESTIMATION: METHODa generalization does not take into aount the e�et of urvature in the more gen-eral evolutions. Several works in the literature have extended the Eikonal equationsand inluded the e�et of urvature [Keener 1998, Franzone 1990℄ (where they havenot taken into aount the e�et of onvergene). In this work we fous on themethod proposed by Keener et al. in [Keener 1998℄. The authors demonstrate away to take into aount the e�et of urvature for slightly urved surfaes in thease of isotropi di�usion. Following the same priniples we an derive the generalformulation for anisotropi di�usion.Derivation of the E�et of the Curvature for Anisotropi TensorsHere we follow the derivation given in [Keener 1998℄ and modify it for the anisotropitensor ase. The reation-di�usion model has the general form:
∂u

∂t
= ut = ∇ · (D∇u) + ρu(1− u). (4.14)We apply a oordinate hange by parameterizing the moving frame of the u funtionas

x = X(ξ, τ), t = τ. (4.15)We assume that this parameterization is a di�eomorphism. By hain rule the partialderivatives using the new oordinates an be written as
∂

∂ξi
=

∂Xj

∂ξi

∂

∂xj
(4.16)

∂

∂τ
=

∂

∂t
+
∂Xj

∂τ

∂

∂xj
(4.17)where the indies are summed (this is the ase throughout this setion). Likewisethe partial derivatives with respet to the Eulidean oordinates an be written interms of the new oordinate system.

∂

∂xi
= αij

∂

∂ξj
(4.18)

∂

∂t
=

∂

∂τ
− αjk

∂Xj

∂t

∂

∂ξk
(4.19)are the partial derivatives in terms of the new oordinate system. αij is the ijthomponent of the inverse of the Jaobian matrix with respet to the parameterization

X. We identify ξ1 as the normal diretion to the isosurfaes of u at every point. Wealso de�ne the tangent and the normal vetors of the parameterization as
ri =

∂Xj

∂ξi
(4.20)

ni = rj × rk, j, k 6= i. (4.21)Using this we an de�ne the [α] matrix using these vetors:
αij =

(nj)i
rjnj

. (4.22)



4.2. METHOD 53For the ease of derivation, through the hoie of the parameterization we let r1·r2 = 0and r1 · r3 = 0 (r1 ‖ n1) and set it as the normal vetor to the iso-surfae of the ufuntion. The derivative terms in the reation-di�usion equation beome
ut =

∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk
(4.23)

∇ · (D∇u) = αkpαijdki
∂2u

∂ξp∂ξj
+

∂

∂xk
(dkiαij)

∂u

∂ξj
. (4.24)Then the whole equation an be written as

αkpαijdki
∂2u

∂ξp∂ξj
+

∂

∂xk
(dkiαij)

∂u

∂ξj
(4.25)

−
(
∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk

)
+ ρu(1− u) = 0.Here we use the two strong assumptions made in [Keener 1998℄. The �rst assumptionsays that the spatial variation of ξ1 is muh smaller than for ξ2 and ξ3. This meansthat the normal to the tumor delineation hanges faster than the tangent spaeof the parameterization. Therefore the e�et of urvature is in a lower order thanthe speed of the moving frame. Remembering that the [α] is the inverse Jaobianmatrix of the parameterization X this assumptions lets us say that αj1 = O(1) while

αjk = O(ǫ).The seond strong assumption is that to the leading order in ǫ, u is independentof τ . In the planar evolution this assumption readily holds sine the solution ofthe reation-di�usion equation is a traveling wave and therefore does not dependon time. However, for the urved evolution this does not hold. This assumption onthe dependene on τ lets us treat the urved evolution as if it admits a travelingwave. Using the singular perturbation method we an gather the �rst order termsand Equation 4.25 redues to
αk1dk1αi1

∂2u

∂ξ21
+

∂

∂xk
(dkiαi1)

∂u

∂ξ1
(4.26)

αj1
∂Xj

∂τ

∂u

∂ξ1
+ ρu(1− u) = O(ǫ).Gathering the terms and reognizing the matrix multipliations this equation anbe rewritten in the ompat form

α′Dα
∂2u

∂ξ21
+

(
∇ · (Dα) + α · ∂X

∂τ

)
∂u

∂ξ1
+ ρu(1− u) = O(ǫ), (4.27)where α vetor is de�ned as [α]i = α1i Now in order to have a traveling wave solutionthis ODE should have the same form as the one in Equation 4.5. This means thatwe need the oe�ients of this equation to be onstants and satisfy the relationgiven as the one given in Equation 4.6. However, this will not be possible for everyiso-ontour of the funtion u. The urvature will have di�erent e�ets for di�erent



54 CHAPTER 4. PARAMETER ESTIMATION: METHODiso-surfaes. Hene, we require it only for the origin of the moving frame (u = 0.5iso-ontour in the ase of logisti growth). Using this we obtain
α′Dα = ρ (4.28)

∇ · (Dα) + α · ∂X
∂t

= 2ρ. (4.29)At this point we remember that α ‖ n1 whih is normal to the iso-surfae of u.We de�ne a level set funtion S suh that the zero-level set of S will orrespond tothe origin of our moving frame therefore, ∇S/|∇S| = n. We an then write α as
α = −K∇S where K is just a oe�ient to be determined. From Equation 4.28 we�nd K as

K =

√
ρ

∇S′D∇S . (4.30)On the other hand, the Equation 4.29 gives us
−∇ · (DK∇S)−K∇S ·Xt = 2ρ. (4.31)In order to replae Xt we need one more relation whih omes from the fat that thevalue of funtion S at the origin of the moving frame doesn't hange by onstrution.Therefore,

∂

∂t
S(x, t)|on the moving frame origin = 0 (4.32)

∇S ·Xt + St = 0. (4.33)Plaing this in Equation 4.31 we obtain
∇ · (DK∇S) +KSt = 2ρ (4.34)

∇ ·
(
D∇S

√
ρ

∇S′D∇S

)
+

√
ρ

∇S′D∇SSt = 2ρ. (4.35)We transform the dynami equation given above into a stati one by inverting theembedding method explained in [Osher 1993℄. We apply the following embeddingand the transformation derived from it:
S(x, t) = 0 ↔ T (x) = t,

∇T =
∇S
St

.As a result of this transformation and the embedding we obtain the anisotropiEikonal equation with the urvature term
∇ ·

(
D∇T

√
ρ

∇T ′D∇T

)
+

√
ρ

∇T ′D∇T = 2ρ. (4.36)Reloating terms we get our formulation:
{

2
√
ρ−∇ · D∇T√

∇T ′D∇T

}√
∇T ′D∇T = 1. (4.37)



4.2. METHOD 55The Equation 4.37 is derived using the asymptoti speed v, but we an alsoreplae v by v(t) and inlude the e�et of onvergene in this formulation. Addingit all together we obtain the following equation to desribe the evolution of thetumor delineation in 3D based on the reation-di�usion dynamis.
{

4ρT − 3

2
√
ρT

−∇ · D∇T√
∇T ′D∇T

}√
∇T ′D∇T = 1 (4.38)where the term ∇ · (D∇T/√∇T ′D∇T ) is the e�et of the urvature. In the deriva-tion of this term it is assumed that the surfae is slightly urved whih requires thee�et of urvature to be of a lower order than the term 2

√
ρ (the �rst assumption).However, the value of the urvature might be high in the general ase espeially inthe presene of the anisotropy in the di�usion proess. Therefore one would needto saturate the e�et of the urvature to satisfy the assumption. In [Franzone 1990℄Franzone et al. have overome this problem by using a slightly di�erent term thenthe urvature term derived above. Their formulation inluded the divergene of ∇Tas follows {

4ρT − 3

2
√
ρT

− ∇ ·D∇T√
∇T ′D∇T

}√
∇T ′D∇T = 1 (4.39)Notie that the di�erene between the terms is the loation of the divergene opera-tor ∇·. The divergene operator reates a more di�usive sheme than the urvatureand therefore, we all this term as the di�usive sheme. In order to better under-stand the need of saturation and ompare Equations 4.38 and 4.39 we analyze aspei� ase of growth where the analytial solution of the reation-di�usion equa-tion is available.Analysis in Spherial GrowthIn most ases the solution for the reation-di�usion equation given in Equation 4.1annot be written analytially espeially in the presene of nonlinear reation term[Rodrigo 2003, Petrovskii 2001℄. But for ertain geometries and boundary ondi-tions, analytial solutions for the linearized reation-di�usion equation an be found.In this part we fous on the growth of a spherially symmetri tumor initialized asa point soure in a medium with homogeneous di�usion and reation oe�ients.We examine how a single iso-density ontour of this tumor evolves and ompare itwith the evolution desribed with traveling time formulation (Equation 4.38).The exat problem we fous on is the linear reation-di�usion equation withhomogeneous parameters.

ut = d∆u+ ρu, (4.40)where d is the salar di�usion oe�ient, ρ is the proliferation rate and ∆ is theLaplaian operator. For a simpler analysis we an non-dimensionalize this equationby using the transformations
x =

√
ρ

d
x, t = ρt, (4.41)



56 CHAPTER 4. PARAMETER ESTIMATION: METHODwhere the x and the t are the non-dimensional spae and time variables. Us-ing these variables in the reation-di�usion equation we get rid of the parame-ters [Murray 2002℄. For simpliity we drop the line over the t and the x. As a resultof the transformations we obtain the non-dimensional form
ut = ∆u+ u (4.42)

u(x, 0) = δ(x), (4.43)where δ(x) is the Dira delta funtion. Equation 4.43 is the initial ondition whihis set to be a point soure. Notie the reation term is linear whih is di�erent from
u(1 − u). As long as we limit our analysis in this part for low u values these tworeation terms are very similar. We also note here that the point soure initializationis not realisti in the ase of in-vivo growth. The more realisti situation would beto set a boundary ondition suh as

u(0, t) = 1, (4.44)whih would orrrespond to the existene of a spheroid [Araujo 2004℄. The di�usionthen starts from the spheroid and during the di�usion the density of the spheroidwould remain 1. However, the solution of this problem is harder to analyze thereforewe stik to the point initialization [Rodrigo 2003, Petrovskii 2001℄. Equations 4.42and 4.43 desribe a symmetri evolution therefore we an hange the oordinatesystem into the spherial one. Using Green funtions [Kevorkian 2000℄ the solutionfor this problem an be written analytially as
u(r, t) =

1

8π3/2t3/2
e

−r2

4t et, (4.45)where r is the radial distane from the enter. All the iso-density surfaes of thisevolution are spheres moving away from the enter. We an desribe the motion ofa single iso-density surfae in terms of the radius as a funtion of time
r∗(t) = 2t

√
1− 1

t
ln(8π3/2t3/2u∗), (4.46)where r∗ is the radius of the iso-density surfae with the value u∗. We observethat the evolution of the iso-density surfae depends on the density value u∗. InFigure 4.4(a) we plot the r∗(t) funtion for di�erent values of u∗. We notie thatsome of these iso-density surfaes redue in size �rst and then start growing. This isdue to the point soure initialization in the formulation given in Equation 4.43 andit is not realisti. The more realisti ase for any iso-density surfae would be that�rst it remains dormant and then starts growing. Keeping this in mind we fous onthe u∗ value whih produes an evolution like this even in the ase of point soureinitialization. Therefore, searhing for the u∗ whih satis�es

min

(
dr∗

dt

)
= 0, (4.47)we �nd u∗ = 0.0346 and we fous our analysis on the evolution of this iso-densitysurfae (shown in red in Figure 4.4).
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(a) (b)
()Figure 4.4: (a) r∗(t) is plotted for di�erent values of u∗. The red urve is the bio-logially reasonable evolution of an iso-density surfae and is given by u∗ = 0.0346.(b) In blue, the evolution of the u∗ = 0.0346 iso-density surfae is drawn. The solidred and the solid green urves are the evolutions desribed by the traveling timeformulations given in Equations 4.38 and 4.39 respetively. The dashed red urve isthe evolution obtained by saturating the e�et of the urvature as in Equation 4.53.() We zoom in the plot (b) around the region where the tumor is smaller. In thisregion the di�usive sheme is lose to the real evolution however, it diverges as thetumor gets larger.The two traveling time formulations given in Equations 4.38 and 4.39 in thespherially symmetri and homogeneous parameter ase take the forms

[
4T − 3

2T
− 2

r

]
Tr = 1 (4.48)

[
4T − 3

2T
− 2

r

]
Tr = 1 + Trr (4.49)respetively. In these equations T is again the traveling time funtion, Tr representsthe derivative with respet to r and 2/r is the mean urvature given in terms ofradius. Note that these equations are also in non-dimensional form. Equations 4.48and 4.49 formulate the evolution of the delineation of a spherially symmetri tumor



58 CHAPTER 4. PARAMETER ESTIMATION: METHODwhose real evolution is given by Equation 4.46 for u∗ = 0.0346. In Figure 4.4(b) weplot the evolutions desribed by these three formulations where the traveling timeformulations start from the delineation of the tumor at t = 1 and Tr is not allowedto fall below 0. In the �gure we plot the distane of the delineation from the enterof the tumor as a funtion of time (radius as a funtion of time). The blue urveis the real evolution, the red urve is the evolution under the e�et of urvature asgiven in Equation 4.48 and the green urve is the evolution with the divergene termas given in Equation 4.49. We observe that neither of these evolutions is lose tothe real one. The evolution inluding divergene of ∇T is lose to the real evolutionwhen the tumor is small, see Figure 4.4(), however later it diverges greatly, seeFigure 4.4(b). On the other hand the evolution inluding the urvature is very badwhen the tumor is small and it gets better in terms of slope of the evolution (speed)as the tumor gets bigger. This observation is onsistent with the assumption we haddone during the derivation of the urvature term in Setion 4.2.1. When the tumoris small in size its urvature is high therefore our assumption of low urvature fails.In order to overome this problem we propose to saturate the urvature e�et usinga saturation funtion
f(κeff ) = sign(κeff )κsat

(
1− e−|κeff |/κsat

) (4.50)
κeff =

2

r
(4.51)where κsat is the saturation value for the urvature term κeff and sign() is thesign funtion. The exat form of the funtion is not very important but what isimportant is that at κeff = 0 the derivative of the funtion is 1. When we put thisin Equation 4.48 and apply urvature saturation in the spherial ase we obtain the�nal traveling time formulation in the spherially symmetri ase

[
4T − 3

2T
− κsat

(
1− e−2/(rκsat)

)]
Tr = 1 (4.52)Remembering that the order of 2

√
ρ should be higher than the urvature e�et andby �tting the evolution de�ned by Equation 4.52 to the one de�ned by Equation 4.46we �nd κsat = 0.15(2

√
ρ). We note that small hanges on this value do not a�etthe evolution muh. In Figure 4.4(b) we plot the evolution of the tumor delineationobtained using Equation 4.52 in red dashed urve. Again we solve this Equationstarting from the tumor delineation at t = 1 and Tr is not allowed to fall below 0.Notie that this evolution is muh loser to the real one plotted in blue than theothers.The Traveling Time Formulation for the Tumor DelineationAdding the saturation of the urvature e�et to the Equation 4.38 we obtain the�nal formulation whih desribes the evolution of the tumor delineation based onthe reation-di�usion formalism:

{
4ρT − 3

2
√
ρT

− 0.3
√
ρ

(
1− e−|κeff |/(0.3

√
ρ)

)}√
∇T ′D∇T = 1 (4.53)
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κeff = ∇ · D∇T√

∇T ′D∇T
(4.54)

T (x) = T0 ∀x ∈ Γ (4.55)where we have hosen to use the exponential form for the saturation funtion butany other hoie would work as well. In this formulation we notie that the lefthand side of the Equation 4.53 an beome negative espeially for low values of
T . This is due to the fat that the approximations for the time onvergene andurvature e�ets get worse for lower T values [U. Ebert 2000℄. In order to overomethis approximation error, in our sheme we do not let the left hand side drop lowerthan {

4ρT − 3

2
√
ρT

− 0.3
√
ρ

(
1− e−|κeff |/(0.3

√
ρ)

)}
≥ {0.1√ρ}, (4.56)whih serves as the minimum threshold for the speed of the tumor. In terms of thespeed of progression of the tumor delineation, this limit an be written as

vmin = 0.1
√
ρn′Dn, (4.57)where n is the diretion of the vetor ∇T . As a result of this onstraint we have agrowing tumor delineation at all times, onsistent with the reation-di�usion model.Numerial MethodEquations 4.53, 4.54 and 4.55 onstitute the formulation desribing the evolution ofthe tumor delineation in 3D. This formulation is based on the hypothesis that thetumor delineation orresponds to an iso-density surfae of the tumor ell density

u (the value is not spei�ed) whose evolution is de�ned by the reation-di�usionmodel given in Equations 4.1 and 4.2. Equation 4.53 is a stati partial di�erentialequation having a similar form as the Hamilton-Jaobi equations (see Appendix A).Several methods have been proposed to solve suh equations numerially in theliterature [Osher 1993, Bryson 2003, Qian 2006, Sethian 2003, Kao 2005℄. In thisthesis, to solve this equation numerially, we adopt an algorithm we propose inChapter 8.The stati Hamilton-Jaobi equation given in Equation 4.11 is a �rst order equa-tion and has the form of an anisotropi Eikonal equation. Just as a reminder, theanisotropi Eikonal equations have the general form
F (x)

√
∇T ′D∇T = 1, (4.58)where the additional F (x) is a spatially varying speed funtion. The numerialmethod proposed in Chapter 8 is dediated to solve suh equations. It is basedon the Fast Marhing method [Sethian 1999℄ and modi�es it in order to take intoaount the anisotropy in the equation. It starts from a given initial ontour andsweeps the domain outwards following the harateristi diretions of the partialdi�erential equation. The di�erential equation has 2 di�erent solutions at eahvoxel and in this sheme we hoose the value suh that as we move away from thedelineation the T value inreases (sine the tumor delineation will pass from those



60 CHAPTER 4. PARAMETER ESTIMATION: METHODpoints at a later time in the ase where the tumor grows). The advantages of thismethod are that it is a sweeping method and it only uses the immediate neighborsof a point rather than using points far away [Sethian 2003℄ to ompute the values.Therefore, it is a fast and aurate method for solving anisotropi Eikonal equations.For the details of the algorithm please refer to Chapter 8. Here, regardless of thedetails of the algorithm, we ontinue our disussion based on the fat that we havea sweeping algorithm whih solves anisotropi Eikonal equations in a fast manner.The Equation 4.38 (and the Equation 4.53) is a seond order equation due tothe divergene term. Hene, it is not obvious to solve it with sweeping methods.These equations an be solved with other iterative methods [Osher 1993, Qian 2006℄however, these methods are not very fast. In order to bene�t from the advantagesof the sweeping methods we separate the urvature part from the equation andonstrut an iterative method that solves anisotropi Eikonal equations at eahiteration with di�erent updated speed terms. The form we use for Equation 4.38 (itis the same onstrution for Equation 4.53) beomes
{4ρT − 3

2
√
ρT

−∇ · D∇T√
∇T ′D∇T

}
√
∇T ′D∇T = 1 (4.59)

{4ρT − 3

2
√
ρT

+ Fcurv}
√
∇T ′D∇T = 1. (4.60)Viewing the onvergene term as a speed term independent of T as Fcurv enablesus to use the sweeping method and onstrut the simple iterative sheme

F 0
curv = 0 (4.61)

{4ρT
n−1 − 3

2
√
ρT n−1

+ Fn−1
curv}

√
∇T ′n−1D∇T n−1 = 1 (4.62)Compute T n−1 (4.63)

Cn−1 = −∇ · D∇T n−1

√
∇T ′n−1D∇T n−1

(4.64)
Fn

curv = Fn−1
curv + α(Cn−1 − Fn−1

curv). (4.65)where α < 1 is the parameter determining the rate of onvergene whih in ourase is taken as α = 0.8. In Equation 4.65 we see that the Fn
curv is updated witha proportional gain using the error made in the previous iteration. In this respetthis sheme is similar to the feedbak ontrol loops. We iterate this algorithm until

∑

x∈Ω

|Cn − Fn
curv| < ǫ (4.66)where the sum represents the summation over all points in the domain of ompu-tation and ǫ is a small value. One this riteria is satis�ed we know that Fcurv isindeed the e�et of the urvature. The rate of onvergene depends on α however,in our experiments we have observed that for a large range of α ∈ (0.2, 0.8) therate is very rapid (see Figure 4.5). For lower α values the sheme takes longer timeto onverge and for higher values we observed osillations therefore, the time ofonvergene also inreased.



4.2. METHOD 61

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

number of iteration n

∑
|C

n
-F

n c
u
r
v
|

Figure 4.5: The urve showing the rate of onvergene for the iterative sheme givenby Equations 4.61-4.65. We visualize the di�erene ∑
x∈Ω |Cn−Fn

curv| as a funtionthe iteration number n. The urve is obtained for the example shown in Figure 4.6.The Evolution of the Tumor DelineationThe traveling time formulation given by Equations 4.53, 4.54 and 4.55 ombines dif-ferent approximations and due to this it does not produe exatly the same propaga-tion as the reation-di�usion model. In order to understand how lose an evolutionwe obtain with two formulations we ompare the evolution of the tumor delineations.First we virtually grow a syntheti tumor using the reation-di�usion growth model.This provides us the evolution of the tumor ell densities u(x, t) at every point. Fromthe tumor ell density distribution, we extrat the iso-density surfae u = 0.4 (valueonsistent with the one proposed in [Traqui 1995℄) at eah time instane and ob-tain the evolution of the tumor delineation that would be visible in medial images.In Figure 4.6 we show this evolution for one example. The white ontours are thetumor delineations observed at the days 400, 600, 800, 1000 and 1200 from inwardsto outwards. Following this, we set the inner white tumor delineation (delineationin the image at day 400) as the starting point for the traveling time formulationand evolve it using the same growth parameters as the reation-di�usion model with
T0 set as 400. We obtained the blak ontours as the evolved tumor delineationsat the same dates. The similarity shows us that in the ase of images where weannot diretly apply the reation-di�usion models, the traveling time formulationgiven by Equations 4.53, 4.54 and 4.55 an provide us a very good approximationof the evolution desribed by the model. In Figure 4.7 we also show the same evo-lution however, this time the urvature e�et is modeled using the di�usive shemeas proposed by Franzone et al. in [Franzone 1990℄. As explained above this sheme



62 CHAPTER 4. PARAMETER ESTIMATION: METHODinludes the divergene of ∇T as given in Equation 4.39. In Setion 4.2.1 we showthat this sheme atually lags behind the atual evolution of the tumor delineationdesribed by the reation-di�usion equation. In Figure 4.7 we observe this laggingand we also note that the lag is less dramati than the theoretial analysis due tothe large size of the tumor we are modeling. In Setion 5.1.1 we provide quantitativeanalysis of the quality of this approximation.

(a) (b)Figure 4.6: The temporal evolution of the iso-density ontour is demonstratedfor a syntheti tumor. Contours are shown for days 400, 600, 800, 1000 and1200 from the innermost to outermost respetively. The syntheti tumor is vir-tually grown using the reation-di�usion model. White ontours are obtainedby thresholding the tumor ell densities at u = 0.4 for the respetive day val-ues (400-600-800-1000-1200). Then in order to simulate the evolution of the iso-density ontour (assumed to orrespond to tumor delineation in real images) start-ing from day=400, without the knowledge of the tumor ell density distributionwe use the traveling time formulation. Blak urves are the ontours we obtainat days 600 (2nd innermost) to 1200 (outermost). We notie that the travel-ing time formulation is quite aurate in desribing the evolution of the tumordelineation in the ase of syntheti tumors. The tumors were grown in the im-ages of a healthy subjet for whom we also have the DT-MRIs. Parameters:(dw = 0.25 mm2/day,dg = 0.01 mm2/day,ρ = 0.012 day−1 T0 = 400 days) Thenumber of iterations for inluding the urvature e�et in this example was 4.4.2.2 The Parameter Estimation ProblemThe parameter estimation for the reation-di�usion model from time series of imagesbeomes possible one we link the evolution we observe in the images to the model.The traveling time formulation T (x) serves as suh a link. In the reation-di�usionmodel given by Equations 4.1, 4.2 and 4.3 we have three di�erent parameters, dw,
dg and ρ. Moreover, in the previous setion by integrating the onvergene har-ateristis of traveling wave solutions into the traveling time formulation we addedanother parameter T0. This gives us 4 parameters to estimate for: (dw,dg,ρ,T0). In
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(a) (b)Figure 4.7: The temporal evolution of the iso-density ontour is demonstrated as theone given in Figure 4.6. However, this time the e�et of urvature in the travelingtime formulation is taken as suggested by Franzone et al. in [Franzone 1990℄, thedi�usive sheme given in Equation 4.39. We see that, as expeted, the evolutionof the tumor delineation desribed by this sheme lags behind the atual evolutiongiven by the reation-di�usion model. This problem is resolved by the formulationproposed in this hapter.this work we try to optimize these parameters suh that the evolution we simulateusing the traveling time formulation best �ts the real evolution we observe in theimages, whih are taken at di�erent times for the same patient.In order to formulate the parameter estimation problem we need to de�ne anerror measure. In a series of N images taken from the same patient at di�erent times
t0, t1..., tN−1, we have N snapshots of the tumor delineation at di�erent times. t0in this frame is the aquisition time of the �rst image. For a given parameterset, starting from the �rst time image we an simulate the evolution of the tumordelineation and ompare it with the real delineations. We note that the value of t0is not known and regarding the time instanes we only know the di�erenes betweenaquisitions ∆t0 = 0,∆t1, ...,∆tN . Using this idea we an de�ne

C1(dw, dg, ρ, T0) =

N−1∑

1

dist(Γi, Γ̂i)
2 (4.67)

Γ̂i = {x|T(dw ,dg,ρ,T0)(x) = T0 + ∆ti} (4.68)with T (x) = T0 ∀x ∈ Γ0where dist() is the symmetri distane between two surfaes normalized by thesurfae area of the surfaes, Γi is the surfae enlosing the tumor in the image takenat ti and Γ̂i is the tumor delineation simulated by the traveling time formulation at
ti. In this formulation we notie that T0 is the estimate of t0. The estimation of t0,maps the time instanes, for whih we only know the suessive di�erenes, on therespetive onvergene urve (like the example given in Figure 4.3).



64 CHAPTER 4. PARAMETER ESTIMATION: METHODOne information we have not used ompletely in C1 is the size of the visible tumorin the �rst image Γ0. In our experiments we observed that in order to orretly mapthe time instanes on the onvergene urve we need to inlude this size. The inquirywe make is whether it would have been possible to obtain Γ0 at T0 using the travelingtime formulation if we had started from the time the tumor had started di�using,namely T = 0. The assumption we make here is that the tumor started di�usingfrom a set of isolated small regions. These small regions atually orrespond to theavasular masses that start di�using and speed up after vasularization. In order toinlude this in our error measure we run the traveling time formulation bakwards intime starting from Γ0 within the delineation. We do this by solving the Equation 4.53within the visible tumor in the �rst image. As explained in Setion 4.2.1 we startfrom the delineation Γ0 and sweep the region enlosed by Γ0. The only di�erenethis time is that in Setion 4.2.1 the T values were inreasing as we move furtherfrom the �rst delineation while in this ase T values derease as we go bakwardsin time. This bakward evolution in time provides us a minimum T value, Tminand the orresponding point from whih the tumor is assumed to start from (or aset of points) xmin. We notie that if the parameter set dw, dg, ρ, T0 is onsistentwith the size of Γ0 then Tmin = T0. Therefore the error we need is a funtion of
|Tmin − T0|. In order to have a measure onsistent with C1 we need to onvert thetime di�erene into a spatial distane. For this we use the minimum allowable speedvalue (see Setion 4.2.1)

vmin = 0.1
√
ρn′

maxD(xmin)nmax (4.69)at the point xmin, where nmax is the prinipal eigenvetor of D(xmin) providing thehighest di�usion rate and the fator 0.1 omes from the minimum threshold for thespeed of the tumor explained in Setion 4.2.1. Using vmin we obtain
C2(dw, dg, ρ, T0) = (vmin|Tmin − T0|)2 (4.70)

C = C1 + C2 (4.71)Combining C1 and C2 we obtain the error riteria C we wish to minimize withrespet to the model parameters.The minimization of C is a multidimensional optimization problem and it anbe handled using di�erent methods. One important riteria a�eting the hoie ofthe minimization algorithm is that expliit derivatives of C with respet to di�erentparameters are not easily available. Another point is that although the parametershave biologially relevant bounds ( suh as dw, dg, ρ, T0 > 0) this onstraint is notrestritive. Based on these observations we have hosen to use the unonstrainedminimization algorithm proposed by Powell in [Powell 2002℄, see Appendix B fordetails. The attrative feature of this algorithm is that it does not require derivativesof the objetive funtion. Instead, its loal quadrati approximations are used in theminimization. The algorithm requires di�erent instanes of the objetive funtion-whih are omputed using the traveling time formulation-to onstrut the quadratiapproximation and updates it as the minimization proeeds. For eah instane C1and C2 are omputed and fed to the optimization algorithm.



4.3. THE OVERALL ALGORITHM 654.3 The overall algorithmFinally in this setion we provide the overall parameter estimation algorithm ex-plained in this hapter. The algorithm is omposed mainly of three di�erent parts:the traveling time formulation, the error measure and the minimization algorithm.In Setions 4.2.1 and 4.2.2 we have explained the �rst two parts whih are our on-tributions. In Appendix B we brie�y explain the minimization algorithm we usedin this work whih was proposed by Powell [Powell 2002℄. The pseudoode for theparameter estimation method explained in this hapter is given in Algorithm 1 andthe �owhart given in Figure 4.8.Algorithm 1 Pseudoode for the parameter estimation methodology.Inputs: Tumor delineations in the time series of anatomial images, DT-MRI ofthe patient, White-gray matter segmentation, Initial estimate of the parametersrepeat- Construt the tumor di�usion tensors using the parameters dw, dg, the DT-MRIimage and the white-gray matter segmentation.- Simulate the evolution of the tumor delineation starting from the 1st image inthe time sequene as explained in Setion 4.2.1.- Compare the simulated evolution of the tumor delineation with the atual de-lineations at the given dates (The days images where aquired). Compute
C1 + C2 = C as explained in Setion 4.2.2.- Minimization algorithm hooses a new set of parameters with whih the evolu-tion of the tumor delineation will be simulated and the error C will be omputed(see Appendix B).until Optimization algorithm onverges (see Appendix B)
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Figure 4.8: The overall algorithm of the parameter estimation method for reation-di�usion tumor growth models.



Chapter 5Parameter Estimation forReation-Di�usion Models UsingTime Series of Images: Results
Contents5.1 Results for Syntheti Tumors . . . . . . . . . . . . . . . . 675.1.1 Comparing Traveling Time with Reation-Di�usion . . . . 685.1.2 Problem of Non-Uniqueness . . . . . . . . . . . . . . . . . 695.1.3 Fixing ρ and the 3 Parameter Case . . . . . . . . . . . . . 705.1.4 Changing the �xed ρ and Speed of Growth . . . . . . . . 765.1.5 Reduing the Number of Images Used . . . . . . . . . . . 775.1.6 Forgetting the Convergene E�et and T0 . . . . . . . . . 785.1.7 Di�erent Tensor Constrution . . . . . . . . . . . . . . . . 805.2 Preliminary Results with Real Cases . . . . . . . . . . . . 825.2.1 Fitting the Observed Evolution . . . . . . . . . . . . . . . 845.2.2 Prediting Future Evolution Beyond Observed Image Data 865.3 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89ContextWe devote this hapter for the experiments and analysis of the parameter esti-mation methodology explained in Chapter 4. In the �rst setion we analyze theproposed methodology �theoretially� using syntheti tumors virtually grown byreation-di�usion models. We provide a thorough analysis in order to understandthe performane of the proposed method and also to understand the dynamis ofthe parameter estimation problem itself. In the seond setion we show some asestudies using patient images. We show some promising preliminary results in thefew ases we fous on.5.1 Results for Syntheti TumorsIn the evaluation phase of the parameter estimation method, we test the apabilitiesof the method for retrieving the real parameters of the tumor growth. We �rst per-form tests with syntheti tumors for whih the parameters are known. We onstrut67



68 CHAPTER 5. PARAMETER ESTIMATION: RESULTSa dataset of 180 tumors using the reation-di�usion model omposed of 60 di�erentparameter sets at 3 di�erent loations in the brain. The di�erent parameter setsof the model were onstruted using di�erent ombinations of dw, dg and ρ valuesgiven in the table below.
dw [mm2/day℄ 0.025 0.05 0.1 0.25 0.5
dg [mm2/day℄ 0.005 0.01 0.025
ρ [1/day℄ 0.009 0.012 0.018 0.024As an be seen from the values for eah parameter the �nal parameter sets overa large range of growth speed and anisotropy. Eah tumor was initialized in asingle voxel and grown in the MR image of a healthy subjet with a resolution of1x1x2.6mm3. The di�usion tensor D was onstruted using the DT-MRI of thesame subjet. In order to reate the syntheti images of these tumors, we assumeda simple imaging proess where a voxel is visualized as tumoral if the number oftumor ells exeeds 40% of the maximum tumor ell apaity the brain parenhymaan handle (u > 0.4) [Traqui 1995℄. For eah tumor, the detetion and the �rstimage aquisition is made when the visible tumor size reahes a diameter of 1.5m. The time the tumor reahes this size depends on the parameters of the modeltherefore the T0 value is di�erent for eah parameter set.5.1.1 Comparing Traveling Time with Reation-Di�usionThe �rst thing we do before starting the experiments for parameter estimation is toevaluate the resemblane between the evolution of the tumor delineation desribedby the reation-di�usion equation and the traveling time formulation. In otherwords quantify the similarity seen in Figure 4.6. For eah of the 180 synthetitumors explained we simulate the evolution of the tumor delineation by the travelingtime formulation using the exat same parameters as the reation-di�usion equationused to grow the tumor. We initialize the traveling time formulation with the�rst image of eah tumor and predit the tumor delineation at 200, 300 and 400days after the detetion. Then we ompare the predited delineations with thesyntheti images onstruted for the orresponding days. We ompute the errormeasure C1, whih measures the symmetri distanes between the real and thepredited delineations, for eah of the syntheti tumors. In Table 5.1 we summarizethe results of the omparison. The olumns named after the parameters of themodel denote all the tumors having that value for the spei� parameter. Forexample, the ell ρ = 0.009/day represents all the syntheti tumors having the

ρ value as 0.009/day. There are 15 di�erent tumors for this spei� value withdi�erent di�usion oe�ients, set as ombinations of di�erent dw and dg values.The ell on the right hand side of the ρ = 0.009/day ell shows the mean and thestandard deviation of C1 values omputed for the 15 di�erent tumors representedin that ell. The rest of the table is interpreted likewise. We notie that all theerror values are around 1mm whih is approximately 1 voxel. Observing the errorvalues in this table we an onlude that the traveling time formulation desribesthe evolution of the delineations of syntheti tumors grown by the reation-di�usionmodel very well. We did not inlude C2 in this analysis beause the aim of this part
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ρ C1 [mm] dw C1 dg C1

0.009 0.92 ± 0.17 0.025 0.94 ± 0.12 0.005 0.97 ± 0.16

0.012 0.94 ± 0.12 0.05 0.89 ± 0.10 0.01 0.94 ± 0.13

0.018 0.94 ± 0.10 0.1 0.85 ± 0.03 0.025 0.92 ± 0.09

0.024 0.99 ± 0.10 0.25 0.94 ± 0.07

0.5 1.11 ± 0.11Table 5.1: Resemblane between the travelling time formulation and the reation-di�usion equation. We observe that the evolution of the tumor delineation simulatedby the traveling time formulation is on the average at most 1.11mm away from thereal delineation observed in syntheti images. Keeping in mind the resolution ofthe images used (1x1x2.6mm3) we an say that the traveling time formulation issuessful in desribing the evolution of the delineations of the syntheti tumors.is to understand how lose we an simulate the evolution of tumor delineation withthe right parameters of the model, whih is de�ned by the error measure C1.5.1.2 Problem of Non-UniquenessIn the �rst set of experiments we tried to estimate all the parameters of the reation-di�usion model (dw, dg, ρ) and the �rst aquisition time T0 (the time elapsed betweenthe emergene of the tumor and its detetion) using the traveling time formulation.In these experiments we observed the non-uniqueness of the solution to this problemaused by the oupling between proliferation and di�usion rates and the sparsityof the information ontained in the images. The reation-di�usion model ombinedwith the imaging proess an result in very similar evolutions of the tumor delin-eation with very di�erent parameters. In Figure 5.1 we show the evolutions of twodi�erent tumors (green and red) for whih the di�usion and proliferation parametersare given in the aompanying table. The ontours with the same olor are the de-lineations of the same tumor in di�erent images taken at suessive time instanes.The inner ontour is the delineation in the �rst image and the other ontours as wego outwards are from the images taken at 200, 300 and 400 days after the �rst imageaquisition respetively. We observe that although the parameters are di�erent theevolutions are almost the same. Quantitatively, the di�erene between these twoevolutions measured by the error riteria C (see Equation 4.71) is 0.644 mm2. Onthe other hand, the losest tumor delineation evolutions we an get to these onesusing the traveling time formulation with the optimum parameters have errors of
C = 1.28 mm2 for the red and C = 1.29 mm2 for the green tumor. This shows usthat with the urrent resolution of medial images we annot distinguish betweenthese two parameter sets if we observe either of the evolutions. Therefore, we leaveaside the question of estimating the di�usion and the proliferation rates separately.One observation about the values of the parameters is that between the twoases in Figure 5.1 the funtions 2

√
ρdw and 2

√
ρdg remain almost the same, around

0.1 mm/day and 0.03 mm/day respetively. This is onsistent with the fat thatthe asymptoti speed of reation-di�usion equations are given by 2
√
ρn′Dn, see
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Red Green

dw 0.273 0.153
dg 0.024 0.014
ρ 0.012 0.0185

Figure 5.1: In the image we show the evolution of two di�erent syntheti tumorsvirtually grown using the reation-di�usion model with di�erent parameters. Theontours of the same olor are the tumor delineations for the same tumor in 4di�erent images taken at 4 suessive time instanes (T0, T0 + 200,T0 + 300 and
T0 + 400 days after the �rst image). The reation-di�usion model parameters forthese tumors are given in the table. We observe that although the di�usion andproliferation rates of these tumors are di�erent the evolutions are almost the same.The di�erene between these evolutions measured using C is 0.644 mm2 whihis lower than the minimum error we �nd by estimating the parameters using thetraveling time formulation (C = 1.28 for red and C = 1.29 for green). This showsthat we annot distinguish between these two parameter sets if we observe either ofthe evolutions. We also observe that the produts dwρ and dgρ are very lose forthe two tumors. This tells us that although distinguishing between dw, dg and ρ isnot obvious estimating the produt of dw,gρ is possible.Setion 4.2.1. Therefore, even though we annot estimate the proliferation and thedi�usion rate separately we an estimate the speed of evolution in the white and inthe gray matter by �xing the value of ρ.5.1.3 Fixing ρ and the 3 Parameter CaseSine estimating all the parameters of the reation-di�usion equation proved itselfto have a non-unique solution (under the given hypotheses) we turn our attentionto the ase when we an �x a parameter. The proliferation rate ρ is a mirosopiparameter and its oupling with the di�usion rate reates the non-uniqueness of thesolution. Here we assume that the value of ρ an be estimated using biopsy resultsand mirosopi analysis or an average value of ρ an be provided as a result of thestaging and grading of the tumor. Therefore, we an have a good estimate of ρ and�x it in the parameter estimation problem. In our analysis we assume we know thereal value of ρ and �x it, one it is �xed the problem beomes solvable. In this asewe are left with three parameters to estimate (dw, dg) and T0.For eah of the syntheti tumors previously desribed we reate a dataset of 3



5.1. RESULTS FOR SYNTHETIC TUMORS 71images, the �rst image taken at the time of detetion and two other images takenat 200 and 400 days after the detetion 5.2. Using these images and the timedi�erene between aquisitions we estimate the di�usion parameters and T0. Weshow and disuss the obtained estimates based on two di�erent analyses. The �rstone is the proximity of the estimated parameters to the real ones and the sensitivitywhih tells us if we are able to distinguish between two di�erent tumors with loseparameters. The seond analysis is about the shape of the minimization surfaearound the estimated point. The parameter estimation method, as explained in theprevious setion, minimizes the objetive funtion C. The shape of this funtionaround its minimum shows us the feasibility of the minimization proess.
(a) (b) ()Figure 5.2: An example of the syntheti dataset reated for eah virtual tumor forthe theoretial analysis of the proposed parameter estimation method. (a) Showsthe 1st image aquired at the time of detetion. The white region is the visible partof the virtual tumor. (b) Shows the 2nd image of this dataset taken 200 days afterthe �rst one. () 3rd image of this dataset taken 400 days after the �rst one. Forillustrative purposes we show a fast growing tumor.Analysis of the Estimated ParametersIn Figures 5.3(a) we show the estimated di�usion parameters along with the realones. In order to demonstrate the results, we projet the high dimensional param-eter spae onto the 2D (dw, dg). The larger markers in the plot represent the realparameters used to grow the syntheti tumors and the smaller ones represent theestimated parameters retrieved from the images. Eah small marker with a spei�shape and olor is the estimate for the larger marker with the same shape and olor.Although there is only one estimate for eah parameter set dw, dg, ρ there are mul-tiple small markers for eah large marker due to projeting onto lower dimensionalspae. In other words, di�erent small markers of the same shape and olor are theestimated parameters of the tumors with di�erent ρ but same dw and dg.Analyzing the Figure 5.3 we observe that the parameter estimation method isable to retrieve the value of dw with good auray. Moreover, the method is able todistinguish between di�erent tumors with lose di�usion oe�ients. The estimationof dg on the other hand seems to be less aurate. We notie the onsistent positivebias in the estimate of dg whih inreases with inreasing dw. We believe there aretwo reasons for this. The �rst one is the di�erene between numerial shemes we
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5.1. RESULTS FOR SYNTHETIC TUMORS 73di�usion tensors between voxels reating higher di�usion within the gray matterneighboring white matter. The traveling time formulation, whih uses the di�usiontensors on the voxels, aounts for this by inreasing dg therefore estimating ahigher dg. As a result as the value of dw inreases the bias on dg inreases. Theseond reason is omputing the urvature e�et term in Equation 4.54 using theimages, where the ontour enlosing the tumor delineation has sharp orners (dueto disretization) whih auses high urvature. Sine the high urvature slows downthe evolution, the traveling time formulation aounts for this by inreasing thedi�usion oe�ient. This seond reason is espeially observed for the tumors where
dw is low. Even in the presene of this bias we notie that for slowly di�usingtumors the dg estimates are very lose to the real values and the method is ableto distinguish between di�erent tumors with lose di�usion oe�ients. For highlydi�using tumors the dg estimates are rather unreliable however the order of the ratiobetween dw and dg is well aptured. Regarding the estimation of T0, in Figure 5.3(b)we plot the estimated value of T0 in the y-axis versus its real value in the x-axiswhere the y = x line is also drawn. Observing this plot we notie that the estimatesfor T0 remains within the 10-15% margin of the real value, whih shows that theproposed method is able to retrieve T0.Analysis of the Minimization SurfaeRegarding the shape of the minimization (error) surfae on the global sale, inour experiments we observed that this surfae, whih is de�ned by 3 dimensions(dw, dg, T0) namely the parameters we are minimizing for, remains onvex for allthe tumors. However, the exat shape of the surfae and the slope of the surfae indi�erent diretions around the minimum point varied. We know that the estimatedparameters provide us the best �t to the evolution of the tumor delineation weobserve in a set of images, let us say with an error of C∗. The question we wantto answer is how muh this evolution varies from the optimum when we slightlymove away from the �best� parameter set. In order to answer this question, for anestimated parameter set (d∗w, d

∗
g, T

∗
0 ) whih gives a minimum error of C∗ we �ndthe other parameter sets whih give an error smaller than C∗ + ǫ. In other wordsparameter sets whih provides an evolution of the tumor delineation whih is ǫ awayfrom the best �t in the average. In our high dimensional parameter spae theseparameter sets are enlosed in an ellipsoid around the estimated point whih wename ǫ-ellipsoid.Constrution of ǫ-EllipsoidsThe parameter estimation problem in this work is formulized as the optimizationproblem with the objetive funtion C. For a given set of images, the method triesto �nd the parameters of the tumor growth model whih would minimize the valueof the funtion C. ǫ-ellipsoids is a simple way to understand the shape and thesteepness of the minimization surfae around the minimum point. The onstrutionof the ǫ-ellipsoids is as follows. For a given parameter estimation problem let us saythe estimated parameters p∗ orresponds to an error value of C∗. As a onsequene



74 CHAPTER 5. PARAMETER ESTIMATION: RESULTS
C∗ is the minimum of the objetive funtion C for this problem. We �rst onstrutthe quadrati approximation of C around p∗

C = C∗ + g′(p − p∗) +
1

2
(p − p∗)′G(p− p∗), (5.1)where g is the gradient vetor and G is the Hessian at p∗. Sine p∗ is the minimumwe know that g = 0. Moreover sine the point p∗ is the minimum of C the Gis a positive de�nite matrix. The onstrution of the quadrati approximation isdone by sampling the funtion C and �tting a quadrati funtion by least squareminimization.One the quadrati approximation of C is obtained we de�ne the ǫ-ellipsoid asfollows

P = {p|C(p) = C∗ + ǫ}, (5.2)where the set P is the ǫ-ellipsoid and p is an arbitrary parameter set. Sine G is apositive de�nite matrix we are sure that P is a losed surfae and for all the pointsremaining inside P , C(p) < C∗ + ǫ.Using the ǫ-ellipsoid we enlose a set of parameters (parameter sets p's) for whiheah parameter set produes an evolution of the tumor delineation that is ǫ loseto the optimum evolution reated by p∗. This means if the ǫ-ellipsoid is big for aproblem then the minimization surfae is �atter therefore, it is harder to �nd theminimum point. Moreover, the diretions of the semi-major and semi-minor axis ofthe ellipsoid provides us the oupling between di�erent parameters.In Figures 5.4(a,b) we show the projetions of some of these ǫ-ellipsoids (for
ǫ = 0.1mm2) on the respetive parameter spaes where the round dots are theatual parameters, the rosses are the estimated parameters and ellipses aroundeah ross are the projetions of the ǫ-ellipsoids.Observing Figure 5.4(a) we notie that the major axis of the ellipses remainparallel to dg axis however, this is due to the di�erene of sale between dw axisand the dg axis. When plaed on the same sale these ellipses are rather irular.The seond thing we notie is that the ellipses grow with inreasing dw. This is aonsequene of using normalized distanes between surfaes in our error measure,see Equation 4.67. As dw inreases the tumor di�uses faster in the white matterand its size inreases. As a result the boundaries of the visible tumor reahes theextent of the white matter and most of the surfae enlosing the tumor delineationin the image remains in the gray matter (as gray matter di�usion is muh lower thetumor stops in the white-gray matter boundary) or reahes the boundaries of thebrain. Therefore hanging dw does not a�et these portions of the surfae and itsontribution to the error measure dereases resulting in the larger ellipses we observe.This shows us that for more di�usive tumors a larger set of parameters yields similarerrors therefore minimization surfae is �atter. In Figure 5.4(b) we observe theoupling between dw and T0. One an obtain a similar evolution by inreasing dwand dereasing T0 (and vie-versa). The reason for this an be explained by thee�et of onvergene given in Equation 4.11, see Figure 4.3. We see that when T0 islower the speed of the tumor delineation is slower but if we inrease the value of thedi�usion we would obtain a similar evolution. The shape of the onvergene urve
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76 CHAPTER 5. PARAMETER ESTIMATION: RESULTShange anything however, inluding the size of the tumor in the �rst image usingthe error term C2 (Equation 4.70) helps us distinguish between very high T0 values.5.1.4 Changing the �xed ρ and Speed of GrowthIn all the above experiments we have �xed the value of ρ to its real value. Naturallythe di�usion rate estimates depend on the value of ρ. Therefore, by �xing ρ weatually determine the loation of the dw and dg estimates. In order to understandthe e�et of the value of ρ on the estimation of di�usion rates and the ouplingbetween ρ and D we have performed a slightly di�erent experiment. Instead of�xing ρ to its real value we have set it to a di�erent value and then estimated theother parameters dw, dg and T0. For the ease of demonstration we only show theestimation results for the syntheti tumors with ρ = 0.012/day. The experiment
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(b)Figure 5.5: In the �gures we plot v(w,g) = 2
√
d(w,g)ρ values estimated by �xing

ρ = 0.015 versus ρ = 0.012. We also plot the y = x line for a better omparison. Weknow that the estimated dw and dg values depend on where we �x the ρ. However,observing these �gures we note that no matter what value we �x ρ to, the produtof ρ and the estimated di�usion oe�ient d(w,g) remains onstant. Therefore theasymptoti speed of growth of the tumor in the white matter and in the gray matteran be estimated uniquely.we performed is the same as the one explained in the previous setion however, thistime in the estimation method we set ρ = 0.015/day. As expeted the estimateddi�usion rates are lower than the values estimated by setting ρ = 0.012/day. Theinteresting point however, was not the hange in the values but the oupling between
D and ρ. In Figure 5.5(a) we plot vw = 2

√
dwρ omputed with ρ = 0.015 and the

dw value estimated by �xing ρ to this value versus v omputed using ρ = 0.012and the dw estimated with this ρ. Figure 5.5(b) is the same plot for dg values. Weobserve from these graphs that the estimated di�usion rates hange when we hangethe �xed ρ however, the produt of the proliferation and the di�usion rates remainonstant. The value v = 2
√
d(w,g)ρ is the asymptoti speed of tumor growth and



5.1. RESULTS FOR SYNTHETIC TUMORS 77even though we annot estimate the proliferation and the di�usion rates separatelywe are able to estimate v for eah tumor regardless of whih value we �x ρ to.5.1.5 Reduing the Number of Images UsedIn the experiments shown above we have always used 3 suessive images of the samepatient taken at the time of detetion, 200 days after and the last one 400 days afterthe time of detetion. In normal linial routine the number of images does nothave to be the same for eah patient. The follow-up an be very irregular for somepatients and the intermediate images in time might not be available. In this partwe analyze the e�et of the number of images used for parameter estimation on theproposed methodology. In these experiments we estimated the growth parameters
(dw, dg, T0) using only 2 images, one taken at the time of detetion and the otherone taken at the end of the study, 400 days after the time of detetion. As wehave done in Setion 5.1.3, we analyze the estimated parameters and the shape ofthe minimization surfae C around the estimated parameters. In Figures 5.6(a)
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T0(b)Figure 5.6: The results of the parameter estimation experiments for the synthetitumors using only 2 suessive images in time. In �gures we show the same pattern asFigures 5.3(a) and (b) but the parameters are estimated using 2 images. Comparingthe estimates obtained using 3 suessive images in time given in Figures 5.3 andthese Figures we notie that the loations of the estimated parameters are nota�eted by the derease in the number of images.and (b) we show the estimated di�usion oe�ients (dw, dg) and the estimatedinitial time T0. We observe that the loations of the estimated parameters andtheir relations with the real ones are very similar to the ase where we have used 3images. Between Figures 5.3(a) and 5.6(a), we observe the same positive bias in thedi�usion oe�ients and the same unreliability of dg estimated when the dw valueis high. The estimation of T0 also shows very similar behavior in Figures 5.3(b)and 5.6(b). Based on these observations we onlude that the estimated parametersare not a�eted by reduing the number of images used in estimation to 2.On the other hand, the objetive funtion C hanges when the number of imageshanges. Therefore, the loal shape of the minimization surfae around the estimated



78 CHAPTER 5. PARAMETER ESTIMATION: RESULTSparameters hange as well. In Figures 5.7(a) and (b) we plot the projetions of the ǫ-ellipsoids onto the respetive parameter spaes for some of the estimated parametersets. Comparing Figure 5.7(a) with Figure 5.4(a) we observe that the size of the
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T0(b)Figure 5.7: Figures plot the projetions of some of the ǫ-ellipsoids on the respetiveparameter spaes for the experiments using only 2 suessive images in time. Figuresare drawn the same way as Figures 5.4 (a) and (b). Comparing these Figures withthe ones given in 5.4 we observe that using more images in the estimation gives usa better on�dene on the estimated parameters espeially for the di�usion rates.ellipses in the (dg, dw) spae are muh bigger in the ase where we use 2 imagesto estimate the parameters. The unertainty on the di�usion oe�ients inreasedand the reliability of the parameters dereased. This observation is oherent withthe general expetation that the more images we use the more reliable estimateswe obtain. When we observe the Figures 5.4(b) and 5.7(b) we notie that hangingthe number of images also inreased the size of the ellipses in the T0, dw spae butthe hange is not big. The reliability of the T0 estimate remained almost the same.From this we understand the most important fator determining the value of T0 isthe size of the tumor in the initial image. This fator was inluded in the parameterestimation sheme by using C2 in the Equation 4.70 in Setion 4.2.2.5.1.6 Forgetting the Convergene E�et and T0The last issue we takle in our analysis for syntheti tumors is the e�et of inludingthe time onvergene and the initial time estimate T0 on the estimated parameters.Spei�ally on the estimated di�usion rates. In this part we set the T0 =∞ and on-entrate on the asymptoti behavior of the reation-di�usion model. More preiselywe would like to estimate the di�usion oe�ients dw and dg using only the asymp-toti speed of the tumor delineation with the formulation given in the Equation 4.13in Setion 4.2.1. In Figures 5.8 (a) and (b) we show the estimated (dw, dg) pairs andthe ǫ-ellipsoids for these pairs. These pairs are estimated without using the timeonvergene of the speed of the tumor delineation. We observe that the estimateddi�usion rates are muh lower than the real values espeially for the tumor with highdi�usion rates. When the time onvergene is not inluded we over approximate the
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(b)Figure 5.8: The results of the parameter estimation experiments for the synthetitumors without inluding the time onvergene of the tumor delineation speed and
T0. Figure (a) is plotted the same way as Figure 5.3(a). Comparing the estimatesshown in Figure 5.3(a) and these ones we notie that the estimated di�usion ratesare muh lower when T0 is not taken into aount. This e�et is espeially strongerfor fast growing tumors. For slowly growing tumors the hange in the estimatedparameters is smaller. Comparing the ǫ-ellipsoids given in Figure 5.4(a) and theones given in Figure (b) here we see that the shape of the minimization surfae isnot a�eted by inluding the time onvergene of the speed of growth.speed of the tumor delineation (see Figure 4.3) and therefore in the end we obtainlower estimates for the di�usion rates. For the tumors with lower di�usion rates weobserve that the e�et of inluding the onvergene is more subtle. This is due tothe fat that slow tumors take longer time to grow and their initial T0 values arealready very high therefore replaing it with T0 = ∞ does not a�et the estimates



80 CHAPTER 5. PARAMETER ESTIMATION: RESULTSthat muh. The loal shape of the minimization surfae remains unhanged as ob-served from the shapes of the ǫ-ellipsoids. Viewing these results we onlude that forall tumors inluding the onvergene of speed in time and the initial time estimate
T0 improves the quality of the estimated di�usion rates. On the other hand, thise�et is muh smaller for the slowly growing tumors whose di�usion rates are lower.5.1.7 Di�erent Tensor ConstrutionAll the results above are based on the model proposed in [Clatz 2005℄ where the tu-mor di�usion tensor D is onstruted as given in Equation 4.3. In this part we wouldlike to test the parameter estimation algorithm for a di�erent tensor onstrution.In the onstrution used above the di�usion tensor D in the white matter is ob-tained by saling the water di�usion tensor with the oe�ient dw. In [Clatz 2005℄,using this type of onstrution the authors have shown high resemblane betweenthe simulated tumor growth and the evolution of grade IV gliomas, glioblastomemultiforme. In a very similar model Jbabdi et al. [Jbabdi 2005℄ have proposed touse another tensor onstrution to desribe the evolution of low grade gliomas. Intheir onstrution they reate a more anisotropi di�usion tensor D as follows

D(x) =

{
dgI , x ∈ gray matter
V (x) [diag(αe1(x)dw, dg, dg)]V (x)T , x ∈ white matter , (5.3)where V (x) is the eigenvetor matrix obtained by deomposing the water di�usiontensor Dwater, e1(x) is the prinipal eigenvalue of the same tensor and α here isa normalization fator suh that highest e1 value in the brain beomes 1. Thedi�erene between this onstrution and the one given in Equation 4.3 is that inthis one tumor ells are assumed to di�use muh faster along the �ber and theydi�use very slowly in the transverse diretion. In the onstrution the di�usion ratein the gray matter is used also for this transverse di�usion rate. As a result of suha onstrution the evolution obtained is muh more anisotropi and reates more�spiky� tumors, see Figure 5.9.In order to understand the e�et of using a di�erent tensor onstrution onthe parameter estimation methodology we have run the same set of experiments asexplained above. This time however, the syntheti tumors were grown using thereation-di�usion model that uses the tensor onstrution given in Equation 5.3 asproposed in [Jbabdi 2005℄. All the other details of the experiments are exatly thesame as the ones desribed in Setion 5.1.3. The results of these experiments aresummarized in Figure 5.10. We observe that the results are similar to the onesobtained for the previous tensor onstrution, see Setion 5.1.3. The estimatedparameters and the shape of the minimization surfaes at the estimated parametersare pretty similar with some di�erenes. Comparing Figures 5.10 with 5.3 and 5.4we notie that the parameter estimation method works better for the dg in thease presented in this setion. This is natural sine, in the tensor onstrutiongiven in Equation 5.3 the parameter dg plays a more dominant role and a�ets thewhite matter di�usion as well as the gray matter di�usion. As a result it beomessigni�ant and easier to estimate. The other di�erene we observe is at the extremease where the white matter di�usion is very high and gray matter di�usion is
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(a) (b)Figure 5.9: The evolution of the iso-density ontour in time is demonstrated fora syntheti tumor reated by the tensor onstrution given in Equation 5.3. Thedetails of the images are exatly the same as Figure 4.6. In summary the white on-tours show the evolution of the tumor delineation in time and blak ontours showthe evolution simulated by the traveling time formulation. Comparing this �gurewith the one given in Figure 4.6 we see that the anisotropi tensor onstrution yieldsmore �spiky� and anisotropi growth of the tumor. We also see that the travelingtime formulation is quite aurate in desribing the evolution of the tumor delin-eation in this type of syntheti tumors as well. Parameters: (dw = 0.25 mm2/day,
dg = 0.01 mm2/day, ρ = 0.012 day−1)
low. This ase is observed on the upper left hand orner of Figure 5.10(a). Wesee that the di�usion oe�ients, espeially the dw is over estimated. The reasonfor this is the e�et of urvature. When the anisotropy is very high the tumordelineation has a very spiky form and ontains lots of very high urvature regions.This behavior an be seen up to some extent in Figure 5.9. As we have explainedin the previous setions the traveling time formulation annot apture the evolutionof very urved tumor delineations with very good auray. When the urvature istoo high the simulated evolution of the tumor delineation is slower than it shouldbe and to aount for this gap the parameter estimation method overestimates the
dw and dg. We also observe this e�et in the shape of the minimization surfae inthe Figure 5.10(). We see that at the extreme anisotropi ase the minimizationsurfae has a very narrow and long valley in the diretion of dw. This is ausedby the saturation of the urvature e�et we integrate in our method. When theurvature is too high we saturate its e�et, in other words we saturate the speed ofthe front, therefore, the e�et of hange in dw is redued in the �nal shape ausingthis long and narrow valley.
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T0(d)Figure 5.10: The results of the parameter estimation from time series of imagesfor the syntheti tumor experiments using the anisotropi tensor onstrution givenin Equation 5.3. The �gures are plotted the same way as Figures 5.3 and 5.4.Comparing the Figures 5.3 and 5.4 with this one we observe overall the resultsare very similar. The di�erenes are that in this ase the estimation of dg is moresuessful. However, in the extreme ase of very anisotropi tumor (upper left ornerin Figures(a) and ()) the parameter estimation method enounters problems. Thisis due to the high urvature regions obtained in a very anisotropi tumor. Veryhigh urvatures pose di�ulties for the traveling time formulation of the tumordelineation as explained in Setion 4.2.1.5.2 Preliminary Results with Real CasesThe evaluation of parameter estimation for tumor growth models using real patientimages is not easy beause we do not have aess to the real values of the param-eters. The real values ould be found using mirosopi in-vivo analysis however,up to the best of our knowledge suh a study has not been done yet. In this workwe perform indiret evaluation for the proposed parameter estimation method usingpatient images. The �rst type of study we explain here is to use the images of apatient to �nd the patient spei� parameters using the proposed methodology. We



5.2. PRELIMINARY RESULTS WITH REAL CASES 83ompare the atual evolution of the tumor observed in the images with the evolutionobtained using the optimum parameters and the traveling time formulation. Theresemblane shows us how well the estimated parameters explain what is observed,Setion 5.2.1. In the seond type of study, for a given patient dataset, we estimatethe parameters using all but the image taken at the last time point. Then usingthe estimated parameters, we simulate the evolution of the tumor delineation start-ing from the image taken just before the last one for the same number of days asthe time di�erene between the last image and the one before it. We then om-pare the evolution predited using the estimated parameters and the traveling timeformulation with the one observed in the last image. The orrelation between thepredition and the observed delineation provides us with a qualitative evaluation ofthe estimated parameters, Setion 5.2.2.Here we impose two strong assumptions. The �rst one is we assume that thevalues of the model parameters remain onstant between the images. Consideringtherapy and other e�ets on the tumor this assumption is not very realisti. How-ever, we onsider the estimated parameters as the average parameters over timeinluding all the e�ets and arry on with the analysis. The seond point we as-sume is that the �ber struture of the patient will not hange in time in the regionsnot enhaned as tumor. In other words, the loal �ber struture will keep intatuntil the visible tumor overs them. We do not have to pay attention to the regionsalready overed by the tumor sine these regions do not a�et the further evolutionof the tumor in the traveling time formulation. This assumption on the stabilityof the �ber struture in time is also not realisti sine due to mass e�et of thetumor and the undetetable in�ltration the �ber struture hanges. For the sake ofsimpliity and oherene with the available data, here we neglet this hange.As a preliminary step, in this work we use two patient datasets whih inludeanatomial and di�usion tensor MR images. The dataset for the �rst patient, whosu�ers from a high grade glioma (Glioblastoma Multiforme), inludes three T1-postgadolinium MR images (with the resolution of 0.5x0.5x6.5 mm3) taken at suessivetime points. The time interval between the �rst two images is 21 days while thedi�erene between the seond and the third is 46 days. There also exists the di�usiontensor MR image (with the resolution of 2.5x2.5x2.5 mm3) taken at the seond timepoint. The seond patient su�ers from a low grade glioma (grade II astroytoma)and the dataset for this patient inludes T2 �air MR images (with the resolutionof 0.5x0.5x6.5 mm3) taken at 5 suessive time points and a DT-MRI image (withthe resolution of 2.5x2.5x2.5 mm3) taken at the �rst time point. The time intervalsbetween suessive images for this patient are as follows: 38 days between the �rsttwo, 82 days between seond and third, 90 days between third and fourth and 180days between the fourth and the �fth. The DT-MRI images of the patients are usedto onstrut the di�usion tensor D of the tumor growth model. Sine we performall our omputations on the anatomial image spae we register the DT-MRI rigidlyto the anatomial image of the same patient. The tensor transformations are takeninto aount during this registration to keep the diretions of the tensors physiallyoherent [Alexander 2001℄. In onstruting the di�usion tensor D for tumor ellswe adapt the models proposed in [Clatz 2005℄ and [Jbabdi 2005℄. Clatz et al. haveproposed the tensor onstrution as given in Equation 4.3 for the high grade gliomas,



84 CHAPTER 5. PARAMETER ESTIMATION: RESULTSfollowing this we use this type of onstrution for the high grade ase. On the otherhand, Jbabdi et al. proposed to use the onstrution given in Equation 5.3 for thelow grade gliomas therefore, we use this type of onstrution for the low grade ase.5.2.1 Fitting the Observed EvolutionIn this part, for both patient ases, we �rst estimate the parameters of the reation-di�usion model using all of the patient images. One the parameters are estimatedwe simulate the evolution of the tumor delineation between suessive images. Inother words, we initialize the traveling time formulation using the image taken atthe time tn−1 and simulate its evolution until tn using the estimated parameters.We then ompare the evolution observed in the images and the evolution simulatedusing the estimated parameters and the traveling time formulation. In Figures 5.11and 5.12 we show the patient images used in estimation and the results in terms ofthe estimated parameters and also the evolution desribed by these parameters. Inboth Figures eah row shows the evolution of the tumor in a di�erene axial sliesand in eah olumn we show the images taken at di�erent time instanes. In theimages we also show the manual delineation of the tumor in white and the evolutionof the tumor delineation simulated using the estimated parameters in blak. Theestimated parameters are given in the aompanying tables. Also in Appendix C,in Figures C.1- C.3 and Figures C.4- C.8 we provide additional slies (axial) of theimages given in Figures 5.11 and 5.12 respetively.In the images of the �rst patient, in Figure 5.11, the tumor showed evolution intwo di�erent regions. In the �rst region seen on the upper left orner of the imagesthe tumor has a muh larger volume, ontains a neroti ore and exerts visible masse�et. The seond region, the region we apply our analysis on, on the other handis newly emerging in the images and it does not exert observable mass e�et. Thispart is believed to be a di�used branh of the larger region however, no onnetionwas visible in the images most probably due to slie spaing. We apply our analysisto the newly emerging part beause it does not exert a mass e�et and it is idealfor our analysis. Following the disussions given in Setion 5.1.2 we �x the value of
ρ to be able to estimate the di�usion parameters. The proliferation rate was set at
ρ = 0.05/day, based on the disussions with a neurosurgeon as a value around thesuggested average value in the literature [Swanson 2002a℄. Using the three suessiveimages and the ρ value we estimate for the di�usion rates, whih are given in thetable in Figure 5.11. Observing the orrelation between the dark ontours andthe manual delineations (white) we note that the traveling time formulation (orthe reation-di�usion model) together with the estimated parameters is in goodagreement with the real evolution of the tumor. The overall shape of the tumor andthe diretion of its progression is well aptured.For the low grade tumor, based on our disussions with a neurosurgeon, wepiked a lower proliferation rate than the one in the previous ase sine it is a lowergrade tumor (our disussions showed that there should be an order of 10 di�erene).This rate was set to ρ = 0.008/day. This hoie is rather heuristi however as wehave shown in Setion 5.1.4 the produt of the di�usion and the proliferation ratesare rather independent of the spei� values. Observing Figure 5.12, we see that
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(a) Initial Image (b) 21 days after () 67 days after
ρ(set) dw dg0.05 1/day 0.75 mm2/day 0.002 mm2/dayFigure 5.11: The parameter estimation method is applied to the images of a patientsu�ering from a high grade glioma. In olumns we show the images taken at di�erenttimes and in rows we illustrate di�erent axial slies of the same image. We observethe evolution of the tumor, where the manual delineations are also ontoured inwhite. Using these images we estimate the parameters of the reation-di�usionmodel as given in the table. We also show the evolution of the tumor delineationsimulated using the traveling time formulation and the estimated parameters inblak. We observe that the simulated evolution well aptures the real evolution ofthe tumor visible in the images.

the orrelation between the evolution of the tumor delineation simulated with theestimated parameters (in blak) and the observed evolution (in white) on�rms ourprevious arguments. The diretion of the progression and the overall shape is wellaptured using the optimum parameters and the traveling time formulation. Wealso notie the di�erenes between the di�usion rates for the high grade tumor andthe low grade one (although di�erent tensor onstrutions were used for the twotumors). The estimated speed of evolution in the white matter for the high gradeglioma is vw = 0.39 mm/day while for the low grade one it is vw = 0.07 mm/day.We also see a similar di�erene for the speeds in the gray matter.
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(a) Initial Image (b) 120 days after () 210 days after (d) 390 days after
ρ(set) dw dg0.008 1/day 0.165 mm2/day 0.0005 mm2/dayFigure 5.12: As a seond ase we applied our methodology to the images of a patientsu�ering from a low grade tumor. The images and the ontours are plotted the sameway as the Figure 5.11. Here we also observe that the real evolution of the tumorvisible in the images is well aptured by the estimated parameters and the travelingtime formulations.5.2.2 Prediting Future Evolution Beyond Observed Image DataIn the seond type of experiments with the patient images, we tested if the estimatedparameters ombined with the model are able to predit the further progression ofthe tumor. As explained, for this purpose we estimate the parameters of the tumorgrowth model using all but the image taken at the last time point. Then we simulate



5.2. PRELIMINARY RESULTS WITH REAL CASES 87the evolution of the tumor delineation in the image taken one before the last usingthe estimated parameters. We run the simulation until the aquisition time of thelast image and ompare this evolution with the visible tumor. In Figures 5.13and 5.14 we show the results of this predition along with the estimated parameters(in the aompanying table). The top rows show the axial slies of the image takenjust before the last one where the manual delineations are also overlaid in white. Onthe bottom rows we show the slies of the image taken at the last time point alongwith the predited (in dark) and the atual tumor delineation (in white). As in theprevious setion, in Appendix C we show additional slies (axial) of the images givenin Figures 5.13 and 5.14 in Figures C.9- C.10 and in Figures C.11- C.12 respetively.
(a) The image taken at the time just before the last aquisition

(b) The last image: Taken 46 days after the one above.
ρ(set) dw dg0.05 1/day 0.66 mm2/day 0.0013 mm2/dayFigure 5.13: Prediting the further evolution of the tumor for the high grade ase:In the top row we show the image taken one time step before the last image with thetumor manually delineated in white. The bottom row shows the images taken atthe last aquisition time showing the state of the tumor also delineated in white. Inblak we show the state of the tumor delineation predited starting from the imageat the top row using the estimated parameters and the traveling time formulation.As explained in the text, the parameters used for this predition were estimatedusing only the �rst two images in time and not the last one. The overlays of the realand predited tumor boundaries illustrate the degree of agreement of our modelingsheme.In the ase of the high grade glioma, Figure 5.13, the predited delineationof the tumor is in good agreement with the atual delineation. We observe thatalthough we start simulating the growth from a small tumor, the parameters andthe traveling time formulation aptures the rapid progression of the glioma. Thistells us that overall average dynamis of the evolution are well aptured with the



88 CHAPTER 5. PARAMETER ESTIMATION: RESULTSestimated parameters. We see a very similar result for the low grade glioma as well,see Figure 5.14. In this ase the tumor already has a large volume at the time westart the simulation. The progression of the tumor is very spiky and it is along thediretion of the �ber trats. We observe that the predited tumor delineation alsoshows this behavior illustrating good agreement with the atual progression.

(a) The image taken at the time just before the last aquisition

(b) The last image: Taken 180 days after the one above.
ρ(set) dw dg0.008 1/day 0.20 mm2/day 0.0007 mm2/dayFigure 5.14: Prediting the further evolution of the tumor for the low grade ase:The images are shown in the same manner as the Figure 5.13. We see that amountof growth and the spiky nature of the evolution of the tumor is well predited.



5.3. CONCLUSIONS 895.3 ConlusionsIn the previous we proposed and analyzed a parameter estimation methodology forthe reation-di�usion tumor growth models in the ontext of brain gliomas. Theproposed methodology formulates the evolution of tumor delineations in the medialimages based on the dynamis of the reation-di�usion model. As a onsequene,it does not use the information of tumor ell density distribution throughout thebrain. In this respet the method is onsistent with the information available in theimages.We analyzed the proposed algorithm using syntheti tumors for whih the growthmodel parameters are known. The reation-di�usion model used here inludes 3di�erent parameters: the di�usion rate in the gray matter dg, the di�usion rate in thewhite matter dw and the proliferation rate of tumor ells ρ. In our analysis we haveshown that these parameters are oupled and therefore there is not a unique solutiononstrained by the observations made on medial images. However, we have shownthat one the proliferation rate ρ is �xed, we an uniquely estimate the di�usionrates in gray matter dg and in white matter dw. Moreover, in this ase we an alsoestimate the time elapsed between the emergene of the tumor and its detetion,
T0. In �xing ρ we assumed that its value an be found through mirosopi analysisof biopsy results. We have also shown that the value of ρ determines the estimatesof the other parameters. In that sense �xing ρ means determining the values of theother parameters espeially the di�usion rates. Investigating the oupling betweendi�usion and the proliferation rate we have shown that no matter what ρ value we�x the produt of the estimated di�usion rates with ρ remains onstant for the sametumor. Therefore, using the proposed method the speed of growth of the tumor,whih is given by the mentioned produt, an be estimated uniquely for eah tumor.In our experiments we analyzed the e�et of the number of images used in esti-mating the parameters. We have seen that the di�usion oe�ients and the initialtime estimate T0 an be estimated (by �xing ρ) using 2 images of the same patienttaken suessively in time. Using more images does not hange the loation of theestimates however it inreases the reliability of the estimates and our on�dene onthem.We also applied our method to two real ases, one high grade glioma and onelow grade. We have estimated parameters for these tumors and performed indiretevaluations by predition of growth showing promising preliminary results. Thestrongest assumption we made during this analysis was that the parameters of thegrowth model do not hange in time and they do not vary in spae. This is not veryrealisti for the exat values of the parameters onsidering the existene of di�erenttypes of therapies and the random nature of the tumor progression. On the otherhand, independent parameter estimation and analysis ould be done between eahset of two suessive images as well. Suh an analysis ombined with the time ourseof the therapy ould give us hints on the e�et of the therapy on di�erent parametersand on the growth speed of the tumor.In the methods proposed in this thesis, as a �rst step, we ignored the mass e�etof the tumor. In most glioma ases the mass e�et is apparent, smaller in the lowgrade gliomas and larger for the higher grades. For a omplete modeling in the



90 CHAPTER 5. PARAMETER ESTIMATION: RESULTSparameter estimation methodology the mass e�et should be taken into aount.Eventually a more thorough analysis of the estimated parameters and the esti-mation methodology should be performed using a large dataset of patient images.In the follow-up of this work we plan to fous on this diretion. There are sev-eral problems that should be overome for this purpose. The �rst problem is thelak of di�usion tensor imaging for the patients. As we have seen the DTI is veryimportant in the modeling and in the estimation of the parameters therefore, itis ruial to have this information. The advanes in the registration methods anbe helpful to solve this problem as they would give us the opportunity to registerDT-MRI atlas on the patient images. The seond problem is regarding the surgeryapplied in glioma ases. The surgery hanges the struture of the brain as well asthe properties of the tumor. In order to overome this problem, we need to adjustthe traveling time formulation suh that it an desribe the evolution of the tumordelineation between pre-op and post-op images.In terms of linial use, estimated parameters, espeially the speed of growthwhih an be estimated uniquely, an serve as a quanti�ation measure for tumorgrowth and help the diagnosis proess. Moreover, the proposed methodology givesus the opportunity to onstrut patient-spei� tumor growth models. Throughpersonalizing the generi growth models, we an desribe the spei� evolution of apatients tumor. Suh patient-spei� models an be used to better plan the therapyproess and predit possible outomes of the therapy administered to the patient.



Chapter 6Extrapolating Glioma Invasion inMR images: Method
Contents6.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . 916.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936.2.1 Tumor Cell Density Extrapolation . . . . . . . . . . . . . 956.2.2 Inluding E�ets of the Boundary Condition . . . . . . . 103ContextIn the treatment of brain gliomas, espeially in the planning of radiotherapy, medialimages suh as magneti resonane (MR) and omputed tomography (CT) imagesplay a ruial role. They provide information on the spatial extent of the tumor.However, images an only visualize parts of the tumor where anerous ells aredense enough, masking the low density in�ltration. In radiotherapy, the approahtaken to handle this problem is to irradiate the visible tumor plus a 2m onstantmargin around it. This approah does not take into aount the growth dynamisof gliomas, partiularly the di�erential motility of tumor ells in white and in graymatter. In this hapter, we propose a novel method for estimating the full extentof the tumor in�ltration starting from its visible mass in the patients' MR images.We derive a formulation starting from the reation-di�usion based tumor growthmodels, explained in the previous hapter. By using asymptoti properties of thesemodels, we obtain an extrapolation method that onstruts the tumor ell densitydistribution beyond the visible part of the tumor in the images.6.1 IntrodutionFor the diagnosis and the therapy of gliomas, liniians rely on medial images,suh as Magneti Resonane (MR) and Computed Tomography (CT) images, whihshow the mass part of the tumor. As explained in Chapter 2, urrent imaging teh-niques are not able to expose the low density in�ltration [Tovi 1994, Johnson 1989,Traqui 1995, Swanson 2004℄ posing a problem for the experts in outlining thewhole tumor and in understanding its extent. Figure 6.1(a) is an example of aT2 weighted MR image of a patient with grade IV glioma. The image shows thetwo linial target volumes (CTV) used in radiotherapy, the bulk tumor (CTV1)91



92 CHAPTER 6. EXTRAPOLATING INVASION: METHODand the tumor in�ltrated edema (CTV2) enlosed in blak and white delineationsrespetively [Seither 1995℄. Figure 6.1(b) on the other hand, shows the hypothet-ial tumor pro�le along the white line drawn on the MR image. In radiotherapy,this problem of visualizing low density in�ltration is addressed by outlining theCTV2 and assuming the whole tumor in�ltration is ontained within a onstantmargin of 2m around that volume [Seither 1995, Kantor 2001℄. Therefore, the ir-radiation region is onstruted aordingly. This approah however, does not takeinto aount the in�ltration dynamis of gliomas, partiularly the higher motil-ity of tumor ells in white matter ompared to gray matter [Giese 1996℄. As aresult, the irradiation region ignoring these dynamis might not reah the full ex-tent of the tumor in�ltration in white matter and irradiate healthy gray matter.Mathematial tumor growth models an o�er solutions to this problem by inte-grating linial information and theoretial knowledge about tumor ell dynam-is [Swanson 2002b, Stamatakos 2006a, Stamatakos 2006b℄. Here we desribe a newformulation whih aims to solve the problem of estimating tumor ell density dis-tribution beyond the visible part in an image (low density in�ltration) for gliomas.It uses the anatomial MR images and di�usion tensor imaging (DTI) to suggestirradiation margins taking into aount the growth dynamis.

(a) (b)Figure 6.1: (a) T2-weighted MR image showing a high grade glioma. Two liniallyimportant volumes, the bulk tumor (CTV1) and the in�ltrated edema (CTV2) areenlosed in blak and white ontours, respetively. (b) Distribution of tumor elldensity is given by the dashed urve. T2 weighted MRI signal intensity on the otherhand is given by the solid urve. The MR signal does not reveal the presene oftumoral ells when their density is below a ertain threshold.The literature on prediting irradiation margins on medial images using auto-mati methods is rather limited. In [Kaspari 1997℄, Kaspari et al. used arti�ialneural networks to model statistially the way the radiotherapist onstruts the ir-radiation margin. In their work they foused on prediting margins as onstrutedby the radiotherapist not inluding the growth dynamis of gliomas. Zizzari et al.started from the same framework and inluded mathematial growth models in their



6.2. METHOD 93predition of the irradiation volume [Zizzari 2004℄. They use their model to preditfurther growth of the tumor and then use this predition to onstrut the irradiationmargins through arti�ial neural networks. However, these works do not fous onthe spatial distribution of tumor ells at a given time and they do not inlude thedi�erential motility of glioma ells in di�erent tissues.In this hapter, we propose a formulation to extrapolate the tumor ell densitydistribution of di�usive gliomas beyond their visible mass in MR images taking intoaount the growth tendenies of the tumor. In the previous hapter we have seenthat we an personalize reation-di�usion type growth models by estimating theirpatient spei� parameters. Based on this, to derive our formulation we startedfrom these type of growth models as given in [Clatz 2005, Jbabdi 2005℄. Apply-ing reation-di�usion models to solve the previously mentioned problem poses sev-eral di�ulties. As we enountered in Chapter 4, in order to perform simulations,reation-di�usion models require the knowledge of tumor ell densities at everypoint in the brain while in reality only CTV1 and/or CTV2 ontours are observablein the images. We have seen that this problem an be solved using the travelingtime formulation explained in the previous hapter. The other problem is that thereation-di�usion models desribe the time evolution of tumor ells, however, theproblem we are takling is stati, dealing with the distribution of tumor ells at asingle time instane. As in the previous hapter, we use asymptoti approximationsto overome these di�ulties and derive a stati formulation to solve the problemof estimating low density in�ltration of gliomas in an image. The proposed methodstarts from the delineation of the tumor in the image (manual delineation or au-tomati segmentation) and onstruts an approximation for the tumor ell densitydistribution beyond the visible part taking into aount the underlying tissue hara-teristis by using anatomial and di�usion tensor images. With suh a formulation,we aim to onstrut irradiation margins that would be more e�ient in targetingtumor ells and reduing the irradiation of healthy brain tissues.In Setion 6.2, we explain the reation-di�usion type models in detail and deriveour formulation. Subsequently, in hapter 7 we assess the quality of the approxi-mation onstruted by the proposed formulation using virtual tumors. In additionto that, we use our formulation to onstrut a variable irradiation margin and om-pare it to the onventionally used onstant irradiation margin in terms of numberof tumor ells and volume of healthy tissue targeted in the ase of syntheti tumors.In Setion 7.4 we onlude by summarizing the work with our results and providefuture diretions.6.2 MethodIn this setion we use asymptoti approximations to derive a formulation basedon reation-di�usion models whih o�ers a solution to the problem of visualizinglow density in�ltration. In Chapter 4 we have studied some of the asymptotiproperties of reation-di�usion models. We have foused our attention on the speedof the tumor delineation. Here we are going study other aspets of the asymptotiproperties and fous on the shape of the tumor distribution below a ertain density



94 CHAPTER 6. EXTRAPOLATING INVASION: METHODvalue. As in Chapter 4 we assume that the iso-density surfae at this density valueorresponds to the tumor delineations observed in the images. Therefore, our fousin this setion will be on the tumor ell distribution beyond the tumor delineationin the images.Before we delve into details let us mathematially formulate the problem wesolve. Reation-di�usion growth models desribe the temporal hange of tumorell densities denoted by u(x, t) at every point in the brain (u an also be inferredas the probability of �nding tumor ells). In terms of u, the imaging proess ofgliomas an be modeled with a simple Heaviside funtion as done in the previousworks [Swanson 2002b, Traqui 1995℄ and the previous hapter:
Im(u(x, t)) =

{
1 if u ≥ u0

0 if u < u0
(6.1)where Im is the imaging funtion and u0 is the detetion threshold. A detetionthreshold u0 is given for CT images in [Traqui 1995℄, and based on the oherene ofobservations obtained from MR images, radiologists assume a similar threshold. Aswe have done in the previous hapter, here we use the same threshold as proposedin [Traqui 1995℄, u0 = 0.4. In this setting, the problem of extrapolating low densityin�ltration of a tumor, starting from the visible part in the image taken at a timeinstant t = t0 an be desribed as onstruting an approximation

u(x, t0) ≈ ũ(x) ∀ x ∈ {x|Im(x) = 0}. (6.2)This equation basially states that ũ approximates the atual tumor distribution
u at the time instant t0 in the regions where the image is not visualizing the tu-mor. Unlike the reation-di�usion models, whih are dynami and desribe timeevolution of gliomas, the onstrution of this approximation is a stati problem.Moreover, in the linial situations the value t0, whih indiates the time elapsedbetween the emergene of the tumor and the imaging, is not available. Therefore,the approximation ũ should not depend on t0.In the following setions we derive a formulation for onstruting the approxi-mation ũ whih is the proposed solution to the problem of extrapolating low densityin�ltration for gliomas. As in the previous hapter we fous on the reation-di�usionmodel proposed in [Clatz 2005℄. However, we note that the same formulationsand analysis an be arried over to other types of reation-di�usion models suhas [Swanson 2002a, Jbabdi 2005℄.

∂u

∂t
= ∇ · (D(x)∇u) + ρu(1− u) (6.3)

D∇u · −→n ∂Ω = 0, (6.4)
D(x) =

{
dgI , x ∈ gray matter
dwDwater , x ∈ white matter. (6.5)We have seen in the previous hapter that the parameters of the model dw, dg and

ρ an be identi�ed up to some extent for eah patient using time series of images. Inthis hapter we assume that these parameters are found and we ontinue our study



6.2. METHOD 95from there on. However, even if the parameters are not known (the ase wherethere is only one image of the patient) the proposed method aims to provide theradiotherapist a tool with whih he/she an visualize di�erent possible distributionsby playing with the parameters. We also remind that ρ and D of the model annotbe identi�ed separately using time series of images 5.1.2. We take into aount thisambiguity in our analysis and study its e�et.6.2.1 Tumor Cell Density ExtrapolationThe asymptoti properties of reation-di�usion equations explained in the previoushapter help us onstrut the approximation we seek for, ũ(x). We use the existeneof an asymptoti traveling wave to extrapolate the low density in�ltration regionsof di�usive gliomas. We know that the reation-di�usion equations admit travelingwave solutions under homogeneous parameters and in the in�nite ylinder. Thismeans that the solution of the equations an be given as
u(x, t) = u(n · x− vt) = u(ξ) as t→∞. (6.6)where v is the asymptoti speed, ξ = (x ·n−vt) is the moving frame of the travelingwave and n is the diretion of motion of the traveling wave. In the previous hapterwe have used that the speed of the traveling wave v = 2

√
n′Dn to solve for theparameter estimation problem. In this hapter we use the shape of the travelingwave, namely its slope. In order to have an analytial desription of the asymptotishape we fous on the in�nite ylinder ase with homogeneous parameters. As thetumor ell density distribution onverges to the traveling wave the shape of thedistribution also onverges. In Figure 6.2 we show this behavior both for the overalldistribution and the shape of the distribution below u = u0.The analytial desription of the shape of the asymptoti traveling wave an beobtained by plaing the solution u(ξ) in Equation 6.3. By notiing that n is in thediretion of ξ and in the in�nite ylinder the hange of u is only nonzero in the ndiretion we an transform the partial di�erential equation into an ordinary one

Dn

d2u

dξ
2 + 2

√
ρDn

du

dξ
+ ρu(1− u) = 0 (6.7)

Dn = n′Dn, (6.8)where the partial di�erentials beome derivatives with respet to ξ, also shown inEquation 4.5. The solution for this nonlinear equation does not have an analytialform due to the nonlinear reation term ρu(1−u). In this setion our aim is to �ndan approximation to the solution of Equation 6.7 without using global linearizationof the nonlinear term. Instead of global linearization, we an loally linearize thisterm and obtain analytial solutions for loal pathes. Here, we propose to onstrutthese loal solutions and then ombine them to obtain the form of the traveling wave.Assume that at a point ξ∗ we know the value of the tumor ell density u = u∗ (inthe images this orresponds to having the delineation of the tumor and assumingthat it orresponds to an iso-density surfae). When we linearize the Equation 6.7
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(b)Figure 6.2: (a) The tumor distribution evolving with the onstant oe�ientreation-di�usion equation (ross-setion of the tumor ell density distribution inthe in�nite ylinder) is plotted at di�erent times (non-dimensional). We plot thedistribution at di�erent times on the moving frame ξ. Observe that as time passesthe shape of the distribution onverges to an asymptoti shape. (b) When we plotthe distribution below u = u0 at di�erent times again we observe the onvergenebehavior of the shape of the traveling wave.around the point ξ∗, u∗ we get
Dn

d2u

dξ
2 + 2

√
ρDn

du

dξ
+ ρu(1− u∗) = 0. (6.9)Equation 6.9 an be solved analytially and the solution has the form

uξ
∗(ξ) = Be−λ(1+

√
u∗)ξ +Ae−λ(1−

√
u∗)ξ (6.10)

λ =

√
ρ

Dn

, (6.11)where A and B are integration onstants and uξ
∗ is the loal solution around ξ

∗.Due to the smooth properties of the reation-di�usion equations this solution an beused as an approximation for the solution of Equation 6.7 in a small neighborhoodaround ξ
∗ [Taylor 1996℄. Then using the u values found on the boundary of thisneighborhood one an onstrut the approximations for the adjaent neighborhoodsand over the whole domain like this. By onstruting and ombining these loalapproximations in a suessive manner, we reonstrut the shape of the travelingwave u(ξ) starting from the known point u(ξ∗) = u∗. This idea is demonstrated inFigure 6.3.In order to obtain the relationship between the two onstants A and B we usethe fat that u = 0.5, the origin of the moving frame ξ, is an in�etion point ofthe traveling wave. Therefore, the seond derivative of u at u = 0.5 should be zero.When we impose this to the loal solution around u∗ whih is lose to u = 0.5 we
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4Figure 6.3: The shape of the traveling wave an be reonstruted starting fromone known point and building loal linear approximations to the reation-di�usionequation with nonlinear reation term. If the known point is u(ξ∗0) = u∗0) then we anuse the loal linear approximation at this point to �nd the value u(ξ∗1) = u∗1. Thenusing the linear approximation at ξ∗1 we an �nd the value u∗2 and the reonstrutionproess goes on like this.get

A

B
=

(1 +
√
u∗)2

(1−
√
u∗)2

. (6.12)For values of u∗ lose to 0.5 this ratio remains well over 20. The ontribution of
Be−λ(1+

√
u∗)ξ is muh smaller than the other part. Therefore, we ignore this partof the solution given in Equation 6.10. As a result the loal approximation ũξ

∗ ofthe tumor pro�le around u∗ an be given as
uξ

∗(x, t) ≈ ũξ
∗(x) = ũξ

∗(ξ) = Ae−λξ(1−
√

u∗) for λ =
√
ρ/Dn. (6.13)We notie that the value of the integration onstant A depends on the value of ξ.The value of ξ at a point orresponds to its distane from the in�etion point of thetraveling wave, whih is at u = 0.5 (see Figure 6.2(a)). From the images however,we an observe the regions where tumor ell density is greater than u0. Therefore,we do not have aess to the value of ξ at a point. For eah loal approximationthis problem an be solved easily. For a point ξ = ξ

∗
+∆ξ we an write

ũξ
∗(ξ

∗
+∆ξ) = Ae−λ(1−

√
u∗)(ξ

∗

+∆ξ) (6.14)
= Ae−λ(1−

√
u∗)ξ

∗

e−λ(1−
√

u∗)∆ξ (6.15)
= u∗e−λ(1−

√
u∗)∆ξ, (6.16)where ∆ξ is a small distane as we remain lose to the point u∗. As a result wereplae the unknowns A and ξ∗ with the knowns u∗ and ∆ξ. Using ξ variable instead



98 CHAPTER 6. EXTRAPOLATING INVASION: METHODof the ∆ξ we obtain our �nal loal approximation for the form of the tumor pro�le(traveling wave)
ũξ

∗ = u∗e−λ(1−
√

u∗)ξ for λ =
√
ρ/n′Dn. (6.17)We note that in the loal neighborhood of (ξ

∗
, u∗) this solution an be written asthe integral

ũξ
∗ =

∫ ξ

0
−λ(1−

√
u∗)ũξ

∗dϕ with ũξ
∗(0) = u∗. (6.18)When we take small enough neighborhoods around eah u∗, in the limit, we replae

u∗ in the integrand with ũξ
∗ . Here we assume that in suh a small neighborhood

ũξ
∗ values will be lose to u∗. Considering the smoothness of the reation-di�usionequations this approximation beomes valid [Taylor 1996℄. With this approximationthe loal solution given by the integral beomes

ũξ
∗ =

∫ ξ

0
−λ(1−

√
ũξ

∗)ũξ
∗dϕ with ũξ

∗(0) = u∗. (6.19)Combining these loal solutions in di�erent neighborhoods using this integral formwe obtain the global approximation for the form of the traveling wave
ũ(x) =

∫ x

0
−λ(1−

√
ũ)ũdξ with ũ(0) = u0, (6.20)

λ =

√
ρ√

n′Dn
,where x is the distane of the point x from the known point u = u0. In our ontext xis the distane from the tumor delineation. We will use this global approximation forour extrapolation formulation. However, just to understand its link to the nonlinearPDE given in Equation 6.7, we look for the nonlinear PDE the solution given inEquation 6.20 solves. For this plaing this solution in Equation 6.7 we see that theglobal approximation ũ solves the equation

Dn

d2u

dξ
2 + 2

√
ρDn

du

dξ
+ ρu(1− u) + ρ

u
√
u(1−√u)

2
= 0, (6.21)where the additional nonlinearity ρu√u(1−√u)/2 is the error we make as a resultof the assumptions we have done in the derivation. We notie that this additionalnonlinearity remains well below ρu(1−u) for u ∈ [0, 1] One we write Equation 6.20we notie that the slope of the form of the tumor ell density distribution dependson λ =

√
ρ/n′Dn, whih is a ratio between the proliferation and the di�usion rate.Remembering from Chapter 4 that the speed of the tumor front v = 2

√
ρn′Dn isrelated to the produt of these parameters we have a better insight on the e�et ofthe parameters of the model on the evolution of the tumor ell distribution. Thesee�ets are summarized on the theoretial tumor pro�le in Figure 6.4.In Figure 6.5 we plot the asymptoti form of the traveling wave and the ap-proximation that reonstruts this traveling wave using Equation 6.20. The approx-imation uses the loation of a single point shown in dark dot in both �gures in
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normal

low ρ/D

high ρD

(b)Figure 6.4: The shape and the speed of the hypothetial tumor pro�le depends onthe parameters of the reation-di�usion model, D and ρ. The speed of the tumorand how fast it grows depends mainly on the produt of the parameters Dρ. Onthe other hand the shape of the pro�le and how far it has in�ltrated into the brainparenhyma depends on the ratio of these parameters ρ/D. In the �gures we showthese relationships. For simpli�ation we denote D as a salar. (b) In solid line weshow the hypothetial density pro�le of a glioma. In dash-dot line we show anotherpro�le with the same ρD produt but a lower ρ/D ratio. We see that its in�ltrationis further away. Lastly in the dashed lines we show a tumor pro�le with the same
ρ/D ratio as the solid pro�le but with a higher ρD produt. We see that this tumorhas the same pro�le shape but it moves faster.reonstruting the tumor ell density distributions. The �t is very aurate espe-ially around the point where we start the reonstrution. Sine we are interestedin the tumor ell density distribution below some threshold u0 = 0.4 we fous onthat region. In Figure 6.6 we zoom on this region and the performane of the ap-proximation as a funtion of time. We plot the shape of the traveling wave (lowdensity regions of the tumor pro�le) reonstruted by Equation 6.20 as a funtionof the distane from the known point (tumor delineation) along with the real form
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distance [real coordinates](b)Figure 6.5: Figures show the shape of the traveling wave in solid lines and thereonstruted approximations using Equation 6.20 in dashed urves. (a) We startfrom the point u0 = 0.4 and reonstrut the whole pro�le using only the loationof this point. This point is shown in the plot. (b) We do the same thing but thistime we start from u0 = 0.7. We see that the approximation to the shape of thetraveling wave given in Equation 6.20 an aurately reonstrut the whole shapeof the traveling wave and therefore the hypothetial tumor ell density distributionin this ase.of the traveling wave taken at di�erent time instants for the in�nite ylinder ase.We observe that this approximation is reasonable for the tails of the pro�le and itgets better as time elapses.The approximation explained above is onstruted for the ase where the oef-�ients of the reation-di�usion equation are onstant over the whole domain andthe motion is only in one diretion. This is not the ase for general media and forthe brain. Moreover, when the tumor front is urved its motion would not be inone diretion and the solution of the reation-di�usion equation annot be given interms of a traveling wave. In order to reonstrut the hidden part of the tumorell density distribution in MR images we make the following assumptions: withina voxel, the oe�ients are onstant and the motion of the front is only in onediretion. Based on these assumptions we an onstrut the loal approximationsgiven in Equation 6.20 in eah voxel separately. The omputation in eah voxeluses the values at its neighbors as it is the ase for the reonstrution in the in�niteylinder. Using this priniple, we sweep the domain starting from the visible partof the tumor and going outwards omputing the tumor ell density estimate at eahvoxel. In this onstrution the diretion of motion and the initial value for eahvoxel are de�ned by its adjaent voxels.Following our assumptions, the integrand in Equation 6.20 an be written as thegradient relation in 3D,
∂ũ

∂n
= λ(1−

√
ũ)ũ. (6.22)Plaing λ in this equation and replaing n with ∇ũ/ | ∇ũ |, we obtain the follow-ing stati Hamilton-Jaobi equation that onstruts the approximation ũ given in



6.2. METHOD 101

0 1 2.5 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

distance from the delineation [non-dim]

no
rm

al
iz

ed
 tu

m
or

 c
el

l d
en

si
ty

days afterdetetion density di�ereneat 1.0
at 2.5 at 4

0 0.037 0.044 0.024

1 0.021 0.026 0.016
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5 −0.003 −0.005 0.002Figure 6.6: Approximation onstruted for the low density regions of the tumorpro�le in the in�nite ylinder ase. All the time and distane values are dimension-less. To give an idea, for a high grade glioma eah time unit would orrespond to60 days and eah distane unit would orrespond to 0.5 m. The tail approxima-tion onstruted using Equation 6.20 (solid urve) is plotted with the atual tailsof the tumor front. The detetion for the tumor in the in�nite ylinder is assumedto take plae when the tumor has grown for 1.5 m of diameter (the orrespondingnon-dimensional unit). We show the low density regions of the at the time of de-tetion, 1, 2, 3, 4 and 5 time units after the detetion, the dashed urves from leftto right respetively. As time inreases the solid urve approximates the atual tailbetter. The assoiated table shows the di�erene in tumor ell density between thetail approximation and the atual tail at a given day for di�erent loations in themoving frame denoted by the vertial dashed lines in the �gure.Equation 6.2 at eah voxel with the priniple shown in Figure 6.3.
√
∇ũ · (D∇ũ)
√
ρũ(1−

√
ũ)

= 1, ũ(Γ) = u0 (6.23)where Γ is the ontour around the visible part of the tumor in the image (u >= u0).



102 CHAPTER 6. EXTRAPOLATING INVASION: METHODAs a reminder in this hapter u0 is taken as 0.4 following the assumptions madein [Traqui 1995℄.Equation 6.23 has two solutions at eah point, one with inreasing and the otherone with dereasing ũ. Sine the reation-di�usion equation tells us that as we moveaway from the visible ontour, the values of ũ will derease, for all points we hoosethe dereasing solution. Using Equation 6.23 we start from Γ and sweep the domainmoving outwards as we �nd ũ values for eah voxel.The Equation 6.23 is a stati Hamilton-Jaobi equation. Several di�erent nu-merial methods have been proposed to solve this kind of equations [Qian 2006,Sethian 2003℄. In this thesis, we adopt a fast marhing (FM) based approahto solve it whih is oherent with the sweeping idea we propose to onstrutthe low density in�ltration estimate ũ. The details of the proposed numerialmethod used is explained in Chapter 8. The original FM method as proposed bySethian and Osher solves the Eikonal equation but does not take into aount theanisotropy [Sethian 1999℄. The method we use modi�es the original FM algorithmto inlude the e�et of the anisotropy, Chapter 8. In this way it enjoys the e�ienyof the FM method and provides an aurate solution in the ase of high anisotropy.As a result of sweeping the domain outwards starting from the tumor delineation,the ontinuity of the onstruted ũ is ensured. On the other hand, impliit interpo-lation between di�erent voxels, in other words the pathing between planar solutionsin di�erent voxels, depends on the order of the numerial sheme, whih is linear inour ase. One an imagine a seond order pathing by inluding the e�et of theurvature in the extrapolation given by Equation 6.23.Algorithm 2 The algorithm for extrapolating tumor ell density distribution ig-noring the boundary onditions.Inputs: Tumor delineation in the anatomial image, DT-MRI of the patient,White-gray matter segmentation, personalized tumor growth parameters for thereation-di�usion model (or a parameter set the radiotherapist/radiologist wouldlike to try for visualizing di�erent possible tumor density distributions).- Construt the tumor di�usion tensors using the parameters dw, dg, the DT-MRIimage and the white-gray matter segmentation.- Initialize the extrapolation by setting ũ to u0 on the tumor delineation.- Compute ũ value at eah voxel whih has a neighbor whose ũ value is set usingthe numerial method in Chapter 8.- Among the two omputed ũ values hoose the one that is dereasing and set itfor that voxel.- Sweep the domain in this respet outwards starting from the delineation.Equation 6.23 onstruts the low density in�ltration estimate ũ(x) based on thereation-di�usion model (Equation 6.3) in the in�nite domain. However, the totalmodel onsists of a no-�ux (Neumann) boundary ondition (Equation 6.4) as well,whih a�ets the distribution of the tumor ell density in the brain. In Setion 6.2.2we inlude the e�et of the boundary in our extrapolation formulation. Before goinginto details of the boundary onditions in Algorithm 2 we summarize the methodexplained in this setion through an algorithm.



6.2. METHOD 1036.2.2 Inluding E�ets of the Boundary ConditionThe estimate for low density in�ltration of gliomas as onstruted by Equation 6.23does not take into aount the e�ets of the Neumann boundary ondition givenin Equation 6.4. This ondition states that tumor ells trying to pass aross theboundary (skull and ventriles) boune bak from it and ontinue their motionwithin the tissue. Thus, the e�ets of the Neumann boundary ondition are notonly on�ned to the points neighboring the boundary. The ondition a�ets thetumor ell density distribution throughout the brain.Constrution in 1DIn order to understand and approximate this e�et on the tumor pro�le, we examinethe 1-D linear reation-di�usion equation inluding a boundary residing at x = 0given as:
ut = duxx + ρu for x ≤ 0 (6.24)

ux|x=0 = 0. (6.25)where d is the salar di�usion oe�ient in 1-D. For suh systems, we an use themethod of re�etion to onstrut the approximation for the low density parts ofthe tumor in the presene of the boundary ondition [Strauss 1992℄. The methodof re�etion is used to onstrut solutions of linear partial di�erential equationssuh as the di�usion equation in �nite domains, [Strauss 1992℄. It uses the solutionunder no boundary ondition, re�ets it with respet to the boundary and superposethese two, relying on the linearity of the equation. By adding the re�eted solution,the boundary ondition (Equation 6.25) is satis�ed and sine the problem given byEquations 6.24 and 6.25 has a unique solution, the one reated by this method is thesolution. In Figure 6.7(a), we illustrate the method of re�etion by solving the 1-Dlinear reation-di�usion equation numerially following the steps of the method.In the ase of the nonlinear reation di�usion equation we annot superposetwo di�erent solutions of the system. Therefore, in order to apply the methodof re�etion we need to have ertain assumptions. Let u(1) be a solution of thenonlinear reation-di�usion equation in 1-D and u(2) be its re�etion with respetto the boundary. Both u's satisfy the nonlinear equation
ut = duxx + ρu(1− u), (6.26)where d is the salar di�usion oe�ient. When we superpose the two solutions weget

(u(1) + u(2))t = d(u(1) + u(2))xx

+ ρ(u(1) + u(2))(1− u(1) − u(2)) (6.27)
u

(1)
t + u

(2)
t = du(1)

xx + du(2)
xx

+ ρu(1)(1− u(1)) + ρu(2)(1− u(2))− 2ρu(1)u(2). (6.28)We see that the superposition of the two solutions do not satisfy the equation dueto the nonlinearity. However, in this work we are interested in low values of u sine
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(a) (b)Figure 6.7: (a) For linear partial di�erential equations the solution under the Neu-mann boundary onditions an be onstruted by removing the boundary and addinga re�eted wave on the other side of the boundary. The �gure demonstrates this forthe 1-D reation-di�usion equation under the boundary onditions. (b) Figure illus-trates how we use the method of re�etion for approximating the boundary e�et inthe extrapolation formulation. The atual density distribution u is shown in solidurve and the estimation ũ in the dark dashed one. As suggested by the method ofre�etion, ũ is formed by two parts: the no boundary approximation ũnb and the
ũref . The boundary resides at x = 0 and the u = u0 point resides at ξ = 0.we try to extrapolate the tumor ell density distribution below some threshold u0.Therefore, the values of u(1) and u(2) are low. Based on this, we assume that

(1− u(1))

u(2)
>> 1 and (1− u(2))

u(1)
>> 1. (6.29)Using this assumption we an say that

ρ(1− u(1))u(1) >> ρu(1)u(2) and ρ(1− u(2))u(2) >> ρu(1)u(2). (6.30)Hene, we assume that the superposition of two solutions satisfy the nonlinearreation-di�usion equation for low values of u.In Setion 6.2.1 we have seen that we an reonstrut the shape of travelingwave solutions of nonlinear reation-di�usion equations by loal approximations andintegrating over them. This reonstrution was done in the in�nite domain. In the�nite domain, we an onstrut ũ using the idea of superposing two di�erent partsso that it takes into aount the e�et of the boundary onditions. Without loss ofgenerality let us assume that we know the value of u at x0 suh that u(x0) = u0 (inthe ontext of the tumor delineation the value x0 is the loation of the delineationand the value u0 is the imaging threshold.), see Figure 6.7. In order to onstrutthe shape of the solution of Equation 6.26 starting from x0 inluding the e�etof the boundary we superpose two approximations ũnb and ũref . Eah of these



6.2. METHOD 105approximations have the integral form like the one given in Equation 6.20:
ũnb(x) =

∫ x

0
−λ(1−

√
ũnb)ũnbdξ with ũnb(ξ = 0) = unb (6.31)

ũref (x) =

∫ x

0
−λ(1−

√
ũref )ũrefdξ̂ with ũref (ξ̂ = 0) = uref , (6.32)where ξ̂ is the moving frame traveling at the same speed but in the opposite diretionas ξ. Moreover, the point ξ = 0 is the loation of the tumor delineation whilethe point ξ̂ = 0 is the boundary, see Figure 6.8. The approximation ũ onsists

x

ξ ξ̂

Boundary
Tumor
Delineation

Figure 6.8: The two parts of the approximation ũ have di�erent oordinate systemsas given in Equations 6.31 and 6.32. The two moving frames ξ and ξ̂ have oppositediretions and di�erent origins. The ξ = 0 orresponds to the tumor delineationwhile ξ̂ orresponds to the boundary.of a part that is onstruted by ignoring the boundary ondition, ũnb, and there�etion of this part on the boundary, ũref , as demonstrated in Figure 6.7(b).The re�etion ũref dereases in the opposite diretion of ũnb in order to satisfythe no-�ux boundary ondition and this is represented by the relation between thevariables ξ̂ and ξ suh that dξ̂/dξ = −1. The initial onditions unb and uref areused to �t the approximation to the observation and also to the boundary ondition.Under this setting, onstruting the low density in�ltration estimation ũ orrespondsto �nding the values for the oe�ients. One the oe�ients are found, at anyloation the superposition of these solutions gives us the �nal form of the solutionof Equation 6.26 inluding the e�et of the boundary,
ũ(x) = ũnb(x) + ũref (x). (6.33)There are two riteria whih determine the oe�ients unb and uref . The �rstone is the no-�ux boundary ondition

d

dx
ũ|x=0 = [

d

dx
ũnb +

d

dx
ũref ]x=0 = 0. (6.34)It provides us the relation between the oe�ients. Using the fat that the two partsare going in opposite diretions (dξ̂/dξ = −1) we see that Equation 6.34 gives us

d

dx
ũ|x=0 = λ(1−

√
ũnb)ũnb|x=0 − λ(1−√uref )uref = 0, (6.35)



106 CHAPTER 6. EXTRAPOLATING INVASION: METHODwhere we used the fundamental theorem of alulus. This suggests that one weonstrut the ũnb by ignoring the boundary, we an �nd the re�etion part ũrefbased on the value of ũnb on the boundary suh that the no-�ux boundary onditionwill be satis�ed. However, this relation is a 4th order polynomial and solving suhpolynomials is ostly espeially if we onsider that we will solve this equation formany di�erent points on a 3D boundary. This will beome learer when we onsiderthe higher dimension in the next setion. In order to have a simpler form we makethe approximation
(1−√uref )uref

(1−√ũnb)ũnb|x=0
≈ uref

ũnb|x=0
, (6.36)whih is very lose for low values of u. As a result of this approximation we obtaina simpler relation to �nd uref value:

uref = ũnb(x = 0). (6.37)The seond riterion is the �delity of the approximation to the observation. Sinewe observe the loation of the u = u0 point (iso-density ontour), the approximationshould be oherent with this observation. Using the ξ variable as in the previoussetion to represent the loation of u = u0 point, we an write this riterion as
ũ|ξ=0 = [ũnb + ũref ]ξ=0 = u0. (6.38)This relation basially states that when we add the two parts of the approximationthe loation of the ũ = u0 should math the u = u0 point. While the boundaryondition gives the relation between the oe�ients, Equation 6.38 provides us thenumerial values for them.Algorithm 3 The iterative algorithm for �nding the e�et of Neumann boundaryonditions on the low density in�ltration.Initialize the extrapolation: unb

0 = u0repeat
uref

i = ũi
nb|x=0 for i ≥ 1onstrut ũi

ref

unb
i+1 = u0 − ũi

ref |ξ=0 for i ≥ 1until both riteria are satis�ed with enough auray.We use an iterative sheme to �nd the oe�ients ũnb and ũref that satis�es thetwo riteria explained above. The sheme starts from the approximation onstrutedfor the in�nite domain in Setion 6.2.1 setting it as the initial ũnb. At eah iterationwe onstrut ũnb, determine uref using the boundary ondition, onstrut ũref andupdate unb aording to the �delity riterion. The pseudoode for this sheme isgiven in Algorithm 3. This iterative proess is demonstrated in Figure 6.9 wherethe approximation at the beginning of the iterations (ũ0) and at the end of the 2nditeration (ũ2 = ũ) are shown.
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Figure 6.9: The �gure illustrates the iterative proess to �nd the oe�ients unband uref . In order to approximate the atual pro�le (solid urve) ũi
nb and ũi

ref areonstruted iteratively to satisfy the boundary ondition given in Equation 6.34 andthe �delity riteria given in Equation 6.38.
Constrution in higher dimensionsWhen applying the e�et of the no-�ux boundary ondition on the low densityextrapolation in 3-D (2-D) we use the same priniples as we developed for the 1-Dase. The boundary, whih is a point in the 1-D ase, beomes a surfae (ontour)
∂Ω in 3-D from whih the tumor ells boune bak in the dynami formulationof reation-di�usion models. Hene, every point on the boundary will at as are�etor of tumor ells. In order to derive the appropriate relations for the lowdensity in�ltration estimation ũ in 3D, let us assume that we have a homogeneousand anisotropi media haraterized by the di�usion tensor D and we have a planarvisible tumor front with the normal n. ũ is onstruted again as the sum of twodi�erent parts as:

ũ = ũnb + ũref ,

ũnb(x) =

∫ x

0
−λnb(1−

√
ũnb)ũnbdξ with ũnb(0) = unb

ũref (x) =

∫ x

0
−λref (1−

√
ũref )ũrefdξ̂ with ũref (0) = uref
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λnb =

√
ρ

nTDn
,

λref =

√
ρ

nΩ
TDnΩ

,

ξ = nTx− ct,
ξ̂ = nΩ

Tx− ct,where n is the gradient diretion of ũnb, nΩ is the normal to the boundary whih byonstrution oinides with the gradient diretion of ũref at the boundary and x isthe distane of point x to the tumor delineation. Notie that due to the anisotropidi�usion tensor λnb and λref di�er. By onvention we hoose nΩ to be pointingtowards the brain, i.e. nT
Ωn < 0. We onstrut ũnb in the same manner as explainedin Setion 6.2.1. One it is onstruted, ũref is the only unknown in this settingand we set it so to satisfy the boundary ondition whih is given as:

nT
ΩD∇u|Ω = 0, (6.39)stating that the omponent of the �ux of tumor ells orthogonal to the boundaryshould be 0. The approximation ũ should follow this ondition as well.To onstrut ũref , we need to �nd the relation between ũnb and ũref at eahboundary point separately sine every point ats as a ell re�etor. At the point pon the boundary, in order to satisfy the boundary ondition we should satisfy

nT
ΩD(∇ũnb +∇ũref )|p. (6.40)Plaing the de�nitions of ũnb and ũref , for ũ we obtain

ũ =

∫ x

0
−λnb(1−

√
ũnb)ũnbdξ +

∫ x

0
−λref (1−

√
ũref )ũrefdξ̂. (6.41)Using the fundamental theorem of alulus we an ompute the gradient of ũ at p

∇ũ|p = −λnb(1−
√
ũnb)ũnb|pn− λref (1−√uref )uref |pnΩ. (6.42)Foring the boundary ondition given in Equation 6.39 we obtain the relation weare looking for the points on the boundary

(1 −
√

uref (x))uref (x) = (6.43)
− nT

ΩDn
√

nTDn

√
nT

ΩDnΩ

(1−
√
ũnb(x))ũnb(x), for x ∈ ∂Ω.Therefore, for eah point on the boundary we an �nd uref by solving the 4thorder polynomial given by the Equation above. As we have explained during theonstrution of the 1D solution this is ostly therefore we apply the approximationwe have introdued in Equation 6.36. In higher dimensions this approximationbeomes

(1−
√

uref (x))uref (x)

(1−
√
ũnb(x))ũnb(x)

≈ uref (x)

ũnb(x)
. (6.44)



6.2. METHOD 109As a result of this approximation we transform Equation 6.43 into
uref (x) = − nT

ΩDn
√

nTDn

√
nT

ΩDnΩ

ũnb(x), for x ∈ ∂Ω. (6.45)As done in the previous setion, the onstrution of the approximation ũ asexplained above assumes homogeneous media and planar tumor front. However,these assumptions do not hold in the ase of MR images of gliomas. To taklethis, we follow the same voxel based assumptions we made in Setion 6.2.1 statingthat the assumptions about the media and the shape of the tumor front holds truewithin a voxel. To repeat, we assume that within a single voxel, oe�ients ofthe tumor growth model are onstant and the tumor pro�le is not urved. Under
(a) (b) () (d)Figure 6.10: The 2-D example shown in the �gures demonstrate the two parts ofthe estimation ũ and the e�et of inluding the boundary re�etion. The stripedregions are set to be the boundaries with the Neumann boundary ondition. (a)Theresult of the reation-di�usion equation for the low density region 0.002 ≤ u ≤ 0.08shows the atual iso-density ontours. (b) The no boundary part of the low densityregion extrapolation ũnb. () The re�etion part ũref . (d) The iso-density ontoursof the superposition: Low density region estimation ũ.these assumptions, we use the fat that ũnb and ũref satisfy the anisotropi Eikonalequations

√
∇ũnb · (D∇ũnb)√
ρũnb(1−

√
ũnb)

= 1, ũnb(Γ) = unb(Γ), (6.46)
√
∇ũref · (D∇ũref )
√
ρũref (1−

√
ũref )

= 1, ũref (∂Ω) = uref (∂Ω), (6.47)where unb is a funtion on the initial ontour around the visible tumor just as urefis on the boundary. This allows us to apply the same onstrution method as wedid in the previous setion one the oe�ients unb and uref are set.As a result of the inrease in dimension, the �delity riterion is now de�ned overthe visible part of the tumor, Γ, whih represents the u = u0 iso-density surfae,and an be written as
ũ(Γ) = ũnb(Γ) + ũref (Γ) = u0. (6.48)



110 CHAPTER 6. EXTRAPOLATING INVASION: METHODSimilarly, the iterative sheme an be arried over to the general higher dimensionalase by de�ning the update sheme on the surfaes Γ and ∂Ω. Figure 6.10, for asimple 2-D example, shows the low density in�ltration regions omputed by solvingthe reation-di�usion equation and the two parts of the estimation ũ along with itself(a,b, and d respetively). We observe that the e�et of the Neumann boundaryondition is well aptured by adapting the method of re�etion in the low densityin�ltration extrapolation. The algorithm summarizing the overall method explainedin this hapter is given in Algorithm 4.Algorithm 4 The algorithm for extrapolating the low density in�ltration of gliomas.Inputs: Tumor delineation in the image (MR,CT,...), DT-MRI of the pa-tient, White-gray matter segmentation, personalized growth parameters for thereation-di�usion model (see Chapter 4)- Construt the tumor di�usion tensors using the parameters dw, dg, the DT-MRIimage and the white-gray matter segmentation.- Initialize the extrapolation by setting ũ to u0 on the delineation.repeat- Construt the extrapolation ũnb ignoring the boundaries by solving Equa-tion 6.46, see Setion 6.2.1. This equation is solved using the anisotropi Fastmarhing method explained in Chapter 8.- Compute the re�etion from the boundary by Equation 6.45 and ompute ũrefusing Equation 6.47.- Chek the �delity riterion given in Equation 6.48.- Update the value of ũ on the tumor delineation as explained in Algorithm 3.until Fidelity riterion given in Equation 6.48 is satis�ed with enough auray.



Chapter 7Extrapolating Glioma Invasion inMR images: Results
Contents7.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 1117.2 Assessing the Estimation Quality . . . . . . . . . . . . . . 1127.3 Comparing Irradiation Margins . . . . . . . . . . . . . . . 1187.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124ContextIn the previous hapter we have presented the extrapolation formulation for on-struting the low density in�ltration estimation of gliomas ũ to o�er a solution to theproblem of limited tumor density visualization of medial images. We started fromthe reation-di�usion growth models for gliomas and derived the proposed solutionusing their asymptoti behaviors. This hapter is devoted to the experiments andthe analysis of the extrapolation tool. We �rst analyze the tool by evaluating itsquality in extrapolation. Following that we devise syntheti irradiation experimentsand show the potential bene�ts of the proposed tool in de�ning irradiation margins.7.1 ExperimentsIn this hapter, we assess the quality of the extrapolation method and the on-struted estimation ũ using syntheti tumors simulated by the reation-di�usiongrowth model given in Equations 6.3, 6.4, 6.5. For these syntheti ases, �rst weompare the atual tumor ell density distribution beyond the visible mass in theimage with the estimation ũ onstruted by the proposed method. In the seondpart we propose a method to tailor irradiation margins based on the estimated lowdensity in�ltration. We ompare these irradiation margins with the onventionallyused onstant one through geometri omparisons. These omparisons inlude thenumber of tumor ells not targeted and the volume of healthy tissue set to beirradiated.In both of the experiments shown in this hapter, we perform our analysis onthe syntheti dataset reated in the Chapter 4. Here we brie�y review the dataset,for more details please refer to Setion 5. In order to reate this dataset we usedMR images taken from a healthy subjet onsisting of T1 weighted, T2 weighted111



112 CHAPTER 7. EXTRAPOLATING INVASION: RESULTSand di�usion tensor images (DTI) with the resolution of 1mm × 1mm × 2.6mm.Using the reation-di�usion model explained in Setion 6.2 we simulated the growthof 180 di�erent syntheti tumors in three di�erent loations and with 60 di�erentparameter sets. In this hapter, for larity we show the results for 10 of thesetumors with 5 di�erent parameter sets and 2 di�erent loations. The loations ofthe tumor seeds are one in the frontal lobe and the other one in the parietal lobeas shown in Figures 7.1. We have hosen these two loations with di�erent tissueompositions to test the e�et of tissue heterogeneity in our experiments. Thedi�erene between the tumors at the same loation is obtained by using di�erentgrowth parameters (di�usion oe�ients and proliferation rates). These parametersets used to grow the syntheti tumors using the reation-di�usion model are givenin the table in Figure 7.1 under the olumn �Real Parameters�. As explained inthe previous hapter eah tumor was grown using the reation-di�usion model. Foreah tumor the detetion and the �rst image aquisition take plae when the visibletumor reahes the size of 1.5m in diameter. After the detetion a syntheti imageis reated every 50 days using the image funtion Im given in Equation 6.1. Theseimages are then used as the inputs to our extrapolation method to estimate theirlow density in�ltration distribution.The extrapolation methodology proposed in this hapter assumes that the tumorgrowth parameters for the reation-di�usion model D and ρ are known. These pa-rameters are not available linially however, in the previous hapter we have shownthat we an estimate these parameters from time series of images under ertain on-ditions. Therefore, here instead of using the real parameters of the reation-di�usionmodel we �nd it more appropriate to use the estimated ones. In the experimentspresented here we use the parameters estimated in the previous hapter for extrap-olating the tumor ell density distribution beyond the visible part for the synthetitumors. The estimated parameters for di�erent tumors are given in the table inFigure 7.1 under the olumn �Estimated Parameters�. By using the estimated pa-rameters we simulate a linial situation where �rst we estimate the parametersusing numerous images and then use the estimated parameters to extrapolate thein�ltration of the glioma in an image.The omputation time to run the extrapolation method in the reated imagesdepends on di�erent fators suh as u0 (whih is in our ase u0 = 0.4), the �nal valueup to whih we will extrapolate, the parameters (D and ρ), the loation of the tumorand the desired auray of the iterative method for inluding boundary onditions.As an example, in our simulations it took around 5 minutes to extrapolate the lowdensity distribution of the tumor at the frontal lobe with median di�usion rate,starting from u0 = 0.4 to u = 0.00001 with a very high auray using a 4Gbmemory 2.26GHz omputer.7.2 Assessing the Estimation QualityThe proposed extrapolation method onstruts an estimate for the tumor ell dis-tribution of gliomas beyond their visible part in the image. This onstrution usesthe visible part of the tumor and the anatomial information based on the reation-
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(a) Frontal Lobe (b) Parietal LobeReal Parameters Estimated Parametersname dw
mm2

day

dg
mm2

day

ρ 1
day dw dg ρmedian 0.25 0.01 0.012 0.27 0.024 0.012high

dw,g/ρ
0.5 0.025 0.009 0.53 0.066 0.009low dw,g/ρ 0.1 0.005 0.024 0.116 0.009 0.024loweranisotropy 0.1 0.025 0.012 0.115 0.035 0.012higheranisotropy 0.5 0.005 0.012 0.507 0.021 0.012Figure 7.1: Figures (a),(b): Di�erent initializations of the syntheti tumors areshown. Table: Di�erent di�usion and proliferation rates used for the simulations.10 di�erent tumors are reated with these 5 set of parameters in the loations givenin Figures (a) and (b).di�usion growth models. The �rst step we take in assessing the method is to omparethe atual low density tumor ell distribution with the estimated one for synthetitumors reated using the reation-di�usion model. Starting from the 10 synthetitumors explained above, we extrapolate the orresponding tumors low density in-�ltration regions (tails) and ompare the extrapolated part with the atual densitydistribution, see Figure 7.2.In order to quantitatively ompare the spatial resemblane of the atual den-sity distribution of the syntheti tumors beyond their visible part and the densitydistribution extrapolated using the images we ompute the distane between theirorresponding iso-density ontours. For the density value v and for the image taken
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(a) Simulated tumor density distribution - Reation-Di�usion Model
(b) Tumor density extrapolated from the visible boundary of the tu-mor u0 = 0.4 - Reonstruted in�ltration

() Comparison of iso-density ontoursFigure 7.2: Example of an extrapolated image for a syntheti tumor (the mediantumor in the frontal lobe shown in Figure 7.1). (a) The image (u0 = 0.4) reated fora syntheti tumor is shown, where the white region is the visible part in the images.The low density in�ltration, whih is normally not visible in the image, is also shownin olor from yellow (high density) to red (low density). (b) The extrapolated lowdensity in�ltration omputed by our method starting from the visible part of thetumor () Several iso-density ontours of the originally simulated tumor distribution(red solid) and the orresponding ones of the extrapolated distribution (white solid)are shown for omparison. We observe that the global resemblane between thedistribution of the syntheti tumor and the extrapolated one is very high.
t days after the detetion we de�ne the error measure ǫv(t).

ǫv(t) =
1

2
[dist(Γv

1,Γ
v
2) + dist(Γv

2,Γ
v
1)] (7.1)

Γv
1 = {x|u(x, t) = v}

Γv
2 = {x|ũ(x) = v}

dist(A,B) =
1

♯A

∑

a∈A

distmin(a,B),



7.2. ASSESSING THE ESTIMATION QUALITY 115where distmin(a,B) is the minimum Eulidean distane between point a and the set
B, v is a density value for whih the iso-density surfaes of u and ũ are extratedand ũ is extrapolated based on the image taken at time t. Using this the totalresemblane error between two distributions at a given image taken t days after thedetetion is de�ned as:

ǫ(t) =
1

V
∑

v∈V

ǫv(t), (7.2)where V is the set of density values spanning the low density region. We have16 iso-density values in the set V with the minimum vmin = 0.005, whih arelogarithmially spaed to ensure that the orresponding iso-density ontours willbe equally spaed (due to the exponential drop of the front pro�le). This globalerror riterion ǫ(t) is the average over di�erent values and provides a global spatialresemblane measure.In Figures 7.3(a) and (b) we plot ǫ(t) for di�erent time instanes showing theresemblane between estimated and the atual tumor ell density distributions. Tobetter understand the quality of the extrapolation method for di�erent parameters,we plot the error measure for tumors with di�erent di�usion and proliferation ratesand for tumors at di�erent loations (one at a region with heterogeneous tissue typeand the other at a region with homogeneous tissue type). In Figures 7.4(a) and (b)we show ǫv(t) at t = 200 days after the detetion for di�erent v values to show thehange of the error measure with respet to the iso-density ontour value.Observing Figures 7.3 and 7.4 we notie that the di�erene between the two pro-�les remains within the range of [0, ..., 1.5] mm, whih tells us that the extrapolateddistribution remains within 1 to 2 voxel distane from the atual one (voxel size is
1×1×2.6 mm3). Analyzing the hange of this di�erene with respet to several pa-rameters, we an state the followings about the quality of the extrapolation methodin approximating the low density parts of a reation-di�usion proess:- The average distane between the two distributions remains less than 1.0 mmfor all ases. The worst ase error is reahed at day 300 however, the di�ereneis not signi�ant.- When the ratio between di�usion of tumor ells and the proliferation rate (d/ρ)is low, the disrepany between the extrapolated distribution and the real oneis lower. When this ratio is higher the error seems to be higher. The reasonfor this is that as the dispersion of tumor ells is faster the tumor ell densitydistribution overs a larger spae. Extrapolating a larger spae brings highererror beause as we go further away from the tumor delineation we aumulateerrors. Therefore, the di�erene between the two distributions rises. Moreover,we estimate the tumor ell distribution reated by a reation-di�usion proesswith a onvetion one. As the proess is dominated by di�usion the e�et ofthe urvature on the pro�le inreases and raises the disrepany.- When the anisotropy oe�ient dw/dg is lower the extrapolation is loser tothe atual distribution. The reason for this is that as the onvetion proessestimates well the spherial growth. When there is anisotropy, the growthdiverges from spherial growth and the dynamis of di�usion beomes more



116 CHAPTER 7. EXTRAPOLATING INVASION: RESULTS

(a) homogeneous tissue region

(b) heterogeneous tissue regionFigure 7.3: Figures demonstrate the global di�erene between the atual and theestimated tumor ell density distributions beyond the visible mass of the tumor atdi�erent time instanes. Figures (a)-(b): The global resemblane metri ǫ(t) andits hange in time for 10 di�erent tumors with di�erent di�usion and proliferationrates and at 2 di�erent loations are demonstrated. The mean global di�erenebetween two distributions remain within 1 voxel, smaller than 1.0 mm for all ases.(Red: high dw,g/ρ, Blue: low dw,g/ρ, Blak: median, Green: lower anisotropy, Cyan:higher anisotropy.)important. Therefore, the error we make by estimating di�usion by onvetionbeomes more apparent.- ǫv(t) inreases as v dereases suggesting that the di�erene between the extrap-olated and the atual distribution inreases as we move away from the visiblepart of the tumor. This is due to our onstrution of the extrapolation as anintegral solution whih auses an aumulation of errors. However, the mean
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(a) homogeneous tissue region

(b) heterogeneous tissue regionFigure 7.4: The di�erenes between the orresponding iso-density ontours of theatual and the estimated low density in�ltration regions for di�erent density valuesfor the image taken 200 days after detetion are shown. Figures (a)-(b) For the10 tumors, ǫv(200) is plotted for di�erent iso-density ontour values v. The valuesshow that the error of approximation at di�erent iso-density values remain within a1 to 2 voxels, smaller than 1.5mm in all ases. (Red: high dw,g/ρ, Blue: low dw,g/ρ,Blak: median, Green: lower anisotropy, Cyan: higher anisotropy.)error in this ase remains below 1.5 mm for all ases, whih orresponds to1.5 voxels.- Although we see some di�erene between the ǫ(t) and ǫv(t) plots for the tu-mors plaed in di�erent loations of the brain, it is not signi�ant to draw aonlusion about the e�et of the tissue omposition on our formulation.



118 CHAPTER 7. EXTRAPOLATING INVASION: RESULTS7.3 Comparing Irradiation MarginsRadiotherapy has an important role in treating invasive brain tumors as a spatialtreatment. The target irradiation region is onstruted based on the tumor geometryvisible in medial images. It ontains the visible tumor plus a onstant marginaround the delineation to deal with the low ell density in�ltration of the tumor notvisible in images. This onstant margin approah does not take into aount thegrowth tendenies of the tumor, partiularly the di�erential motility of tumor ellsin the white and the gray matters.The method to extrapolate the tumor ell density distribution beyond the visiblepart of gliomas proposed in this work gives us the opportunity to tailor the irradia-tion region based on the growth dynamis aptured by the reation-di�usion models.In order to demonstrate this, in this setion we onstrut variable irradiation marginsbased on the extrapolated density distributions. Then, we geometrially omparethe potential e�ay of suh margins with the onventionally used onstant mar-gins in the ase of syntheti tumors simulated by reation-di�usion models explainedin 6.2. In the onstrution of the variable margin, we use the same quantity of irra-diation as the onstant margin (same total volume to be irradiated) but reshape itaording to the estimation of the low density in�ltration.Sine for the syntheti tumors, the ell density at every loation is known, wearry out a quantitative omparison. We do this by testing the spatial auraies ofboth of these approahes via two di�erent linially ritial measures:- R: number of tumor ells not targeted- V ol: volume of healthy tissue targeted by the irradiation margin.In Chapters 4 and 6 we have shown the reation-di�usion model in its normalizedform. In order to ompute the R value we need to return to the dimensional formby inluding the maximum number of tumor ells a voxel of brain an handle.Consistent with the values given in [Traqui 1995℄ in this part we use that a voxelof 1 × 1 × 2.6 mm3 an hold a maximum of 9.1 × 104 tumor ells. Therefore thevalues given in this analysis are found and should be onsidered with respet to thisvalue.We onstrut the onstant margin irradiation region Mc by taking the 2cm mar-gin around the visible part of the tumor and removing the skull and the ventrilesfrom it as shown in Figure 7.5(b). The onstrution of the variable margin irradia-tion region Mv is done in two parts. First we onstrut the low density in�ltrationestimate starting from the visible part of the tumor, reating M1
v , and then weinlude a onstant error margin around it based on the error values we found inSetion 7.2 reating M2

v . The variable irradiation margin Mv is the union of thesetwo regions, see Figure 7.5(). In order to ensure that the amounts of irradiation(assumed to be given by the volume) in Mc and Mv are the same, we tailor thedi�erent parts of Mv as
M1

v = {x|ũ(x, t) > δ}
M2

v = {x|distM1
v
(x) < ǫd}hoose δ suh that V ol(M1

v ∪M2
v ) = V ol(Mv) = V ol(Mc). (7.3)



7.3. COMPARING IRRADIATION MARGINS 119where distM1
v
is the distane transform in the brain from the set M1

v , ǫd is the errormargin we would like to inlude in our irradiation region and δ is the dependentparameter. We determine δ so that the volume onstraint given in Equation 7.3 issatis�ed. Based on the error measures we found in the Setion 7.2 we set ǫd = 4mmso that the error margin would be large enough to take into aount the ǫ(t) ∀t and
ǫv(t) ∀v.

(a) Tumor distribution (b) Constant margin () Variable marginFigure 7.5: The proposed variable irradiation region onstrution takes into aountthe growth dynamis of the tumor. Figure shows the two irradiation margin on-strution approahes and the syntheti tumor ell distribution they aim to target.Figure (a) shows the low density anerous ell distribution of the syntheti tu-mor. The white region orresponds to the visible part (visible in the image) whilethe olored region is the in�ltration non visible in the image. Figures (b) and ()show onstant and variable irradiation regions overlaid on the tumor distributionrespetively. Transparent green regions represent the areas set to be irradiated. Forthe syntheti tumor the variable margin better overs the extent of the in�ltrationtherefore might provide a better targeting.As in the previous setion we arry our analysis for the 10 di�erent tumorsonsisting 5 di�erent growth parameter sets at 2 di�erent loations and at imagestaken at di�erent time instanes. The omparison between the onstant and thevariable irradiation margins are given in Figures 7.6-7.10, where R and V ol graphsare plotted. Analyzing the results given in Figures 7.6-7.10 we notie that inludingthe tumor growth dynamis in tailoring the irradiation margin greatly improves thespatial targeting of the therapy in the ase of synthetially grown tumors. Observ-ing these �gures we see that for all the ases we have experimented with, the Rand V ol urves for the variable irradiation margin remains well below the urves forthe onstant margin, with a great di�erene in most ases. For example 350 daysafter the detetion of the tumor the di�erene in number of tumor ells targetedbetween the two approahes an go up to 6 × 108 Cells. On the other hand thedi�erene in volume of healthy tissue targeted between the onstant and variablemargin approahes goes up to 13 cm3. These values suggest that assuming tumorgrowth tendenies are well aptured by reation-di�usion models, the variable irra-diation margin is more e�ient in targeting tumor ells and irradiating less healthybrain tissue. Moreover, we an state the followings after observing the graphs:- Looking at the R graphs we notie that the di�erene between the onstant
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(b) V olFigure 7.6: R and V ol vs. time plots for the syntheti tumor: median (see the tablein Figure 7.1). Graphs show the di�erene between the onstant and variable regionirradiation in the ase of the syntheti tumor. R represents the number of tumorells not targeted by the irradiation. V ol represents the volume of healthy (tumorfree) tissue targeted. Dashed lines are the plots obtained with the onstant marginwhile the solid ones are the ones obtained with the variable margin. Plots obtainedfor tumors with the same parameters but at di�erent loations (par=parietal lobe,fron=frontal lobe, see Figure 7.1) are plotted on the same graph. The variableirradiation margin seems to target more tumor ells (di�erene goes up to 3.5× 107ells) and less healthy tissue (di�erene goes up to 13 cm3).and the variable margins in targeting tumor ells inreases as time passes. Forexample in the average di�usion rate ase for the tumor at the parietal lobe,the di�erene between targeted tumor ells rises from 1× 107 to 3× 107 from
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(a) R for u0 = 0.4
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(b) V ol for u0 = 0.4Figure 7.7: R and V ol vs. time plots for the syntheti tumor: low dw,g/ρ (prolif-eration dominated growth). Dashed lines are the plots obtained with the onstantmargin while the solid ones are the ones obtained with the variable margin. Valuesobtained at two di�erent loations are plotted on the same graph. We see that forslowly di�using tumors the di�erene between the variable and onstant margin isvery low.the image taken at day 0 to the one taken at day 350. This is related to thefat that tumor ells in�ltrate more as time passes yielding a more anisotropidistribution in the tissue, and the variable margin takes this into aount.- Comparing Figures 7.6, 7.7 and 7.8, we observe that both shemes are moresuessful in targeting tumor ells when the di�usion is less and the prolifer-ation is higher ( the growth is more proliferation dominated ). This is due tothe fat that with higher di�usion tumor ells in�ltrate further away in the



122 CHAPTER 7. EXTRAPOLATING INVASION: RESULTS

0 50 100 150 200 250 300 350
2

4

6

8

10

12

14
x 10

8

days

tu
m

or
 c

el
ls

(a) R for u0 = 0.4

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

days

cm
3

 

 

constant margin at par. lobe
variable margin at par. lob
constant margin at fron. lobe
variable margin at fron. lobe

(b) V ol for u0 = 0.4Figure 7.8: R and V ol vs. time plots for the syntheti tumor: high dw,g/ρ (di�usiondominated growth). Dashed lines are the plots obtained with the onstant marginwhile the solid ones are the ones obtained with the variable margin. Values obtainedat two di�erent loations are plotted on the same graph. Although the urves of Rlook lose their numerial di�erene goes up to 6× 108 tumor ells.brain parenhyma reating a need for a larger irradiation margin to ahievethe same suess rate. We also note that the di�erene between the twoshemes is nearly none for the tumor whih does not di�use muh. However,as the tumor beomes more di�usive we observe that the di�erene betweenthe two shemes, both in terms of tumor ells not targeted and healthy tissueirradiated, inreases.- Comparing Figures 7.6, 7.9 and 7.10, we see that when the anisotropy is higher
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(b) V ol for u0 = 0.4Figure 7.9: R and V ol vs. time plots for the syntheti tumor: lower anisotropy.Dashed lines are the plots obtained with the onstant margin while the solid onesare the ones obtained with the variable margin. Values obtained at two di�erentloations are plotted on the same graph.the di�erene in number of tumor ells not targeted between the two shemesis muh higher. Also the di�erene in the volume of healthy tissue irradiated isgreater in the higher anisotropy ase. This is expeted sine as the anisotropyis lower the tumor grows �more� spherially and the di�erene between thevariable and the onstant margin dereases.- Observing V ol plots we notie that as the di�usion rate inreases and whenthe underlying media beomes more heterogeneous (white-gray heterogeneity)the variable margin approah beomes more e�ient in distinguishing healthy
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(b) V ol for u0 = 0.4Figure 7.10: R and V ol vs. time plots for the syntheti tumor: higher anisotropy.Dashed lines are the plots obtained with the onstant margin while the solid onesare the ones obtained with the variable margin. Values obtained at two di�erentloations are plotted on the same graph.and in�ltrated tissue. This is also related to the fat that the variable marginapproah takes into aount the anisotropi nature of the tumor growth.7.4 ConlusionIn this hapter, we have addressed the problem of limited tumor visualization ofmedial images through mathematial tumor growth modeling. Espeially for inva-sive gliomas, although images an show the mass part of the tumor they are not ableto visualize the low density in�ltration whih auses a serious problem in treating



7.4. CONCLUSION 125this pathology. We proposed a novel formulation whih integrates marosopi tu-mor growth models with medial images to extrapolate the low density in�ltrationregions of gliomas starting from the visible part of the tumor. In deriving the pro-posed formulation, we have started from the well known reation-di�usion modelsassuming that the growth dynamis of gliomas are well aptured by this type ofmodeling. We then used asymptoti approximations of reation-di�usion models toformulate the proposed solution to the mentioned problem of prediting the extentsof the tumor in�ltration. The resulting formulation, in a sense, omplements theimaging proess and provides a larger view of the extent of the tumor in�ltration.The proposed extrapolation method an also be applied to other appliations whihare modeled by partial di�erential equations whih bear traveling wave solutions(e.g. wound healing [Maini 2004℄, ardia modeling [Franzone 1990℄).One of the most important assumptions we have made in this work was thatthe tumor growth dynamis are well aptured by the reation-di�usion type modelsas proposed in di�erent works suh as [Swanson 2002b, Jbabdi 2005, Clatz 2005℄.These models over the general features of tumor growth suh as marosopi het-erogeneity and anisotropy of tumor growth and provide a good math with linialases [Swanson 2008b℄. Reation-di�usion models have few parameters whih anbe diretly related to the information available in the medial images. Therefore,the models an be adapted to spei� patient ases. Although reation-di�usionmodels do not inlude mirosopi spatio-temporal fators a�eting the growth pro-ess, this problem an be overome as more image modalities beome available inthe linial setting. One an imagine that when high resolution metabolial imagesbeome available, whih would allow us to visualize di�erent integrins and enzymesfor eah patient, then the proposed formulation an be adapted suh that it takesinto aount di�erent spatio-temporal e�ets yielding a more realisti predition ofthe extent of tumor in�ltration.In Chapter 7, we performed two types of experiments evaluating the proposedextrapolation method. First, we showed that the tumor ell density distributionextrapolated using the proposed method remains within the viinity of 1-2 voxelsof the atual distribution of the tumor beyond its visible mass. This demonstratesthat the extrapolation formulation is suessful in reonstruting the solution ofthe reation-di�usion model at a given time instane from sparse observations likethe image. This approximation an naturally be improved by inluding the e�etof tumor fronts urvature and onvergene harateristis of the reation-di�usionequation the expense of inreasing omplexity and loosing generality.In the seond part of Chapter 7 we have shown the signi�ane of using theproposed extrapolation sheme for radiotherapy. We onstruted variable irradiationregions, whih take into aount the possible in�ltration extents of gliomas, andompared them to the onstant margins used onventionally in linial pratie.The geometrial omparisons presented demonstrates that the proposed methodhas the potential to target more tumor ells while harming less healthy brain tissue.This suggests the possible higher e�ieny we an obtain in radiation therapy byusing irradiation margins taking into aount the growth dynamis. Besides thestati geometrial omparisons, one an also ompare the dynami time ourse ofradiotherapy under the two di�erent shemes. However, for this purpose the dose



126 CHAPTER 7. EXTRAPOLATING INVASION: RESULTSdelivery mehanisms and the response of tumor ells to the radiation should alsobe modeled. Considering the disrete nature of tumor response to radiotherapy(ell yles, varying mitoti potential of tumor ells and phase durations) using adisrete model for these dynamis might be more appropriate. There have beenseveral works on disrete models and tumor response to radiotherapy using suhmodels, [Drasdo 2005, Stamatakos 2006b℄. Using a ombination of the ontinuumapproah given in this work and a disrete model as explained in the ited works onean simulate the radiotherapy proess under the two di�erent shemes and omparetheir outomes. However, the modeling of tumor response to therapy and thereforethis omparison are outside the sope of this work.In all the experiments shown in this hapter we tried to stay in the limits of thelinial pratie. Namely, for the syntheti images we reated, we did not assumethat we knew the parameters of the growth model. We personalized the generalgrowth model to �t these images through estimating the parameters of the model(Chapter 4) and then using these parameters to perform the extrapolation. Inthis sense, we tried to simulate realisti linial onditions. On the other handthere still remains a big issue regarding the parameter estimation in the ontextof radiotherapy. Most of the time the radiotherapy starts as soon as the tumor isdeteted, speially for the high grade gliomas. Therefore, in order to have a morerealisti tool we also need to �nd a way to estimate the parameters of the growthmodel from a single image. This problem is not takled int his thesis however, it isone of our ongoing researh topis.The results and experiments we presented in this work are all syntheti ases.In order to understand the real bene�ts of the formulation proposed in this work,validations with real patient ases and linial validation should be performed. Al-though we have not performed them, we envision two types of validations to bedone. The �rst one is the validation of the proposed extent of the tumor in�ltra-tion. Through mirosopi investigations of post-mortem brain ross-setions oranimal models we an determine the real tumor ell distribution in the brain tissueex-vivo. Moreover, newly developing tehniques for in-vivo mirosopy an be usedto obtain tumor ell distribution for the patients [Verauteren 2008℄. The ompar-ison of this distribution with the extrapolated one would let us understand howlose we an get to the real in�ltration margin using the proposed method. Afterthe in-vivo validation, linial validations should also be performed to understandwhether adapting the irradiation margins of the radiotherapy to the extrapolatedin�ltration extent of tumor is bene�ial or not. Suh an adaptation may suggestritial strutures to be irradiated while this may turn out to be harmful for thepatient.In this hapter we have shown how mathematial growth models an be appliedin the therapy proess. Our fous was given to radiotherapy but hemotherapy analso bene�t from the mathematial models and simulations obtained from them.New therapy agents proposed in the literature [Bathelor 2007, Riard 2007℄ an betested extensively using the mathematial simulations while, the usage of alreadyexisting drugs an be optimized based on virtual experiments [Stamatakos 2006a,Swanson 2002a℄.



Chapter 8Anisotropi Fast Marhing
Contents8.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . 1278.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298.2.1 Basi Conepts . . . . . . . . . . . . . . . . . . . . . . . . 1298.2.2 Fast Marhing Methods . . . . . . . . . . . . . . . . . . . 1318.2.3 Reursive Anisotropi Fast Marhing . . . . . . . . . . . . 1338.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 1398.4 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141ContextThe importane of a spei� type of partial di�erential equation the �anisotropiEikonal equation� has beome evident in Chapters 4 and 6. In this hapter wepropose and brie�y analyze a numerial method to solve suh equations fast andaurately. Suh a method gives us the basi tool to solve the problems mentionedin the previous hapters.8.1 IntrodutionIn the attempt to bridge the gap between the reation-di�usion type growth modelsto medial images we have enountered stati Hamilton-Jaobi equations and inpartiular anisotropi Eikonal equations frequently in the previous hapters. Wehave seen that the reation-di�usion type growth models mathematially desribethe evolution of tumor ell density distributions. However, the images an onlyvisualize �delineations� of tumors, whih are assumed to be iso-density surfaes ofthe tumor density distribution. Both in the ase of formulating the growth speed ofthis delineation and in extrapolating the tumor ell distribution beyond the visiblepart in the image we ended up with a stati Hamilton-Jaobi equation of the form

F
√
∇T ′D∇T = 1 (8.1)
T (Γ) = g(x),where T is an impliit funtion (whih we refer to as �time� in this hapter), Dis a tensor (positive de�nite matrix) , F is a speed term, Γ is a surfae where theDirihlet type boundary onditions for T is de�ned as g(x). In the previous hapterswe have seen that F is usually a spatially varying funtion whih might depend on127



128 CHAPTER 8. ANISOTROPIC FAST MARCHING
T and its derivatives. In this hapter we fous our attention on the ase where F isa spatially varying funtion that does not depend on T nor its derivatives. In thisase Equation 8.1 takes the form of an anisotropi Eikonal equation. Although wefous on this spei� type of equation, this does not onstrain us from applying themethodology explained here to more general ases. As we have seen in Chapter 4through an appropriate iterative sheme we an solve for more general F using thesheme explained here.The anisotropi Eikonal equations are not inherent to tumor growth modeling.There are many other appliations where these equations arise, e.g., ardia eletro-physiology, wound healing, geology. Therefore, numerial solvers for these equationsare needed in many di�erent domains as the one we are interested in.There have been many di�erent ways proposed to solve equations with theform of Equation 8.1 or in general onvex, stati Hamilton-Jaobi equations.These ways an be oarsely lassi�ed into four: algorithms using single-pass meth-ods [Sethian 2003℄, sweeping methods [Qian 2006℄, iterative methods [Kao 2005℄ andembedding methods [Osher 1993℄. Single-pass methods start from points where time(T ) values are already known and follow the harateristi diretion of the PDE toompute T at other points. This approah is based on the fat that in equationssuh as Eqn. 8.1, the value of T at a point is only determined by a subset of its neigh-boring points, whih lie along the harateristi diretion [Kevorkian 2000℄. In theisotropi ase, where D = dI is an isotropi tensor, these methods are very e�ientbeause they follow the gradient diretion, whih oinides with the harateristidiretion [Sethian 1999℄. In other words, they only use immediate neighbors of apoint with lower values of T to ompute the new arrival time at that point usingan upwind sheme. These onepts are explained in detail in Setion 8.2. In theanisotropi ase, the harateristi diretion does not neessarily oinide with thegradient diretion and the same idea used for isotropi ase yields false results. Inorder to deal with this, Sethian and Vladimirsky enlarged the neighborhood arounda point used to ompute the new arrival time suh that the harateristi diretionremains within the neighborhood [Sethian 2003℄. But size of the enlarged neighbor-hood inreases with inreasing anisotropy of D. Unfortunately, this results in largenumber of points used to alulate new values and a high omputational load inase of high anisotropies.Sweeping methods use the same idea of harateristis as the single-pass methodshowever, they do not start from the known points. Instead they sweep the domainin many di�erent diretions and update the values at eah voxel at eah sweep-ing, [Qian 2006, Kao 2005℄. By using many di�erent diretions they make sure thatfor eah voxel at least one sweeping diretion mathes the harateristi diretionof the PDE. The sweeping ontinues until the omputed T map onverges. Thesemethods do not have a problem with anisotropy. However, depending on the spa-tial variation of D and the amount of anisotropy, these methods might need a highnumber of sweepings to onverge, and therefore, high omputation times. Moreover,they need an ordering of the underlying mesh to sweep the domain, whih mightnot be trivial to obtain for general meshes.Iterative methods start from an initial distribution of T and iterate us-ing upwind, monotone, and onsistent disretization until T satis�es the Equa-



8.2. METHOD 129tion 8.1, [Rouy 1992℄. They use minimization tehniques at eah iteration to �ndthe T at the next iteration. As it is the ase for the sweeping methods, iterativemethods might take a long time to onverge in the ase of spatially varying and/orhighly anisotropi D.The embedding methods do not solve the anisotropi Eikonal equation diretly.They transform the stati Equation 8.1 into a dynami Hamilton-Jaobi equa-tion [Osher 1993℄. This transformation onsists of embedding the iso-time surfaesof T as zero level-sets of another impliit funtion and transforming the gradient of
T as follows

v(x, t) = 0 for {x|T (x) = t} (8.2)
vx

vt
= Tx , vy

vt
= Ty , vz

vt
= Tz. (8.3)where the v is a time varying impliit funtion and the subsripts denote partialderivatives. As a result of this transformation Equation 8.1 beomes

vt − F
√
∇T ′D∇T = 0, (8.4)whih is a dynami equation. This equation uses the idea of level-sets as proposedin [Sethian 1999℄. Based on this it pro�ts from subvoxel auray and many di�erentnumerial methods proposed to solve it [Jiang 2000, Bryson 2003, Sethian 1999℄. Onthe other hand, initializing the impliit funtion v from a given surfae and solvingit an be omputationally ostly.In this hapter, we propose an e�ient and aurate algorithm to solve theanisotropi Eikonal equation given in Equation 8.1. Our algorithm is a single-passmethod that is based on the well known �Fast Marhing� methods [Sethian 1999℄.Contrary to the single-pass method proposed in [Sethian 2003℄, through inluding�reursive orreting� we manage not to inrease the neighborhood that is used toompute the value at a given point. We detail our algorithm in Setion 8.2. InSetion 8.3, we ompare our algorithm to one of the state-of-the-art sweeping meth-ods [Qian 2006℄. Moreover, we provide some analysis on the e�et of the anisotropyon the performane our algorithm.8.2 MethodIn this setion �rst we review some of the basi onepts about Hamilton-Jaobiequations suh as �harateristi diretions� and �group veloity� neessary to ex-plain our method. Following these onepts we review the well known Fast Marhingmethod and see why it fails in the ase of anisotropi equations. We then detail theproposed algorithm.8.2.1 Basi ConeptsIn order to understand the basi onepts for �rst order Hamilton-Jaobi equationslet us start by a simple equation

Fux + ut = 0 (8.5)
u(x, 0) = f(x), (8.6)



130 CHAPTER 8. ANISOTROPIC FAST MARCHINGwhere subsripts denote partial derivatives, F is a salar onstant and f(x) is theinitial ondition. The solution for this equation is given by
u(x, t) = u(x− Ft) = f(x− Ft). (8.7)In this solution we notie that the value of u remains onstant along the vetor

V = F i+ j, where i is the unit vetor in x and j is the unit vetor in the t diretion.This vetor is alled the harateristi vetor of the PDE given in Equation 8.5(and its diretion is alled the harateristi diretion). The lines that are parallelto this vetor are alled harateristi lines [Strauss 1992℄. In Figure 8.1 we show
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Figure 8.1: Figure shows the harateristi lines for an example PDE in the formof the Equation 8.5. Values of u along these lines are onstant. As a result u(B) isonly de�ned by u(A).an example demonstrating harateristi lines in the (x, t) oordinate system. Eahline represents a harateristi line and by de�nition the value of u is onstant alongeah line. As a result, if we pik a point B in this oordinate system, the value of uat this point only depends on the value of u at A and to none of the other points.In other words the domain of dependene of B is point A and the line onnetingthese two points. On the other hand, the value of u at A is arried along the halfline −−→AB. Along this line all the points will have the same value of A. In other wordsthe domain of in�uene of A is the line −−→AB.For more general �rst order Hamilton-Jaobi equations the harateristi linesand the relations of the domain of dependene and the domain of in�uene do nothave to be this simple. Domain of dependene of a point may ontain a region and apoint may in�uene a region as shown in Figure 8.2. The numerial shemes that arein the ategories of sweeping methods and the single-pass methods use the domainof dependene and in�uene in their formulation. The basi idea is to ompute thevalue of u at the point B by using other points whih are in the domain of dependeneof B. Another way to formulate this is to state that the harateristi diretion ofthe PDE at B remains within the neighborhood whih is used to ompute the valueof u at B.
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x
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Figure 8.2: Figure shows a more general domain of dependene. The value of u at Bis determined by the shaded region. The important point is that the harateristivetor at B shown as an arrow remains within the domain of dependene.For general �rst order stati Hamilton-Jaobi equations in the form
H(x,∇T ) = 0 (8.8)the harateristi vetor is given by the gradient of H with respet to ∇T . In thease of the anisotropi Eikonal equation this harateristi vetor is given as

V =
FD∇T√
∇T ′D∇T

. (8.9)As we have explained the diretion of this vetor is alled the harateristi diretion.On the other hand, this vetor is also alled the group veloity Vg a term borrowedfrom geometrial optis. In explaining the proposed numerial method we will usethese two terms frequently.8.2.2 Fast Marhing MethodsThe Fast Marhing Method (FMM) is an e�ient single-pass algorithm for solvingthe isotropi version of the Eikonal equation:
F |∇T | = 1 (8.10)
T (Γ) = T0, (8.11)where the seond equation is the Dirihlet type boundary ondition [Sethian 1999℄and T is the impliit funtion. For the rest of this hapter we will refer to T as thearrival time funtion where the value at eah point represents the time a virtual frontpasses over it. The FMM algorithm starts from the surfae Γ and onstruts thesolution T by following the harateristi diretions of the equation. It onstruts athin layer around the region for whih T values are known, omputes the T valuesin this layer, adds the new points in the known region and marhes the thin layer



132 CHAPTER 8. ANISOTROPIC FAST MARCHINGto sweep the domain. The key ingredient is the hoie of the new points whih willbe added to the known region. Through the orret hoie the FMM follows theharateristi diretions of the PDE. It onstruts the T funtion in an inreasing(dereasing) order starting from the small (high) values proeeding to higher (lower)ones.There are two parts of the FMM algorithm. The omputation of the T valuesusing the immediate neighborhood of a point and the overall algorithm. At a point
p the omputation of T only uses the neighbors of p whose values are already known.The disretization at p whih takes into aount the harateristi diretions for theEquation 8.10 in 2D is given as

[
max(d−x

p T, 0)2 + min(−d+x
p T, 0)2

+ max(d−y
p T, 0)2 + min(−d+y

p T, 0)2

]1/2

=
1

Fp
, (8.12)where dp is the disrete derivative operator in the diretion of its supersript, i.e.

d−x
p = (Tp − T−x

p )/dx with dx as the spaing in the x diretion. From this equationwe see that there are two points neighboring p used to ompute Tp, let us all them
q1 and q2. Equation 8.12 has a quadrati form and its solution an be found easily.In all ases the roots of the quadrati equation must be real however, there aretwo of them. The FMM hooses the minimum of these solutions whih satis�es
Tp ≥ max(Tq1

, Tq2
).In order to brie�y explain the overall algorithm let us examine a 2D setting.Assume that there is a point for whih the T value is known, the red point inFigure 8.3(a). The �rst step is to set a tag for this point as KNOWN . Followingthis, FMM omputes the values of the points adjaent to the known one and setstheir tags as TRIAL, shown in green in Figure 8.3(b). The next step is to hoosethe TRIAL point with the minimum T value, hange its tag to KNOWN andompute T values for its adjaent points setting their tag as TRIAL. Moreover,the T values at the points that had already the tag TRIAL are updated usingthe new KNOWN point, see Figure 8.3(). The algorithm ontinues like this, asshown in Figure 8.3(d), until all the points in the domain have the tag KNOWN .In Algorithm 5 we summarize the FMM algorithm. In the algorithm we refer theomputation of T at a point by the UPDATE routine, for whih the details aregiven in Equation 8.12.The omputation of T ombined with the overall algorithm reates a single-passnumerial sheme that whih follows the gradient diretion of T . Due to the fat thatthe gradient diretion is indeed the harateristi diretion for the isotropi Eikonalequations the FMM algorithm follows the harateristis. In doing so it uses theorret domain of dependene for eah point onstruting the orret solution in asingle pass.The anisotropi Eikonal equation, given as Equation 8.1, poses extra di�ultiesfor the FMM algorithm. The harateristi diretion for the anisotropi equationdoes not have to oinide with the gradient diretion of T . We see in Equation 8.9that the harateristi diretion of T depends on the tensor D. Therefore, followingthe gradient diretions the algorithm uses inorret domain of dependene and yieldsfalse results as shown in Figure 8.4.



8.2. METHOD 133
(a) (b) () (d)Figure 8.3: The steps of the FMM algorithm. (a) Algorithm starts by the knownpoint in red and the unknown ones in blue. (b) It omputes the T values at itsadjaent points setting their tag as TRIAL in green. () Following this it hoosesthe TRIAL point with the minimum T value and hange its tag to KNOWN .Using this value it updates the T values at all the TRIAL points and the neighborsof the newly KNOWN point. (d) The algorithm ontinues in this fashion until allthe points in the domain are tagged as KNOWN .Algorithm 5 Fast Marhing Method.Initializationfor all X ∈ KNOWN (red points) dofor all Yi ∈ N (X) and Yi ∈ FAR (blue points) doompute T (Yi)← UPDATE(Yi,X)remove Yi from FAR and add Yi to TRIAL (green)end forend forMain Loopwhile TRIAL not empty do

X ← argminX∈TRIAL TRIALremove X from TRIAL and add X to KNOWNfor all Yi ∈ N (X) and Yi ∈ TRIAL ∪ FAR doompute T (Yi)← UPDATE(Yi,X)if Yi ∈ TRIAL and T (Yi) < T (Yi) then
T (Yi)← T (Yi)else if Yi ∈ FAR then
T (Yi)← T (Yi)remove Yi from FAR and add Yi to TRIALend ifend forend while8.2.3 Reursive Anisotropi Fast MarhingThe reursive anisotropi fast marhing, proposed in this hapter, is based on thesingle-pass idea and it uses immediate neighborhood to ompute arrival times. Itis based on the priniples of the FMM and modi�es this algorithm suh that thee�et of the anisotropi tensor D is taken into aount. As a novel step, on top ofthe FMM algorithm, it adds a reursive orretion sheme and uses a more general
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(a) (b) ()Figure 8.4: Solutions of F√∇T ′D∇T = 1, T (enter) = 0 with a onstant anisotropi
D. The solution of the system obtained using the FMM (left) and the solution solvedby anisotropi methods (right). We see that the FMM solution is not orret due tothe problem of following the gradient diretions and not the harateristi diretions.On the shema on the left we show the harateristi diretion V and the gradientdiretion ∇T . We see that the two diretions do not oinide.formulation to ompute the T values at eah point. This algorithm works e�ientlyunder general meshes, high anisotropies and highly varying D �elds. Moreover, itan be applied to more general forms of stati, onvex Hamilton-Jaobi equations,whih is beyond the sope of this work. In this work we fous on the equation

F
√
∇T ′D∇T = 1 T (Γ) = T0, (8.13)where Γ is a surfae on whih the T values are known and equal to T0.AlgorithmThe overall algorithm is similar to the original fast marhing method. The maindi�erenes are the reursive orretion sheme and the omputation of T values.The initialization steps for initializing the method are the same. First, we go overpoints whose value are already known and add them to a list alled KNOWN .Following this we ompute the traveling times for points neighboring the points inthe KNOWN list and whose values are not omputed yet (suh points are kept inthe FAR list). We ompute the trial T values for these points using only the knownpoints and add them to the TRIAL list while removing them from the FAR list,see Algorithm 6. By neighborhood N (X) we mean all points diretly onnetedto the point X in some preferred onnetivity sense (e.g. 4-8 in 2D and 6-18-26in 3D Cartesian grid). As explained in the previous setion, the FMM algorithmfollows the same operations throughout its main loop. (The TRIAL point with theminimum value of T , Y , is removed from the TRIAL list, added to the KNOWNlist, trial values of unknown neighbors of Y are omputed, if they are in the FARlist they are added to the TRIAL list and removed from the FAR one, and if theyare already in the TRIAL list their values are updated. )



8.2. METHOD 135Algorithm 6 Anisotropi Fast Marhing: Initializationfor all X ∈ KNOWN dofor all Yi ∈ N (X) and Yi ∈ FAR doompute T (Yi)← UPDATE(Yi,X)remove Yi from FAR and add Yi to TRIALend forend for
(a) (b) () (d)Figure 8.5: The Reursive Corretion: (a) Among the TRIAL points the one withthe minimum T value is hosen, Y . (b) Beside omputing the values for the unknownand trial neighbors of Y we also update the T values of its known neighbors. In thease a lower T value for any of these known neighbors is found it is moved into the

CHANGED list as it beomes yellow in the �gure. () When the main loop startsagain it starts from this CHANGED point and updates its neighbors. (d) Whenthe CHANGED list is empty the algorithm ontinues as the FMM.In order to take into aount the anisotropy in the equation, we insert the re-ursive orretion in the main loop of the FMM. In the main loop we hoose thepoint in the TRIAL list with the minimum value of T , all the point Y , and moveit to the KNOWN list, as shown in Figure 8.5(a). At this point, besides omputingthe trial values of unknown neighbors of Y , we also reompute its known neighbors'values. The reason for this is that when values of these points were omputed Ywas not used sine it was not known. Hene, the harateristi diretion may nothave been ontained in the known neighborhood at the time, whih was used toompute their T values. If we obtain a lower value of T during this reomputa-tion we update the value and add the point to the CHANGED list, whih holdsknown points whose values have been hanged. In Figure 8.5 a known neighbor of
Y is updated and it is added in the CHANGED list as it beomes yellow. Thisorretion is based on the fat that the lowest T value for a point is obtained whenthe harateristi diretion is ontained in the neighborhood used in its T valuesomputation [Qian 2006, Sethian 2003℄. Every time the main loop restarts it heksif the CHANGED list is empty, if this is not the ase then instead of taking apoint from the TRIAL list it takes from the CHANGED list. In other words themain loop tries to empty the CHANGED list �rst. In the example in Figure 8.5(b)the algorithm omputes the values around the yellow point and then moves it tothe KNOWN list as it beomes red one again, see Figure 8.5(). If there are nomore points in the CHANGED list, in other words no more yellow points, then the



136 CHAPTER 8. ANISOTROPIC FAST MARCHINGalgorithm ontinues as the normal FMM as seen in Figure 8.5(d). The pseudo odefor this algorithm gives a lear summary of the reursive orretion in Algorithm 7.Algorithm 7 Anisotropi Fast Marhing: Main Loop with Reursive Corretionwhile TRIAL or CHANGED lists are not empty doif CHANGED list is not empty then
X ← argminX∈CHANGED CHANGEDremove X from CHANGEDelse
X ← argminX∈TRIAL TRIALremove X from TRIAL and add X to KNOWNend iffor all Xi ∈ N (X) and Xi ∈ KNOWN doompute T (Xi)← UPDATE(Xi,X)if T (Xi) < T (Xi) then
T (Xi)← T (Xi)add Xi to CHANGED listend ifend forfor all Yi ∈ N (X) and Yi ∈ TRIAL ∪ FAR doompute T (Yi)← UPDATE(Yi,X)if Yi ∈ TRIAL and T (Yi) < T (Yi) then
T (Yi)← T (Yi)else if Yi ∈ FAR then
T (Yi)← T (Yi)remove Yi from FAR and add Yi to TRIALend ifend forend whileLoal SolverUp to now we have not detailed the omputation of T (X) value using N (X), namelythe UPDATE routine. For the FMM algorithm this routine was simply solving aquadrati equation. In the anisotropi ase it is a bit more ompliated. We havede�ned N (X) as the set of immediate neighbors of X and naturally there exists aset of elements orresponding to this neighborhood, set of triangles (△X) in 2D orset of tetrahedras (TETX) in 3D. In Figure 8.6 for a 2D example we demonstratethe N (X) and the △X . The T (X) value both in 2D and in 3D is alulated insideevery element using linear interpolation between nodes and solving a minimizationproblem. We an write this minimization problem using the priniples borrowedfrom geometrial optis. Based on the properties of the anisotropi Eikonal equationwe know that there exists a single ray passing from the point X that oinides withthe harateristi diretion of the PDE and determines the value of T at X. For
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X
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Y

Figure 8.6: For the point X the �gure shows the N (X) and also the △X orre-sponding to the neighborhood.the example shown in Figure 8.6, assume that this ray remains within the triangle
X̂Y Z, it passes through the point Q and its diretion from X is given with thevetor v =

−−→
XQ. Based on the harateristi vetor, as de�ned in Equation 8.9, wean write the relation between the gradient of T and v as

∇T = κD−1v, (8.14)where κ is a salar onstant whih ensures that ∇T satis�es the anisotropi Eikonalequation
∇T ′D∇T = κ2(D−1v)′D(D−1v) =

1

F 2
(8.15)

κ =
1

[(D−1v)′D(D−1v)]1/2F
=

1

[v′D−1v]1/2F
. (8.16)From this relationship the group veloity (as given in Equation 8.9) at the point Xan be written as

vg =
Fv

[v′D−1v]1/2
. (8.17)Assuming that the T value at the point Q is known we an apply linear interpolationand �nd the value of T at X using the group veloity

T (X) = T (Q) +
|−−→XQ|
|vg|

, (8.18)where the seond part on the right hand side is just distane over speed [Qian 2001℄.As a result, one we are given a triangle suh as the one X̂Y Z it su�es to �nd thepoint Q to �nd the right value of T at X. Sine we know that the orret point
Q provides us the lowest possible value of T for X we an formulate the problem



138 CHAPTER 8. ANISOTROPIC FAST MARCHINGof �nding Q as a minimization assuming linearity. The respetive minimizationproblems for 1D, 2D and 3D are given as
f1D(X,Y ) = T (Y ) +

[vt
1DD

−1v1D]1/2

F
(8.19)

f2D(X,Y,Z) = min
p∈[0,1]

{T (Y )p+ T (Z)(1− p) (8.20)
+

[v2D(p)tD−1v2D(p)]1/2

F
}

f3D(X,Y,Z,W ) = min
p,q∈[0,1]×[0,1]

{[T (Y )p+ T (Z)(1− p)]q (8.21)
+ T (W )(1− q) +

[v3D(p, q)tD−1v3D(p, q)]1/2

F
}where- v1D =

−−→
Y X,- v2D(p) =
−−→
Y Xp+

−−→
ZX(1− p) and- v3D(p, q) = [

−−→
Y Xp+

−−→
ZX(1− p)]q +

−−→
WX(1− q).Algorithm 8 Computation of T (Xi) = UPDATE(Xi,X)IN 2D

T (Xi)←∞for all △(XXiY ) ∈ △X
Xi

= {△(XXiY )|Y ∈ N (Xi)} doif Y ∈ KNOWN then
T (Xi)← min(T (Xi), f2D(X,Xi, Y ))else
T (Xi)← min(T (Xi), f1D(X,Xi))end ifend forIN 3D

T (Xi)←∞for all TET (XXiY Z) ∈ TETX
Xi

= {TET (XXiY Z)|Y,Z ∈ N (Xi)} doif Y,Z ∈ KNOWN then
T (Xi)← min(T (Xi), f3D(X,Xi, Y, Z))else if Y ∈ KNOWN then
T (Xi)← min(T (Xi), f2D(X,Xi, Y ))else if Z ∈ KNOWN then
T (Xi)← min(T (Xi), f2D(X,Xi, Z))else
T (Xi)← min(T (Xi), f1D(X,Xi))end ifend forAs in the original fast marhing algorithm we only use known points in N (X) toompute the value T at X. For a given element either triangular or tetrahedral not



8.3. EXPERIMENTS 139all the nodes have to be in the KNOWN list. In suh ases we only use the knownnodes and ompute T (X) using the respetive element. As an example, in the aseof a tetrahedral element we use Equation 8.21 when all nodes of the tetrahedra areknown, Equation 8.20 when 2 nodes are known and Equation 8.19 when only 1 nodeis known, see Algorithm 8. The minimization of Equation 8.20 has an analytialsolution however, the one in Equation 8.21 is not trivial. Instead of solving it witha minimization algorithm, whih would inrease the omputational load, we usethe quadrati equation in T (X) obtained by disretizing equation F√∇T tD∇T =
1 on the nodes of the tetrahedral element. We hek if this omputed value of
T (X) satis�es the ausality ondition, whih is that the harateristi diretionshould lie inside the element used. Pratially this is just omputing ∇T using thenew omputed T (X) on the element and heking if D∇T vetor resides withinthe tetrahedra. If this is the ase, the minimum lies inside the tetrahedra and itis approximated with the omputed T (X). If this is not the ase we searh theminimum on the triangular sides of the tetrahedra using f2D. This method wasproposed by Qian et al. [Qian 2006℄ and it speeds up the overall algorithm greatly.For more details on this please refer to [Qian 2006℄.8.3 ExperimentsIn our experiments we have performed two di�erent type of tests. The �rst typeof tests were intended to demonstrate the reursive anisotropi fast marhing anwork on di�erent geometries in reasonable omputational times. We have testedthe proposed algorithm by solving F

√
∇T tD∇T = 1 in 2D, 3D Cartesian gridand on surfaes using triangulation where F is taken to be 1. These results areshown in Figures 8.7 and 8.8. Computation times for these results an be foundin Table 8.1, where we also ompare our algorithm with the sweeping algorithmproposed in [Qian 2006℄, for whih we used our own implementation done in thebest possible way. Comparison is only done for ases in 2D Cartesian grid based onthe examples provided in the mentioned referene. The sweeping method has beeniterated until onvergene, where the maximum number of iterations was 12 in thevariable D ase. In the reursive anisotropi fast marhing algorithm the size ofthe CHANGED list did not exeed 3 for these ases. The following omputationaltimes were obtained with Matlab7.1 for 2D ases and C++ for 3D ases on a 2.4GHzIntel Pentium mahine with 1Gb of RAM. Cases given in Table 8.1 orrespond toimages shown in Figures 8.7 and 8.8. The proposed algorithm is fast and visuallyaurate even in the ase of very high and variable anisotropy. Moreover, applyingthe explained method to general meshes bears no di�ulty. In our experiments withtriangular meshes on 2D and on surfaes, the algorithm was apparently muh faster.The seond tests we have performed aims to understand the e�et of the strengthof anisotropy on the omputation time. In our experiments we have observed that asthe strength of anisotropy inreases the omputation time also inreased. In orderto test this we performed 2D experiments using spatially homogeneous tensors with



140 CHAPTER 8. ANISOTROPIC FAST MARCHINGCase (D is anisotropi in allases) SweepingMethod [Qian 2006℄ AnisotropiFast Marhing(seonds) (seonds)2D: onstant D, 64× 64 grid 24.43 16.152D: onstant D, 128 × 128grid: Fig. 8.7(a) 91.06 63.392D: spirally varying D, 64×64grid: Fig. 8.7() 80.6076 13.562D: spirally varying D, 128 ×
128 grid 319.34 49.483D: onstant D, 64 × 64 × 18grid: Fig. 8.8(g) 263D: helix D, 64×64×64 grid:Fig. 8.8(h) 653D: onstant D, 13000 nodesmesh: Fig. 8.8(e) 2Table 8.1: Computation times

(a) (b) () (d)Figure 8.7: a) 2D Cartesian grid, high anisotropy in 120◦ inreasing distane fromblue to red, b) iso-ontours of a, ) 2D Cartesian grid, D is highly anisotropi insidea spiral following it, isotropi in other regions, d) iso-ontours of .di�erent anisotropies. We have onstruted di�erent tensors as
D = V ΛV ′ (8.22)
V =

[
0.6 −0.8
0.8 0.6

] (8.23)
Λ =

[
λ1 0
0 λ2

]
, (8.24)where λ1 and λ2 are the �rst and the seond eigenvalues respetively. The strengthof the anisotropy of D depends on the ratio between these two eigenvetors. Usingdi�erent ratios we have onstruted the solution of

F
√
∇T ′D∇T = 1 T (0) = 0. (8.25)
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(a) (b) () (d)Figure 8.8: a) 2D triangular mesh with 13000 nodes anisotropy in x diretion,olors represent iso-ontours, b) 2D triangular mesh on a surfae D is anisotropiand priniple eigenvetor is shown in blak lines, olors represent iso-ontours, ) 3DCartesian grid, anisotropi D d) 3D Cartesian grid, D is highly anisotropi inside ahelix following it, isotropi in other regions.The omputation time for this proess depends on the ration λ1/λ2. In Figure 8.9we plot the omputation time as a funtion this ratio along with some of the resultsfound with di�erent ratios. We observe from Figure 8.9(a) that as the anisotropystrength inreases the omputation time inreases as well. Moreover, the rate ofinrease is almost linear.8.4 ConlusionsThe stati Hamilton-Jaobi equations and in partiular the anisotropi Eikonal equa-tions are frequently enountered in biologial modeling. We have seen in the previ-ous hapters the importane of suh equations for bridging the gap between linialimages and the mathematial tumor growth models. Besides tumor growth mod-els, suh equations arise in ardia eletrophysiology, geophysis, �uid dynamis andomputer vision. Therefore, having an e�ient, aurate and a fast numerial solverfor suh equations is ruial.In this hapter, we proposed the reursive anisotropi fast marhing algorithmfor solving anisotropi Eikonal equations numerially. The algorithm is based on thewell known Fast Marhing Methods and in that sense it enjoys the many advantagesof the single-pass methods. We have shown that the algorithm is suessful inhandling high anisotropies, whih are often enountered in biologial modeling, andgeneral meshes. Moreover, we have ompared it with one of the state-of-the-artmethods to show its relative performane. We have seen that the proposed algorithmis faster than the mentioned method. We have also shown that the omputationof the proposed algorithm depends highly on the strength of the anisotropy of thetensor D. The experiments have shown that the omputation times was almostlinearly related to the strength of the anisotropy.In the previous hapters we have seen the usage of the anisotropi fast marhingmethod in the ontext of tumor growth modeling. Having a fast solver gave us theopportunity to solve the parameter estimation problem in linially reasonable time
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() λ1/λ2 = 3.5 (d) λ1/λ2 = 17.5Figure 8.9: (a) The omputation time inreases almost linearly with the strength ofanisotropy of the tensor D. The �gure show the plot of the omputation time as afuntion of the ratio λ1/λ2 of D. (b)-(d) We show the results of the Equation 8.25with di�erent D's having di�erent anisotropy strengths.spans. Moreover, onsidering the high anisotropy and the high non-homogeneityof the di�usion tensors we have enountered, the anisotropi fast marhing methodproved itself to be very useful.The anisotropi fast marhing method explained here is a general tool and anbe used for the di�erent appliations mentioned. Moreover, the algorithm an alsobe used for solving general stati, onvex Hamilton-Jaobi equations enountered inomputer vision and material siene. In this work we have foused on the algorith-mi details. The future work should onentrate on the onvergene harateristisof the algorithm and the worst ase omplexity in order to have a better understand-ing of the proposed method. Among di�erent points to be takled in a theoretialmanner are the auray, robustness and onvergene analysis of the method.



Chapter 9Conlusions and Perspetives
Contents9.1 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439.1.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . 1439.1.2 Extrapolating Invasion Margins . . . . . . . . . . . . . . . 1459.1.3 Anisotropi Fast Marhing . . . . . . . . . . . . . . . . . 1469.1.4 Other Contributions . . . . . . . . . . . . . . . . . . . . . 1469.2 Perspetives . . . . . . . . . . . . . . . . . . . . . . . . . . . 1479.2.1 Tehnial Improvements . . . . . . . . . . . . . . . . . . . 1479.2.2 Appliation to Clinial Images . . . . . . . . . . . . . . . 1489.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1499.2.4 Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509.1 ConlusionsThe main fous of the thesis presented here was on linking the mathematial tumorgrowth models and medial images. We have built our researh on reation-di�usionbased tumor growth models whih are shown to be suitable for modeling the maro-sopi dynamis of tumor growth as visible in medial images. Previous works havesuessfully integrated the anatomial and di�usion information in their mathemat-ial desription of tumor growth. This integration was either based on the use ofatlases or single patient images and aimed to inlude di�erent tissue lasses and/orwhite matter �ber struture in the growth formulation. In this sense, these generimodels have adapted the anatomial information for modeling the growth and in-vasion of brain gliomas. In this thesis, we have studied the integration in the othersense, adapting the growth models to spei� patient ases. Therefore, we havetaken a step towards patient spei� tumor growth models.9.1.1 Parameter EstimationAs a �rst step in adapting the reation-di�usion based tumor growth models topatient images, in Chapter 4 we have proposed a formulation for estimating theparameters of the growth model based on time series of medial images. We haveseen that the generi growth model ontains two di�erent parameters, the di�usiontensor of tumor ells D and the proliferation rate ρ. Moreover, the onstrutionof the di�usion tensor may ontain several parameters, whih in our ase was 2,the di�usion rate in the white matter dw and in the gray matter dg. Estimating143



144 CHAPTER 9. CONCLUSIONS AND PERSPECTIVESparameters in this ontext means �nding the numerial values of these parametersso that the evolution of the tumor desribed by the model best �ts the evolutionobserved in the medial images.One of the main problems for parameter estimation is the inonsisteny betweenthe information observable in the medial images and the information needed bythe reation-di�usion model. The reation-di�usion models desribe the temporalevolution of tumor ell density distributions throughout the brain. Therefore, forsimulating the growth of the tumor these models need the knowledge of the spatialdistribution of tumor ell density. Conventionally used medial images on the otherhand, do not provide this information. They rather visualize enhaned regions whereit is assumed that the tumor ell density is higher than a ertain threshold. Thisenhaned region is named either as visible tumor boundary or tumor delineation.In order to solve this inonsisteny we have proposed to use a front evolution for-mulation. This formulation desribes the evolution of the tumor delineation basedon the growth dynamis of reation-di�usion models. These kind of formulationshave already been proposed in the literature for di�erent appliations. In this thesiswe have built on these existing works and improved them to take into aount theseond order e�ets suh as time onvergene and better handling of the e�et ofurvature.One we had a formulation for the growth of the tumor onsistent with the imageswe formulated the parameter estimation as an optimization problem. The optimumparameters yielded us the best �t between the evolution of the tumor delineationobserved in the images and the one desribed by the front evolution. We haveperformed thorough theoretial analysis of this method using synthetially growntumors and enountered its drawbaks. Most importantly we have seen the ouplingbetween the parameters of the tumor growth model and shown that these parametersannot be identi�ed separately in the presented ontext. On the other hand, we haveseen that several identities suh as the growth speed of the tumor an be identi�eduniquely from medial images. Following these theoretial studies we have appliedthe proposed method to some real ases and shown promising preliminary results.These real ases have demonstrated the potential usage of the parameter estimationmethod and the predition power of personalized reation-di�usion models.To the best of our knowledge, in this thesis we have presented one of the �rstparameter estimation methodologies using medial images in the ontext of tumorgrowth models. In this sense, it is one of the �rst sienti� ontributions on per-sonalizing tumor growth models. The theoretial analysis and preliminary results onreal ases also onstitute new sienti� ontributions not yet published elsewhere.During the ourse of this thesis we have presented our work regarding the parame-ter estimation and the front evolution of tumor delineation in di�erent internationalonferenes [Konukoglu 2007a℄ and [Konukoglu 2007b℄. Moreover, we have submit-ted a journal artile overing a larger part of the analysis and tehniques shown inthis thesis [Konukoglu ttedb℄.



9.1. CONCLUSIONS 1459.1.2 Extrapolating Invasion MarginsFollowing the parameter estimation problem, in Chapter 6 we have foused on thepotential bene�ts the tumor growth models an o�er to the treatment of braingliomas, partiularly to radiotherapy. The treatment of brain gliomas are di�ultand pose extra problems for radiotherapy due to their di�usive nature. The medialimages play a very important role and guide the therapy proess however, they arenot able to visualize the whole extent of the in�ltration of the tumor. In orderto takle this problem onventional radiotherapy applies irradiation not only to thevisible part of the tumor but also to a healthy looking region around the tumor. Thisregion is onstruted by taking a onstant margin around the tumor assuming theinvisible in�ltration remains in this part. This approah does not take into aountthe fat that tumor ells di�use faster in the white matter. As a result they mayunderestimate the invasion of the white matter and not target the whole in�ltration.On the other hand, for the gray matter, the onstant irradiation margin approahmay overestimate the in�ltration and target healthy ortex ausing unneessarydamage.The tumor growth models, one personalized, an o�er solutions to the visual-ization problem enountered in the ase of di�usive tumors, partiularly gliomas.In Chapter 6 we have proposed suh a solution. The proposed formulation ex-trapolates the tumor ell density distribution beyond the part visible in the image,starting from the delineation of the tumor. This formulation was derived from thereation-di�usion growth models through asymptoti approximations. As a result,the extrapolated density distribution takes into aount the di�erential motility oftumor ells and the spiky nature of its growth. Using simulations on synthetiallygrown tumors we have shown the theoretial suess of the proposed algorithm inextrapolating the in�ltration not visible in the images. Following this, we haveproposed a way to onstrut irradiation margins that take into aount the in�l-tration of gliomas. Again, using synthetially grown tumors we have shown thepotential bene�ts of using the proposed method in ontouring irradiation margins.Our experiments have shown that by taking into aount the in�ltration dynamisof gliomas one may target more tumor ells and harm less healthy tissue using thesame amount of irradiation.Although earlier researh by others has addressed the question of onstrutingthe irradiation margins automatially, in the best of our knowledge, the work pre-sented in this thesis is one of the �rst methods to address this question by inludingtumor growth models. Moreover, it is also one of the �rst attempts to use tumorgrowth models in therapy planning assuming linial onstraints, suh as being ableto use expert delineations. Combined with the parameter estimation methodology,we believe that the methods proposed in this thesis have the potential to be usedin the linial onditions. We have presented our work on extrapolating the in�l-tration extent of gliomas in di�erent onferenes and workshops [Konukoglu 2006℄.The details of the �nal algorithm and the �nal experimental results have also beensubmitted as a journal paper [Konukoglu tteda℄.



146 CHAPTER 9. CONCLUSIONS AND PERSPECTIVES9.1.3 Anisotropi Fast MarhingIn the last part of this thesis, we have foused on a more algorithmi and fun-damental problem. During our analysis of the reation-di�usion models we haveseen that anisotropi Eikonal equations play an important role. Both for estimat-ing parameters and extrapolating the not deteted in�ltration of gliomas we haveenountered this type equations in our methods. In Chapter 8 we have proposeda novel numerial method to solve anisotropi Eikonal equations in a fast and a-urate manner. The advantages of this method are that it is a fast method, itan handle high anisotropies and it an easily be implemented on general meshes.In our experiments, for demonstrating its speed, we have ompared the proposedalgorithm with a state of the art method in terms of omputation times. The pro-posed algorithm proved itself to be faster in the ases we have examined. Thisnovel numerial method have been used throughout this thesis and thus it provedits use in the ontext of tumor growth modeling. Moreover, it an also be applied todi�erent appliations suh as ardia eletrophsiologial modeling, wound healing,geophysis,... We have presented the proposed numerial method in internationalonferenes in the ontext of tumor growth modeling [Konukoglu 2007a℄. We havealso used the proposed method for simulating the evolution of potential fronts inthe ontext of eletrophysiologial modeling of the heart [Sermesant 2007℄.9.1.4 Other ContributionsBesides the tehnial ontributions explained above we have also ontributed inreview and state of the art artiles fousing on the use of mathematial tumorgrowth models and their potential importane in linial aner researh [Clatz 2006,Angelini 2007, Mandonnet 2008℄. As a new �eld, we have written a state of the artreview hapter on tumor growth models in onologial image analysis whih willappear in next edition of the Handbook of Medial Imaging [Konukoglu 2008a℄.The details of this work are also presented in the Chapter 3 of this thesis.This thesis is aimed to be a oherent ombination of our works on modelingbrain gliomas and linking these models to medial images. As a side topi wehave also worked on monitoring the growth of very slowly growing tumors. Inthe ase of tumors where the growth is extremely slow and the follow-up takesyears the methods explained in this thesis might not be suitable. However, suhtumors are not very unommon both in the ase of hildren, piloyti astroytomas,and adults, meningiomas. Change detetion is a ritial task in the diagnosis ofthese pathologies. In [Konukoglu 2008b℄, we have desribed an approah that semi-automatially performs this task using longitudinal medial images. Our fous wason meningiomas, whih experts often �nd di�ult to monitor as the tumor evolutionan be obsured by image artifats suh as intensity di�erenes or pose hanges. Wehave tested the proposed method on syntheti data with known tumor growth aswell as ten linial data sets. We have shown that the results of our approah highlyorrelate with expert �ndings but seem to be less impated by inter- and intra-ratervariability.



9.2. PERSPECTIVES 1479.2 Perspetives9.2.1 Tehnial ImprovementsThis thesis foused on reation-di�usion type tumor growth models with a partiularinterest in anisotropi models proposed reently. In terms of the methods presentedhere there are still lots of improvements and analysis that an be and should be made.In the �rst phase model for the evolution of the tumor delineation should be studiedand formulated better. Espeially the e�et of urvature should be better handled.On the other hand, we have not analyzed the anisotropi fast marhing methodtheoretially enough. Therefore, a onvergene analysis and worst-ase omplexityshould be studied.In terms of the parameter estimation methodology presented, we have not takeninto aount the mass e�et of the tumor whih is espeially observable for thehigh grade gliomas. This e�et should be inluded in the method for a ompleteparameter estimation. The way the mass e�et is taken into aount in the existingliterature is through oupling the tumor ell density distributions with the loalpressure exerted on the brain tissue. This poses a di�ulty for the front evolutionformulation we have used in the method proposed. The attempt for taking intoaount the mass e�et should overome this problem and link the evolution of thetumor delineation with the deformation applied to the brain tissue. One way forthis would be to ombine the extrapolation method with the parameter estimationand reate the tumor ell distribution for eah parameter set during the estimationproess. Using this one an integrate the mass e�et in the parameter estimationmethod.For the extrapolation of invasion margins and onstruting variable irradiationregions one should think of integrating a model for radiotherapy in the proposedmethodology. Although onstruting irradiation margins onsistent with the tumorin�ltration is a good �rst step, one should inlude the e�et of therapy and theresponse of the tumor to the therapy to simulate the real bene�ts of using variableirradiation margins. For this purpose only marosopi models would not be enoughbeause the stohasti nature of the response to therapy would not be aptured.Instead a hybrid model ombining the mirosopi and marosopi models an beused.Our main onentration in this thesis, as we said, was on linking the medialimages and reation-di�usion type growth models. However, there are many di�er-ent improvements one an think of in the reation-di�usion models. The �rst setof these are strutural hanges in the model. The reation-di�usion formalism anbe extended using advetion and onvetion proesses whih would better explainthe migratory behavior of tumor ells espeially on the white matter. Moreover,subdiving the tumor into di�erent ompartments suh as the neroti ore, bulkypart of the tumor and the in�ltrative part might be a better and more auratemodeling strategy. Following this one would apply di�erent model equations toeah ompartment and ouple them to reate the link between the evolution of eahpart. Suh a partitioning an also be used for the brain tissue desribing di�erentbehavior of the tumor in di�erent parts of the brain. In this ontext one an also



148 CHAPTER 9. CONCLUSIONS AND PERSPECTIVESstudy di�erent onstrution methods for the tumor ell di�usion tensor using waterdi�usion tensor. We have seen two examples in this thesis however, more generalonstrution methods an be used.The models studied here were deterministi models and therefore, they were notable to take into aount the stohasti nature of tumor growth. The natural ex-tension to these models would be to inlude the stohasti behavior. One way torealize this would be to propose hybrid models whih would have a mirosopi partand a marosopi part. The general evolution would be aptured by the maro-sopi part while the stohasti nature would be present through the mirosopipart. One other way would be to use stohasti partial di�erential equations andmodel the evolution of probabilities of growth rather than having a deterministievolution. In this ontext one should also study the link between miro and maromodels. The e�et of mirosopi dynamis on the marosopi parameters are notwell explained for the tumor growth models. There are a few works whih aimed tobuild this link however, this �eld is still untraveled.One other natural extension to the type of growth models presented in this thesisis the modeling of therapy. There are two major reasons for this. The �rst one isthat the linial ases always have the e�et of therapy on them. Therefore, in orderto orretly apply tumor growth models to the patient ases one should take intoaount the therapy administered. The seond reason is inherent in the aim of theaner researh. In trying to �nd a ure for the aner, mathematial models anserve as the initial �playgrounds� for the new therapy tehniques where extensivetests an be simulated. Corret and aurate modeling of the therapy proess andthe response of the tumor to the therapy beomes a ruial for this purpose.In the models we have studied anatomial and di�usion MR images were usedto formulate the growth of tumor. As new tehniques beome available and moreaessible one should think of integrating more imaging modalities in the mathe-matial desriptions. PET, MRSI, perfusion images and others an help improvethe auray of the models.9.2.2 Appliation to Clinial ImagesDuring the ourse of this thesis we have realized the di�ulty of obtaining patientdatabase where the proposed methodologies an be tested. In onventional lini-al setting only anatomial MR images are aquired and most of the time they donot have a high resolution. On the other hand, in the models we have seen theimportane of high resolution images and the di�usion information in auratelydesribing the growth proess. Therefore, most of the patient images aquired atthe moment are not suitable for testing and validating the reation-di�usion typegrowth models and the methodologies presented in this thesis. Here we would liketo take the opportunity and desribe the ideal patient database that ould be usedfor evaluating the methods presented in this thesis and the tumor growth models.The anatomial images play a very important role in the modeling proess as theyprovide the geometry and loation of the tumor and the brain strutures. Moreover,they provide the white matter gray matter segmentation whih is ruial for mod-eling the di�erential motility of tumor ells. The di�erential motility is not only



9.2. PERSPECTIVES 149modeled by this segmentation though, one needs to have high resolution aurateinformation about the �ber strutures of the brain as well. The di�usion tensorimages provide this information. On the other hand, the tumor growth models de-sribe the evolution of the tumor. This evolution an only be observed from timeseries of images. As a result, we see that the ideal dataset onsists of high resolutionanatomial and di�usion images taken regularly from the same patient using thesame protools and the same imaging devies. We were luky enough to �nd 2 suhases in this thesis and show preliminary results.The ideal dataset explained above might not be available for all the patients.High resolution anatomial and/or di�usion images might be missing for di�erentases. In order to be able to apply the presented methodologies and tumor growthmodels in the generi linial situations one needs to overome these problems.Registration tehniques proposed for anatomial and di�usion images is a very goodandidate for solving these problems. One an imagine to �ll the plae of the missingimage by registering an atlas to the patient spae and ontinuing with the analysis.However, the e�et of using registration algorithms on the simulations should bestudied. And moreover, atlas images will not arry the patient spei� di�usioninformation as present in di�erent tumor regions. Therefore, e�et of this shouldalso be analyzed.9.2.3 ValidationThe in-vivo validation and evaluation of the methods presented here and in moregeneral of the tumor growth models is a big hallenge. In this thesis and in most ofthe previously proposed works �indiret� validation of the methods and models havebeen performed. Measures suh as, the resemblane of simulated and real data, themass e�et of the tumor and deformation in the brain tissue and survival rates havebeen widely used. Although these measures provide promising hints they are notquantitatively validating the behavior of tumor ells and in this sense they are not�diret� validations.In the ase of in-vitro experiments, diret validation an be ahieved easier andhave been performed in di�erent works. Through mirosopi analysis the tumor elldensity on the petri-dish an be ompared with the density distribution simulatedby the model whih would serve as a validation both for the model itself and theextrapolation method presented in this thesis. Using similar analysis the parametersof the tumor ells in the petri-dish an be identi�ed and these would be used tovalidate the parameter estimation method. This sounds plausible however, in petri-dish experiments the tumor is grown outside the body, in-vitro. The dynamis ofthe tumor growth inside the body and on a petri may have di�erenes and therefore,although the in-vitro experiments provides valuable information they do not re�etthe behavior of the tumor in-vivo.The in-vivo evolution of the tumor an be observed through medial images andbiopsies. As a �rst step these soures of information an be used for a preliminaryvalidation. Suh a work bears ertain di�ulties like reating a large database ofbrain gliomas, having regular follow-ups and spatially linking the biopsies to the im-ages. For a thorough validation on the other hand, we have seen that the information



150 CHAPTER 9. CONCLUSIONS AND PERSPECTIVESavailable in the medial images are limited and the biopsy is a very loal tehniquethat does not provide a global information about the tumor. Using these soureswe annot obtain information regarding the tumor ell density distributions andmirosopi dynamis, whih are ruial in validating the methods and the growthmodels in general. For this purpose whole brain autopsies and animal models anbe useful. Mirosopi analysis of several ross-setions of the post-mortem brain,the animal model or a tumor reseted as a whole an provide us the informationwe seek about the tumor ell density distribution. Moreover, these analysis an beombined with high resolution MR images to give us the opportunity to understandwhat we observe in the medial images.9.2.4 FutureThe tumor growth modeling in the ontext of medial images is an emerging �eld.Several preliminary works have been proposed that showed the potential of suhmodels and also pointed out the big hallenges. As data aquisition tehniques andour understanding of the tumor biology improve these models will beome morerealisti and aurate. Simulations will beome a ommon ingredient in the therapydevelopment and testing as we see today for the other �elds.On the other hand, with the enhaning generi models, there will also be bigadvanements in the personalization of these models. In the end we would be ableto obtain patient-spei� models whih would be used in the linial setting bothfor the diagnosis and treatment planning of the tumor. Based on the urrent stateof the patient the dotors will be able to simulate the possible outomes under thee�ets of di�erent therapies and hoose the right treatment for eah patient.



Appendix AHamilton-Jaobi Equations: ABrief Review
Hamilton-Jaobi (HJ) equations are �rst order nonlinear partial di�erential equa-tions with the general form

∂Φ(x, t)

∂t
+H(x,Φ,∇Φ, t) = 0, x ∈ R

n, (A.1)where H is alled the Hamiltonian, Φ is alled the Hamilton's prinipal funtionand ∇ is the gradient operator. These equations play an important role in alu-lus of variations as they an be linked to optimization problems through ertaintransformations on the funtion Φ and its derivatives [Brunt 2004, Giaquinta 1996℄.Therefore, they are important for a large �eld of appliations suh as omputervision, image proessing, optimal ontrol theory, geometri optis and geophysis.Equation A.1 has a time dependene and desribes the temporal hange of the fun-tion Φ therefore, it is a dynami Hamilton-Jaobi equation. When the equationdoes not have a time dependene then we have the stati Hamilton-Jaobi equationwhih has the general form
H(x, T,∇T ) = 1, x ∈ R

n. (A.2)This equation as its dynami ounter part an also be nonlinear due to the formof the H funtion. Osher in [Osher 1993℄ have linked the dynami and the statiequations by showing that stati HJ equations an be transformed into dynamiones through embedding the T funtion into an impliit funtion. We also usedthis link in Chapter 4. The HJ equations are by de�nition �rst order. However,in the literature ertain equations involving seond order derivatives are referred toas seond order Hamilton-Jaobi equations i.e. the urvature �ow, [Sethian 1999℄.The HJ equations are very general and in this thesis we are mostly interested in aspei� form of this general lass, namely the Eikonal equation.The Eikonal equation is a stati HJ equation whose general form is
F (x)|∇T | = 1, x ∈ Ω (A.3)where F (x) is alled the speed funtion and | · | denotes the norm of a vetor. Thisequation simply desribes the spatial gradient relationship of the funtion T underthe e�et of the speed funtion F . Equation A.3 together with a Dirihlet typeboundary ondition of the form

T |∂Ω = 0, (A.4)151



152 APPENDIX A. HAMILTON-JACOBI EQUATIONSreates the boundary value problem (BVP), where ∂Ω is the boundaries of the om-putation domain. Physially, the solution T of this problem at any point p representsthe shortest time needed to travel from ∂Ω to p. Therefore, T is usually referredto as the traveling time funtion. The iso-value surfaes of this funtion provides usiso-time (or isohrones) surfaes. Eah iso-time surfae is a ombination of pointsequidistant from the boundary ∂Ω, see Figure A.1. The type of Eikonal equation

Figure A.1: The traveling time funtion T shown in olor using the boundary on-dition given in Equation A.4. The iso-time ontours/surfaes are ensemble of pointsequidistant from the boundary ∂Ω. The Eikonal equation is also linked to a level-set equation through embedding the iso-time surfaes as zero level-sets of anotherimpliit funtion Φ. As a result the evolution of the zero level-set of Φ orrespondsto the T funtion.we have majorly dealt with in this thesis is de�ned with respet to a tensor (3x3positive de�nite matrix) and therefore has a slightly di�erent form:
F (x)

√
∇T ′D∇T = 1, x ∈ Ω, (A.5)where D is a tensor. Although this equation is di�erent than Equation 4.3 itsphysial meaning is the same under the assumption of an anisotropi speed mapimpliitly governed by the tensor D and it is also a stati HJ equation.The stati HJ equation given in A.3 an be linked to a dynami one by followingthe embedding and the transformation proposed by Osher in [Osher 1993℄. If weonstrut an impliit funtion Φ through the embedding

Φ(x, t) = 0 ⇔ T (x) = t (A.6)and use the transformation
∂T

∂xi
=

Φxi

Φt
i ∈ [1, n] ∈ N (A.7)



153we obtain the type of dynami HJ equation whih is also referred to as a level-setequation.
∂Φ

∂t
= F (x)|∇Φ|. (A.8)This equation desribes the temporal evolution of the zero level-set of Φ throughthe evolution of the whole impliit funtion. During the embedding, at a given time

t the only onstraint on Φ is around the T = t iso-time surfae. Therefore, for theonstrution of the rest of the Φ there is a freedom, whih is most of the time used infavor of a signed distane funtion SDF (). The SDF is the distane map of a losedsurfae (urve) (suh as the boundary ∂Ω) whih has negative/positive values insidethe surfae and positive/negative values outside it. The surfae itself beomes thezero level-set of this funtion as its distane from itself is zero. Assuming suh aonstrution for the Φ, the boundary ondition given in Equation A.4 beomes aninitial ondition
Φ(x, 0) = SDF (∂Ω) (A.9)and Equation A.8 ombined with this one reates an initial value problem (IVP). Asthe funtion Φ evolves in time its zero level-set hanges its loation and the evolutionof this zero level-set in time orresponds to the T funtion, see Figure A.1.We have presented the level-set equation in relation to what we have mainlyused in the thesis, namely the Eikonal equations. However, level-set funtions andmethods are in fat muh more general. The general form of level-set equationsinludes additional terms on its right hand side

∂Φ

∂t
= F (x)|∇Φ|+ V (x) · ∇Φ +G(x)κ, (A.10)where V is an external vetor �eld, G is a salar funtion and κ is the mean urvature.As it was the ase for Equation A.8 this equation also desribes the motion of itszero level-set. The e�et of the three omponents on the right hand side are- The �rst omponent F (x)|∇Φ| provides the motion of the zero level-set in thenormal diretion. This term is alled the propagation or onvetion term.- The seond omponent V (x) · ∇Φ provides the drifting motion of the zerolevel-set under the e�et of the external vetor �eld V . This term is alled theadvetion term.- The third term G(x)κ is the urvature �ow, whih has a smoothing e�et onthe zero level-set. This term is alled the urvature term.One important thing to note here is that the mean urvature κ is a term that inludesseond order derivatives. As we have explained, HJ equations are �rst order byde�nition however, in the literature equations suh as (A.10) are also referred to asseond order HJ equations. Further details on the level-set equations and methodsan be found in [Sethian 1999℄.
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Appendix BUnonstrained Optimization byQuadrati Approximation[Powell 2002℄
The multidimensional minimization problems are very ommon in many diverse�elds. In Chapter 4 we have formulated suh a problem in the ontext of parameterestimation for reation-di�usion type tumor growth models. In this appendix webrie�y explain the optimization algorithm we have used to solve that minimizationproblem. The algorithm is proposed by Powell in [Powell 2002℄ and for furtherdetails on the algorithm please refer to this referene and the other aompanyingones [Moré 1983, Powell 2001, Powell 2003℄.The optimization algorithm we have used in this thesis does not use the deriva-tives of the objetive funtion instead it builds quadrati approximations to it anduses the 1st and the 2nd derivatives of these approximations. Therefore, for the prob-lems where the derivatives of the objetive funtion are not available it is preferable.Moreover, beause the algorithm onstruts quadrati approximations using inter-polation, it is more robust to noise than the other algorithms omputing expliitderivatives. Before going into details of the algorithm we �rst explain brie�y �trustregion methods� and the �trust region problem�, whih will be used.Trust region problem is an optimization problem whose solution is bounded ina region suh as

min{ψ(w) : ||w|| ≤ ∆}, (B.1)where ψ is the funtion to minimize, w is the solution we seek and ∆ is the trustregion radius. We see that this problem searhes for the solution under a magnitudeonstraint, ∆. We readily notie that the size of ∆ gives us the oarseness of thealgorithm. Meaning that, if ∆ is large we are at a oarser resolution while if ∆we are more foused on �ner searh. Trust region methods are a general lassof optimization algorithms whih requires the solution of a trust region problembetween eah iteration of the overall algorithm.As we have noted the optimization algorithm in [Powell 2002℄, instead of thederivatives of the objetive funtion F , uses the derivatives of the quadrati model
Q(x) = cQ + g′Q(x− xb) +

1

2
(x− xb)′GQ(x− xb) x ∈ R

n, (B.2)whih is an approximation of F around the point xb. This model, in whih gq is avetor and GQ is a symmetri matrix, is onstruted by interpolation to values of155



156 APPENDIX B. THE MINIMIZATION ALGORITHMthe objetive funtion. Sine this system has m = 1/2(n+ 1)(n+ 2) dimensions weneed to use m points to onstrut the model. So the interpolation satis�es
Q(xi) = F (xi), i = 1, ...,m. (B.3)The points xi, �the interpolating points�, are found automatially in the algo-rithm [Powell 2002℄. The other ingredient used in the minimization algorithm isthe Lagrange funtions of the interpolation problem. There exists as many La-grange funtions as the dimension of the problem and these funtions are de�ned asquadrati polynomials that satisfy

lj(xi) = δij, i = 1, ...,m, (B.4)
lj(x) = cj + g′j(x− xb) +

1

2
(x− xb)′Gj(x− xb), x ∈ R, , (B.5)

Q(x) =

m∑

j=1

F (xj)lj(x), (B.6)where δij is the Kroneker delta and lj denotes the jth Lagrange funtion with theoe�ients cj, gj and Gj .The overall optimization algorithm is mainly onerned with onstruting a goodquadrati approximation Q to F within a region and minimizing Q in that givenregion. As the algorithm iterates this region moves towards the minimum (maxi-mum) of F and for eah region a new Q is onstruted. Therefore we see that there2 di�erent questions: �How do we onstrut Q and then move it?� and �How do we�nd the minimum of Q in a region?�.We start the algorithm with 4 inputs, the objetive funtion F , the initial opti-mum guess xb, initial trust region radius ρbeg and the �nal trust region radius ρend(with ρbeg > ρend). The �rst step is to onstrut the interpolation funtion Q forwhih the details an be found in [Powell 2002℄. As we have noted the trust regionradius determines the oarseness of our searh, we start our searh for the minimumat the oarser resolution ρ = ρbeg by solving the trust region problem
min(Q(xk + d)) suh that ||d|| ≤ ∆, ∆ ≥ ρ, (B.7)where xk is the point among the interpolating points whih has the minimum Fvalue and ∆ is another trust region radius whih is added to inrease the e�ienyof the algorithm, [Powell 2002℄. At this point there are two outomes, the �rstone is that we �nd a d value whih satis�es F (xk + d) < F (xk). This means wefound a new minimum, therefore we move a �suitable� point interpolating point xito xk + d, reonstrut Q, lj 's and solve Equation B.7. The seond one is that wedo not �nd suh a d. In this ase we �rst ask the question whether Q is a goodapproximation for F . If the distane between one or more of interpolating points

xi and the minimum point xk is greater than ||xi − xk|| > 2ρ we move this pointloser to xk, reonstrut Q, lj's and solve Equation B.7. In order to �nd the newloation of xi we solve another trust region problem given as
max(li(xk + d)) suh that ||d|| ≤ ρ. (B.8)



157This problem provides us a new loation xi = xk + d suh that the nonsingularityof Q onstruted using this new point will be assured, [Powell 2001℄. On the otherhand, if we annot �nd a point far away from xk we trust the quality of our approx-imation Q and deide that we are in the basin of attration and we need to go into�ner details. We redue the trust region radius ρ and onstrut a �ner quadratiapproximation Q and Lagrange funtions lj 's. After this point the algorithm on-tinues as before. The stopping riteria is given by ρ where one ρ < ρend we stop.The overall algorithm is also summarized brie�y in Figure B.1. For a more detaileddesription please refer to [Powell 2002℄.The number of times the value of the objetive funtion is omputed for di�er-ent points remains low in this algorithm. As the initialization we all the objetivefuntion m times. Later on for eah iteration we only all it one and then reon-strut the quadrati approximation and Lagrange funtions through updating theinterpolating points, see [Powell 2002℄. Therefore, in the ase where omputation ofthe objetive funtion F takes time, this algorithm beomes a good hoie.
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Figure B.1: The overall optimization algorithm used in Chapter 4 proposedin [Powell 2002℄



Appendix CPreliminary Results of theParameter EstimationMethodology with Real Cases:Extra Images
In this appendix we provide additional images for the results presented in Setion 5.2.In that setion we have presented the preliminary results of the parameter estimationmethodology on the real ases both for �tting the observed evolution and also forprediting the further evolution of the tumor. Eah page in this appendix is devotedto di�erent axial slies of an MR image taken at the same time instane.In Setion C.1 we provide the additional images for the results given in Se-tion 5.2.1. We start from the �rst images (Figures C.1 and C.5) and show 15 axialslies of those image inluding the manual delineations (in white). After that we pro-vide the following images in the time series inluding both the manual delineations(in white) and the evolution of the tumor delineation obtained with the estimatedparameters (in blak).In Setion C.2 we provide the additional images for the results given in Se-tion 5.2.2. We start from the last image (Figures C.9 and C.11) that was used inthe estimation of the parameters and show 15 axial slies of those image inludingthe manual delineations (in white). After that we provide the �nal image showingthe �nal state of the tumor both the with manual delineation (in white) and thepredited evolution of the tumor delineation (in blak).C.1 Fitting the Observed Evolution: Additional ImagesC.2 Prediting the Further Evolution: Additional Im-ages
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Figure C.1: The MR image taken at the �rst time point for the �rst patient. Whiteontour denotes the manual delineations.



C.2. PREDICTING THE FURTHER EVOLUTION: ADDITIONAL IMAGES161

Figure C.2: The MR image taken at the seond time point for the �rst patient.The white ontour denotes the manual delineations and the blak ontour is theestimated evolution of the tumor delineation.
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Figure C.3: The MR image taken at the third time point for the �rst patient.The white ontour denotes the manual delineations and the blak ontour is theestimated evolution of the tumor delineation.
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Figure C.4: The MR image taken at the �rst time point for the seond patient.White ontour denotes the manual delineations.
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Figure C.5: The MR image taken at the seond time point for the seond patient.The white ontour denotes the manual delineations and the blak ontour is theestimated evolution of the tumor delineation.



C.2. PREDICTING THE FURTHER EVOLUTION: ADDITIONAL IMAGES165

Figure C.6: The MR image taken at the third time point for the seond patient.The white ontour denotes the manual delineations and the blak ontour is theestimated evolution of the tumor delineation.
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Figure C.7: The MR image taken at the fourth time point for the seond patient.The white ontour denotes the manual delineations and the blak ontour is theestimated evolution of the tumor delineation.
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Figure C.8: The MR image taken at the �fth time point for the seond patient.The white ontour denotes the manual delineations and the blak ontour is theestimated evolution of the tumor delineation.
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Figure C.9: The last image that was used in estimating the parameters of thereation-di�usion growth model for the �rst patient.
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Figure C.10: The �nal image showing the �nal state of the tumor along with thetumor delineation predited by the model (in blak) and segmented by the expert(in white).
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Figure C.11: The last image that was used in estimating the parameters of thereation-di�usion growth model for the seond patient.



C.2. PREDICTING THE FURTHER EVOLUTION: ADDITIONAL IMAGES171

Figure C.12: The �nal image showing the �nal state of the tumor along with thetumor delineation predited by the model (in blak) and segmented by the expert(in white).
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Abbreviations and AronymsBVP Boundary Value Problem, 151CA Cellular Automata, 27CSF Cerebrospinal Fluid, 11CT Computed Tomography, 10CTV Clinial Target Volume, 91DT Di�usion Tensor, 11DT-MRI Di�usion Tensor MRI, 11DWI Di�usion Weighted Images, 11EC Endothelial Cell, 24ECM Extraellular Matrix, 17EGFR Epidermal Growth Fator Reeptors, 28FA Frational Anisotropy, 15FM Fast Marhing, 102FMM Fast Marhing Method, 131fMRI funtional Magneti Resonane Imaging, 11GBM glioblastoma multiforme, 9Gd Gadolinium, 11GIF Growth Inhibiting Fator, 21HJ Hamilton-Jaobi, 151IVP Initial Value Problem, 153MD Mean Di�usivity, 15MR Magneti Resonane, 10MRI Magneti Resonane Imaging, 10MRS Magneti Resonane Spetrosopy, 11NMR nulear magneti resonane, 10ODE Ordinary Di�erential Equation, 48PCA Prinipal Component Analysis, 40PDE Partial Di�erential Equation, 31PET Positron Emission Tomography, 10173



174 Abbreviations and AronymsRD Reation-Di�usion, 2RF Radio Frequeny, 11SDF Signed Distane Funtion, 153TAF Tumor Angiogenesis Fator, 24TDT Tumor Di�usion Tensor, 32TE Eho Time, 11TMZ Temozolomide, 37TR Repetition Time, 11VEGF Vasular Endothelial Growth Fator, 24WHO World Health Organization, 8
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