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Abstract

Reaction-diffusion based tumor growth models have been widely used in the literature for modeling the growth of brain
gliomas. Lately, recent models have started integrating medical images in their formulation. Including different tissue types,
geometry of the brain and the directions of white matter fibertracts improved the spatial accuracy of reaction-diffusion models.
The adaptation of the general model to the specific patient cases on the other hand has not been studied thoroughly yet. In this
work we address this adaptation. We propose a parameter estimation method for reaction-diffusion tumor growth models using
time series of medical images. This method estimates the patient specific parameters of the model using the images of the patient
taken at successive time instances. The proposed method formulates the evolution of the tumor delineation visible in the images
based on the reaction-diffusion dynamics therefore it remains consistent with the information available. We perform thorough
analysis of the method using synthetic tumors and show important couplings between parameters of the reaction-diffusion model.
We show that several parameters can be uniquely identified inthe case of fixing one parameter, namely the proliferation rate of
tumor cells. Moreover, regardless of the value the proliferation rate is fixed to, the speed of growth of the tumor can be estimated
in terms of the model parameters with accuracy. We also show that using the model-based speed we can simulate the evolution
of the tumor for the specific patient case. Finally we apply our method to 2 real cases and show promising preliminary results.

I. I NTRODUCTION

Brain tumors that start from glial cells, gliomas, form the major class of primary intracranial cancer, [1], [2]. These tumors
show a high variability in their malignancy. As some of them remain rather benign, i.e. pilocytic astrocytoma, patientssuffering
from the most malignant forms, glioblastoma multiforme, have an average life expectancy of 1 year [3]. During the last 20years
there has been vast amount of research on mathematical descriptions of the growth dynamics of gliomas both at microscopic
and macroscopic scales. Cellular interactions, effects ofintra-cellular dynamics and microscopic invasion have been studied
by mathematical models at the microscopic scale [4]–[9]. Large scale dynamics such as the average behavior of the tumor,its
spatial evolution and its mass effect on the brain have been addressed by macroscopic models [3], [5], [6], [10]–[17]. These
latter models have included in their formulation differentanatomical information that are available in medical images. Different
tissue types and white matter fiber directions are used as general parameters. However, personalizing these parametersfor each
patient case and adapting the generic model to specific patient data has not been thoroughly studied yet.

Personalizing the parameters of a tumor growth model for each patient would clinically be important in two aspects: the
parameters and the patient-specific model. The parameters of the model could be used to characterize the tumor and help the
diagnosis process by providing the speed of growth or quantifying its morphology. The model combined with the personalized
parameters, the “patient-specific” model, would give us theopportunity to simulate the evolution of the specific tumor,adapt
the therapy to the patient and predict the further evolution.

For the last 5 years specific attention has been given to one class of macroscopic models, the reaction-diffusion models,in the
attempt to link tumor growth models to medical images [3], [12], [13], [16], [18]–[20]. These models describe the evolution
of the pathology via proliferation of tumor cells and infiltration into the surrounding tissue. Their formulation consists of
reaction-diffusion type partial differential equations (PDEs) with the reaction term (first term in Equation 1) representing the
proliferation and the diffusion term representing the infiltration [21]. The system

∂u

∂t
= ∇ · (D(x)∇u) + ρu(1 − u) (1)

D∇u · −→n ∂Ω = 0 (2)
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is the general building block of such reaction-diffusion models, whereu is the tumor cell density,D is a local diffusion tensor
(i.e. symmetric positive definite 3x3 matrix),ρ is the proliferation rate,Ω is the brain domain and∂Ω represents the boundaries
of the brain. Equation 1 describes the temporal evolution ofthe tumor cell density distribution while Equation 2 represents the
no-flux boundary conditions.

A. Previous Works on Reaction-Diffusion Type Models

Tracquiet al. proposed one of the first reaction-diffusion models integrating information coming from medical images [15],
namely the geometry of the brain and the size of the tumor. In their model, the tumor cells were assumed to diffuse isotropically
with a constant rate in the brain and two reaction terms were included to take into account the proliferation and the cell death.
They applied their methodology to 2D slices of CT images. A different simulation was run for each slice. In [16], Cruywagen et
al. built on this idea and proposed to use two populations of tumor cells. Swansonet al. in [18] included the differential motility
of tumor cells in reaction-diffusion models based on the observations of Gieseet al. in [22] showing that tumor cells migrate
faster on myeling sheaths. This new model formulated the higher motility of tumor cells in the white matter than in the grey
matter, using the tissue segmentation coming from anatomical images [18]. They used a spatially varying isotropic diffusion
tensor, which took two different values: one in grey and a much higher one in the white matter. Extending this idea of
differential motility, Clatzet al. in [12] and later Jbabdiet al. in [13] have included fiber directions (anisotropy) to introduce
the directional preference in the diffusion mechanism of tumor cells. In both studies the models rely on anatomical Magnetic
Resonance Images (MRIs) and Diffusion Tensor (DT) MRIs to take into account the geometry and the fiber directions. Clatzet
al. also have coupled their diffusive model with a linear elastic mechanical model of the brain to be able to describe the mass
effect of the tumor. Recently Hogeaet al. have extended the anisotropic model and integrated the observation that proliferating
tumor cells push each other. This observation is formulatedby an extra advection term added to the base equation given in
Equation 1 [23]. In order to explain the mass effect of the tumor they also coupled their diffusive model with a mechanical
one using nonlinear elasticity. Besides the research on improving the models themselves, several other works showed potential
clinical applications of these models by applying them for different purposes. In [24], [25] the authors applied tumor growth
models to register anatomical atlases of healthy subjects onto patient images bearing tumors. In some other works [26],
[27] growth models have been used to create synthetic imagesbearing tumors which are then used to evaluate segmentation
algorithms.

The reaction-diffusion models provide a general frameworkallowing the integration of information coming from medical
images. Once such an integration is achieved the next step isto adapt the model to specific patients data, in other words to
personalizethe model. This can be done via estimating the parameters of the general model which best simulates the evolution
of the tumor observed in the time series of images. The difficulty in this estimation is due to the sparsity of the available
information. The reaction-diffusion models describe the temporal evolution of tumor cell density distributions while, in the
images we only observe the evolution of the boundaries of thevisible part of the tumor. Therefore, the reaction-diffusion
models are not directly applicable in this adaptation. The tumor boundary is assumed to correspond to an “iso-density” contour
of the tumor cell density distribution [3], as shown in Figure 1. In this article we use the terms “tumor boundaries”, “tumor
delineation” and “tumor front” interchangeably to describe the boundary of the visible part of the tumor in the medical images.

(a) (b)

Fig. 1. MR Flair images of a grade II astrocytoma: (a) image atthe first examination (b) image at the second examination. Inthe anatomical MR images
we observe the evolution of the boundary of the visible part of the tumor rather than the tumor cell densities.
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B. Previous Works on Parameter Estimation

The task of estimating parameters from time series of imagesin the context of tumor growth models is a rather unexplored
problem. A first attempt was made by Tracquiet al. in [15] where they optimized the parameters of their model bycomparing
the area of the tumor observed in CT images at different timesand the area of the simulated tumor. The drawback of this
approach was to use tumor cell densities which requires an initialization of tumor cell density distribution throughout the brain.
Since this is not observable in the images assumptions aboutthe tumor cell density distribution has to be made. Moreover,
tissue inhomogeneities and observed directional preference of tumor infiltration is not included. In [28], Hogeaet al. propose
a PDE based method where they invert their model equations and solve a constrained PDE optimization problem to estimate
the parameters. Their work takes into account both the growth model for the glioma and its mass effect on the brain tissue.
They propose two ways to optimize for the parameters: using tumor cell distributions and using observed deformation based on
landmarks. However, there are certain drawbacks of their method. First of all, their first method uses the knowledge of tumor
cell density distribution in the brain. As we have mentionedabove this information is not available in medical images. The
authors mention a probabilistic method to estimate the density distribution while the details of this method may remainopen.
Moreover, considering that images mask the low density values, estimating the tumor cell distribution is another open problem.
Their second method on the other hand links the observed deformation to the tumor growth parameters. This depends strongly
on the assumed coupling between mechanical and diffusion models. The uniqueness of the solution for this method is not
addressed. Secondly, although they propose the method for 3D they only provide detailed experiments in 1D without including
real images, brain geometry, tissue inhomogeneities or other available anatomical information such as fiber directions.

Recently Swansonet al. in [29] proposed a parameter estimation method for the diffusion process in petri-dish. This method
is consistent with the observables in the images as it uses the boundaries of the visible tumor rather than tumor cell densities.
Authors have derived analytical approximations for the evolution of the tumor delineation for 2D circular growth. Using
these solutions they estimated the diffusion coefficient for the petri-dish experiments. The difficulty in applying this method
to medical images is that the analytical solutions derived (hence the method itself) assumes radial symmetric growth. This
does not have to be the case for brain tumors. The evolution ofthe tumor is affected by the brain geometry, different tissues
and the fiber structures. Besides this, the existence of a reaction term results in a different evolution than pure diffusion.
Therefore, this method need to be modified to take into account the reaction term. In another work, Swansonet al., in [19]
address the parameter estimation problem from a different perspective. In this work they use the asymptotic propertiesof the
reaction-diffusion equations and link them to the information in the images for estimating the parameters. The advantage of
this approach, like the previously mentioned work, is that it also uses the tumor delineations visible in the images. However,
one of the drawbacks of this method is the mapping of the tumordelineations to spheres with the same volume and using
these spheres in the computations. Given tissue inhomogeneity, patient specific geometry of both the brain and the tumor
and the differential motility of tumor cells, this may be seen as a very strong assumption. As a result, tumors with different
parameters are mapped to the same sphere. The second drawback comes from the fact that authors assume tumor cell density
values for the extents of the enhancing regions in the MRIs. This is a reasonable assumption unless the values are used in
the estimation process. Unfortunately, exact values and their inter- and intra-patient variability are not known. Setting them
to arbitrary values introduces a bias on the estimated parameters. Authors also do not provide an analysis of their method.
In our preliminary work [30], we proposed a method to estimate the speed of growth of the tumor, also consistent with the
observations in the images. Taking into account the brain geometry, tissue inhomogeneity and fiber directions, the estimated
speeds in the white and in the gray matter were given in terms of the model parameters. In order to achieve this, starting from
the asymptotic properties of reaction-diffusion models weproposed to use a first order anisotropic Eikonal approximation
to describe the evolution of the tumor delineation (i.e. thevisible tumor front in the images). Using this approximation we
formulated the parameter estimation problem. However, theEikonal approximation proposed in this previous work was first
order and did not include higher order effects (i.e. the curvature of the tumor front and the time dependence of the evolution
speed) which influence the values of the parameters. Moreover, the formulation of the parameter estimation problem did not
utilize all the information available in the images (i.e. the size of the initial tumor). Finally, the method and the estimated
parameters for the given results were not analyzed, which isan essential part of the parameter estimation.

In this work, we propose and analyze a parameter estimation method for reaction-diffusion based tumor growth models
using time series of medical images. The method is based on the evolution of the tumor delineation rather than tumor cell
densities and in this respect it is consistent with the observations in the images. This evolution is formulated using a modified
anisotropic Eikonal model which formulates the motion of the tumor delineation taking into account its curved front and
the effect of time on its speed. Unlike the previous works, the method presented in this article takes into account tissue
inhomogeneities, fiber structures and the real geometry of both the patient’s brain and the tumor while keeping consistent with
the image information. We also provide extensive analysis of the method and in general the parameter estimation problemfor
reaction-diffusion models in the context of glioma modeling. Finally, we show preliminary results of the parameter estimation
and the “personalization” of growth models on 2 real cases. In Section II, we explain our method, detail the anisotropic Eikonal
approximation we use for describing the temporal evolutionof the tumor delineation and formulate the parameter estimation
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problem. In Section III, we evaluate the performance of our method in retrieving the parameters of the reaction-diffusion growth
models. We perform thorough analysis of the estimated parameters and the sensitivity to these parameters. In addition to this,
we apply our methodology to real images and show preliminaryresults. Finally, we conclude by discussing these results,the
method and the future work in Section IV.

II. M ETHOD

The parameter estimation methodology and the choice of the estimated parameters depend on the exact formulation of the
underlying reaction-diffusion model. In this work we focuson the formulation proposed in [12], [13]. However, due to the
similarities of reaction-diffusion models the ideas we present here can be easily adjusted to work for other formulations as
well. The model for tumor growth proposed in [12] is formulated by the system given in Equations 1 and 2. The diffusion
tensorD, in this model, is constructed based on the observations coming from petri-dish experiments and patient images.
Gieseet al. in [22] showed that glioma cells move faster on the myelin sheaths, the structural element in the white matter.
In addition to this, observations from medical images show that tumor cells follow the fiber tracts. On the grey matter on the
other hand, tumor cells move slower and observations do not suggest a preferential diffusion direction. Diffusion information
coming from the DTI suggests mostly isotropic (close to isotropic) tensors in the grey matter. As a result, in the formulation
given in [12] D is constructed as an anisotropic tensor taking into accounttwo different phenomena: differential motility of
tumor cells in different tissues and directional preference of tumor cell diffusion in the white matter. The construction of D,
which is obtained from the DT-MRI, is as follows:

D(x) =

{
dgI , x ∈ gray matter
dwDwater , x ∈ white matter

(3)

where tumor cells are assumed to diffuse isotropically in the grey matter with a ratedg and diffuse along the fiber tracts in the
white matter proportional to the diffusion tensor of the water moleculesDwater through a coefficientdw. In this construction
Dwater is obtained from DT-MRI and normalized such that the highestdiffusion rate in the brain would be 1. We note that
in [12] the authors also couple the evolution of the tumor with its mass effect on the brain but in the present study, as a first
step, we focus only on the reaction-diffusion part ignoringthe mechanical effect. Once the problem for the growing tumor is
solved and understood then the parameter estimation can also take into account the mechanical model.

The reaction-diffusion model given by Equations 1, 2 and 3 describes the temporal evolution of local tumor cell densities.
As we have noted before, this creates an inconsistency with the observables in the images making the direct application of
these models unsuitable for the parameter estimation problem, see Figure 1. In order to solve the parameter estimation problem
we need a formulation consistent with the images. The evolution of the tumor delineation should be the phenomenon that is
mathematically described instead of the evolution of the tumor cell densities. In section II-A we detail the construction of a
formulation, which captures the same dynamics as the reaction-diffusion model but focuses only on the tumor delineation.
Once such a formulation is available then one can optimize the parameters using different error measures and optimization
schemes. In section II-B we detail our choice for the error measure and the optimization scheme.

A. An Eikonal Approximation for Reaction-Diffusion Models

The asymptotic properties of the reaction-diffusion equations under certain conditions allow us to construct atraveling time
formulation for the tumor delineation. In our previous works we have proposed to use such formulations in the context of
tumor growth models [30], [31]. Here we build on those ideas and improve our formulation.

Reaction-diffusion equations and their asymptotic properties have been well studied in the literature [32], [33]. These
properties have been used for different applications [21],[34]–[36]. The most important result for our purposes is theexistence
of a traveling wave solution in the infinite cylinder and in the case of constant coefficients (spatially and temporally constant
diffusion tensorD andρ). Moreover, any initial condition with compact support converges to this solution in time. The traveling
wave solution of Equation 1 has the formu(x, t) = u(x − vt) = u(ξ), whereξ is the moving frame andv is the asymptotic
speed of this frame, the wavefront. When this solution is plugged into the reaction-diffusion equation we obtain the ordinary
differential equation

n
′Dn

d2u

dξ2
+ v

du

dξ
+ ρu(1 − u) = 0, (4)

wheren is the direction of motion in the infinite cylinder and the equation describes the traveling wave solution. This is a
constant coefficient nonlinear equation and in order to haveadmissable solutions, the asymptotic speedv should depend on
the diffusion tensorD andρ [21]. This speed is given by the simple relationship:v = 2

√
ρn′Dn. Such a property states that

all iso-density contours ofu at large times under certain conditions will move with a speed of v. Although this information is
very useful it is not complete because the convergence of theobserved speed tov is slow, inO(1/t). Following the studies of
Ebertet al. we can include the effect of this slow convergence and have a time varying estimate of the speed of the moving
framev(t) =

√
n
′Dn(2

√
ρ−3/(2t

√
ρ)) [33]. As the speed of the moving frame converges tov, the profile ofu also converges

which implies that until convergence different iso-density contours will move at different speeds. The time varying speedv(t)
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is the estimate for the origin of the moving frame set atu = 0.5 iso-density contour, and different iso-density contours have
slightly different convergence properties. However, the effect of the value of the iso-density contour onv(t) is shown to be
O(1/t2) and therefore we ignore it [33].

The difference between the observed speed of the moving frame, the asymptotic speed and time varying estimate is shown
in Figure 2(a). In Figure 2(b) we show the integrals of these speeds starting from the same initial condition to demonstrate
the effect of the convergence on the location of the moving frame (which corresponds to the tumor delineation in the context
of our work). At this point we can readily formulate a preliminary traveling time formulation for the tumor delineation using

2 4 6 8 10 12
0

0.5

1

1.5

2

time [non−dim]

ve
lo

ci
ty

 [n
on

−
di

m
]

 

 

observed
asymptotic
approximation

(a)

2 4 6 8 10 12
0

5

10

15

20

time [non−dim]

di
st

an
ce

 fr
om

 in
iti

al
 p

oi
nt

 [n
on

−
di

m
]

(b)

Fig. 2. The reaction-diffusion equation in infinite cylinder admits a traveling wave solution resulting in a tumor frontmoving at constant speed. (a) The
traveling wave has an asymptotic speed shown in dashed curvehowever, when we observe the speed of the iso-density contour u = 0.5 in time we notice
the low rate of convergence to this speed (see the solid curve). An approximation of the speed of the iso-density contour including the convergence effect
yields a closer curve to the the observed on (see point-dashed curve). (b) Starting from the same point the integrals of the speed curves, the distances to the
initial point, are shown. Notice that we get a much better approximation when we add the convergence effect. All axis are in non-dimensional coordinates.

v(t) as
√
∇T ′D∇T =

2
√

ρT

4ρT − 3
(5)

T (x) = T0 ∀x ∈ Γ (6)

whereT (x) is the function representing the time when the tumor delineation passes through the pointx, Equation 6 represents
the Dirichlet type boundary condition stating the initial tumor delineation we start evolving fromΓ andT0 is the time elapsed
since the tumor has started diffusing until the acquisitionof the first image, see Appendix A for details. We observe thatif we
do not consider the convergence effect and use the asymptotic speedv then theT dependence of the right hand side in the
Equation 5 is removed and we could easily replaceT0 by any value we like in Equation 6. The value ofT0 is not available
in the images but it can be regarded as another model parameter to be estimated for.

The formulation given in Equations 5 and 6 is valid in the infinite cylinder where the evolution is in one direction (in this
case the traveling wave is a plane). We can apply this formulation to more general cases (non-planar cases) in 3D by a local
linearization assuming that within a voxel the tumor front is planar and the coefficients are constant [31]. Then by starting
from the initial tumor delineation and sweeping the domain outwards we construct the solution where fronts at each voxel
would be patched together linearly. However, such a generalization does not take into account the effect of curvature. In [35]
Keeneret al. demonstrate a way to take into account the effect of curvature (where they do not take into account the effect of
convergence) for slightly curved surfaces in the case of isotropic diffusion. Following the same principles we can derive the
general formulation for anisotropic diffusion including the effect of convergence (see Appendix B). This adds a new term in
Equation 5 and we obtain

{4ρT − 3

2
√

ρT
−∇ · D∇T√

∇T ′D∇T
}
√
∇T ′D∇T = 1 (7)

where the term∇ · (D∇T/
√
∇T ′D∇T ) is the effect of the curvature. In the derivation of this termit is assumed that the

surface is slightly curved which requires the effect of curvature to be of a lower order than the term2
√

ρ (see Appendix B).
In order to satisfy this we use a saturation function on this effect whose derivative is 1 near 0 and saturates at±15% of 2

√
ρ.

Adding this to our Equation 7 we obtain the final traveling time formulation which describes the evolution of the tumor front
based on the reaction-diffusion formalism:

{4ρT − 3

2
√

ρT
− 0.3

√
ρ(1 − e−|κeff |/(0.3

√
ρ))}

√
∇T ′D∇T = 1 (8)

κeff = ∇ · D∇T√
∇T ′D∇T

(9)



6

T (x) = T0 ∀x ∈ Γ (10)

where we have chosen to use the exponential form for the saturation function but any other choice would work as well. We
chose the value of saturation15% by comparing the analytical solution of the reaction-diffusion equation with the traveling
time formulation given in Equation 8 for the spherically symmetric growth case [37]. This radial analysis showed that saturation
values between 5-20% provided the best fit between these two formulations with not much difference in this range. At this
point we also notice that the left hand side of Equation 8 can become negative, especially for low values ofT . This is due to
the fact that the approximations for the time convergence and curvature effects get worse for lowerT values [33] and small
tumor sizes [35]. In order to overcome this approximation error, in our scheme we do not let the left hand side become less
than

{4ρT − 3

2
√

ρT
− 0.3

√
ρ(1 − e−|κeff |/(0.3

√
ρ))} ≥ {0.1

√
ρ}, (11)

which serves as the minimum threshold for the speed of the tumor. As a result of this constraint we are sure to have a growing
tumor delineation at all times, consistent with the generalreaction-diffusion formulation [12], [13], [18]. Equations 8, 9 and 10
combined with the constraint given by Inequality 11, define the formulation describing the evolution of the tumor delineation
in 3D, the traveling time formulation. This formulation is based on the hypothesis that the tumor delineation corresponds to an
iso-density contour of the tumor cell densityu (the value is not specified) whose evolution is defined by the reaction-diffusion
model given in Equations 1 and 2.

The traveling time formulation is a second order partial differential equation (a static Hamilton-Jacobi equation) and numerical
solvers for such equations have been well studied in the literature [38]–[42]. In this work we have chosen to adapt the method
we proposed in [31] due to its fast computation time and its generality on different geometries. This algorithm starts from
the initial delineation and sweeps the domain outwards to compute the traveling time values. We provide the further details
of this algorithm in Appendix C. We also note that other methods can also be used to solve the traveling time formulation
numerically.

The Eikonal model explained above describes the evolution of the tumor delineation visible in the images and captures
the same growth dynamics as the reaction-diffusion models.In Figure 3 we show an example evolution simulated using the
Eikonal approximation to show that it captures the same growth dynamics as the reaction-diffusion model given in Equation 1.
In the figure, for a synthetic tumor we compare the evolution of the iso-density contouru = 0.4 (value consistent with the one
proposed in [15] as the imaging threshold) obtained using the reaction-diffusion model (white contours), which uses the tumor
cell density throughout the brain, and the evolution obtained using the traveling time formulation (black contours) starting from
the innermost white contour (initial location of theu = 0.4 contour). The Euclidean distance between these two evolutions
can be given by the distance between their corresponding contours. The average distance between the black and the white
contours for the case given in Figure 3 is0.78 ± 0.69 mm. Considering the usual resolution of such images (1x1x2.6mm3)
we see how similar these two evolutions are. This similaritydemonstrates that in the case of medical images where we cannot
directly apply the reaction-diffusion models, the traveling time formulation given by Equations 8, 9 and 10 provides usan
alternative formulation based on the same dynamics and which can be directly applied to images.

B. The Parameter Estimation Problem

In the reaction-diffusion model given by Equations 1, 2 and 3we have three different parameters,dw, dg andρ. In addition
to these, in the previous section, by integrating the convergence characteristics of traveling wave solutions into thetraveling
time formulation we added another parameterT0. This gives us 4 parameters to estimate for: (dw,dg,ρ,T0). In this work we
optimize these parameters such that the evolution we formulate using the traveling time formulation best fits the real evolution
observed in the images, which are taken at different times for the same patient.

In order to formulate the parameter estimation problem we need to define an error measure. In a series ofN images taken
from the same patient at timest0, t1..., tN−1, we haveN snapshots of the tumor delineation, one in every image. We donot
pose any constraints on the delineations as they could be extracted using any algorithm automatic, semi-automatic or simply
by manual delineation. (We only use the end results of this process therefore, we do not go into detail of the segmentation
here but refer the interested reader to some recent articleson the subject [43].) For a given parameter set, starting from the
first time image we can simulate the evolution of the tumor delineation and compare it with the real evolution observed in
these N images. We note that the value oft0 is not known and regarding the time instances we only know thetime differences
between acquisitions∆t0 = 0, ∆t1, ..., ∆tN . Combining these we can define

C1(dw, dg, ρ, T0) =

N−1∑

1

dist(Γi, Γ̂i) (12)

Γ̂i = {x|T(dw,dg,ρ,T0)(x) = T0 + ∆ti} (13)

with T (x) = T0 ∀x ∈ Γ0
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(a) (b)

Fig. 3. Comparison between the reaction-diffusion model and the Eikonal Approximation: The temporal evolution of the iso-density contour is demonstrated
for a synthetic tumor. Contours are shown for days 400, 600, 800, 1000 and 1200 from the innermost to outermost respectively. The synthetic tumor is virtually
grown using the reaction-diffusion model. White contours are obtained by thresholding the tumor cell densities atu = 0.4 for the respective day values (400-
600-800-1000-1200). Then in order to simulate the evolution of the iso-density contour (assumed to correspond to tumordelineation in real images) starting
from day=400, without the knowledge of the tumor cell density distribution we use the traveling time formulation. Blackcurves are the contours we obtain at
days 600 (2nd innermost) to 1200 (outermost). The average Euclidean distance between the black and the white contours is0.78± 0.69 mm. We notice that
the traveling time formulation is quite accurate in describing the evolution of the tumor delineation in the case of synthetic tumors. The tumors were grown
in the images of a healthy subject for whom we also have the DT-MRIs. Parameters: (dw = 0.25 mm2/day,dg = 0.01 mm2/day,ρ = 0.012 day−1)

whereΓi is the surface enclosing the visible tumor in the image takenat ti and Γ̂i is the tumor delineation simulated by the
traveling time formulation atti and dist() is the symmetric distance between two surfaces normalized by the surface area. For
two given surfacesΓA andΓB we define this distance as

̺ (ΓA, ΓB) =
1

♯ΓA

∑

∀x∈ΓA

||x − y(x)||2, y(x) = argy∈ΓB
min ||x − y||2 (14)

dist (ΓA, ΓB) =
1

2
[̺(ΓA, ΓB) + ̺(ΓB, ΓA)], (15)

where ||x − y|| is the Euclidean distance between two points in 3D and♯ΓA represents the number of points inΓA. In the
formulation given in Equation 12 we notice thatT0 is the estimate oft0. The estimation oft0 places the time instances, for
which we only know the successive differences, on the convergence curve (like the example given in Figure 2).

One information we have not used completely inC1 is the size of the tumor delineation in the first imageΓ0. In our
experiments we observed that in order to correctly map the time instances on the convergence curve (finding the rightT0 based
on the convergence curve given in Figure 2) we need to includethis size. The inquiry we make is whether it would have
been possible to obtain the delineationΓ0 at the timeT0 using the traveling time formulation if we had started simulating
the evolution the moment the tumor started diffusing, namely at T = 0. The assumption we make here is that the tumor
started diffusing from a set of isolated small regions. These small regions actually correspond to the avascular massesthat start
diffusing and speed up with vascularization. In order to include this in our error measure we run the traveling time formulation
backwards in time. The simulation starts fromΓ0 and sweeps the domain within the delineation. We do this by solving the
Equation 8 within the visible tumor in the first image. This backward evolution provides us a minimum value ofT , Tmin

and the corresponding starting point (or a set of points)xmin. We notice that if the parameter setdw, dg, ρ, T0 is consistent
with the size ofΓ0 then Tmin = T0. Therefore, the error we need is a function of|Tmin − T0|. In order to have a measure
consistent withC1 we need to convert this time difference into a spatial distance. For this we use the minimum allowable
speed value (see Section II-A)vmin = 0.1

√
ρn′

maxD(xmin)nmax at the pointxmin, wherenmax is the principal eigenvector
of D(xmin) providing the highest diffusion rate and the factor0.1 comes from the minimum threshold for the speed of the
tumor explained in Section II-A. Usingvmin we obtain

C2(dw, dg, ρ, T0) = (vmin(Tmin)|Tmin − T0|)2 (16)

C = C1 + C2 (17)

CombiningC1 andC2 we obtain the error criteriaC we wish to minimize with respect to the model parameters.
The minimization ofC is a multidimensional optimization problem and it can be handled using different methods. One

important criterion affecting the choice of the minimization algorithm is that explicit derivatives ofC with respect to different
parameters are not easily available. Another point is that although the parameters have biologically relevant bounds (such as
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dw, dg, ρ, T0 > 0) these constraints are not restrictive. Based on these observations we have chosen to use the unconstrained
minimization algorithm proposed by Powell in [44]. The attractive feature of this algorithm is that it does not require derivatives
of the objective function. Instead, this function’s local quadratic approximations are used in the minimization. The algorithm
starts by computing several instances of the objective function, constructs the quadratic approximation using these instances
and updates the approximation as the minimization proceeds.

The computation time of the proposed parameter estimation method depends on the size of the tumor and more specifically
on how much it has grown. The biggest computational load is running the traveling time formulation several times within the
optimization algorithm. Depending on the size of the tumor each run can take up to 2 minutes on a 2.4 GHz Intel Pentium
machine with 1Gb of RAM. Consequently, the overall optimization takes on the average 40 to 60 minutes which is a short time
range, considering the complexity of the problem. This efficiency is obtained due to the advantage of modeling the evolution
of the tumor delineation rather than the cell densities.

III. R ESULTS

In the evaluation phase of the parameter estimation method,we test the capabilities of the method for retrieving the real
parameters of the tumor growth. We first perform tests with synthetic tumors for which the parameters are known and then we
apply the method to real cases and show preliminary results.For the tests with synthetic tumors, we construct a dataset of 180
tumors using the reaction-diffusion model composed of 60 different parameter sets at 3 different locations in the brain. The
different parameter sets of the model were constructed using different combinations ofdw, dg andρ values given in the table
(in the columns to the right of the parameter name) below motivated by the typical values used in the literature [3], [12],[13].

dw [mm2/day] 0.025 0.05 0.1 0.25 0.5
dg [mm2/day] 0.005 0.01 0.025

ρ [1/day] 0.009 0.012 0.018 0.024

As can be seen from the values for each parameter the final parameter sets cover a large range of growth speed and anisotropy.
Each tumor was initialized in a single voxel and grown in the MR image of a healthy subject with a resolution of 1x1x2.6
mm. The diffusion tensorD was constructed using the DT-MRI of the same subject. In order to create the synthetic images
of these tumors, we assumed a simple imaging process where a voxel is visualized as tumoral if the number of tumor cells
exceeds 40% of the maximum tumor cell capacity the brain parenchyma can handle [15]. For each tumor, the detection and
the first image acquisition is made at the moment when the visible tumor size reaches a maximum diameter of 1.5 cm.

A. Problem of Non-Uniqueness

In the first set of experiments we tried to estimate all the parameters of the reaction-diffusion model(dw, dg, ρ) and the
first image acquisition timeT0 (the time elapsed between the emergence of the tumor and its detection) using the traveling
time formulation. In these experiments we observed the non-uniqueness of the solution to this problem caused by the coupling
between proliferation and diffusion rates and the sparsityof the information contained in the images. The reaction-diffusion
model combined with the imaging process can result in very similar evolutions of the tumor delineation with very different
parameters. In Figure 4 we show the evolutions of two different tumors (green and red) for which the diffusion and proliferation
parameters are given in the accompanying table. The contours with the same color are the delineations of the same tumor
in different images taken at successive time instances. Theinner contour is the delineation in the first image and the other
contours as we go outwards are from the images taken at 200, 300 and 400 days after the time of the first image acquisition
respectively. We observe that although the parameters are different the evolutions are almost the same. Quantitatively, the
difference between these two evolutions measured by the error criterion C (see Equation 17) is0.644 mm2. On the other
hand, the closest tumor delineation evolutions we can get tothese ones using the traveling time formulation with the optimum
parameters have errors ofC = 1.28 mm2 for the red andC = 1.29 mm2 for the green tumor. This shows us that with
the current resolution of medical images we cannot distinguish between these two parameter sets if we observe either of the
evolutions. Therefore, we leave aside the question of estimating separately the diffusion and the proliferation rate.

One observation on the values of the parameters is that between the two cases in Figure 4 the products2
√

ρdw and2
√

ρdg

remain almost the same, around0.1 mm/day and0.03 mm/day respectively. We have seen in Section II-A that the asymptotic
speed of the traveling wave solutions of reaction-diffusion models is given by2

√
ρn′Dn. Therefore, the example shown in the

Figure 4 suggests us that the similar volume evolution of these two tumors can be captured and quantified by the asymptotic
speed of the model in the white and the grey matter which are both given as functions of the model parameters.

B. Fixing ρ and the 3 Parameter Case

Since estimating all the parameters of the reaction-diffusion equation yielded a non-unique solution (under the given
constraints) we turn our attention to the case where we can fixa parameter. The proliferation rateρ is a microscopic parameter
and its coupling with the diffusion rate creates the non-uniqueness of the solution. Here we assume that the value ofρ can
be estimated using biopsy results and microscopic analysis. More specifically, we rely on the works showing that the mitotic
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Red Green
dw 0.273 0.153
dg 0.024 0.014
ρ 0.012 0.0185

Fig. 4. In the image we show the evolution of two different synthetic tumors virtually grown using the reaction-diffusion model with different parameters.
The contours of the same color are the tumor delineations forthe same tumor in 4 different images taken at 4 successive time instances (first image, 200, 300
and 400 days after the first image). The reaction-diffusion model parameters for these tumors are given in the table. We observe that although the diffusion and
proliferation rates of these tumors are different the evolutions are almost the same. The difference between these evolutions measured usingC is 0.644mm2

which is lower than the minimum error we find by estimating theparameters using the traveling time formulation (C = 1.28 for red andC = 1.29 for
green). This shows that we cannot distinguish between thesetwo parameter sets if we observe either of the evolutions. Wealso observe that the productsdwρ
and dgρ are very close for the two tumors. This tells us that althoughdistinguishing betweendw, dg and ρ is not obvious estimating the product of these
values can be possible.

index (MI) can be computed through the labeling index (LI) and can be linked to the proliferation rateρ by assuming an
average cell cycle duration for the patient [45], [46]. We continue our analysis under this assumption. In the first analysis we
assume that we know the real value ofρ and fix it in the parameter estimation, once it is fixed the problem becomes uniquely
solvable. In this case we are left with three parameters to estimate (dw, dg) andT0.

For each of the synthetic tumors previously described we create a dataset of 3 images, the first image taken at the time of
detection and two other images taken at 200 and 400 days afterthe detection. Using these images and the time difference
between acquisitions we estimate the diffusion parametersandT0. We show and discuss the obtained estimates based on two
different analyses. The first one is the proximity of the estimated parameters to the real ones and the sensitivity which tells us
if we are able to distinguish between two different tumors with close parameters. The second analysis focuses on the shape of
the minimization surface around the estimated point. The parameter estimation method, as explained in the previous section,
minimizes the objective functionC. The shape of this function around its minimum shows us the feasibility of the minimization
process.

1) Analyses of the Estimated Parameters:In Figures 5(a) we show the estimated diffusion parameters along with the real
ones. In order to demonstrate the results, we project the high dimensional parameter space onto the 2D(dw, dg). The larger
markers in the plot represent the real parameters used to grow the synthetic tumors and the smaller ones represent the estimated
parameters retrieved from the images. Each small marker with a specific shape and color is the estimate for the larger marker
with the same shape and color. Although there is only one estimate for each parameter setdw, dg, ρ there are multiple small
markers for each large marker due to projecting onto lower dimensional space. In other words, different small markers ofthe
same shape and color are the estimated parameters of the tumors with differentρ but samedw anddg.

Analyzing Figure 5 we observe that the parameter estimationmethod is able to retrieve the value ofdw with good accuracy.
Moreover, the method is able to distinguish between different tumors with close diffusion coefficients. The estimationof dg

on the other hand seems to be less accurate. We notice the consistent positive bias in the estimate ofdg which increases with
increasingdw. We believe there are two reasons for this. The first one is thedifference between numerical schemes we use
to solve the reaction-diffusion PDE and the traveling time formulation. The numerical scheme for the PDE [47] uses linear
interpolation of the diffusion tensors between voxels creating higher diffusion within the grey matter neighboring white matter.
The traveling time formulation, which uses the diffusion tensors on the voxels, accounts for this by increasingdg therefore
estimating a higherdg. As a result as the value ofdw increases the bias ondg increases. The second reason is computing
the curvature effect term in Equation 9 using the images, where the contour enclosing the tumor delineation has sharp corners
(due to discretization) which causes high curvature. Sincethe high curvature slows down the evolution, the traveling time
formulation accounts for this by increasing the diffusion coefficient. This second reason is especially observed for the tumors
wheredw is low. Even in the presence of this bias we notice that for slowly diffusing tumors thedg estimates are very close
to the real values and the method is able to distinguish between different tumors with close diffusion coefficients. For highly
diffusing tumors thedg estimates are rather unreliable however the order of the ratio betweendw and dg is well captured.
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Fig. 5. The results of the parameter estimation from time series of images for the synthetic tumor experiments. The synthetic tumors are grown with the
reaction-diffusion model with known parameters and synthetic images were created from these tumors. The parameter estimation method was applied to these
images to retrieve the parameters of the model. The plot (a) shows the real diffusion ratesdw and dg (the large markers) and the estimated diffusion rates
(the small markers). Small markers of a specific shape and color are the estimates of the larger marker with the same shape and the same color. Figure(b)
plots the estimated initial time estimateT0 (the time elapsed between the emergence of the tumor and the detection) vs. its real value.y = x line is also
drawn for better comparison.

Regarding the estimation ofT0, in Figure 5(b) we plot the estimated value ofT0 in the y-axis versus its real value in the
x-axis where they = x line is also drawn. Observing this plot we notice that the estimates forT0 remains within the 10-15%
margin of the real value, which shows that the proposed method is able to retrieveT0.

2) Analyses of the Minimization Surface:Regarding the shape of the minimization surface on the global scale, in our
experiments we observed that this surface remains convex for all the tumors. However, the exact shape of the surface and its
slope in different directions around the minimum point varied. We know that the estimated parameters provide us the bestfit
to the evolution of the tumor delineation observed in a set ofimages, let us say with an error ofC∗. The question we want
to answer is how much this evolution varies from the optimum when we slightly move away from the “best” parameter set.
In order to answer this question, for an estimated parameterset (d∗w , d∗g, T

∗
0 ) that gives the minimum error ofC∗ we find the

other parameter sets which give an error smaller thanC∗+ǫ. In other words, parameter sets which provides an evolutionof the
tumor delineation which isǫ away from the best fit in the average. In our high dimensional parameter space these parameter
sets are enclosed in an ellipsoid around the estimated pointwhich we nameǫ-ellipsoid (see Appendix D for details on how we
construct theǫ-ellipsoids). In Figures 6(a,b) we show the projections of some of theseǫ-ellipsoids on the respective parameter
spaces where the round dots are the actual parameters, the crosses are the estimated parameters and ellipses around eachcross
are the projections of theǫ-ellipsoids. In this study we have chosen to setǫ = 0.2 mm2.

(a) (b)

Fig. 6. Figures plot the projections of some of theǫ-ellipsoids on the respective parameter spaces. The round dots are the real parameters of the reaction-
diffusion model, the crosses are the estimated parameters and ellipses are the projections of theǫ-ellipsoids for each cross. For a given cross, the cross represents
the minimum of the respective minimization surface with an error of C∗ and all the points inside the ellipse surrounding that crossare the parameters who
has error less thanC∗ + 0.2 mm2. In other words ellipses enclose all the parameters producing very similar evolutions of the tumor delineation as the cross
in the center.

Observing Figure 6(a) we notice that the major axis of the ellipses remain parallel todg axis however, this is due to the
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difference of scale betweendw axis and thedg axis. When placed on the same scale these ellipses are rathercircular. The
second thing we notice is that the ellipses grow with increasing dw. This is a consequence of using normalized distances
between surfaces in our error measure, see Equation 12. Asdw increases the tumor diffuses faster in the white matter and its
size increases. As a result the boundaries of the visible tumor reaches the extent of the white matter and most of the surface
enclosing the tumor delineation in the image remains in the grey matter (as grey matter diffusion is much lower the tumor
stops in the white-grey matter boundary) or reaches the boundaries of the brain. Therefore changingdw does not affect these
portions of the surface and its contribution to the error measure decreases resulting in the larger ellipses we observe.This shows
us that for more diffusive tumors a larger set of parameters yields similar errors therefore minimization surface is flatter. In
Figure 6(b) we observe the coupling betweendw andT0. One can obtain a similar evolution by increasingdw and decreasing
T0 (and vice-versa). The reason for this can be explained by theeffect of convergence given in Equation 5, see Figure 2. We
see that whenT0 is lower the speed of the tumor delineation is slower but if weincrease the value of the diffusion we would
obtain a similar evolution. The shape of the convergence curve in Figure 2 allows us to distinguish between these different
cases and therefore find a minimum. In Equation 5 we also notice that if T0 is very high then a small change inT0 does
not affect the speed of the tumor delineation and this is the reason why we observe ellipsoids with major-axis parallel tothe
T0 axis at highT0 values. One can think of the extreme case whereT0 is very large and the effect of convergence becomes
negligible. In this case we would expect its value not to change anything however, including the size of the tumor in the first
image using the error termC2 (Equation 16) helps us distinguish between very highT0 values.

One important conclusion we can reach from the sensitivity analysis presented in this section is the dependence of the
estimated parameters on the uncertainty on the extracted tumor delineations. The tumor delineation either done by the expert
manually or done using a segmentation algorithm has a variability. Kaus et al. in [48] studied this variation for manual
delineations and found out that in the case of low-grade gliomas the intra-expert variability is around 2% and the inter-expert
variability is around 10% by volume comparison (they compared the volume of the tumor delineated by different experts and
by the same expert multiple times). These variability values were greater than the automatic algorithms [48]. Theǫ = 0.2 mm2

value we used in this section corresponds to the inter-expert variation for manual delineation, 10% of volume variationfor a
tumor of 2.0 cm in diameter, see Appendix E for details. In other words, theǫ-ellipsoids drawn in Figures 6(a) and (b) also
demonstrates the influence of the inter-expert variabilityin the tumor delineations on the estimated parameters.

C. Varying the fixedρ and Speed of Growth

In all the above experiments we have fixed the value ofρ to its real value. Naturally the diffusion rate estimates depend
on this value ofρ. By fixing ρ we actually determine the location of thedw and dg estimates. In order to understand the
effect of the value ofρ on the estimation of diffusion rates and the coupling between ρ andD, we have performed a slightly
different experiment. Instead of fixingρ to its real value we have set it to a different value and then estimated the other
parametersdw, dg and T0. For the ease of demonstration we only show the estimation results for the synthetic tumors with
ρ = 0.012/day. The experiment we performed is the same as the one explainedin the previous section however, this time in
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Fig. 7. In the figures we plotv(w,g) = 2

q

d(w,g)ρ values estimated by fixingρ = 0.015 versusρ = 0.012. We also plot they = x line for a better

comparison. We know that the estimateddw and dg values depend on where we fix theρ. However, observing these figures we note that no matter what
value we fixρ to, the product ofρ and the estimated diffusion coefficientd(w,g) remains constant. Therefore the asymptotic speed of growthof the tumor
in the white matter and in the grey matter can be estimated uniquely regardless of the choice ofρ.
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the estimation method we setρ = 0.015/day. As expected the estimated diffusion rates are lower than the values estimated
by settingρ = 0.012/day. The interesting point however, was not the change in the values but the coupling betweenD and
ρ. In Figure 7(a) we plotvw = 2

√
dwρ computed withρ = 0.015 and thedw value estimated by fixingρ to this value versus

v computed usingρ = 0.012 and thedw estimated with thisρ. Figure 7(b) is the same plot fordg values. We observe from
these graphs that the estimated diffusion rates change whenwe change the fixedρ however, the product of the proliferation and
the diffusion rates remain constant. The valuevw,g = 2

√
d(w,g)ρ is the asymptotic speed of tumor growth and the proposed

method is able to retrieve this speed uniquely from time series of images for all the 180 synthetic cases used in this analysis.
Here we would like to draw the attention to one important conclusion that can be reached with the observations and the

experiments presented so far. In Figure 4 and in the accompanying table we have demonstrated that two tumors showing very
similar volume changes in time had very similar asymptotic speeds in the white and in the grey matter (2

√
ρdw,g). In this

section, we have shown that using the parameter estimation method we can uniquely identify this product for all the tumors
presented in this study. These two suggests that the evolution of the tumor delineation - for the synthetic tumors grown by
reaction-diffusion models - can be uniquely matched by the proposed parameter estimation method and reproduced by the
traveling time formulation. In Figure 8 we demonstrate thisfor a synthetic tumor. We first estimate the diffusion rates of the
synthetic tumor whose evolution is shown in Figure 8(a). Theestimation process is done once by settingρ = 0.012/day
and another time by settingρ = 0.015/day. We have used three images in the estimation each 200 days apart. The resulting
diffusion parameters are given in the table accompanying the images and the resulting optimum evolutions are shown in
Figure 8(b) in red and green contours respectively. Following this, we start from the last image of the tumor used in the
estimation and predict the further evolution of the tumor using the estimated parameters and the traveling time formulation.
We do this once using the parameters estimated by settingρ = 0.012 and once for those estimated by settingρ = 0.015. We
compare the prediction results with the actual evolution ofthe synthetic tumor in Figures 8(c) and (d) respectively. Weobserve
that the predictions obtained by using differentρ values are almost identical and they show very high resemblance with the
actual evolution of the tumor.

After analyzing the presented methodology with synthetic cases we apply the method to a few real cases in the next section.

D. Case Studies with Patient Data

The evaluation of parameter estimation for tumor growth models using real patient images is not easy because we do not
have access to the real values of the parameters. The real values could be found using microscopicin-vivo analysis however,
up to the best of our knowledge such a study has not been performed yet. In this work we perform an indirect evaluation for
the proposed parameter estimation method using patient images. For a given patient dataset, we estimate the parametersusing
all but the image taken at the last time point. Then using the estimated parameters we simulate the evolution of the tumor
delineation starting from the image taken just before the last one for the same number of days as the time difference between
the last image and the one before it. We then compare the evolution predicted using the estimated parameters and the traveling
time formulation with the one observed in the last image. Thecorrelation between the prediction and the observed delineation
provides us with a qualitative evaluation of the estimated parameters. The strong assumption we do here is that the values of
the parameters remain constant between the images. Considering therapy and other effects on the tumor this assumption is not
very realistic. However, we consider the estimated parameters as the average parameters over time including all the effects and
carry on with the analysis.

As a preliminary step in this work we use two patient datasetswhich include anatomical and diffusion tensor MR images.
The dataset for the first patient, who suffers from a high grade glioma (Glioblastoma Multiforme), includes T1-post gadolinium
MR images (with the resolution of 0.5x0.5x6.5mm3) at three successive different time points and diffusion tensor MR image
(with the resolution of 2.5x2.5x2.5mm3) taken at the second time point. The second patient suffers from a low grade glioma
(second grade astrocytoma) and the dataset for this patientincludes T2 flair MR images (with the resolution of 0.5x0.5x6.5
mm3) at 5 successive time points and the DT-MRI image (with the resolution of 2.5x2.5x2.5mm3) taken at the first time
point. For both cases the tumor boundaries were manually delineated by an expert in each image separately. We note that
although manual delineations were used, in terms of the method and the analysis any segmentation algorithm can replace the
manual delineation. As explained in the previous paragraphwe estimate the parameters of the tumor growth model using all the
images but the last one. The DT-MRI images of the patients areused to construct the diffusion tensorD of the tumor growth
model. In constructing the diffusion tensorD for tumor cells we adapt the proposed models in [12] and [13].As our focus in
this article is the parameter estimation method we do not introduce a new diffusion tensor construction and we use the existing
ones. Clatzet al. have proposed the tensor construction as given in Equation 3for the high grade gliomas, following this we
use this type of construction for our high grade case. On the other hand, Jbabdiet al. proposed to use another construction
for the low grade gliomas given as

D(x) =

{
dgI
V (x) [diag(αe1(x)dw , dg, dg)] V (x)T , (18)

where V (x) is the eigenvector matrix obtained by decomposing the waterdiffusion tensorDwater, e1(x) is the principal
eigenvalue of the same tensor andα here is a normalization factor such that higheste1 value in the brain becomes 1. The
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(a) (b)

(c) (d)

Real Diffusion Rates Rates Estimatedρ = 0.012/day Rates Estimatedρ = 0.015/day
dw 0.25mm2/day 0.27mm2/day 0.19mm2/day
dg 0.010mm2/day 0.024mm2/day 0.014mm2/day

Fig. 8. The proposed parameter estimation methodology can uniquely estimate the asymptotic speeds of the tumor in the white and in the grey matter as a
function of the parameters of the model. Figures show prediction experiments on synthetic tumors showing that combinedwith the traveling time formulation
the estimated parameters capture the growth of the tumor regardless of the value theρ is fixed to. (a) Evolution of the synthetic tumor shown in 3 white
contours representing the delineation at the time of detection, 200 days and 400 days after the detection. (b) Optimum evolutions obtained by estimating
the diffusion rates by settingρ = 0.012/day in red andρ = 0.015/day in green. The estimated parameters are given in the table. (c) Starting from the
final image used in estimation (outermost white contour in (a)), further evolution is predicted using the parameters estimated whenρ was set to0.012.
The predicted evolution shown in red while the actual evolution shown in white. (d) Same image is shown for the predictionobtained using the parameters
estimated whenρ was set to0.015. Prediction shown in green contours. Observe that regardless of the fixedρ value the traveling time formulation and the
estimated parameters capture the growth of the tumor and able to simulate its evolution.

difference between this construction and the one given in Equation 3 is that in this one tumor cells are assumed to diffuse
much faster along the fiber and they diffuse very slowly in thetransverse direction. In the construction the diffusion rate in
the grey matter is used also for this transverse diffusion rate. As a result of such a construction the evolution obtainedis much
more anisotropic and creates more “spiky” tumors. Following the model assumptions made by the authors in [13] we use
this type of construction for the low grade case. The images used to estimate parameters, the estimated parameters and the
predicted evolution of the tumor delineations along with the real delineations are given in Figures 9 and 10. In the images in
both Figures, first we show the anatomical images at the time of detection and the intermediate images used in the parameter
estimation. On the intermediate images we also plot the manual delineations for the underlying image (white contour) and the
simulated evolution of the tumor delineation with the estimated parameters (dark contour) obtained in the course of estimation.
Following this we start from the last image (in time) used in the parameter estimation and predict the evolution of the tumor
delineation until the acquisition of the final image (which was not used in the estimation). In the corresponding images we
show the anatomical MR image taken at the last time point showing the final state of the tumor along the tumor delineation
predicted using the estimated parameters drawn as the dark contour. In the accompanying tables we provide the values of the
estimated parameters.

In the images of the first patient in Figure 9 (a,b,c) the tumorshowed evolution in two different regions. In the first region
seen on the upper left corner of the images the tumor has a muchlarger volume, contains a necrotic core and exerts a visible
mass effect. The second region on the other hand is a newly emerging lesion with no observable mass effect. This part is
believed to be a diffused branch of the larger region however, no connection was visible in the images most probably due to
slice spacing. We apply our analysis to the newly emerging part because it does not exert a mass effect and it is ideal for our
analysis. Following the discussions given in Section III-Awe fix the value ofρ to be able to estimate the diffusion parameters.
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(a) (b) (c)
First Image Second image Final image

21 days after the first 67 days after the first
ρ(set) dw dg

0.051/day 0.66mm2/day 0.0013mm2/day

Fig. 9. The parameter estimation method is applied to the images of a real patient suffering from high grade glioma. Images in columns (a) and (b) shows
different slices of the T1-post gadolinium images which areused to estimate the parameters of the growth model given in the table. In (b) we also show the
manual delineation of the tumor (in white) used in parameterestimation along with the optimum simulation obtained by the estimated parameters (in black)
(only white contour is shown in (a) since it is the same as the black one). (c) The final image showing the final state of the tumor and the evolution of the
delineation predicted by the estimated parameters as the black contour.

The proliferation rate was set atρ = 0.05/day around the suggested value in the literature [3]. We observein the image (c)
that the prediction of the tumor delineation is in very good agreement with the final state of the tumor. This shows us that
although we can provide the speed of growth only, the parameters combined with the growth model are in good agreement
with the evolution of the tumor. Moreover, for the high gradetumor we estimated the speed of growth along the white matter
as vw = 0.31 mm/day and in the grey matter asvg = 0.02 mm/day which are in good agreement with the literature [3],
[12], [13].

In the case of the low grade tumor shown in Figure 10, the correlation between the predicted tumor delineation and the final
state of the tumor is in line with our previous arguments. We observe that the slow evolution of the tumor is well captured by
the estimated parameters. For the proliferation rate we pick a lower value than the one in the previous case since it is a lower
grade tumor. It was set toρ = 0.008/day. Through the estimated diffusion rates we find the speed of growth along the white
matter asvw = 0.08 mm/day and in the grey matter asvg = 0.004 mm/day.

Comparing the speed values estimated for the high grade and the low grade glioma we observe the expected difference.
However, we would like to note that this difference is affected by the difference in the tensor construction method. In our
experiments we have observed that when the diffusion rates for the same patient are estimated using the tensor construction
given in Equation 18, the resulting values are higher. This is consistent with the fact that the tensors constructed withthis
method have lower diffusion in the transversal direction ofthe fibers. As a result a higher diffusion rate is needed to explain
the same amount of growth. If we would like to compare the speed values for these two tumors we should keep this effect
in mind. Therefore, the difference between speed of growth of these tumors are higher than the difference given between the
above mentioned values.
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(a) (b) (c) (d) (e)
First Image Second image Third Image Fourth Image Final image

39 days after the first
121 days after the

first
210 days after the

first
390 days after the

first
ρ(set) dw dg

0.0081/day 0.20mm2/day 7x10−4 mm2/day

Fig. 10. As a second case we applied our methodology to the images of a patient suffering from a low grade tumor. Images (a)-(d) show different slices of
the T2 flair images and the manual delineations (in white) which are used to estimate the parameters of the growth model given in the table. Also in these
images we show the simulated evolution of the tumor delineation obtained by the estimated parameters in black contours.The simulated evolution starts from
the white contour in the Image (a). Images (e) are the slices of the final image showing the final state of the tumor and the delineation predicted by the
estimated parameters as the black contour.

IV. CONCLUSIONS

In this work we proposed and analyzed a parameter estimationmethod for the reaction-diffusion tumor growth models
in the context of brain gliomas. The proposed methodology uses the evolution of the tumor, visible in the series of patient
images, for estimating the parameters of the growth model. Using the patient images, the real 3D geometry of the brain and
the tumor, tissue inhomogeneities and different diffusionproperties are taken into account by the method. Moreover, unlike
the previous methods that use the tumor cell density distribution, which is not available in the images, the proposed method
formulates the evolution of the tumor delineation based on the reaction-diffusion dynamics. Such a formulation provides us a
consistent framework in which the observables are the same as the model outputs and this removes the need of assuming a
tumor cell density distribution in the images. To the best ofour knowledge, this article constitutes the first work focusing on
the automatic parameter estimation problem for reaction-diffusion tumor growth models using series of medical imagesand
the real geometry of the patient.
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In order to understand the theoretical properties of the underlying parameter estimation problem and the proposed method we
performed thorough analysis using synthetic tumors for which the growth model parameters are known. The reaction-diffusion
model that we have focused on has 3 different parameters: thediffusion rate in the grey matterdg, the diffusion rate in the
white matterdw and the proliferation rate of tumor cellsρ. In our analysis we have shown that these parameters are coupled
and therefore there is not a unique solution constrained by the observations made on medical images. However, we have also
shown that once the proliferation rateρ is fixed, then we were able to uniquely estimate the diffusionrates in the grey matter
dg and in the white matterdw for all the 180 synthetic tumors presented in this work. Moreover, in this case we could also
estimate the time elapsed between the emergence of the tumorand its detection,T0. In fixing ρ we assumed that its value
can be found through microscopic analysis of biopsy results[45], [46]. We have also shown that the value ofρ determines
the estimates of the other parameters. Investigating the coupling between diffusion and the proliferation rate we haveshown
that no matter whatρ value we fix, the product of the estimated diffusion rates with ρ remains constant for the same tumor.
This product represents the speed of growth of the tumor in terms of the model parameters. We have shown that for each
tumor used in this work we were able to uniquely estimate thisproduct in the white matter and in the grey matter separately.
Moreover, we have also shown that the estimated diffusion rates and the fixed proliferation rate were able to capture the growth
dynamics of the tumor and simulate its evolution regardlessof the valueρ was fixed to. This demonstrated that the proposed
methodology is successful in creating the “patient-specific” model and perform personalized simulations.

We also applied our method to two real cases, one high grade glioma and one low grade. In the light of the synthetic analysis,
we have set the proliferation ratesρ for these tumors to average values and estimated the diffusion rates. Using the estimated
parameters and the traveling time formulation we have shownpromising preliminary results in personalizing reaction-diffusion
models. The prediction studies provided us an indirect validation for the estimated parameters and the formulation. Moreover,
these results demonstrated that although the complete parameter estimation problem has a non-unique solution, by fixing ρ
and estimating the diffusion rates we are able to personalize the growth model and use it to simulate the tumor growth and
predict the further evolution. Therefore, the proposed methodology showed itself to be a successful attempt for adapting the
tumor growth models to patient images and creating “patient-specific” models. The strongest assumption we made during the
analysis of the real cases was that the parameters of the growth model do not change in time and they do not vary in space.
This may not be realistic for the exact values of the parameters considering the existence of different types of therapies and
the random nature of the tumor progression, which exists both in time and in space. However, we have regarded the estimated
parameters as the average values over time and space including all the different effects, which is a clinically logical step [49].
On the other hand, independent parameter estimation and analysis could be done between each set of two successive images
as well. Such an analysis combined with the time course of thetherapy could give us hints on the effect of the therapy on
different parameters and on the growth speed of the tumor.

The method proposed in this article is a first attempt to solvethe parameter estimation problem and there are different
improvements that should be integrated in the future studies. As a first step, we ignored the mass effect of the tumor. In most
glioma cases the mass effect is apparent, smaller in the low grade gliomas and larger for the higher grades. For a complete
modeling, the mass effect should be taken into account in theparameter estimation methodology. The second point is the
effect of the tumor growth on the fiber structure. The white matter is disturbed due to the tumor invasion and this should be
included to have a more complete methodology [2]. The third point for further improvement is the therapy response and the
shrinkage of the tumor. In this work we focused on the reaction-diffusion growth models which only formulate the growth
of the tumor. Therefore, the shrinkage due to therapy or any other process is not taken into account in our methodology.
Fortunately, the proposed traveling time formulation and the parameter estimation methodology can be used in the case of
shrinkage after certain modifications (embedding the Eikonal formulation in a level-set framework). However, the parameter
estimation problem should be redefined to decouple the therapy response and natural growth of the tumor. In the further studies
the effect of the therapy and the possible shrinkage of the tumor should be taken into account. One other point that can be
included in the methodology is the multi-phase modeling. Multi-phase models describe and formulate the interactions between
different phases such as different tumor populations and tumor-brain interface. We can think of generalizing the proposed
method to include multi-phases through coupling several Eikonal models. Such an approach would enable us to easily explain
multi-foci gliomas and also model the response of the brain tissue to tumor growth. As a last point for improvement, we aimed
not to use any assumptions on the tumor cell density in our method however, as more information becomes available on the
cell density distribution, it can also be integrated into the proposed methodology.

In this work our aim was to propose the parameter estimation method and analyse it theoretically. We also applied the
method to a few real cases demonstrating the applicability of the method and showed promising results. Eventually a more
thorough analysis of the estimated parameters and the estimation methodology should be performed using a big dataset of
patient images. Such a study will let us better understand the clinical signficance of the estimated parameters and the constructed
patient-specific models. In the follow-up of this work we plan to focus on this direction. There are several problems thatshould
be overcome for this purpose. The first problem is the lack of diffusion tensor imaging for the patients. As we have seen the
DTI is very important in the modeling and in the estimation ofthe parameters therefore, it is crucial to have this information.
The advances in the registration methods can be helpful to solve this problem as they would give us the opportunity to create
and register DT-MRI atlases on the patient images. The second problem is regarding the surgery applied in glioma cases. The
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surgery changes the structure of the brain as well as the properties of the tumor. In order to overcome this problem, we need
to adjust the traveling time formulation such that it can describe the evolution of the tumor delineation between pre-opand
post-op images.

The method proposed in this article adapts the reaction-diffusion model to specific patient images. There are two clinically
relevant outputs of this adaptation: the estimated parameters and the “patient-specific” growth model. The estimated parameters,
specifically the speed of growth and the measure of differential motility, can serve as quantification measures for tumorgrowth
and help the diagnosis process. Through population studiesand group analysis, correspondence between different parameter
ranges and different WHO grades of gliomas can be found [49].This analysis may provide us with information about variation
within tumor grades and could allow to identify the transition from low grade glioma - which is not treated but only monitored
- to a high grade tumor - requiring immediate treatment - moreaccurately. A quantitative analysis of the tumor evolution
during therapy, i.e. an accurate, localized estimation of tumor growth or shrinkage, may allow to estimate the efficacy of a
chosen treatment option much quicker than with current qualitative approaches. Determining the changes in growth parameters
due to the treatment may finally provide the means to understand the tumor response to therapy – specific for the individual
patient [50]. The patient-specific tumor growth model, in other words the generic model with the patient-specific parameters,
gives us the opportunity to simulate the specific evolution of a patients tumor. The expected anisotropic growth suggested by
the patient-specific model may guide biopsies or at least more targeted imaging methods (such as MRSI) for more accurate
estimations of the tumor extensions. Eventually, as the generic models become more realistic patient-specific models can be
used to better plan the therapy process [51] and predict possible outcomes.

APPENDIX A
THE TRAVELING TIME FORMULATION

The equation of the approximation for the speed of the tumor front including the effect of time convergence is given as

v(t) =
√

n
′Dn(2

√
ρ − 3/(2t

√
ρ)). (19)

This equation is valid when the front of the tumor is not curved and the parameters are constant. In more general case, as
in the case of the brain, the front is curved and the parameters vary. In order to formulate the motion of the tumor front we
make a voxel based assumption. We assume that within the voxel the tumor front is planar and the parameters of the model
(D andρ) are constant and the values of them are taken as the values atthat voxel. Under this assumption Equation 19 can
be converted into a traveling time formulation for the tumorfront using the same idea as explained in [52]. Using the relation

|∇T | = 1/v(t) =

[
2
√

ρntDn− 3

2T

√
n

tDn

ρ

]−1

(20)

whereT is an implicit time function such that it embeds the locationof the tumor delineation at different times as iso-time
surfaces. Remembering that then can be written as∇T/|∇T | (becauseT is an implicit function) we can write the traveling
time formulation as

√
∇T ′D∇T =

2
√

ρT

4ρT − 3
. (21)

This equation alone only gives the relation of successive iso-time surfaces ofT . In order to build the solution we need a
Dirichlet type boundary conditions, namely an initial surface for which we know theT value. In the context of the tumor
growth modeling this surface is given as the surface enclosing the tumor delineation in the image. Using the image we can
write the necessary Dirichlet condition as

T (x) = T0 ∀x ∈ Γ (22)

whereT0 is the initial time we start from andΓ is the surface found in the image.

APPENDIX B
DERIVATION OF THE EFFECT OF THECURVATURE FOR ANISOTROPICDIFFUSION TENSORS

This derivation follows the derivation given in [35] and modifies it for the anisotropic tensor case. The reaction-diffusion
model has the general form:

ut = ∇ · (D∇u) + ρu(1 − u). (23)

We apply a coordinate change by parameterizing the moving frame of theu function as

x = X(ξ, τ), t = τ. (24)
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We assume that this parameterization is a diffeomorphism. By chain rule the partial derivatives using the new coordinates can
be written as

∂

∂ξi
=

∂Xj

∂ξi

∂

∂xj
(25)

∂

∂τ
=

∂

∂t
+

∂Xj

∂τ

∂

∂xj
(26)

where the indices are summed (this is the case throughout this appendix). Likewise the partial derivatives with respectto the
Euclidean coordinates can be written in terms of the new coordinate system.

∂

∂xi
= αij

∂

∂ξj
(27)

∂

∂t
=

∂

∂τ
− αjk

∂Xj

∂t

∂

∂ξk
(28)

represents are the partial derivatives in terms of the new coordinate system.αij is the ijth component of the inverse of the
Jacobian matrix with respect to the parameterizationX . We identify ξ1 as the normal direction to the iso-surfaces ofu at
every point. We also define the tangent and the normal vectorsof the parameterization as

ri =
∂Xj

∂ξi
(29)

ni = rj × rk, j, k 6= i. (30)

Using this we can define the[α] matrix using these vectors:

αij =
(nj)i

rjnj
. (31)

For the ease of derivation, through the choice of the parameterization we letr1 · r2 = 0 andr1 · r3 = 0 (r1 ‖ n1) and setr1

as the normal vector to the iso-surface of theu function. The derivative terms in the reaction-diffusion equation become

ut =
∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk
(32)

∇ · (D∇u) = αkpαijdki
∂2u

∂ξp∂ξj
(33)

+
∂

∂xk
(dkiαij)

∂u

∂ξj
.

Then the whole equation can be written as

αkpαijdki
∂2u

∂ξp∂ξj
+

∂

∂xk
(dkiαij)

∂u

∂ξj
(34)

−(
∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk
) + ρu(1 − u) = 0.

At this moment we use the two big assumptions made in [35]. Thefirst of these assumptions say that the spatial variation of
ξ1 is much smaller than theξ2 andξ3. This actually says that the normal to the front changes faster than the tangent space of
the parameterization. Therefore, the effect of curvature is in a lower order than the speed of the moving frame. Remembering
that the [α] is the inverse Jacobian matrix of the parameterizationX this assumption lets us say thatαj1 = O(1) while
αjk = O(ǫ). The second big assumption is that to the leading order inǫ, u is independent ofτ . In the planar evolution this
assumption readily holds since the solution of the reaction-diffusion equation is a traveling wave therefore, does notdepend
on time. However, for the curved evolution this does not havehold. This assumption on the dependence onτ lets us treat the
curved evolution as if it admits a traveling wave. Using the singular perturbation method we can gather the first order terms
and 34 reduces to

αk1dk1αi1
∂2u

∂ξ2
1

+
∂

∂xk
(dkiαi1)

∂u

∂ξ1
(35)

αj1
∂Xj

∂τ

∂u

∂ξ1
+ ρu(1 − u) = O(ǫ).

Gathering the terms and recognizing the matrix multiplications this equation can be rewritten in the compact form

α′Dα
∂2u

∂ξ2
+ (∇ · (Dα) + α · ∂X

∂τ
)
∂u

∂ξ1
+ ρu(1 − u) = O(ǫ). (36)
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Now in order to have a traveling wave solution this ODE shouldhave the same form as the one in Equation 4. This means
that we need the coefficients of this equation to be constants. However, this will not be possible for every iso-contour ofthe
function u. The curvature will have different effects for different iso-surfaces. Hence, we require it only for the origin of the
moving frame (u = 0.5 iso-contour in the case of logistic growth). Using this information and the restriction we obtain

α′Dα = ρ (37)

∇ · (Dα) + α · ∂X

∂t
= 2ρ. (38)

At this point we remember thatα ‖ n1 which is normal to the iso-surface ofu. We define a level set functionS such that
the zero-level set ofS will correspond to the origin of our moving frame therefore,∇S/|∇S| = n. We can then writeα as
α = −K∇S whereK is just a coefficient to be determined. From Equation 37 we findK as

K =

√
ρ

∇S′D∇S
. (39)

On the other hand, the Equation 38 gives us

−∇ · (DK∇S) − K∇S · Xt = ρc0. (40)

In order to replaceXt we need one more relation which comes from the fact that the value of functionS on the origin of the
moving frame doesn’t change by construction. Therefore,

∂

∂t
S(x, t)|on the moving frame origin= 0 (41)

∇S · Xt + St = 0. (42)

Placing this in Equation 40 we obtain

∇ · (DK∇S) + KSt = ρc0 (43)

∇ · (D∇S ·
√

ρ

∇S′D∇S
) +

√
ρ

∇S′D∇S
St = ρc0. (44)

Now transforming the dynamic Hamilton-Jacobi equation given above into a static one by inverting the embedding method
explained in [38] we obtain the anisotropic Eikonal equation with the curvature term

∇ · ((D∇T )

√
ρ

∇T ′D∇T
) +

√
ρ

∇T ′D∇T
= ρc0. (45)

Relocating terms and lettingc0 = 2 we get our formulation:

[2
√

ρ −∇ · ( D∇T√
∇T ′D∇T

)]
√
∇T ′D∇T = 1. (46)

This equation uses the asymptotic speedv given in Section II-A. We can also replacev by v(t) and obtain the whole equation

{4ρT − 3

2
√

ρT
−∇ · D∇T√

∇T ′D∇T
}
√
∇T ′D∇T = 1 (47)

APPENDIX C
NUMERICAL METHOD FOR THEANISOTROPICEIKONAL EQUATION WITH CURVATURE EFFECT

The static Hamilton Jacobi equation given in Equation 5 is a first order equation and has the form of an anisotropic Eikonal
equation:

F (x)
√
∇T ′D∇T = 1, (48)

where the additionalF (x) is a spatially varying speed function. In [31] we have proposed a numerical method to solve this
kind of equation. The proposed method is based on the Fast Marching methods [52] and modifies it in order to take into
account the anisotropy in the equation. The original Fast Marching method numerically solves the isotropic Eikonal equation
(F (x)|∇T | = 1) by following the gradient direction ofT as it constructs the solution. This, when applied to the Equation 48,
creates erroneous solutions because the characteristic direction should be followed when constructing the solution of this
anisotropic equation [41].

The numerical method proposed in [31] integrates a recursive correction scheme inside the original fast marching algorithm.
This correction scheme makes sure that as we solve the Equation 5 we follow the characteristic directions of the PDE [53].
The overall method starts from a given initial contour and sweeps the domain outwards finding the solution of the Equation48
at each voxel. This equation has 2 different solutions at each voxel and in the case of Equation 5 we choose the value such
that as we move away from the delineation theT value increases (since the tumor delineation will pass fromthose points at a



20

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

number of iteration n

∑

|C
n
-F

n c
u
r
v
|

Fig. 11. The curve of convergence for the iterative scheme given by Equations 51-55. We visualize the difference
P

x∈Ω |Cn − F n
curv| as a function the

iteration numbern. The curve is obtained for the example shown in Figure 3.

later time in the case where the tumor grows). The advantagesof this numerical method are that it is a sweeping method and
it only uses the immediate neighbors of a point rather than using points far away [41] to compute the values. Therefore, itis a
fast and accurate method for solving anisotropic Eikonal equations. For the details of the algorithm please refer to [31]. Here,
regardless of the details of the algorithm, we continue our discussion based on the fact that we have a sweeping algorithm
which solves anisotropic Eikonal equations in a fast manner.

Using the sweeping method for solving the Equation 7 (and forthe Equation 8) is not very obvious because it is not a first
order equation due to the divergence term. These equations can be solved with other iterative methods [38], [40] however, these
methods are not very fast. In order to benefit from the advantages of the sweeping method explained above, we separate the
curvature part from the equation and construct an iterativemethod that solves anisotropic Eikonal equations at each iterations
with different speed terms. The form we use for Equation 7 (itis the same construction for Equation 8) becomes

{4ρT − 3

2
√

ρT
−∇ · D∇T√

∇T ′D∇T
}
√
∇T ′D∇T = 1 (49)

{4ρT − 3

2
√

ρT
+ Fcurv}

√
∇T ′D∇T = 1. (50)

Viewing the convergence term as a speed term independent ofT asFcurv enables us to use the sweeping method and construct
the simple iterative method

F 0
curv = 0 (51)

{4ρT n−1 − 3

2
√

ρT n−1
+ Fn−1

curv}
√
∇T ′n−1D∇T n−1 = 1 (52)

ComputeT n−1 (53)

Cn−1 = −∇ · D∇T n−1

√
∇T ′n−1D∇T n−1

(54)

Fn
curv = Fn−1

curv + α(Cn−1 − Fn−1
curv). (55)

whereαn−1 < 1 is the parameter determining the rate of convergence which in our case is taken asα = 0.8. In Equation 55
we see that theFn

curv is updated with a proportional gain using the error made in the previous iteration. In this respect this
scheme is similar to the feedback control loops. We iterate this algorithm until

∑

x∈Ω

|Cn − Fn
curv| < ǫ (56)

where we sum represents the summation over all points in the domain of computation andǫ is a small value. Once this criteria
is satisfied we know thatFcurv is indeed the effect of the curvature. The rate of convergence depends onα however, in our
experiments we have observed that for a large range ofα ∈ (0.2, 0.8) the rate is pretty rapid see Figure 11.
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D CONSTRUCTION OFǫ-ELLIPSOIDS

The parameter estimation problem in this work is formulatedas the optimization problem with the objective functionC.
For a given set of images the method tries to find the parameters of the tumor growth model which would minimize the value
of the functionC. ǫ-ellipsoids is a simple way to understand the shape and the steepness of the minimization surface around
the minimum point. The construction of theǫ-ellipsoids is as follows. For a given parameter estimationproblem let us say the
estimated parametersp∗ corresponds to an error value ofC∗. As a consequenceC∗ is the minimum of the objective function
C for this problem. We first construct the quadratic approximation of C aroundp∗

C = C∗ + g′(p − p∗) +
1

2
(p − p∗)′G(p − p∗), (57)

whereg is the gradient vector andG is the Hessian atp∗. Sincep∗ is the minimum we know thatg = 0. Moreover since the
point p∗ is the minimum ofC the G is a positive definite matrix. The construction of the quadratic approximation is done by
sampling the functionC and fitting a quadratic function by least square minimization.

Once the quadratic approximation ofC is obtained we define theǫ-ellipsoid as follows

P = {p|C(p) = C∗ + ǫ}, (58)

where the setP is theǫ-ellipsoid andp is an arbitrary parameter set. SinceG is a positive definite matrix we are sure thatP
is a closed surface and for all the points remaining insideP , C(p) < C∗ + ǫ.

Using theǫ-ellipsoid we enclose a set of parameter sets for which each parameter set produces an evolution of the tumor
delineation that isǫ close to the optimum evolution created byp∗. This means if theǫ-ellipsoid is big for a problem then the
minimization surface is flatter therefore, it is harder to find the minimum point. Moreover, the directions of the semi-major
and semi-minor axis of the ellipsoid provides us the coupling between different parameters.

E RELATIONSHIP BETWEEN ǫ-ELLIPSOIDS AND UNCERTAINTY ON TUMOR DELINEATIONS

The method presented in this work estimates the parameters of the reaction-diffusion tumor growth models using the tumor
delineations extracted from the patient MR images. Although we do not focus on the segmentation algorithm in this work
(and we note once again that any segmentation algorithm could be used with the proposed method), we are interested in the
variability of tumor delineation extracted from the images. The tumor boundaries either extracted by an expert manually or by
a segmentation algorithm automatically contains a certainvariability. This variability has been studied by Kauset al. in [48].
In this work, they show that in the case of low-grade gliomas the highest variability was seen between the delineations done
by different experts. This inter-expert variability is shown to be around 10% by volume overlap for the dataset they used.

In Section III-B2 we presented the overall variation of the estimated parameters by showing the shape of the minimization
surface around the optimum parameters. In doing so we have shown the extend of the basin around the optimum parameters
using theǫ-ellipsoids as explained in Appendix D. Here we show the relationship between the variability of input tumor
delineations and theǫ-ellipsoids. We show that the variability of the estimated parameters due to the uncertainty on the tumor
delineations is given by theǫ-ellipsoids. First we start by proving the following claim.

Claim 1. Let ΓR1 andΓR2 be two delineations of the same tumor in the same image obtained using different methods (same
expert different time, different experts, different methods). Then the optimum parameters obtained usingΓR2 remains within
the 2δ2-ellipsoid around the optimum parameters obtained usingΓR1. And δ2 = max (̺ (ΓR2, ΓR1) , ̺ (ΓR1, ΓR2)), where̺
is defined in Equation 14.

Proof: Let ΓS1 andΓS2 be the simulated tumor delineations computed with the optimum parameteres obtained by using
ΓR1 and ΓR2 respectively. Without loss of generality we assume thatΓR1, ΓR2, ΓS1 and ΓS2 are represented by the point
sets{xn

1}, {xn
2}, {yn

1 } and{yn
2 } who have the same number of elements,M .

Let us also define the functions

yi(x
m
j ) = argy∈ΓSi

min ||xj − y||2, xm
j ∈ ΓRj

xi(x
m
j ) = argx∈ΓRi

min ||xj − x||2, xm
j ∈ ΓRj

Then the distance ofΓS2 to ΓR1 is given as
1

M

∑

i∈M

||xi
1 − y2(x

i
1)||2.

From this distance we can write
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i
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where the first step comes from the definition ofyi(xj) and the second step is an application of the triangle inequality. Using
the fact thatΓS2 is the optimum simulation obtained usingΓR2 and placingδ2

1

M

∑

i∈M

||xi
2 − y2(x

i
2)||2 + δ2 ≤ 1

M

∑

i∈M

||xi
2 − y1(x

i
2)||2 + δ2

≤ 1

M

∑

i∈M

||xi
2 − y1(x

i
1)||2 + δ2

≤ 1

M

∑

i∈M

||xi
1 − y1(x

i
1)||2 + 2δ2,

where the second step again is derived from the definition ofyi(xj) and the third step is another application of the triangle
inequality. As a result we see that

1

M

∑

i∈M

||xi
1 − y2(x

i
1)||2 ≤ 1

M

∑

i∈M

||xi
1 − y1(x

i
1)||2 + 2δ2. (59)

By definition of theǫ-ellipsoid given in Appendix D the Inequality 59 shows thatΓS2 is in the2δ2-ellipsoid of ΓS1.
Claim 1 shows us that when we haveδ2 variability on one of the tumor delineations used in the estimation of the reaction-

diffusion parameters using the proposed method then the effect of this variability on the estimated parameters is captured
within the 2δ2-ellipsoid as the ones given in Section III-B2.

The analysis given in [48] provides the inter-expert variability in terms of volume overlap. The 10% variability on volume
overlap corresponds to an average difference of 0.32 mm between delineations for a tumor with 2 cm diameter. Based on
the Claim 1 we can say that the effect of this variability is captured within theǫ = 0.2 mm2-ellipsoid around the optimum
parameters as presented in Figures 6(a) and (b).
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