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G. Dugas-Phocion�, M.A. González�, C. Lebrun�, S. Chanalet�, C. Bensa�, G. Malandain�, N. Ayache�

�INRIA, Projet Epidaure, 2004 Route des Lucioles BP 93, Sophia Antipolis, 06902 France
�CHU Pasteur, Service de Neurologie, 30 voie romaine BP 69, Nice, 06002 France

ABSTRACT

Automatic segmentation of multiple sclerosis lesions in mag-
netic resonance images remains a challenging task. In this
study, we present a fully automatic method to extract le-
sions from multi-sequence MRI (T1, T2, T2 FLAIR, Proton
Density) within an EM based probabilistic framework. The
method uses the available MRI sequences in a hierarchical,
orderly manner. First the T2 FLAIR sequence is used to
generate a segmentation of supra-tentorial lesions. Then T2
and T1 lesion loads are computed, providing an insight into
lesion structure. A priori anatomical knowledge is incorpo-
rated in the form of a probabilistic brain atlas.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is the primary comple-
mentary exam for the monitoring and diagnosis of multiple
sclerosis (MS) [1]. MS lesions exhibit hypersignals in T2
and hyposignals in T1, with respect to normal white matter
intensities. Typically, lesions appear smaller in T1 than T2,
reflecting their complex internal structure. T1 lesion load
has already been successfully correlated with the Expanded
Disability Status Scale (EDSS) using large sets of patients,
while there is little evidence of the clinical relevance of T2
lesion load [2]. In any case, an automatic segmentation sys-
tem that generates different quantifiers is useful for diagno-
sis and clinical trials [3].

Hyperintense signals in T2 images provide a good mea-
sure of the overall tissue injury [4]. However, since the in-
tensities of lesions and cerebro-spinal fluid (CSF) are close,
this may lead to misclassification. The T2 FLAIR sequence
offers good contrast between MS lesions and CSF [5]. Even
though it highlights supra-tentorial lesions mostly, it is known
that using this sequence increases sensitivity and specificity
for the case of MS lesion segmentation [6].

Existing multi-sequence MS lesion segmentation meth-
ods [7, 8, 9] give equal importance to the set of MRI se-
quences, which are employed all at once, ignoring their dif-
ferences. Instead, we propose a hierarchical method that
uses information in an orderly manner. We first consider
the four sequences – T1, T2, T2 FLAIR, Proton Density

– to build a mask of brain tissues, and segment them into
three classes : white matter, grey matter, CSF. The parame-
ters are then extracted to automatically compute a threshold
that we apply on the T2 FLAIR sequence to get a mask of
MS lesions. Finally, we can separate outliers from lesions
and use this mask to aid in the segmentation of T1 data and
the computation of lesion loads.

2. BRAIN TISSUE SEGMENTATION

The image database consists of 27 patients, each one con-
taining 4 sequences: T1, T2, T2 FLAIR, Proton Density.
We apply an intra-patient rigid registration of all sequences
so that a voxel represents the same point in the four im-
ages. To this end, we employ our iconic block-matching
based robust registration algorithm, implemented in a fully-
automatic program that performs the registration within the
range of the minute [10]. A statistical prior for healthy tis-
sue will be used in our probabilistic segmentation frame-
work, namely the Brainweb atlas from Montreal Neurolog-
ical Institute [11]. An affine registration of this atlas to each
dataset is computed, again using [10].

2.1. Brain Mask Extraction

In order to detect white matter lesions, we first separate
skull and fat from brain tissues. Our method is described
next; alternative techniques can be found in [12].

The MRI intensity signature of brain tissues shows some
dispersion due to normal anatomical variability: as an ex-
ample, the corpus callosum is known to be brighter than
hemispheric white matter in T2 images. These variations
are minor though, and considering three classes among brain
tissues is reasonable. MRI noise is known to follow a Rician
density, which can be fairly approximated by a Gaussian
distribution. We use an Expectation Maximization (EM) al-
gorithm [13] to compute the segmentation: we extract seven
classes from the four sequences, three of them being brain
tissues: white matter, grey matter, CSF.

The EM algorithm consists in iterating two steps: fuzzy
labelization of the image (Expectation step) and estimation



of the class parameters by maximizing the likelihood of the
whole image (Maximization step).

The labelization is the computation of the probability
of a tissue class given the image and the parameters. The
application of Bayes’ rule gives the solution of the problem,
summarized in equation 1. �� and �� are respectively the
label and the multi-spectral intensity of the voxel � ; Y is
the whole image and � is the set of parameters. ��� is the a
priori probability to get a label for the voxel �.
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��� is different whether a probabilistic atlas is available or
not. When no atlas is used, the prior does not depend on the
position � of the voxel and needs to be re-estimated at each
iteration. When the atlas is available, the spatially depen-
dent prior simply needs to be normalized so that the sum is
equal to 1.

The estimators that maximize the likelihood are the ML
estimators corresponding to the mean and covariance ma-
trix. As an approximation, we use the parameters of the last
iteration ������ when computing the parameters at itera-
tion 	. Both estimators are represented within equations 2
and 3 :
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Using the labelization of the brain tissues and mathe-

matical morphology, we extract a brain mask (Figure 1). In
some rare cases, the system fails to separate the eyes from
the brain. However, such problems can be detected using
the atlas, so the method remains automatic.

2.2. Healthy Brain Tissue Segmentation

The labelization and parameters of the three brain tissue
classes extracted from the algorithm above cannot be di-
rectly used as brain tissue segmentation: since there is no
spatial prior, some voxels within the skull and fat are mis-
classified. Furthermore, lesions within the segmentation
will be labeled as CSF or grey matter, which will alter the
computation of class parameters. That is the reason why the
segmentation of grey matter, white matter and CSF needs to
be computed again, but only within the previously extracted
brain mask.

Each class is still defined by a set of parameters – mean
and covariance matrix – and a fuzzy labelization that cor-
responds to the probability of each voxel to belong to the

Fig. 1. Input MRI : a) T2, b) Proton Density, c) T2 FLAIR,
d) T1 and e) the EM-generated brain mask.

class. The algorithm consists in iterating three steps: esti-
mate the labelization, compute the parameters by maximiz-
ing the likelihood of the overall image and estimate outliers.

The main difference between this algorithm and that
used to extract the mask is the addressing of outliers. In
the third step, potential outliers are detected and eliminated.
This detection is derived from the computation of the pa-
rameters during the Maximization step. The Mahalanobis
distance between each voxel intensity and each class is com-
puted in equation 4. If the distance is greater than a thresh-
old for the three classes, the corresponding voxel is labeled
as an outlier: it will not be used for the next step to estimate
the parameters.
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Fig. 2. Representation of the probability to belong to each
class : a) grey matter, b) white matter, c) CSF. While most
lesions are labeled as CSF, some of them are labeled as grey
matter.

The process of classifying the tissues takes less than a



minute on a regular computer, and results are shown in fig-
ure 2. Notice that the fuzzy segmentations are probability
maps corresponding to the three classes for each voxel, even
the ones marked as outliers. The latter voxels are labeled as
the best class possible, which is usually CSF for intense le-
sions, or grey matter for low-contrast lesions.

3. T2 FLAIR LESION EXTRACTION

Tissue parameters (mean and covariance matrix) for each
tissue class have been computed above. Since T2 FLAIR
offers a good contrast between lesions and CSF, and since
hyperintense signals represent the globality of the lesion,
we are only using this sequence to extract a primary lesion
mask. This segmentation in a single sequence becomes a
Mahalanobis threshold, which is computed from the class
parameters restricted to the T2 FLAIR sequence. Since the
number of dimensions has been reduced, the Mahalanobis
threshold needs to be adjusted according to the � rule. This
is why the threshold is not a simple projection on the T2
FLAIR axis (Figure 3).

We therefore compute the 1D-Mahalanobis distance to
the three classes, and take the upper threshold to separate
lesions from healthy tissues. The obtained threshold is in-
dependent of the intensity range of original images, since
the Mahalanobis distance acts like a intensity normalization
process. This method shows good results, as presented in
Figure 5.
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1 0.67449 1.64485 2.5783 3.29053
2 1.17741 2.14597 3.03485 3.71692
3 1.53817 2.50028 3.36821 4.03314
4 1.83213 2.78916 3.64372 4.29730

Fig. 3. Table giving the threshold over which, following the
� rule, a point will be labeled as an outlier. The number
of dimensions � is known, and so is the probability of false
positive � � �. We set � to 0.90, which means there is a
10% error to get a false positive. This corresponds to a Ma-
halanobis threshold of 2.74 using the four sequences, and
1.64 using only the T2 FLAIR sequence

A very sensitive Mahalanobis threshold was chosen, so
that no lesions were missed. Therefore, some of the labeled
voxels may be outliers, rather than true lesions. We have in-
cluded two different steps to differentiate the two. First, the
white matter atlas is used to check if those points are likely
to be located in the white matter; and second, we verify the
connectivity between lesions and white matter by clustering
the lesions and checking the neighboring voxels. This re-
sults in a good mask of lesions which can be used to extract
the different lesion loads (Figure 5.c).
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Fig. 4. T2 / T2 FLAIR joint histogram. The three ellipses
represent the iso-distance curve to each class : white matter
(white), grey matter (light grey), CSF (dark grey). The cor-
responding segment within each ellipse represents the confi-
dence interval for each class, with respect to the T2 FLAIR
sequence. The upper threshold is shown as a dot-dashed
line: the lesions are points over it.

Now that a first lesion mask has been computed, we pro-
ceed to compute the quantifiers that have a well-known clin-
ical meaning, namely lesion loads. The T2 FLAIR load can
be computed directly from the mask: it is the volume of the
voxels labeled as lesions.

4. COMPUTATION OF T1 LESION LOAD

The T1 load is computed next. T1 lesions are hyposignals
within the white matter, and they are a subset of T2 lesions.
Differences between T2 and T1 segmentations for a given
lesion can provide useful information about the structure of
the lesion. To extract T1 lesions, a two class EM on the T1
voxels corresponding to the previously obtained T2 lesion
mask is performed. The parameters are initialized to the
ones of white matter for the first class, and we simply half
the mean to initialize the second class, which will contain
T1 lesions. The resulting probabilities are thresholded to
obtain a binary classification, and T1 load is computed in a
similar way as for T2 (Figure 5.e,f).

5. CONCLUSION AND FUTURE WORK

We presented a novel MS lesion segmentation algorithm
that employs multi-sequence information in an orderly man-
ner. Thanks to contrast in the T2 FLAIR sequence, the sys-



Fig. 5. Final results : a) T2, b) T2 FLAIR, c) resulting
mask of T2 FLAIR lesions, d) T1, e) corresponding T1 le-
sion mask, and f) T1/T2 difference map.

tem does not miss small juxta-cortical lesions that are useful
for diagnosis. T1 lesion segmentation is accurate, because
the T2 FLAIR lesion mask acts as a powerful denoising tool.
Computation time, including registration, is in the order of
a few minutes, which will make the technique usable as a
diagnosis help tool.

Future work focuses on on-going validation studies, the
incorporation of knowledge particular to the physics of the
MRI sequences employed, the analysis of partial volume
effects to obtain sub-voxel accuracy [14] and the interpreta-
tion of the T1/T2 difference map as a tool for lesion charac-
terization.
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