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Abstract

Reaction-diffusion based tumor growth models have beerelwidsed in the literature for modeling the growth of brain
gliomas. Lately, recent models have started integratinglicaé images in their formulation. Including different dise types,
geometry of the brain and the directions of white matter fiibects improved the spatial accuracy of reaction-diffosimodels.
The adaptation of the general model to the specific patiesescan the other hand has not been studied thoroughly yehisin t
work we address this adaptation. We propose a parametenagisth method for reaction-diffusion tumor growth modeting
time series of medical images. This method estimates thempapecific parameters of the model using the images of atier
taken at successive time instances. The proposed methwodlfdes the evolution of the tumor delineation visible ie tmages
based on the reaction-diffusion dynamics therefore it iesnaonsistent with the information available. We perfoimerbugh
analysis of the method using synthetic tumors and show itapbrouplings between parameters of the reaction-diffusiodel.
We show that several parameters can be uniquely identifi¢deircase of fixing one parameter, namely the proliferatite o
tumor cells. Moreover, regardless of the value the prdifen rate is fixed to, the speed of growth of the tumor can tienated
in terms of the model parameters with accuracy. We also shaivusing the model-based speed we can simulate the evolutio
of the tumor for the specific patient case. Finally we apply method to 2 real cases and show promising preliminary t&sul

I. INTRODUCTION

Brain tumors that start from glial cells, gliomas, form thajor class of primary intracranial cancer, [1], [2]. Thesmbrs
show a high variability in their malignancy. As some of theemain rather benign, i.e. pilocytic astrocytoma, patienf$ering
from the most malignant forms, glioblastoma multiformeydnan average life expectancy of 1 year [3]. During the lasgedrs
there has been vast amount of research on mathematicalpdiess of the growth dynamics of gliomas both at microscopi
and macroscopic scales. Cellular interactions, effectsmoé-cellular dynamics and microscopic invasion havenbsieidied
by mathematical models at the microscopic scale [4]-[9tgkascale dynamics such as the average behavior of the titmor,
spatial evolution and its mass effect on the brain have beédneased by macroscopic models [3], [5], [6], [10]-[17]€%h
latter models have included in their formulation differanatomical information that are available in medical insadafferent
tissue types and white matter fiber directions are used asrglgmarameters. However, personalizing these paranfeteesch
patient case and adapting the generic model to specificnpatéa has not been thoroughly studied yet.

Personalizing the parameters of a tumor growth model foh gratient would clinically be important in two aspects: the
parameters and the patient-specific model. The paramefténge onodel could be used to characterize the tumor and help th
diagnosis process by providing the speed of growth or gfyamgi its morphology. The model combined with the persaredi
parameters, the “patient-specific’ model, would give usdpportunity to simulate the evolution of the specific turmaapt
the therapy to the patient and predict the further evolution

For the last 5 years specific attention has been given to @ss of macroscopic models, the reaction-diffusion modelhe
attempt to link tumor growth models to medical images [3R][113], [16], [18]-[20]. These models describe the eviont
of the pathology via proliferation of tumor cells and infiition into the surrounding tissue. Their formulation cetssiof
reaction-diffusion type partial differential equatio®OEs) with the reaction term (first term in Equation 1) reprgsg the
proliferation and the diffusion term representing the frdtion [21]. The system
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is the general building block of such reaction-diffusiondats, where is the tumor cell densityD is a local diffusion tensor
(i.e. symmetric positive definite 3x3 matrix),is the proliferation ratef2 is the brain domain ands2 represents the boundaries
of the brain. Equation 1 describes the temporal evolutiotheftumor cell density distribution while Equation 2 renets the
no-flux boundary conditions.

A. Previous Works on Reaction-Diffusion Type Models

Tracquiet al. proposed one of the first reaction-diffusion models intBggainformation coming from medical images [15],
namely the geometry of the brain and the size of the tumohéir tnodel, the tumor cells were assumed to diffuse isotadlyi
with a constant rate in the brain and two reaction terms waeekided to take into account the proliferation and the cedtt.
They applied their methodology to 2D slices of CT images. #fedént simulation was run for each slice. In [16], Cruywagée
al. built on this idea and proposed to use two populations of turetls. Swansoeet al.in [18] included the differential motility
of tumor cells in reaction-diffusion models based on theeobetions of Gieset al. in [22] showing that tumor cells migrate
faster on myeling sheaths. This new model formulated thadrignotility of tumor cells in the white matter than in the gre
matter, using the tissue segmentation coming from anatdrmtages [18]. They used a spatially varying isotropicudfbn
tensor, which took two different values: one in grey and a Imb@gher one in the white matter. Extending this idea of
differential motility, Clatzet al. in [12] and later Jbabdeét al. in [13] have included fiber directions (anisotropy) to ituce
the directional preference in the diffusion mechanism afidu cells. In both studies the models rely on anatomical Mégn
Resonance Images (MRIs) and Diffusion Tensor (DT) MRIs ke tato account the geometry and the fiber directions. Glatz
al. also have coupled their diffusive model with a linear etagtiechanical model of the brain to be able to describe the mass
effect of the tumor. Recently Hogex al. have extended the anisotropic model and integrated thenaiim that proliferating
tumor cells push each other. This observation is formuléte@n extra advection term added to the base equation given in
Equation 1 [23]. In order to explain the mass effect of the duiey also coupled their diffusive model with a mechanical
one using nonlinear elasticity. Besides the research onawiny the models themselves, several other works showtshpal
clinical applications of these models by applying them fifedent purposes. In [24], [25] the authors applied tumoovgh
models to register anatomical atlases of healthy subjects patient images bearing tumors. In some other works [26],
[27] growth models have been used to create synthetic imagasng tumors which are then used to evaluate segmentation
algorithms.

The reaction-diffusion models provide a general framewalt@wing the integration of information coming from medica
images. Once such an integration is achieved the next stepadapt the model to specific patients data, in other words to
personalizehe model. This can be done via estimating the parametetseajdéneral model which best simulates the evolution
of the tumor observed in the time series of images. The diffian this estimation is due to the sparsity of the available
information. The reaction-diffusion models describe tamporal evolution of tumor cell density distributions vehilin the
images we only observe the evolution of the boundaries ofvtkible part of the tumor. Therefore, the reaction-diftursi
models are not directly applicable in this adaptation. Tumadr boundary is assumed to correspond to an “iso-dengitytozir
of the tumor cell density distribution [3], as shown in Figut. In this article we use the terms “tumor boundaries”, ‘bum
delineation” and “tumor front” interchangeably to deseribe boundary of the visible part of the tumor in the medicsges.

(@ (b)

Fig. 1. MR Flair images of a grade Il astrocytoma: (a) imagéhatfirst examination (b) image at the second examinationthénanatomical MR images
we observe the evolution of the boundary of the visible pathe tumor rather than the tumor cell densities.



B. Previous Works on Parameter Estimation

The task of estimating parameters from time series of imagése context of tumor growth models is a rather unexplored
problem. A first attempt was made by Tracaial. in [15] where they optimized the parameters of their modetbmparing
the area of the tumor observed in CT images at different tiaress the area of the simulated tumor. The drawback of this
approach was to use tumor cell densities which requiresigaliation of tumor cell density distribution throughioihe brain.
Since this is not observable in the images assumptions d@heutumor cell density distribution has to be made. Moreover
tissue inhomogeneities and observed directional preferef tumor infiltration is not included. In [28], Hoge al. propose
a PDE based method where they invert their model equatiottsalve a constrained PDE optimization problem to estimate
the parameters. Their work takes into account both the ¢gramddel for the glioma and its mass effect on the brain tissue.
They propose two ways to optimize for the parameters: usingt cell distributions and using observed deformatioretdam
landmarks. However, there are certain drawbacks of thethoae First of all, their first method uses the knowledge afdu
cell density distribution in the brain. As we have mentiorsdmbve this information is not available in medical imagelse T
authors mention a probabilistic method to estimate theitledsstribution while the details of this method may remaipen.
Moreover, considering that images mask the low densityaslastimating the tumor cell distribution is another opeabjem.
Their second method on the other hand links the observedrdafimn to the tumor growth parameters. This depends diyong
on the assumed coupling between mechanical and diffusiashel®oThe uniqueness of the solution for this method is not
addressed. Secondly, although they propose the methodftined/ only provide detailed experiments in 1D without irdihg
real images, brain geometry, tissue inhomogeneities @ratailable anatomical information such as fiber direcion

Recently Swansoet al. in [29] proposed a parameter estimation method for the slffu process in petri-dish. This method
is consistent with the observables in the images as it ugebdbndaries of the visible tumor rather than tumor cell dierss
Authors have derived analytical approximations for thel@ion of the tumor delineation for 2D circular growth. Ugin
these solutions they estimated the diffusion coefficienttli@ petri-dish experiments. The difficulty in applyingshihethod
to medical images is that the analytical solutions derivieeh¢e the method itself) assumes radial symmetric growhis T
does not have to be the case for brain tumors. The evolutidheofumor is affected by the brain geometry, different &ssu
and the fiber structures. Besides this, the existence of @ioeaterm results in a different evolution than pure diftus
Therefore, this method need to be modified to take into adcthenreaction term. In another work, Swansetnal., in [19]
address the parameter estimation problem from a differerdgpective. In this work they use the asymptotic propedfethe
reaction-diffusion equations and link them to the inforimatin the images for estimating the parameters. The adgant&
this approach, like the previously mentioned work, is thatlso uses the tumor delineations visible in the images. édew
one of the drawbacks of this method is the mapping of the tudedineations to spheres with the same volume and using
these spheres in the computations. Given tissue inhomigepatient specific geometry of both the brain and the tumor
and the differential motility of tumor cells, this may be se@s a very strong assumption. As a result, tumors with differ
parameters are mapped to the same sphere. The second ckawbaes from the fact that authors assume tumor cell density
values for the extents of the enhancing regions in the MRI8s 15 a reasonable assumption unless the values are used in
the estimation process. Unfortunately, exact values aait thter- and intra-patient variability are not known. 8&j them
to arbitrary values introduces a bias on the estimated peteam Authors also do not provide an analysis of their nekbtho
In our preliminary work [30], we proposed a method to estenthie speed of growth of the tumor, also consistent with the
observations in the images. Taking into account the braomgry, tissue inhomogeneity and fiber directions, therestd
speeds in the white and in the gray matter were given in teifiseomodel parameters. In order to achieve this, startiogfr
the asymptotic properties of reaction-diffusion models pveposed to use a first order anisotropic Eikonal approxanat
to describe the evolution of the tumor delineation (i.e. Wgble tumor front in the images). Using this approximatioe
formulated the parameter estimation problem. HoweverBienal approximation proposed in this previous work wast fir
order and did not include higher order effects (i.e. the ature of the tumor front and the time dependence of the awolut
speed) which influence the values of the parameters. Morethe formulation of the parameter estimation problem did n
utilize all the information available in the images (i.eetkize of the initial tumor). Finally, the method and the rastied
parameters for the given results were not analyzed, whiem isssential part of the parameter estimation.

In this work, we propose and analyze a parameter estimatietnad for reaction-diffusion based tumor growth models
using time series of medical images. The method is based em®ublution of the tumor delineation rather than tumor cell
densities and in this respect it is consistent with the oladems in the images. This evolution is formulated using adified
anisotropic Eikonal model which formulates the motion o ttumor delineation taking into account its curved front and
the effect of time on its speed. Unlike the previous workg thethod presented in this article takes into account tissue
inhomogeneities, fiber structures and the real geometrptf the patient’s brain and the tumor while keeping constsigth
the image information. We also provide extensive analysth® method and in general the parameter estimation profidem
reaction-diffusion models in the context of glioma modglifinally, we show preliminary results of the parameteinestion
and the “personalization” of growth models on 2 real cage&dction Il, we explain our method, detail the anisotropioBal
approximation we use for describing the temporal evolutbthe tumor delineation and formulate the parameter esitima



problem. In Section Ill, we evaluate the performance of oathnd in retrieving the parameters of the reaction-ditfogjrowth

models. We perform thorough analysis of the estimated petensand the sensitivity to these parameters. In additighis,

we apply our methodology to real images and show prelimimesylts. Finally, we conclude by discussing these resiiiés,
method and the future work in Section IV.

II. METHOD

The parameter estimation methodology and the choice of dtimated parameters depend on the exact formulation of the
underlying reaction-diffusion model. In this work we focae the formulation proposed in [12], [13]. However, due te th
similarities of reaction-diffusion models the ideas wegemr here can be easily adjusted to work for other formulatias
well. The model for tumor growth proposed in [12] is form@ldtby the system given in Equations 1 and 2. The diffusion
tensor D, in this model, is constructed based on the observationsngpfnom petri-dish experiments and patient images.
Gieseet al. in [22] showed that glioma cells move faster on the myelinashg the structural element in the white matter.
In addition to this, observations from medical images shioat tumor cells follow the fiber tracts. On the grey matter loa t
other hand, tumor cells move slower and observations douggest a preferential diffusion direction. Diffusion infieation
coming from the DTI suggests mostly isotropic (close torigpic) tensors in the grey matter. As a result, in the forrioite
given in [12] D is constructed as an anisotropic tensor taking into accowmtdifferent phenomena: differential motility of
tumor cells in different tissues and directional prefeeen€ tumor cell diffusion in the white matter. The constroatiof D,
which is obtained from the DT-MRI, is as follows:

| dgd , X € gray matter
D(x) = { dwDyater , X € White matter ©)

where tumor cells are assumed to diffuse isotropically endrey matter with a raté, and diffuse along the fiber tracts in the
white matter proportional to the diffusion tensor of the evanoleculesD,, ;... through a coefficient,,. In this construction
Dyater is Obtained from DT-MRI and normalized such that the higltgtision rate in the brain would be 1. We note that
in [12] the authors also couple the evolution of the tumohwis mass effect on the brain but in the present study, asta firs
step, we focus only on the reaction-diffusion part ignoring mechanical effect. Once the problem for the growing tuiso
solved and understood then the parameter estimation cartals into account the mechanical model.

The reaction-diffusion model given by Equations 1, 2 and Scdbes the temporal evolution of local tumor cell densitie
As we have noted before, this creates an inconsistency Wéhobservables in the images making the direct applicatfon o
these models unsuitable for the parameter estimation gmotdee Figure 1. In order to solve the parameter estimatmigm
we need a formulation consistent with the images. The eerludf the tumor delineation should be the phenomenon that is
mathematically described instead of the evolution of thraducell densities. In section II-A we detail the constrantiof a
formulation, which captures the same dynamics as the mmdiffusion model but focuses only on the tumor delineatio
Once such a formulation is available then one can optimizepérameters using different error measures and optiroizati
schemes. In section II-B we detail our choice for the erroasoee and the optimization scheme.

A. An Eikonal Approximation for Reaction-Diffusion Models

The asymptotic properties of the reaction-diffusion egunet under certain conditions allow us to construdtaaveling time
formulation for the tumor delineation. In our previous works we have psgd to use such formulations in the context of
tumor growth models [30], [31]. Here we build on those idead amprove our formulation.

Reaction-diffusion equations and their asymptotic propsrhave been well studied in the literature [32], [33]. 3de
properties have been used for different applications [[BY[-[36]. The most important result for our purposes is ¢hestence
of a traveling wave solution in the infinite cylinder and irethase of constant coefficients (spatially and temporalihstant
diffusion tensorD andp). Moreover, any initial condition with compact support gerges to this solution in time. The traveling
wave solution of Equation 1 has the formfz, t) = u(x — vt) = u(€), where¢ is the moving frame and is the asymptotic
speed of this frame, the wavefront. When this solution iggd into the reaction-diffusion equation we obtain theirad/
differential equation P ;

n’Dnd—; + vd—Z + pu(l —u) =0, 4)
wheren is the direction of motion in the infinite cylinder and the atjan describes the traveling wave solution. This is a
constant coefficient nonlinear equation and in order to redmissable solutions, the asymptotic speeshould depend on
the diffusion tensoD andp [21]. This speed is given by the simple relationship= 2,/pn’Dn. Such a property states that
all iso-density contours of, at large times under certain conditions will move with a shetwv. Although this information is
very useful it is not complete because the convergence obtiserved speed tois slow, inO(1/t). Following the studies of
Ebertet al. we can include the effect of this slow convergence and haveea varying estimate of the speed of the moving
framev(t) = vn'Dn(2,/p—3/(2t,/p)) [33]. As the speed of the moving frame converges,tthe profile ofu also converges
which implies that until convergence different iso-deysibntours will move at different speeds. The time varyingesju(t)



is the estimate for the origin of the moving frame setat 0.5 iso-density contour, and different iso-density contouaseh
slightly different convergence properties. However, tffea of the value of the iso-density contour o) is shown to be
O(1/t%) and therefore we ignore it [33].

The difference between the observed speed of the movingefrém asymptotic speed and time varying estimate is shown
in Figure 2(a). In Figure 2(b) we show the integrals of theseesls starting from the same initial condition to demotstra
the effect of the convergence on the location of the moviagn& (which corresponds to the tumor delineation in the conte
of our work). At this point we can readily formulate a prelimary traveling time formulation for the tumor delineatiosing
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Fig. 2. The reaction-diffusion equation in infinite cylimdadmits a traveling wave solution resulting in a tumor frambving at constant speed. (a) The
traveling wave has an asymptotic speed shown in dashed bowever, when we observe the speed of the iso-density comted 0.5 in time we notice
the low rate of convergence to this speed (see the solid uAreapproximation of the speed of the iso-density contaatuding the convergence effect
yields a closer curve to the the observed on (see point-dasiwe). (b) Starting from the same point the integrals efgpeed curves, the distances to the
initial point, are shown. Notice that we get a much betterragimation when we add the convergence effect. All axis aradn-dimensional coordinates.

v(t) as
JNTDVT = VP (5)
40T — 3
T(x) =Ty Yz €T (6)

whereT'(z) is the function representing the time when the tumor detinegasses through the point Equation 6 represents
the Dirichlet type boundary condition stating the initimhtor delineation we start evolving fromandTj is the time elapsed
since the tumor has started diffusing until the acquisitbthe first image, see Appendix A for details. We observe ifhae

do not consider the convergence effect and use the asympgfmiedy then theT' dependence of the right hand side in the
Equation 5 is removed and we could easily repldgeby any value we like in Equation 6. The value ‘6f is not available

in the images but it can be regarded as another model panatodie estimated for.

The formulation given in Equations 5 and 6 is valid in the iitércylinder where the evolution is in one direction (in this
case the traveling wave is a plane). We can apply this fortiomldao more general cases (hon-planar cases) in 3D by a local
linearization assuming that within a voxel the tumor fromtplanar and the coefficients are constant [31]. Then byirsgart
from the initial tumor delineation and sweeping the domaimwards we construct the solution where fronts at each voxel
would be patched together linearly. However, such a geimat@n does not take into account the effect of curvaturg3b]
Keeneret al. demonstrate a way to take into account the effect of curegiwhere they do not take into account the effect of
convergence) for slightly curved surfaces in the case dfapc diffusion. Following the same principles we can derthe
general formulation for anisotropic diffusion includiniget effect of convergence (see Appendix B). This adds a new ier
Equation 5 and we obtain T3 DT

Pt — . / _

{ > T v \/W}\/VT DVT =1 7)
where the termv - (DVT /v/VT'DVT) is the effect of the curvature. In the derivation of this teitns assumed that the
surface is slightly curved which requires the effect of atuve to be of a lower order than the te2yyp (see Appendix B).

In order to satisfy this we use a saturation function on tffisce whose derivative is 1 near 0 and saturates Bi% of 2,/p.
Adding this to our Equation 7 we obtain the final travelingdifiormulation which describes the evolution of the tumomnfro
based on the reaction-diffusion formalism:

4T —
{;)TPT?) —0.3y/p(1 — e~ Irersl/ O3V T/ DVT = 1 8)
DVT
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T(z)=Ty Ve el (10)

where we have chosen to use the exponential form for theagatnrfunction but any other choice would work as well. We
chose the value of saturatids% by comparing the analytical solution of the reaction-difan equation with the traveling
time formulation given in Equation 8 for the spherically syetric growth case [37]. This radial analysis showed thiatration
values between 5-20% provided the best fit between these dmoufations with not much difference in this range. At this
point we also naotice that the left hand side of Equation 8 cacolme negative, especially for low valuesiaf This is due to
the fact that the approximations for the time convergenck@nvature effects get worse for low&r values [33] and small
tumor sizes [35]. In order to overcome this approximatiomern our scheme we do not let the left hand side become less
than
4pT — 3
2,/pT
which serves as the minimum threshold for the speed of theitufxs a result of this constraint we are sure to have a growing
tumor delineation at all times, consistent with the genezattion-diffusion formulation [12], [13], [18]. Equatis 8, 9 and 10
combined with the constraint given by Inequality 11, define formulation describing the evolution of the tumor deditien
in 3D, the traveling time formulation. This formulation isdged on the hypothesis that the tumor delineation correfspimnan
iso-density contour of the tumor cell density(the value is not specified) whose evolution is defined by #aetion-diffusion
model given in Equations 1 and 2.

The traveling time formulation is a second order partidiedéntial equation (a static Hamilton-Jacobi equatior) aamerical
solvers for such equations have been well studied in theatitee [38]—[42]. In this work we have chosen to adapt thehmet
we proposed in [31] due to its fast computation time and itsegality on different geometries. This algorithm startsnir
the initial delineation and sweeps the domain outwards toptde the traveling time values. We provide the further itketa
of this algorithm in Appendix C. We also note that other methaan also be used to solve the traveling time formulation
numerically.

The Eikonal model explained above describes the evolutioth@® tumor delineation visible in the images and captures
the same growth dynamics as the reaction-diffusion modiel&igure 3 we show an example evolution simulated using the
Eikonal approximation to show that it captures the same tiralynamics as the reaction-diffusion model given in Ecprafi.

In the figure, for a synthetic tumor we compare the evolutibthe iso-density contout = 0.4 (value consistent with the one
proposed in [15] as the imaging threshold) obtained usiegdaction-diffusion model (white contours), which uses titmor

cell density throughout the brain, and the evolution olgdinsing the traveling time formulation (black contourgytshg from

the innermost white contour (initial location of the= 0.4 contour). The Euclidean distance between these two evokiti
can be given by the distance between their correspondintpamm The average distance between the black and the white
contours for the case given in Figure 30ig8 + 0.69 mm. Considering the usual resolution of such images (1x1x2:6°)

we see how similar these two evolutions are. This similadigynonstrates that in the case of medical images where wetann
directly apply the reaction-diffusion models, the tramglitime formulation given by Equations 8, 9 and 10 providesauns
alternative formulation based on the same dynamics andhwddaa be directly applied to images.

{ —0.3y/p(1 — e~ Imessl/(03VPNY Y > 10,1, /p}, (11)

B. The Parameter Estimation Problem

In the reaction-diffusion model given by Equations 1, 2 ande3have three different parameteds,, d, andp. In addition
to these, in the previous section, by integrating the cayemeee characteristics of traveling wave solutions intottheeling
time formulation we added another paraméfgr This gives us 4 parameters to estimate fak;,{,.0,70). In this work we
optimize these parameters such that the evolution we fat@uising the traveling time formulation best fits the reall@ion
observed in the images, which are taken at different timeshi® same patient.

In order to formulate the parameter estimation problem wedrte define an error measure. In a seriegVoimages taken
from the same patient at timeg, ¢;...,tx_1, We haveN snapshots of the tumor delineation, one in every image. Weado
pose any constraints on the delineations as they could acted using any algorithm automatic, semi-automatic impsi
by manual delineation. (We only use the end results of thizgss therefore, we do not go into detail of the segmentation
here but refer the interested reader to some recent arbddhe subject [43].) For a given parameter set, starting ftioe
first time image we can simulate the evolution of the tumoingealtion and compare it with the real evolution observed in
these N images. We note that the valugpfs not known and regarding the time instances we only knowtithe differences
between acquisitionaty = 0, Atq, ..., At . Combining these we can define

N—-1
Cy(du, dg, p, To) = Y _ dist(T';, ) (12)
1

Ui = {2|T(ay 4, p.10) (%) = To + At;} (13)
with T'(z) = Ty Vo € Ty
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Fig. 3. Comparison between the reaction-diffusion model thve Eikonal Approximation: The temporal evolution of tke-density contour is demonstrated
for a synthetic tumor. Contours are shown for days 400, 600, 8000 and 1200 from the innermost to outermost respéctiVhe synthetic tumor is virtually
grown using the reaction-diffusion model. White contours abtained by thresholding the tumor cell densities, at 0.4 for the respective day values (400-
600-800-1000-1200). Then in order to simulate the evahutb the iso-density contour (assumed to correspond to tudebineation in real images) starting
from day=400, without the knowledge of the tumor cell dgnslistribution we use the traveling time formulation. Blackrves are the contours we obtain at
days 600 (2nd innermost) to 1200 (outermost). The averagédean distance between the black and the white contowsr&=+ 0.69 mm. We notice that
the traveling time formulation is quite accurate in desogbthe evolution of the tumor delineation in the case of Bgtit tumors. The tumors were grown
in the images of a healthy subject for whom we also have theMBTs. Parametersidg, = 0.25 mm? /day,dg = 0.01 mm?2/day,p = 0.012 day~1)

wherel’; is the surface enclosing the visible tumor in the image teen and IA“Z- is the tumor delineation simulated by the
traveling time formulation at; and dist() is the symmetric distance between two surfacesalzed by the surface area. For
two given surface$’ 4, andI'p we define this distance as

1 R
0(Ta,Tp) = 7 3 flz —y@)|?, yle) = arg,ep, min ||z - y|? (14)
Vzel 4

dist (P4, ) = =[o(Ta,TB) + o(U',Ta)l, (15)
where||z — y|| is the Euclidean distance between two points in 3D gng represents the number of pointsiihy. In the
formulation given in Equation 12 we notice thag is the estimate ofy. The estimation of, places the time instances, for
which we only know the successive differences, on the cagarae curve (like the example given in Figure 2).

One information we have not used completelyGh is the size of the tumor delineation in the first imag In our
experiments we observed that in order to correctly map the ihstances on the convergence curve (finding the fightased
on the convergence curve given in Figure 2) we need to incthidesize. The inquiry we make is whether it would have
been possible to obtain the delineatibp at the timeT|, using the traveling time formulation if we had started siating
the evolution the moment the tumor started diffusing, ngna¢l7 = 0. The assumption we make here is that the tumor
started diffusing from a set of isolated small regions. Bhawall regions actually correspond to the avascular malsaestart
diffusing and speed up with vascularization. In order tdude this in our error measure we run the traveling time fdation
backwards in time. The simulation starts frdrg and sweeps the domain within the delineation. We do this iyirgpthe
Equation 8 within the visible tumor in the first image. Thisckaard evolution provides us a minimum value Bf T},
and the corresponding starting point (or a set of poimts),. We notice that if the parameter séf, d,, p, Ty iS consistent
with the size ofl'y thenT,,;, = Ty. Therefore, the error we need is a function|®¥,;, — To|. In order to have a measure
consistent withC; we need to convert this time difference into a spatial distar-or this we use the minimum allowable
speed value (see Section l-A),;,, = 0.1\/pn;na1D(:17mm)nmaz at the pointz,,,;,, wheren,, . is the principal eigenvector
of D(x:n) providing the highest diffusion rate and the factt comes from the minimum threshold for the speed of the
tumor explained in Section II-A. Using,,;,, we obtain

Co (dwa dg7 P TO) = (Umin (Tmm)|Tmm - T0|)2 (16)
C=01+0y (17)

N | =

CombiningC; andC; we obtain the error criteri@’ we wish to minimize with respect to the model parameters.

The minimization ofC' is a multidimensional optimization problem and it can be diad using different methods. One
important criterion affecting the choice of the minimizatialgorithm is that explicit derivatives @f with respect to different
parameters are not easily available. Another point is thhbagh the parameters have biologically relevant bousdsh as



dw,dg, p, Ty > 0) these constraints are not restrictive. Based on these\altsms we have chosen to use the unconstrained
minimization algorithm proposed by Powell in [44]. The atitive feature of this algorithm is that it does not requieedhtives
of the objective function. Instead, this function’s localagiratic approximations are used in the minimization. Tigerghm
starts by computing several instances of the objectivetfomcconstructs the quadratic approximation using thestances
and updates the approximation as the minimization proceeds

The computation time of the proposed parameter estimatiethoad depends on the size of the tumor and more specifically
on how much it has grown. The biggest computational load nsing the traveling time formulation several times withire t
optimization algorithm. Depending on the size of the tumacterun can take up to 2 minutes on a 2.4 GHz Intel Pentium
machine with 1Gb of RAM. Consequently, the overall optinima takes on the average 40 to 60 minutes which is a short time
range, considering the complexity of the problem. This ifficy is obtained due to the advantage of modeling the gwolut
of the tumor delineation rather than the cell densities.

Ill. RESULTS

In the evaluation phase of the parameter estimation methedest the capabilities of the method for retrieving thd rea
parameters of the tumor growth. We first perform tests witttlsgtic tumors for which the parameters are known and then we
apply the method to real cases and show preliminary regtdisthe tests with synthetic tumors, we construct a datdse8®
tumors using the reaction-diffusion model composed of 6feint parameter sets at 3 different locations in the brafe
different parameter sets of the model were constructedyudifferent combinations od,,, d, and p values given in the table
(in the columns to the right of the parameter name) belowvat#d by the typical values used in the literature [3], [128].

dy [mm?/day] | 0.025] 005 0.1 | 02505
dy [mm?/day] | 0.005| 0.01 | 0.025
»[1/day] | 0.009| 0.012| 0.018| 0.024

As can be seen from the values for each parameter the finahptaasets cover a large range of growth speed and anisotropy
Each tumor was initialized in a single voxel and grown in th® Minage of a healthy subject with a resolution of 1x1x2.6
mm. The diffusion tensoPD was constructed using the DT-MRI of the same subject. Inrotmlereate the synthetic images
of these tumors, we assumed a simple imaging process whevgeh ig visualized as tumoral if the number of tumor cells
exceeds 40% of the maximum tumor cell capacity the brainrmémgma can handle [15]. For each tumor, the detection and
the first image acquisition is made at the moment when théleisumor size reaches a maximum diameter of 1.5 cm.

A. Problem of Non-Uniqueness

In the first set of experiments we tried to estimate all theapeaters of the reaction-diffusion model,,, d,, p) and the
first image acquisition timdy (the time elapsed between the emergence of the tumor anetistibn) using the traveling
time formulation. In these experiments we observed theurdqueness of the solution to this problem caused by theliwmup
between proliferation and diffusion rates and the spasitthe information contained in the images. The reactidfuslion
model combined with the imaging process can result in vemyjilar evolutions of the tumor delineation with very diffete
parameters. In Figure 4 we show the evolutions of two differemors (green and red) for which the diffusion and praodifen
parameters are given in the accompanying table. The canteitih the same color are the delineations of the same tumor
in different images taken at successive time instances.ifiiier contour is the delineation in the first image and thesioth
contours as we go outwards are from the images taken at 200a/3 400 days after the time of the first image acquisition
respectively. We observe that although the parameters ifiezedit the evolutions are almost the same. Quantitatjvisle
difference between these two evolutions measured by tlwe eriterion C' (see Equation 17) i9.644 mm?. On the other
hand, the closest tumor delineation evolutions we can g#tase ones using the traveling time formulation with tharopin
parameters have errors 6f = 1.28 mm? for the red andC = 1.29 mm? for the green tumor. This shows us that with
the current resolution of medical images we cannot disisilgbetween these two parameter sets if we observe eithéeof t
evolutions. Therefore, we leave aside the question of asitig separately the diffusion and the proliferation rate.

One observation on the values of the parameters is that batthe two cases in Figure 4 the produz{gpd,, and%/@
remain almost the same, aroufid mm/day and0.03 mm/day respectively. We have seen in Section II-A that the asynptot
speed of the traveling wave solutions of reaction-diffasioodels is given b+/pn’Dn. Therefore, the example shown in the
Figure 4 suggests us that the similar volume evolution o$ehtevo tumors can be captured and quantified by the asymptotic
speed of the model in the white and the grey matter which atie giwen as functions of the model parameters.

B. Fixing p and the 3 Parameter Case

Since estimating all the parameters of the reaction-ddfuequation yielded a non-unique solution (under the given
constraints) we turn our attention to the case where we cam fiizrameter. The proliferation rgéds a microscopic parameter
and its coupling with the diffusion rate creates the norgueness of the solution. Here we assume that the valyeoain
be estimated using biopsy results and microscopic analykise specifically, we rely on the works showing that the idto



Red | Green

dy | 0.273| 0.153

d, | 0.024| 0.014
p | 0.012| 0.0185

Fig. 4. In the image we show the evolution of two different thytic tumors virtually grown using the reaction-diffusionodel with different parameters.
The contours of the same color are the tumor delineationthiosame tumor in 4 different images taken at 4 successiweitistances (first image, 200, 300
and 400 days after the first image). The reaction-diffusi@mdeh parameters for these tumors are given in the table. \&fereb that although the diffusion and
proliferation rates of these tumors are different the enahs are almost the same. The difference between thesetievisl measured using is 0.644mm?
which is lower than the minimum error we find by estimating fre@ameters using the traveling time formulatiati & 1.28 for red andC = 1.29 for
green). This shows that we cannot distinguish between tives@arameter sets if we observe either of the evolutionsalae observe that the produets, p
anddgp are very close for the two tumors. This tells us that althodginguishing betweew.,,d, and p is not obvious estimating the product of these
values can be possible.

index (MI) can be computed through the labeling index (LIJaran be linked to the proliferation raje by assuming an
average cell cycle duration for the patient [45], [46]. Wentioue our analysis under this assumption. In the first amsahve
assume that we know the real valuegoénd fix it in the parameter estimation, once it is fixed the pwbbecomes uniquely
solvable. In this case we are left with three parameterstimate (d.,, d,) andTj.

For each of the synthetic tumors previously described watera dataset of 3 images, the first image taken at the time of
detection and two other images taken at 200 and 400 daysthéedetection. Using these images and the time difference
between acquisitions we estimate the diffusion parameteds,. We show and discuss the obtained estimates based on two
different analyses. The first one is the proximity of theraated parameters to the real ones and the sensitivity wallshus
if we are able to distinguish between two different tumorthvalose parameters. The second analysis focuses on the shap
the minimization surface around the estimated point. Tharpater estimation method, as explained in the previousosec
minimizes the objective functio@'. The shape of this function around its minimum shows us thsifidity of the minimization
process.

1) Analyses of the Estimated Parametebs:Figures 5(a) we show the estimated diffusion parametersgawith the real
ones. In order to demonstrate the results, we project the diimensional parameter space onto the (21D, d,). The larger
markers in the plot represent the real parameters used wtesynthetic tumors and the smaller ones represent tieagst
parameters retrieved from the images. Each small markér aviipecific shape and color is the estimate for the largerenark
with the same shape and color. Although there is only onenesti for each parameter séf, d,, p there are multiple small
markers for each large marker due to projecting onto loweredisional space. In other words, different small markerthef
same shape and color are the estimated parameters of thestuitio differentp but samed,, andd,.

Analyzing Figure 5 we observe that the parameter estimatietnod is able to retrieve the value &f with good accuracy.
Moreover, the method is able to distinguish between diffetamors with close diffusion coefficients. The estimatmfind,
on the other hand seems to be less accurate. We notice thisteahpositive bias in the estimate @f which increases W|th
increasingd,,. We believe there are two reasons for this. The first one idiffierence between numerical schemes we use
to solve the reaction-diffusion PDE and the traveling timenrfulation. The numerical scheme for the PDE [47] uses finea
interpolation of the diffusion tensors between voxels tngghigher diffusion within the grey matter neighboringitehmatter.
The traveling time formulation, which uses the diffusiomgers on the voxels, accounts for this by increasdggherefore
estimating a highetl,. As a result as the value af,, increases the bias af), increases. The second reason is computing
the curvature effect term in Equation 9 using the imagesravttee contour enclosing the tumor delineation has shanpecsr
(due to discretization) which causes high curvature. Stheshigh curvature slows down the evolution, the traveliimget
formulation accounts for this by increasing the diffusiarefficient. This second reason is especially observed ®itumors
whered,, is low. Even in the presence of this bias we notice that fowlsiaiffusing tumors thed, estimates are very close
to the real values and the method is able to distinguish hetvaéferent tumors with close diffusion coefficients. Faoghly
diffusing tumors thed, estimates are rather unreliable however the order of the batweend,, andd, is well captured.
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Fig. 5. The results of the parameter estimation from timéesesf images for the synthetic tumor experiments. The sfitttumors are grown with the
reaction-diffusion model with known parameters and syithienages were created from these tumors. The parameteragisin method was applied to these
images to retrieve the parameters of the model. The ploth@ys the real diffusion rateg,, andd, (the large markers) and the estimated diffusion rates
(the small markers). Small markers of a specific shape amat eoé the estimates of the larger marker with the same shagpé¢ha same color. Figure(b)
plots the estimated initial time estimai® (the time elapsed between the emergence of the tumor andetketidn) vs. its real valuey = =z line is also
drawn for better comparison.

Regarding the estimation d&fy, in Figure 5(b) we plot the estimated value Gf in the y-axis versus its real value in the
x-axis where the; = x line is also drawn. Observing this plot we notice that thénestes for7, remains within the 10-15%
margin of the real value, which shows that the proposed nieith@ble to retrievey.

2) Analyses of the Minimization Surfac®egarding the shape of the minimization surface on the ¢lsbale, in our
experiments we observed that this surface remains convexlfthe tumors. However, the exact shape of the surfacetand i
slope in different directions around the minimum point edriWWe know that the estimated parameters provide us thefibest
to the evolution of the tumor delineation observed in a setfges, let us say with an error 6f*. The question we want
to answer is how much this evolution varies from the optimuhew we slightly move away from the “best” parameter set.
In order to answer this question, for an estimated paransetdrly,, d;, 77) that gives the minimum error af* we find the
other parameter sets which give an error smaller th&s-¢. In other words, parameter sets which provides an evolwtidhe
tumor delineation which ig away from the best fit in the average. In our high dimensiomahmeter space these parameter
sets are enclosed in an ellipsoid around the estimated wbiich we name-ellipsoid (see Appendix D for details on how we
construct the-ellipsoids). In Figures 6(a,b) we show the projectionsahe of these-ellipsoids on the respective parameter
spaces where the round dots are the actual parameterspsesrare the estimated parameters and ellipses aroundreash
are the projections of the-ellipsoids. In this study we have chosen to set 0.2 mm?.
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Fig. 6. Figures plot the projections of some of thellipsoids on the respective parameter spaces. The rootsdade the real parameters of the reaction-
diffusion model, the crosses are the estimated parametdrslépses are the projections of taellipsoids for each cross. For a given cross, the crosgsepits
the minimum of the respective minimization surface with amreof C* and all the points inside the ellipse surrounding that ceyssthe parameters who
has error less tha@* + 0.2 mm?. In other words ellipses enclose all the parameters pragueggry similar evolutions of the tumor delineation as thessr

in the center.

Observing Figure 6(a) we notice that the major axis of thigps#ls remain parallel td, axis however, this is due to the
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difference of scale betweety, axis and thed, axis. When placed on the same scale these ellipses are catbalar. The
second thing we notice is that the ellipses grow with indrepd,,. This is a consequence of using normalized distances
between surfaces in our error measure, see Equation 12,,Ascreases the tumor diffuses faster in the white matter tnd i
size increases. As a result the boundaries of the visibl@tusaches the extent of the white matter and most of the urfa
enclosing the tumor delineation in the image remains in they gnatter (as grey matter diffusion is much lower the tumor
stops in the white-grey matter boundary) or reaches the demigs of the brain. Therefore changidg does not affect these
portions of the surface and its contribution to the error sne@ decreases resulting in the larger ellipses we obsEm&shows

us that for more diffusive tumors a larger set of parametékly similar errors therefore minimization surface istéatin
Figure 6(b) we observe the coupling betweknandT,. One can obtain a similar evolution by increasihg and decreasing

T, (and vice-versa). The reason for this can be explained byffieet of convergence given in Equation 5, see Figure 2. We
see that whefT} is lower the speed of the tumor delineation is slower but ifin@ease the value of the diffusion we would
obtain a similar evolution. The shape of the convergenceecir Figure 2 allows us to distinguish between these differe
cases and therefore find a minimum. In Equation 5 we also edtiat if 7y is very high then a small change i, does

not affect the speed of the tumor delineation and this is &ason why we observe ellipsoids with major-axis paralleh®

T, axis at highT, values. One can think of the extreme case whgyés very large and the effect of convergence becomes
negligible. In this case we would expect its value not to ¢gfeaanything however, including the size of the tumor in thst fir
image using the error terr;, (Equation 16) helps us distinguish between very Highvalues.

One important conclusion we can reach from the sensitivitsilysis presented in this section is the dependence of the
estimated parameters on the uncertainty on the extractedrtdelineations. The tumor delineation either done by ttEed
manually or done using a segmentation algorithm has a \btyatKaus et al. in [48] studied this variation for manual
delineations and found out that in the case of low-gradentdi® the intra-expert variability is around 2% and the iebguert
variability is around 10% by volume comparison (they conegathe volume of the tumor delineated by different experts an
by the same expert multiple times). These variability valwere greater than the automatic algorithms [48]. dhe0.2 mm?
value we used in this section corresponds to the inter-éxeiation for manual delineation, 10% of volume variation a
tumor of 2.0 cm in diameter, see Appendix E for details. Ineotivords, thes-ellipsoids drawn in Figures 6(a) and (b) also
demonstrates the influence of the inter-expert variabititthe tumor delineations on the estimated parameters.

C. Varying the fixegh and Speed of Growth

In all the above experiments we have fixed the valug @b its real value. Naturally the diffusion rate estimatepeatel
on this value ofp. By fixing p we actually determine the location of thk, andd, estimates. In order to understand the
effect of the value ofp on the estimation of diffusion rates and the coupling betweand D, we have performed a slightly
different experiment. Instead of fixing to its real value we have set it to a different value and theamesed the other
parametersl,,, d, andTj. For the ease of demonstration we only show the estimatisualteefor the synthetic tumors with
p = 0.012/day. The experiment we performed is the same as the one explairtbeé previous section however, this time in
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Fig. 7. In the figures we plob(,, 4y = 24/d(w,g)p values estimated by fixing = 0.015 versusp = 0.012. We also plot they = z line for a better

comparison. We know that the estimatéd and d, values depend on where we fix the However, observing these figures we note that no matter what
value we fixp to, the product ofp and the estimated diffusion coefficiedﬁwyg) remains constant. Therefore the asymptotic speed of groivthe tumor
in the white matter and in the grey matter can be estimatequety regardless of the choice pf
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the estimation method we spt= 0.015/day. As expected the estimated diffusion rates are lower tharv#iues estimated
by settingp = 0.012/day. The interesting point however, was not the change in theegbut the coupling betweeh and
p. In Figure 7(a) we plot,, = 21/d,,p computed withp = 0.015 and thed,, value estimated by fixing to this value versus
v computed using = 0.012 and thed,, estimated with this. Figure 7(b) is the same plot fat, values. We observe from
these graphs that the estimated diffusion rates change weaatange the fixed however, the product of the proliferation and
the diffusion rates remain constant. The valyg, = 2,/d(., 4 p is the asymptotic speed of tumor growth and the proposed
method is able to retrieve this speed uniquely from timeeseof images for all the 180 synthetic cases used in this sisaly
Here we would like to draw the attention to one important ¢asion that can be reached with the observations and the
experiments presented so far. In Figure 4 and in the accoyimgatable we have demonstrated that two tumors showing very
similar volume changes in time had very similar asymptogieesis in the white and in the grey mattex (od,, ;). In this
section, we have shown that using the parameter estimataihan we can uniquely identify this product for all the tusior
presented in this study. These two suggests that the esolofi the tumor delineation - for the synthetic tumors grown b
reaction-diffusion models - can be uniquely matched by treppsed parameter estimation method and reproduced by the
traveling time formulation. In Figure 8 we demonstrate tloisa synthetic tumor. We first estimate the diffusion ratéshe
synthetic tumor whose evolution is shown in Figure 8(a). Blsémation process is done once by setting= 0.012/day
and another time by setting= 0.015/day. We have used three images in the estimation each 200 dasts &pe resulting
diffusion parameters are given in the table accompanyiegithages and the resulting optimum evolutions are shown in
Figure 8(b) in red and green contours respectively. Followthis, we start from the last image of the tumor used in the
estimation and predict the further evolution of the tumangghe estimated parameters and the traveling time fortionla
We do this once using the parameters estimated by seiting.012 and once for those estimated by settjmg- 0.015. We
compare the prediction results with the actual evolutiothefsynthetic tumor in Figures 8(c) and (d) respectively.oblserve
that the predictions obtained by using differgnvalues are almost identical and they show very high resemblavith the
actual evolution of the tumor.
After analyzing the presented methodology with synthedises we apply the method to a few real cases in the next section

D. Case Studies with Patient Data

The evaluation of parameter estimation for tumor growth el®dising real patient images is not easy because we do not
have access to the real values of the parameters. The reasveduld be found using microscopcvivo analysis however,
up to the best of our knowledge such a study has not been pextbyet. In this work we perform an indirect evaluation for
the proposed parameter estimation method using patiemgemadror a given patient dataset, we estimate the paransiecs
all but the image taken at the last time point. Then using #tenated parameters we simulate the evolution of the tumor
delineation starting from the image taken just before tls¢ dme for the same number of days as the time difference batwe
the last image and the one before it. We then compare thetewoloredicted using the estimated parameters and thelitrgve
time formulation with the one observed in the last image. Gheelation between the prediction and the observed dsime
provides us with a qualitative evaluation of the estimatathmeters. The strong assumption we do here is that thesvafue
the parameters remain constant between the images. Congitleerapy and other effects on the tumor this assumpsiarot
very realistic. However, we consider the estimated pararsets the average parameters over time including all tieetsfind
carry on with the analysis.

As a preliminary step in this work we use two patient datasgtieh include anatomical and diffusion tensor MR images.
The dataset for the first patient, who suffers from a high grglibma (Glioblastoma Multiforme), includes T1-post ghdiam
MR images (with the resolution of 0.5x0.5x6:5m?) at three successive different time points and diffusiors¢e MR image
(with the resolution of 2.5x2.5x2.mm?) taken at the second time point. The second patient suffens & low grade glioma
(second grade astrocytoma) and the dataset for this patielndes T2 flair MR images (with the resolution of 0.5x0.5x6
mm?) at 5 successive time points and the DT-MRI image (with trsolgtion of 2.5x2.5x2.5nm?) taken at the first time
point. For both cases the tumor boundaries were manualipedged by an expert in each image separately. We note that
although manual delineations were used, in terms of the adetind the analysis any segmentation algorithm can replexce t
manual delineation. As explained in the previous paragreplestimate the parameters of the tumor growth model usirigeal
images but the last one. The DT-MRI images of the patientaiseel to construct the diffusion tensbrof the tumor growth
model. In constructing the diffusion tensox for tumor cells we adapt the proposed models in [12] and [AS]our focus in
this article is the parameter estimation method we do nobdhice a new diffusion tensor construction and we use tretiegi
ones. Clatzt al. have proposed the tensor construction as given in Equation e high grade gliomas, following this we
use this type of construction for our high grade case. On therchand, Jbabdet al. proposed to use another construction
for the low grade gliomas given as

dgl
Dix) = { V(x) [diag(aer (x)dwy, dg, dg)] V(X)T 7

where V(x) is the eigenvector matrix obtained by decomposing the waiféusion tensorD., ..., €1(x) is the principal
eigenvalue of the same tensor anchere is a normalization factor such that highestvalue in the brain becomes 1. The

(18)
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Real Diffusion Rate§ Rates Estimateg = 0.012/day | Rates Estimated = 0.015/day
dy 0.25mm?/day 0.27mm?/day 0.19mm?/day
dg 0.010mm?/day 0.024mm?/day 0.014mm?/day

Fig. 8. The proposed parameter estimation methodology najuely estimate the asymptotic speeds of the tumor in thiégeveimd in the grey matter as a
function of the parameters of the model. Figures show ptiediexperiments on synthetic tumors showing that combinih the traveling time formulation
the estimated parameters capture the growth of the tumardiess of the value thg is fixed to. (a) Evolution of the synthetic tumor shown in 3 tehi
contours representing the delineation at the time of detecR00 days and 400 days after the detection. (b) Optimuotuens obtained by estimating
the diffusion rates by setting = 0.012/day in red andp = 0.015/day in green. The estimated parameters are given in the tableStécting from the
final image used in estimation (outermost white contour i), (urther evolution is predicted using the parametersmeged whenp was set t00.012.
The predicted evolution shown in red while the actual ewotushown in white. (d) Same image is shown for the predictibtained using the parameters
estimated whem was set t00.015. Prediction shown in green contours. Observe that regesddé the fixedp value the traveling time formulation and the
estimated parameters capture the growth of the tumor amdtatdimulate its evolution.

difference between this construction and the one given inaign 3 is that in this one tumor cells are assumed to diffuse
much faster along the fiber and they diffuse very slowly in titasverse direction. In the construction the diffusiote ria

the grey matter is used also for this transverse diffusite r&s a result of such a construction the evolution obtaiseduch
more anisotropic and creates more “spiky” tumors. Follgvihe model assumptions made by the authors in [13] we use
this type of construction for the low grade case. The imagesiuo estimate parameters, the estimated parameters end th
predicted evolution of the tumor delineations along witk tkal delineations are given in Figures 9 and 10. In the imayge
both Figures, first we show the anatomical images at the tihtletection and the intermediate images used in the paramete
estimation. On the intermediate images we also plot the adadelineations for the underlying image (white contourl &me
simulated evolution of the tumor delineation with the estied parameters (dark contour) obtained in the course iofissbn.
Following this we start from the last image (in time) usedhe parameter estimation and predict the evolution of theotum
delineation until the acquisition of the final image (whiclaswnot used in the estimation). In the corresponding images w
show the anatomical MR image taken at the last time point gigthe final state of the tumor along the tumor delineation
predicted using the estimated parameters drawn as the dat&uw. In the accompanying tables we provide the valuesef t
estimated parameters.

In the images of the first patient in Figure 9 (a,b,c) the tustwwed evolution in two different regions. In the first ragio
seen on the upper left corner of the images the tumor has a tatgdr volume, contains a necrotic core and exerts a visible
mass effect. The second region on the other hand is a newlygamgeesion with no observable mass effect. This part is
believed to be a diffused branch of the larger region howewerconnection was visible in the images most probably due to
slice spacing. We apply our analysis to the newly emerging lpecause it does not exert a mass effect and it is ideal for ou
analysis. Following the discussions given in Section |IwA fix the value ofp to be able to estimate the diffusion parameters.
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First Image Second image Final image
21 days after the first 67 days after the first
p(set) d dyg

0.051/day | 0.66mm?/day | 0.0013mm?/day

Fig. 9. The parameter estimation method is applied to thg@wnaf a real patient suffering from high grade glioma. Insaigecolumns (a) and (b) shows
different slices of the T1-post gadolinium images which ased to estimate the parameters of the growth model giveheitable. In (b) we also show the
manual delineation of the tumor (in white) used in parametimation along with the optimum simulation obtained by #stimated parameters (in black)
(only white contour is shown in (a) since it is the same as thekbone). (c) The final image showing the final state of theduand the evolution of the
delineation predicted by the estimated parameters as #uk lobntour.

The proliferation rate was set at= 0.05/day around the suggested value in the literature [3]. We obsiertke image (c)
that the prediction of the tumor delineation is in very goaglement with the final state of the tumor. This shows us that
although we can provide the speed of growth only, the pammmetombined with the growth model are in good agreement
with the evolution of the tumor. Moreover, for the high gradenor we estimated the speed of growth along the white matter
asv,, = 0.31 mm/day and in the grey matter as, = 0.02 mm/day which are in good agreement with the literature [3],
[12], [13].

In the case of the low grade tumor shown in Figure 10, the @iiroe between the predicted tumor delineation and the final
state of the tumor is in line with our previous arguments. Weenve that the slow evolution of the tumor is well capturgd b
the estimated parameters. For the proliferation rate wie @ilower value than the one in the previous case since it isvarlo
grade tumor. It was set to = 0.008/day. Through the estimated diffusion rates we find the speed @fir along the white
matter asv,, = 0.08 mm/day and in the grey matter ag, = 0.004 mm/day.

Comparing the speed values estimated for the high gradehentbiv grade glioma we observe the expected difference.
However, we would like to note that this difference is aféettoy the difference in the tensor construction method. In ou
experiments we have observed that when the diffusion ratethé same patient are estimated using the tensor cornstruct
given in Equation 18, the resulting values are higher. Thisansistent with the fact that the tensors constructed thith
method have lower diffusion in the transversal directiorthef fibers. As a result a higher diffusion rate is needed tda@xp
the same amount of growth. If we would like to compare the dpedues for these two tumors we should keep this effect
in mind. Therefore, the difference between speed of grovittn@se tumors are higher than the difference given between t
above mentioned values.
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Fig. 10. As a second case we applied our methodology to thgamaf a patient suffering from a low grade tumor. Imageqdashow different slices of
the T2 flair images and the manual delineations (in white)ctvldre used to estimate the parameters of the growth modah givthe table. Also in these
images we show the simulated evolution of the tumor deliopatbtained by the estimated parameters in black contdims.simulated evolution starts from
the white contour in the Image (a). Images (e) are the sli¢abeofinal image showing the final state of the tumor and théndation predicted by the
estimated parameters as the black contour.

IV. CONCLUSIONS

In this work we proposed and analyzed a parameter estimatiethod for the reaction-diffusion tumor growth models
in the context of brain gliomas. The proposed methodologsubke evolution of the tumor, visible in the series of pdtien
images, for estimating the parameters of the growth modghdJthe patient images, the real 3D geometry of the brain and
the tumor, tissue inhomogeneities and different diffugimoperties are taken into account by the method. Moreovegikeu
the previous methods that use the tumor cell density digtab, which is not available in the images, the proposechoubt
formulates the evolution of the tumor delineation basedhanreaction-diffusion dynamics. Such a formulation presgidis a
consistent framework in which the observables are the sartbeamodel outputs and this removes the need of assuming a
tumor cell density distribution in the images. To the besbof knowledge, this article constitutes the first work fangson
the automatic parameter estimation problem for reactiffnsion tumor growth models using series of medical imaged
the real geometry of the patient.
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In order to understand the theoretical properties of thestlythg parameter estimation problem and the proposedaodetle
performed thorough analysis using synthetic tumors forctihe growth model parameters are known. The reactionsidh
model that we have focused on has 3 different parameterdittusion rate in the grey mattetf,, the diffusion rate in the
white matterd,, and the proliferation rate of tumor cells In our analysis we have shown that these parameters ardedoup
and therefore there is not a unique solution constrainedheybservations made on medical images. However, we have als
shown that once the proliferation rapeis fixed, then we were able to uniquely estimate the diffusetes in the grey matter
d, and in the white matted,, for all the 180 synthetic tumors presented in this work. Mweg, in this case we could also
estimate the time elapsed between the emergence of the @mdoits detection7y. In fixing p we assumed that its value
can be found through microscopic analysis of biopsy regdb$, [46]. We have also shown that the value pfietermines
the estimates of the other parameters. Investigating thplicg between diffusion and the proliferation rate we hakewn
that no matter whap value we fix, the product of the estimated diffusion rateshwitremains constant for the same tumor.
This product represents the speed of growth of the tumorrimgeof the model parameters. We have shown that for each
tumor used in this work we were able to uniquely estimate phégluct in the white matter and in the grey matter separately
Moreover, we have also shown that the estimated diffusitasrand the fixed proliferation rate were able to capture thestip
dynamics of the tumor and simulate its evolution regardtddtie valuep was fixed to. This demonstrated that the proposed
methodology is successful in creating the “patient-sp&cifiodel and perform personalized simulations.

We also applied our method to two real cases, one high grémfmagland one low grade. In the light of the synthetic analysis
we have set the proliferation ratgsfor these tumors to average values and estimated the diffusites. Using the estimated
parameters and the traveling time formulation we have shmwmising preliminary results in personalizing reactuiffusion
models. The prediction studies provided us an indirectaion for the estimated parameters and the formulatiorreblcer,
these results demonstrated that although the completenptga estimation problem has a non-unique solution, by dixin
and estimating the diffusion rates we are able to persandtie growth model and use it to simulate the tumor growth and
predict the further evolution. Therefore, the proposednodblogy showed itself to be a successful attempt for adgptie
tumor growth models to patient images and creating “patpetific’ models. The strongest assumption we made duhiag t
analysis of the real cases was that the parameters of thetgrmwadel do not change in time and they do not vary in space.
This may not be realistic for the exact values of the parareatensidering the existence of different types of thesmpied
the random nature of the tumor progression, which exists lotime and in space. However, we have regarded the estimate
parameters as the average values over time and space mghitlthe different effects, which is a clinically logicakp [49].

On the other hand, independent parameter estimation argsaneould be done between each set of two successive images
as well. Such an analysis combined with the time course ofttieeapy could give us hints on the effect of the therapy on
different parameters and on the growth speed of the tumor.

The method proposed in this article is a first attempt to sohe parameter estimation problem and there are different
improvements that should be integrated in the future studis a first step, we ignored the mass effect of the tumor. Iatmo
glioma cases the mass effect is apparent, smaller in the tadeggliomas and larger for the higher grades. For a complete
modeling, the mass effect should be taken into account inprameter estimation methodology. The second point is the
effect of the tumor growth on the fiber structure. The whitettarais disturbed due to the tumor invasion and this should be
included to have a more complete methodology [2]. The thouhtpfor further improvement is the therapy response and the
shrinkage of the tumor. In this work we focused on the reaetiiffusion growth models which only formulate the growth
of the tumor. Therefore, the shrinkage due to therapy or ghgrgprocess is not taken into account in our methodology.
Fortunately, the proposed traveling time formulation ahe parameter estimation methodology can be used in the d¢ase o
shrinkage after certain modifications (embedding the Edkdormulation in a level-set framework). However, the paeter
estimation problem should be redefined to decouple the lgeesponse and natural growth of the tumor. In the furthedies
the effect of the therapy and the possible shrinkage of th@tushould be taken into account. One other point that can be
included in the methodology is the multi-phase modelingltiMahase models describe and formulate the interacti@tsden
different phases such as different tumor populations antbttbrain interface. We can think of generalizing the pgub
method to include multi-phases through coupling severabiial models. Such an approach would enable us to easilaiexpl
multi-foci gliomas and also model the response of the biiasuée to tumor growth. As a last point for improvement, weesddm
not to use any assumptions on the tumor cell density in ouhoatehowever, as more information becomes available on the
cell density distribution, it can also be integrated inte firoposed methodology.

In this work our aim was to propose the parameter estimatiethad and analyse it theoretically. We also applied the
method to a few real cases demonstrating the applicabifith® method and showed promising results. Eventually a more
thorough analysis of the estimated parameters and the a&timmethodology should be performed using a big dataset of
patient images. Such a study will let us better understamdlthical signficance of the estimated parameters and thstieated
patient-specific models. In the follow-up of this work we pka focus on this direction. There are several problemsshatild
be overcome for this purpose. The first problem is the lackifffiglon tensor imaging for the patients. As we have seen the
DTl is very important in the modeling and in the estimationtted parameters therefore, it is crucial to have this infaroma
The advances in the registration methods can be helpfullt@ $bis problem as they would give us the opportunity to txea
and register DT-MRI atlases on the patient images. The skepowblem is regarding the surgery applied in glioma casks. T
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surgery changes the structure of the brain as well as theepiep of the tumor. In order to overcome this problem, wednee
to adjust the traveling time formulation such that it canadié® the evolution of the tumor delineation between preaod
post-op images.

The method proposed in this article adapts the reactidosgiifn model to specific patient images. There are two dihic
relevant outputs of this adaptation: the estimated parnmiand the “patient-specific” growth model. The estimai@dmeters,
specifically the speed of growth and the measure of diffeakmtotility, can serve as quantification measures for tugromwth
and help the diagnosis process. Through population studidsgroup analysis, correspondence between differentredea
ranges and different WHO grades of gliomas can be found [A8F analysis may provide us with information about vaaati
within tumor grades and could allow to identify the trargitfrom low grade glioma - which is not treated but only moréth
- to a high grade tumor - requiring immediate treatment - maceurately. A quantitative analysis of the tumor evolution
during therapy, i.e. an accurate, localized estimationuafdr growth or shrinkage, may allow to estimate the efficata o
chosen treatment option much quicker than with currentit@izle approaches. Determining the changes in growthrpeiers
due to the treatment may finally provide the means to undeistae tumor response to therapy — specific for the individual
patient [50]. The patient-specific tumor growth model, ihestwords the generic model with the patient-specific patarag
gives us the opportunity to simulate the specific evolutiba patients tumor. The expected anisotropic growth suggdesy
the patient-specific model may guide biopsies or at leasenamgeted imaging methods (such as MRSI) for more accurate
estimations of the tumor extensions. Eventually, as theegemodels become more realistic patient-specific modaits e
used to better plan the therapy process [51] and predicilpessutcomes.

APPENDIXA
THE TRAVELING TIME FORMULATION

The equation of the approximation for the speed of the tumanmtfincluding the effect of time convergence is given as
v(t) = vVn'Dn(2\/p — 3/(2t\/p)). (19)

This equation is valid when the front of the tumor is not cuhand the parameters are constant. In more general case, as
in the case of the brain, the front is curved and the parasetay. In order to formulate the motion of the tumor front we
make a voxel based assumption. We assume that within thd tlexéumor front is planar and the parameters of the model
(D andp) are constant and the values of them are taken as the valtdlatatoxel. Under this assumption Equation 19 can
be converted into a traveling time formulation for the tunfrent using the same idea as explained in [52]. Using thdiogla

—1
IVT| = 1/v(t) = l ontDn — %,/“tfnl (20)

whereT is an implicit time function such that it embeds the locatafrthe tumor delineation at different times as iso-time
surfaces. Remembering that thecan be written a&/7/|VT| (becausel” is an implicit function) we can write the traveling
time formulation as

9. /5T
VVI'DVT = = \T/ﬁ - (1)
T —

This equation alone only gives the relation of successigetime surfaces ofl’. In order to build the solution we need a
Dirichlet type boundary conditions, namely an initial @ for which we know thd" value. In the context of the tumor
growth modeling this surface is given as the surface enaip#iie tumor delineation in the image. Using the image we can
write the necessary Dirichlet condition as

T(z)=Ty Ve el (22)

whereTj is the initial time we start from andl is the surface found in the image.

APPENDIXB
DERIVATION OF THE EFFECT OF THECURVATURE FORANISOTROPICDIFFUSION TENSORS

This derivation follows the derivation given in [35] and nifdek it for the anisotropic tensor case. The reaction-difin
model has the general form:

ug = V- (DVu) + pu(l — u). (23)
We apply a coordinate change by parameterizing the movemgdrof theu function as

x=X(& 1), t=r1. (24)
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We assume that this parameterization is a diffeomorphignchain rule the partial derivatives using the new cooraisatan
be written as

0 0X; 0

R e J_=Z

o6~ 06 or) (23)
p o 0x, o

o — ot or o, (26)

where the indices are summed (this is the case throughauappendix). Likewise the partial derivatives with respecthe
Euclidean coordinates can be written in terms of the newdinate system.

d d
O = aija_fj (27)
0 B 0X; 0

ot~ ar Yo ag (28)

represents are the partial derivatives in terms of the newdioate systema;; is theij!* component of the inverse of the
Jacobian matrix with respect to the parameterizatdonWe identify ¢; as the normal direction to the iso-surfacesuoft
every point. We also define the tangent and the normal veofaditse parameterization as

0X;
. = : 29
r 2%, (29)
n; = r;xXry, j,k#i. (30)
Using this we can define thiey] matrix using these vectors:
Qi = (nj)i . (31)
ryjn;

For the ease of derivation, through the choice of the paramaeation we letr; - ro = 0 andr; -r3 = 0 (r1 || n;) and setr;
as the normal vector to the iso-surface of théunction. The derivative terms in the reaction-diffusiaquation become

ou 8X ou

YT 5 T Y% e B, (32)
82
(D = ii ki == 33
\Y% ( Vu) Opp Qi AL 851,853 ( )
0 ou
+ 8Ik (dkzaz]) 853 .
Then the whole equation can be written as

0%u 0 ou
zd i d e 34
akpa] ki Qs e 85})85] + ( ki (¥ 7)a£j ( )

ou 0X; Ou

_(E Ak~ ag)—i—pu(l—u) 0.

At this moment we use the two big assumptions made in [35].fireeof these assumptions say that the spatial variation of
& is much smaller than the and&s. This actually says that the normal to the front change®fabiin the tangent space of
the parameterization. Therefore, the effect of curvatsii@ ia lower order than the speed of the moving frame. Remeantpber
that the[a] is the inverse Jacobian matrix of the parameterizafiorthis assumption lets us say thaf; = O(1) while

a;, = O(e). The second big assumption is that to the leading ordet inis independent of. In the planar evolution this
assumption readily holds since the solution of the readtiffasion equation is a traveling wave therefore, does depend

on time. However, for the curved evolution this does not haetel. This assumption on the dependencerdats us treat the
curved evolution as if it admits a traveling wave. Using tivegslar perturbation method we can gather the first ordenger
and 34 reduces to

0%u 0 ou
ag1dr1in oe + a—xk(dkiail)a_gl (35)
0X; ou
a1 96, + pu(l —u) = O(e).
Gathering the terms and recognizing the matrix multipiaoag this equation can be rewritten in the compact form
0u 0X | Ou
aDaa—EQ—i—(V-(Da)—i— )351 + pu(l —u) = Ofe). (36)
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Now in order to have a traveling wave solution this ODE shcwdge the same form as the one in Equation 4. This means
that we need the coefficients of this equation to be constatuwever, this will not be possible for every iso-contourtoé
function u. The curvature will have different effects for differenbisurfaces. Hence, we require it only for the origin of the
moving frame {, = 0.5 iso-contour in the case of logistic growth). Using this imf@tion and the restriction we obtain

o'Da = p (37)
V-(Da)—l—oz-%—);:Qp. (38)

At this point we remember that || n; which is normal to the iso-surface af We define a level set functioi such that
the zero-level set of will correspond to the origin of our moving frame therefokéS/|V.S| = n. We can then writex as
a=—KVS whereK is just a coefficient to be determined. From Equation 37 we fihds

_ P
K= ,/75,, 5 (39)
On the other hand, the Equation 38 gives us

~V - (DKVS) = KVS - X, = pco. (40)

In order to replaceX,; we need one more relation which comes from the fact that theevaf functionS on the origin of the
moving frame doesn’t change by construction. Therefore,

0
ES(X7 t) |on the moving frame origin— 0 (41)
VS -Xi+ 5 =0. (42)
Placing this in Equation 40 we obtain
V- (DKVS)+ KS; = pco (43)
P p -
V- (DVS \/VS’DVS) * \/ VS DVt T P (44)

Now transforming the dynamic Hamilton-Jacobi equationegiabove into a static one by inverting the embedding method
explained in [38] we obtain the anisotropic Eikonal equatiath the curvature term

P P
- ((DVT = . 45
v (v )\/VT’DVT) + \/VT’DVT peo (45)
Relocating terms and letting, = 2 we get our formulation:
DVT WWYT'DVT = 1. (46)

2vp =V (\/VT’DVT

This equation uses the asymptotic speegiven in Section II-A. We can also replaeeby v(t) and obtain the whole equation

4pT — 3 DVT
-V ——=\WVT'DVT =1 47
ST ST DT (47)
APPENDIXC

NUMERICAL METHOD FOR THEANISOTROPICEIKONAL EQUATION WITH CURVATURE EFFECT

The static Hamilton Jacobi equation given in Equation 5 igsd irder equation and has the form of an anisotropic Eikonal
equation:

F(z)VVT'DVT =1, (48)

where the additionaF'(z) is a spatially varying speed function. In [31] we have pragba numerical method to solve this
kind of equation. The proposed method is based on the Fasthit@ methods [52] and modifies it in order to take into
account the anisotropy in the equation. The original Fastchiag method numerically solves the isotropic Eikonal aepn
(F(x)|VT| = 1) by following the gradient direction df’ as it constructs the solution. This, when applied to the Eqnat8,
creates erroneous solutions because the characteristictidn should be followed when constructing the solutidnthos
anisotropic equation [41].

The numerical method proposed in [31] integrates a receisivrection scheme inside the original fast marching élyor
This correction scheme makes sure that as we solve the Bguative follow the characteristic directions of the PDE [53].
The overall method starts from a given initial contour an@éeps the domain outwards finding the solution of the Equat&n
at each voxel. This equation has 2 different solutions ah eaxel and in the case of Equation 5 we choose the value such
that as we move away from the delineation fhealue increases (since the tumor delineation will pass fitoose points at a
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Fig. 11. The curve of convergence for the iterative schersengby Equations 51-55. We visualize the differencg, ., [C™ — F(3,,.,| as a function the
iteration numbem. The curve is obtained for the example shown in Figure 3.

later time in the case where the tumor grows). The advantaigéds numerical method are that it is a sweeping method and
it only uses the immediate neighbors of a point rather thamgysoints far away [41] to compute the values. Therefores &
fast and accurate method for solving anisotropic Eikonalatéigns. For the details of the algorithm please refer t4.[Bére,
regardless of the details of the algorithm, we continue ascussion based on the fact that we have a sweeping algorithm
which solves anisotropic Eikonal equations in a fast manner

Using the sweeping method for solving the Equation 7 (andHerEquation 8) is not very obvious because it is not a first
order equation due to the divergence term. These equationbesolved with other iterative methods [38], [40] howgetregse
methods are not very fast. In order to benefit from the adggstaf the sweeping method explained above, we separate the
curvature part from the equation and construct an iteratie¢hod that solves anisotropic Eikonal equations at eachtibns
with different speed terms. The form we use for Equation 7s(the same construction for Equation 8) becomes

4pT — 3 DV
— = V- vVIT'DVT =1 49
N \/VT’DVT} (49)
40T — 3
{ng + Fourn WNT'DVT = 1. (50)

Viewing the convergence term as a speed term independé@nesft,.,,., enables us to use the sweeping method and construct
the simple iterative method

FCOUT’U = O (51)
4 Tn—l

{ g N S Er- LTIV — (52)
Compute7™* (53)

DVT1

n—1 _ _ 7.

=V ~Rpeipvr 4)
Flopy = Fopy +a(C" 71 = FO00). (55)

wherea” ! < 1 is the parameter determining the rate of convergence whichui case is taken as = 0.8. In Equation 55
we see that theé” . is updated with a proportional gain using the error made @engtevious iteration. In this respect this

curv

scheme is similar to the feedback control loops. We iteffaite @lgorithm until
DO Fll < (56)
e

where we sum represents the summation over all points indheth of computation aneis a small value. Once this criteria
is satisfied we know thak’.,,., is indeed the effect of the curvature. The rate of convergel®pends o however, in our
experiments we have observed that for a large range ©f(0.2, 0.8) the rate is pretty rapid see Figure 11.
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D CONSTRUCTION OFe-ELLIPSOIDS

The parameter estimation problem in this work is formuladsdthe optimization problem with the objective function
For a given set of images the method tries to find the paramefahe tumor growth model which would minimize the value
of the functionC. e-ellipsoids is a simple way to understand the shape and #episéss of the minimization surface around
the minimum point. The construction of theellipsoids is as follows. For a given parameter estimagiooblem let us say the
estimated parametefg corresponds to an error value 6f. As a consequena@* is the minimum of the objective function
C for this problem. We first construct the quadratic approsioraof C' aroundp*

S0 PGl ), 7

whereg is the gradient vector an@' is the Hessian gb*. Sincep* is the minimum we know thag = 0. Moreover since the
point p* is the minimum ofC' the GG is a positive definite matrix. The construction of the quédrapproximation is done by
sampling the functior” and fitting a quadratic function by least square minimizatio

Once the quadratic approximation ©fis obtained we define theellipsoid as follows

P ={p|lC(p) = C* +¢}, (58)

where the sef is thee-ellipsoid andp is an arbitrary parameter set. SinGeis a positive definite matrix we are sure that
is a closed surface and for all the points remaining ingtle”(p) < C* + e.

Using thee-ellipsoid we enclose a set of parameter sets for which eacanpeter set produces an evolution of the tumor
delineation that is close to the optimum evolution created p¥. This means if the-ellipsoid is big for a problem then the
minimization surface is flatter therefore, it is harder tadfifie minimum point. Moreover, the directions of the semjana
and semi-minor axis of the ellipsoid provides us the couphetween different parameters.

C=C"+g'(p-p)+

E RELATIONSHIP BETWEEN¢-ELLIPSOIDS AND UNCERTAINTY ON TUMOR DELINEATIONS

The method presented in this work estimates the parameténs oeaction-diffusion tumor growth models using the tumo
delineations extracted from the patient MR images. Althouge do not focus on the segmentation algorithm in this work
(and we note once again that any segmentation algorithnddmeilused with the proposed method), we are interested in the
variability of tumor delineation extracted from the imag&he tumor boundaries either extracted by an expert manaalby
a segmentation algorithm automatically contains a cesaimability. This variability has been studied by Kaetsal. in [48].

In this work, they show that in the case of low-grade gliontas highest variability was seen between the delineationg do
by different experts. This inter-expert variability is sitoto be around 10% by volume overlap for the dataset they.used

In Section IlI-B2 we presented the overall variation of tistirmated parameters by showing the shape of the minimizatio
surface around the optimum parameters. In doing so we hawersthe extend of the basin around the optimum parameters
using thee-ellipsoids as explained in Appendix D. Here we show theti@iahip between the variability of input tumor
delineations and the-ellipsoids. We show that the variability of the estimatedfgmeters due to the uncertainty on the tumor
delineations is given by the-ellipsoids. First we start by proving the following claim.

Claim 1. LetT'g; andI'g> be two delineations of the same tumor in the same image @utaising different methods (same
expert different time, different experts, different megjo Then the optimum parameters obtained udirg remains within
the 252-ellipsoid around the optimum parameters obtained uding. And 6% = max (¢ (I're,T'r1), 0 (Cr1,Rre2)), Wherep

is defined in Equation 14.

Proof: Let I'g; andI'go be the simulated tumor delineations computed with the aptinparameteres obtained by using
I'r1 andT'gs respectively. Without loss of generality we assume fhat, I'r2, I's; andI'so are represented by the point
sets{z7}, {z5}, {y}'} and{y5} who have the same number of elemerits,
Let us also define the functions

yi(2]") = argyers, min|lz; —y|[*, 27" € Tr;

xi (2

j ) = argzery, Min ||xj - x||27 x;n € FRj

i Z ||x1

161\1

Then the distance df'so to ' iS given as
|2

From this distance we can write
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where the first step comes from the definitionyefz;) and the second step is an application of the triangle inégualsing
the fact thatl's, is the optimum simulation obtained usifig;» and placings?

1 i i 1 i 7
3 b= Eh)IP 0 < S e — ()| + 8

€M ic M
1 , ,
< = 3l - I + 6
iceM
1 ) )
< 3l w28,
iceM

where the second step again is derived from the definitiop; @f;) and the third step is another application of the triangle
inequality. As a result we see that

1 i i 1 i i
37 2 e =@l < 57 Y llat =y + 26 (59)
ieM €M
By definition of thee-ellipsoid given in Appendix D the Inequality 59 shows thaf, is in the 262-ellipsoid of I's;. [ |

Claim 1 shows us that when we ha¥e variability on one of the tumor delineations used in theneation of the reaction-
diffusion parameters using the proposed method then tleetedff this variability on the estimated parameters is aaotu
within the 26%-ellipsoid as the ones given in Section 111-B2.

The analysis given in [48] provides the inter-expert vaiigbin terms of volume overlap. The 10% variability on vohe
overlap corresponds to an average difference of 0.32 mmdeagtvdelineations for a tumor with 2 cm diameter. Based on
the Claim 1 we can say that the effect of this variability ipttaed within thee = 0.2 mm?2-ellipsoid around the optimum
parameters as presented in Figures 6(a) and (b).
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