
ED n°84 : Sciences et technologies de l'information et de la communication

N° attribué par la bibliothèque
| | | | | | | | | | |

THÈSE
pour obtenir le grade de

Docteur de l'École des Mines de Paris
Spécialité �Informatique temps réel, robotique et automatique�

présentée et soutenue publiquement par
María Jimena COSTA

le 14 mars 2008

Segmentation de Structures Anatomiques du Bas
Abdomen à l'aide de Surfaces Deformables 3D

Directeurs de thèse : Nicholas Ayache et Hervé Delingette
Equipe-Projet Asclepios, INRIA Sophia Antipolis

Jury

Jocelyne Troccaz, CNRS Rapporteur
Marinette Revenu, ENSICAEN Rapporteur
Jean�Pierre Gérard, C. Antoine Lacassagne Président
Hanna Kafrouni, Dosisoft Examinateur
Sebastien Novellas, Hôpital de l'Archet Invité
Pierre�Yves Bondiau, C. Antoine Lacassagne Invité



First they ignore you, then they laugh at you, then they �ght you, then you win.
� Mahatma Gandhi



Segmentation de Structures Anatomiques du Bas Abdomen à
l'aide de Surfaces Deformables 3D.

Abstract: Le principal objectif de cette thèse est la conception et la production
d'outils à destination des radiologues et onco�radiothérapeutes pour le contourage
des organes à risque dans le cadre du traitement par radiothérapie du cancer de la
prostate.
Les images testées sont des images CT. Elles sont d'abord placées dans un repère
commun à l'aide d'un recalage log-euclidien concentré sur les structures osseuses du
pelvis. Une suite progressive de traitements est ensuite appliquée: dans un premier
temps, la vessie est segmentée, puis la prostate est ensuite localisée paralellement à
la vessie, pour �nir avec l'intégration de le contourage du rectum.
Compte tenu de l'hétérogénéité des images de la base de données sur laquelle nous
avons travaillé, notre contribution principale est la �exibilité.
La vessie est une structure à forte variabilité en termes de forme et d'intensité, no-
tamment à cause du degré de remplissage et la présence ou l'absence d'un produit de
contraste. La méthode proposée s'adapte non seulement aux formes très di�érentes
des vessies de notre base de donnée, mais aussi au degré de replissage donnant lieu,
dans le cas ou un produit de contraste a été administré, une h'etérogénéité notable
dans la structure à segmenter.
Le contraste de la prostate avec les tissus environnants est quasi-nul; son interface
avec la vessie est souvent très di�cile à distinguer, même par les experts médi-
caux. L'incorporation d'informations anatomiques sur la forme et d'informations
images, couplée à une nouvelle contrainte d'interaction entre deux maillages, per-
met d'obtenir une bonne segmentation de la prostate et d'éliminer les ambiguités
au niveau de l'interface entre les deux structures.
L'incorportation du rectum est l'étape la plus délicate: les di�érences entre les pro-
tocoles d'acquisition de la base de données utilisée interdisent toute modélisation de
l'intérieur du rectum: présence de granités stercorales, insu�ation d'air, présence
d'un produit de contraste, présence d'une sonde etc. Les hypotheses faites sur les
tissus voisins du rectum ainsi qu'une nouvelle contrainte tubulaire couplée a une
pré-segmentation du squelette du rectum permettent d'obtenir un résultat probant.
La chaîne de traitement qui a conduit a l'élaboration de cette thèse est en cours
d'incorporation dans le logiciel Isogray produit par DOSIsoft, ce qui permet une
validation plus approfondie dans des conditions cliniques.

Mots clés: Segmentation, prostate, vessie, rectum, bas abdomen, recalage
non�rigide, radiothérapie.



Segmentation of Anatomical Structures of the Lower Abdomen
using 3D Deformable Surfaces.

Abstract: The main objective of this thesis is to provide radio�oncology special-
ists with automatic tools for delineating organs at risk of a patient undergoing a
radiotherapy treatment of prostate tumors.
In order to achieve this goal, we work with CT Scan images. The images are �rst
put in a common frame of reference by means of locally�a�ne registration based
on the pelvic bone structures. A progressive approach consisting of three stages is
then applied: the bladder is �rst delineated, the prostate is later included, and the
rectum segmentation is �nally integrated.
Given the highly heterogenous nature of the images in our database, our contribu-
tion for the segmentation process is centered on �exibility.
The bladder is a highly variable structure, both in terms of shape (�llings, compres-
sion by surrounding organs) and of intensity levels, the latter due to inhomogeneities
caused by the presence or absence (to various levels) of a contrast agent. We propose
a segmentation approach that is able to automatically adapt both to the shape and,
most remarkably, to the intensity variability.
The prostate shows no distinct "edge" in the image itself; its interface with the
bladder is often very di�cult (if not impossible) to discern, even for the trained
eye of medical experts. We have incorporated anatomical information and taken
the intensity similarities into account in our approach to contour this structure. An
original non�overlapping constraint optimizes the result in terms of image and shape
prior information, in order to avoid ambiguities in the delineation of the common
boundaries.
Finally, the rectum is incorporated in the segmentation. Di�erent acquisition pro-
tocols for the CT scans result in images containing rectums with very di�erent
characteristics in terms of shape and intensity (due to �lling level and nature, air
insu�ation, contrast agent, etc.). A �exible method that makes no assumptions
about the interior of the structure has been developped and thoroughly tested.
The developments that resulted from this thesis have been incorporated to the
Isogray software by DOSIsoft, allowing further validation in clinical conditions.

Keywords: Segmentation, prostate, bladder, rectum, lower abdomen, non
rigid registration, radiotherapy.
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1.1 Context
The volume of medical images that is produced has known a continuous growth for
several years. Images are now a part of the clinical practice routine, and the use of
three�dimensional data has become increasingly frequent, demanding in turn faster
and more accurate ways for process them.

Most of the acquisition modalities for medical images are capable of producing
3D output, be it X�rays (CT), magnetic resonance (MRI), ultrasound (echography)
or nuclear imaging (PET).

Three�dimensional images are often produced as a sequence of 2D slices, but
the volume is not sampled at the same frequency in the three dimensions. In fact,
the medical expert is confronted to a series of slices that he must mentally stack to
reconstruct a volumetric representation of the observed data. This reconstruction
is therefore subjective. Furthermore, manually performed image processing slice by
slice entails a partial loss of information, since the third dimension is often neglected.

In order to automatically interpret medical images to aid in the diagnosis and/or
geometrical modelisation of the anatomical structures, these structures must be
isolated or segmented from the image. Given the amount of information that must
be processed in 3D images to this end, it is essential to automate this task as much
as possible.

This is particularly evident in the case of medical treatments that are adminis-
tered through several sessions, and that require one or more images of the patient's
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2 Chapter 1. Introduction

anatomy to be processed each time. Radiation therapy and, in particular, three�
dimensional conformal radiotherapy (denoted 3D�CRT in this manuscript) are �a-
grant examples, since they involve a series of daily treatments to accurately deliver
radiation to the a�ected structures. Before each treatment, a CT scan allows the
radiation oncologist to check the location and possible extension of a tumor and
adjust the radiotherapy dose to the target location as precisely as possible. Tailor-
ing each of the radiation beams to accurately focus on the tumor allows doctors to
target the diseased tissue while keeping radiation away from healthy nearby organs
(organs at risk).

The prostate is the tumor site that has generated the greatest attention for 3D�
CRT, largely due to its dose�response relationship, the close proximity of sensitive,
dose limiting normal structures (bladder, rectum), and the high prevalence of the
disease.

Since the structure(s) to be irradiated must be contoured or segmented as fast
and as accurately as possible each time, the task becomes hardly manageable without
the aid of an automatic tool.

1.2 Image Segmentation
Image segmentation, or the isolation of visible structures by the delimitation of
their contours, is one of the main challenges in image analysis. In three�dimensional
medical imaging, automatic segmentation becomes indispensable given the amount
of data to be exploited.

The spectrum of di�erent approaches that have been proposed to solve this
problem automatically is quite broad. The segmentation task becomes even more
di�cult due to the sometimes mediocre quality of the images, as well as the varying
contrast that may help or hinder a clear distinction of the di�erent structures'
frontiers.

Segmentation approaches may be roughly divided into two categories:

� Direct approaches extract the pertinent information from the image alone,
while

� Model approaches make use of a model of the image or of the sought data
itself.

The direct approach consists on the application of operations that concern the
image intensities. Examples of this include thresholding techniques, mathematical
morphology and region growing approaches. These operations lead to a series of
transformations of the image, but they do not allow for the interpretation or the
modelisation of the information contained in them. Isosurface extraction does, how-
ever, render a geometrical reconstruction of the di�erent structures, but it needs
highly contrasted or even previously segmented images.

Based on the knowledge available about the data to be treated, the model ap-
proach introduces in the segmentation process some a priori information about the
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target. This information may include the shape, regularity, texture and environment
of the sought structures.

A further distinction can be made between geometric models and image models.
Geometric models include deformable models, while image models include, among
others, Markov �elds and Bayesian processes.

1.3 Deformable Models
Deformable models are objects that are capable of evolving in such a way as to
contour or correspond to the data that is being processed. A model comprises a geo-
metric representation and a law of evolution that guides its deformation. Deformable
models are often represented by surfaces that model the border of one or many tar-
get structures. In a 2D image, it is often a contour, like the well�known "snakes"
([Kass 1988]), while in 3D images, models are often surfaces ([Terzopoulos 1988]).
The evolution law is based on the establishment of correspondences between the
surface and characteristic points extracted from the image.

In the presence of noisy data containing outlier points, the introduction of a
model in the image segmentation process becomes key for the implementation of
a reliable method that can be independent of human interaction. Medical image
processing might become particularly di�cult depending on the acquisition modal-
ities and protocols involved. It is therefore important to introduce prior knowledge
about the target structures. Deformable models allow for the introduction of such
knowledge about the target object's shape as well as many other informations such
as statistical variability, structure intensity information, etc. They can produce a
direct geometric representation of the segmented objects.

In three dimensions, their surface representation is particularly adapted to the
visualisation of the objects that they model (see Figure 1.1), which is one of the
�rst requirements of medical experts. The fast development and availability, with
decreasing cost, of specialized processors in the processing of graphic primitives al-
lows for the construction of visualization tools that are both fast and accessible.
Furthermore, several image processing methods including Computed Aided Diag-
nosis (C.A.D.) or surgery simulation rely on the interpretation of quantitative data
extracted from images.

Several factors may render the process of segmentation and geometrical recon-
struction of anatomical structures in medical images di�cult, including image qual-
ity, and both the variability and complexity of the target structures. Image artifacts
generated during the image acquisition process, low contrast and partial volume ef-
fects make the data even more di�cult to interpret and cause discontinuities in the
observed organ contours. Surface deformable models are therefore adapted to this
problem, since they reinforce spatial coherency and directly provide a geometrical
model of the segmented structures.

Many deformable surface representations have been proposed for model�based
segmentation of medical images ([McInerney 1996]). In particular, Simplex Meshes
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Figure 1.1: The surface representation of deformable models is useful for visualisa-
tion of the modeled objects [Montagnat 1999a].

(Figure 1.2) are discrete model representations (set of vertices and edges) with pre-
scribed vertex connectivity. They are curves or surfaces that evolve in a 2D or 3D
space to get to delimit an anatomical (or pathological) structure.

Figure 1.2: A triangular mesh (left) and a dual simplex mesh (right)
[Montagnat 1999a].

To encode the structure surfaces, 2�simplex meshes are used: each vertex is then
connected to exactly three neighbors. This inherent geometric simplicity allows for
a simple approximation of the mean curvature, and greatly eases the imposition
of constraints to bias the segmentation process. J. Montagnat and H. Delingette
propose in [Delingette 2001] a way to combine global and local deformations in a
hierarchical manner in order to improve robustness. Additionally, "zones" (subsets
of vertices with their associated edges) can be de�ned on a simplex mesh to further
adapt the constraints. This is very useful for the segmentation of structures with
non�homogenous intensities.

We have focused on devising a segmentation system where maximum use is made
of the available medical expertise, concerning the shape of the structures, their
appearence, etc. The desirable characteristics of the models and the constraints
imposed by the variability of the target structures in our image database motivated
us to choose, among existing deformable models, simplex meshes to represent the
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organs to be segmented.

1.4 Objective
In this manuscript, we study the application of discrete deformable models to the
segmentation of lower abdomen structures in 3D CT scans in the context of radio-
therapy treatment planning.

We propose a segmentation algorithm and demonstrate its application to our
motivating problem: the segmentation of the prostate, as well as adjacent radiation�
sensitive organs (e.g., the bladder and the rectum) from 3D CT imagery, for the
purpose of aiding the radiotherapy dose planning process (see Figure 1.3).

Figure 1.3: 3D view of bladder (green), prostate (red) and rectum(blue) deformable
models in a CT image of the lower abdomen of a male patient.

Typically, a patient undergoing radiation therapy is treated on thirty to forty
separate occasions, and the goal of the therapy is to reliably irradiate the same tissue
at each session by localizing the organs of interest immediately before treatment.
This is a di�cult problem, since the shape and appearance of the prostate are
in�uenced by the position, shape and appearance of the bladder and rectum, and
the latter can change quite dramatically from day to day.

Manual segmentation of these structures has been attempted and is still widely
performed nowadays; however, it su�ers from many drawbacks. Among them, we
highlight the time factor (a radiation oncologist can take 20 minutes to outline the
prostate alone, while treatment sessions are typically scheduled in half�hour slots),
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and inter�expert as well as intra�expert variability (interslice inconsistencies and
bumps). Hence, an e�cient and accurate computer vision method for automatically
estimating the organ outlines in the daily CT images, using a patient�speci�c model
and preservind 3D smoothness, would be of enormous bene�t to the radiotherapy
planning process.

Several more automated approaches have been proposed to solve the segmenta-
tion problem in the context of radiotherapy planning, whose advantages and dis-
advantages will be discussed in chapter 3. Most of these methods choose to make
assumptions about the shape and/or the appearance of the target organs in the
images, which limits their applicability to a certain patient preparation routine
(contrast agent, probe, air insu�ation, etc.) or to a subset of images generated at
a particular treatment center.

In the presence of such heterogenous characteristics, and much to the contrary
of other proposed approaches, we have chosen to privilege adaptability in our
segmentation method. Our goal is to automatically adjust to di�erent protocols,
contrasts, shapes and intensities with little or no assumptions that would limit the
applicability of the approach.

1.4.1 Outline

We initiate the segmentation process by putting the images in a common frame of
reference. This is achieved through non�rigid registration that is not biased by the
characteristics of the target structures.

Since no rigid assumptions concerning the bladder's shape or intensity are made,
a characterization and subsequent approximation of the structure in each image is
obtained by means of mathematical morphology tools. This characterization serves
to adapt and guide a deformable model that will perform the segmentation.

As will be shown in this manuscript, the shape of the bladder in�uences that of
the neighboring prostate. The lack of contrast makes the latter hard to distinguish,
making its interface with the bladder often unclear. Their intensity similarity brings
forward the need of further information, such as a shape prior, which is introduced as
a factor in the deformation of a prostate model. Unnatural overlaps that may occur
between the bladder and prostate models are handled through a non�overlapping
constraint, and the common frontier of the two structures is established through the
coupled deformation of the models. The non�overlapping constraint has been for-
mulated to adapt to di�erent shapes and contrast (in�)homogeneities in the shared
border.

The rectum presents further challenges. The variable (and temporary) nature
of its �llings renders any assumption concerning its appearance either inaccurate or
overly�speci�c throughout treatment sessions. We have therefore chosen to approach
its segmentation by isolation from its surrounding structures.

In this manuscript, our method for the segmentation of the bladder, prostate
and rectum will be presented as follows:
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� Chapter 2 describes the medical background concerning the radiation therapy
planning in general, and more speci�cally in the case of prostate cancer.

� Chapter 3 is an overview of several methods proposed in the literature to
address the challenge of prostate, bladder and rectum segmentation.

� Chapter 4 focuses solely on the segmentation of the bladder, with its possible
intensity inhomogeneities, together with its application to our image database
and the subsequent results. A new approach is proposed to �rst characterize
and approximate the structure in terms of shape and appearance. A novel force
that guides the deformation of a 3D simplex mesh so as to enforce intensity
homogeneity in each zone is then developped.

� Chapter 5 details the prostate segmentation and its coupling with that of
the bladder, including overlap control. A shape constraint is applied to a 3D
deformable model of the prostate, and a specially devised, adaptable non�
overlapping constraint helps establish a reasonable interface between the two
organs. The evaluation and results of the method are also presented in this
chapter.

� In chapter 6, a novel segmentation method for the rectum by means of struc-
ture isolation is proposed. To this end, the computed bladder and prostate
segmentations are taken into account, and other surrounding structures are
also eliminated from the images. A 3D deformable model incorporating a
speci�cally designed tubular constraint re�nes and completes the segmenta-
tion. No assumption is made about the interior of the rectum, which, given its
high intensity variability, allows for a broad applicability of the method to CT
images acquired under di�erent protocols and previous patient preparations.

� Conclusions that have been drawn will be presented in chapter 7.

1.5 Contributions of our work
Given the highly heterogenous nature of the images in our database, our contribu-
tion for the segmentation process is centered around adaptability, to both shape
and intensity variability.
The bladder is a highly variable structure, both in terms of shape (�llings, compres-
sion by surrounding organs) and of intensity levels, the latter due to inhomogeneities
caused by the presence or absence (to various levels) of a contrast agent. We propose
a segmentation approach that is able to automatically adapt both to the shape and,
most remarkably, to the intensity variability.
The prostate shows no distinct "edge" in the image itself; its interface with the
bladder is often very di�cult (if not impossible) to discern, even for the trained
eye of medical experts. We have incorporated anatomical information and taken
the intensity similarities into account in our approach to contour this structure. A
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novel non�overlapping constraint optimizes the result in terms of image and shape
prior information, in order to avoid ambiguities in the delineation of the common
boundaries.
Finally, a rectum model is incorporated in the segmentation. Di�erent acquisition
protocols for the CT scans result in images containing rectums with very di�erent
characteristics in terms of shape and intensity (due to �lling level and nature, air
insu�ation, contrast agent, etc.). A �exible method that makes no assumptions
about the interior of the structure has been developped and thoroughly tested.

1.6 Publications
The work developed in this thesis has been the subject of several publications
[Costa 2005, Commowick 2006, Costa 2007b, Costa 2007a, Commowick 2008].

1.7 Applications
The work described in this article was performed in the framework of the European
Integrated Project MAESTRO (Methods and Advanced Equipment for Simulation
and Treatment in Radio Oncology), which is granted by the European Commis-
sion. The developments that resulted from this thesis have been incorporated to the
Isogray software by DOSIsoft, allowing further validation in clinical conditions.
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We begin with some notions pertaining to anatomical and medical background of
our work. Speci�cally, prostate cancer and several treatment possibilities, including
radiation therapy, are described in sections 2.2 through 2.4. We close this chap-
ter by explaining the motivations behind some crucial choices that we have made
throughtout our work.

9



10 Chapter 2. Medical Context

2.1 Anatomy of the male lower abdomen
The prostate is a gland about the size and shape of a walnut that sits under the
bladder and in front of the rectum (see Figure 2.1). The urethra, the narrow tube
that runs the length of the penis and that carries both urine and semen out of the
body, runs directly through the prostate.

Figure 2.1: Anatomy of male lower abdomen.

The prostate produces the semen in which sperm travel. During orgasm, semen
mixes with nutrients from the seminal vesicles and sperm produced by the testicles
(testes). The semen then exits the body through the urethra. Testicles also produce
testosterone (the main male hormone), which a�ects how the prostate functions.

After the kidneys �lter out waste products from the blood, the resultant urine is
stored in the bladder. Under normal circumstances, the urinary sphincters, bands
of muscle tissue at the base of the bladder and at the base of the prostate, remain
tightly shut until they are relaxed during urination.

Just above the prostate are the seminal vesicles, two glands that secrete about
60% of the substances that makes up semen.

Finally, behind the prostate and the bladder is the rectum, the lower end of the
bowel just above the anal sphincter. Solid waste that is �ltered out of the body
moves slowly down the intestines, and, under normal circumstances, the resultant
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stool is excreted through the anus following conscious relaxation of the sphincter.

2.2 Prostate Cancer
Inside the prostate, groups of cells may form benign or malignant tumors. These
tumors may cause symptoms. In some cases, cancerous cells may form within the
prostate but grow too slowly to cause problems. In other cases, cancerous tumors
may grow inside the prostate, then spread.

� Noncancerous growths. These may grow inside the prostate as a man ages.
This condition is called benign prostatic hyperplasia (BPH). These growths
often squeeze the urethra, causing symptoms such as di�culty urinating.

� Precancerous cells. These cells don't appear normal, but they don't present
all the characteristics of cancerous cells. They can't be felt during a physical
exam and they don't produce symptoms.

� Cancerous tumors. These form most often in the prostate's outer tissue. Can-
cer cells may stay inside the prostate. Or they may spread to nearby organs
and tissues, such as the bladder and seminal vesicles (local spread), or to the
lymph nodes near the prostate (regional spread). Cancer cells can also spread
through the bloodstream to more distant structures such as the bones (distant
metastasis). Many early�stage tumors don't squeeze the urethra, so they may
not cause symptoms. In some cases, tumors can be felt during an exam.

2.2.1 Facts About Prostate Cancer
Prostate cancer is the second most frequently diagnosed cancer in men, with 782,600
new cases projected to occur in 2007. Nearly three-quarters of these cases are
expected to be diagnosed in economically developed countries. Incidence rates of
prostate cancer vary by more than 50-fold worldwide (�gure 2.2).

With an estimated 254,000 deaths in 2007, prostate cancer is the sixth leading
cause of cancer death in men [Society 2007].

In France, prostate cancer is the most frequent cancer among men over 50 years
old. In 2000 it represented 25% of the new cases of cancer in men. It is estimated
that one french man out of eight will have prostate cancer during the course of his
life [Grosclaude 1998], [Jemal 2002]. Facts about prostate cancer, together with its
detection and treatment are also discussed in [Bondiau 2004].

2.2.2 Diagnosing Prostate Cancer
2.2.2.1 Initial Screening
Prostate cancer is most often found through a blood test measuring the amount
of prostate speci�c antigen (PSA) in the body. Most men diagnosed with prostate
cancer have no symptoms and only �nd their cancer due to screening.
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Figure 2.2: International variation in age�standardized prostate cancer incidence
rates [Society 2007].

Initial screening for prostate cancer consists of a digital rectal exam (DRE) and
a prostate speci�c antigen (PSA) test.

If either of these tests raise concerns, the doctor may perform a transrectal
ultrasound (TRUS) to study the patient's prostate more closely. During this test,
a small, cigar sized probe is inserted into the patient's rectum and sound waves are
used to get views of the prostate gland.

2.2.2.2 Further Evaluation

If initial screening and examination suggest prostate cancer, the healthcare profes-
sional may order a prostate biopsy. During a biopsy, small tissue samples are taken
and analyzed at a lab to determine if cancer cells are present. If biopsies indicate
the need for further testing to determine the spread of the cancer, one or several
tests may be ordered. These include:

� CT scans can show swollen lymph nodes or abnormalities in organs.

� Ultrasound of surrounding tissues may be performed to show if cancer
may have spread to the nearby tissue.

� MRI can help look for evidence of the spread of prostate cancer to other
tissues.

� Bone scans or bone scintigraphy are used to determine if the cancer has
spread to the bones.

� Lymph node biopsy. One or several lymph nodes near the prostate are
removed and examined for cancerous cells.
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2.2.2.3 Result Analysis

Based on the results of testing, the oncologist determines the proper course of action
through di�erent steps:

� Tumor Grading The cancerous cells are studied to determine how aggessive
they are. The samples are studied and compared with healthy prostate cells.
The more di�erence that is found, the more aggressive the cancer cells tend
to be.

� Gleason Scoring Biopsy samples are examined under a microscope by a
pathologist to look for groups of cells making up tissue that is markedly dif-
ferent from healthy prostate tissue. The more di�erent this tissue looks, the
more likely the chance that it is malignant and will become aggressive and
metastasize. The study involves two tissue samples for di�erent areas of the
tumor and gives each sample a score from one to �ve. The higher the num-
ber, the more abnormal the sample. The pathologist adds those two numbers
together for that tumor to give it a number known as the "Gleason Score".
A Gleason score of 2�4 (well di�erentiated) means that the tissue is mildly
aggressive; a score of 5 to 7 indicates that the cancer is moderately aggres-
sive. A score of 8�10 shows a very aggressive tissue. Pathologists use the
term "di�erentiation" to describe how normal a cancer cell is. If a cell is well
di�erentiated, it is quite normal. A poorly di�erentiated cell suggests that the
tumor will be very aggressive and require quick and aggressive treatment.

� Staging is used to classify how far the cancer has spread. Cancer is assigned
to one of four stages:
* Stage I: Early cancer that is con�ned to a microscopic area and is too small
to feel when palpated.

* Stage II: The doctor can palpate the tumor, but it is con�ned only to the
prostate gland.

* Stage III: The cancer has spread to nearby tissues.

* Stage IV: The cancer has spread to the lymph nodes, bones, lungs or other
areas distant from the original tumor.

� PSA Test This test measures the amount of prostate speci�c antigen (PSA)
in the blood. A rising trend in PSA test results over a period of time combined
with other �ndings, such as an abnormal digital rectal exam, positive prostate
biopsy results, or abnormal CT (computed tomography) scan results, may
lead to a recommendation for further treatment. The National Comprehensive
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Cancer Network (NCCN) Clinical Practice Guidelines in Oncology for Prostate
Cancer [National Comprehensive Cancer Network 2007], proposes additional
treatments that may be indicated based on the patient's PSA test results.

Based on this analysis, the medical expert will decide on the best treatment for
the patient.

2.3 Prostate Cancer Treatment
Options for dealing with prostate cancer include:

� Surgery (section 2.3.1).

� Radiotherapy (section 2.3.2).

� Prostate brachytherapy (section 2.3.3).

� Hormone therapy (section 2.3.4).

� Cryotherapy (section 2.3.5).

Sometimes a combination of treatments is best, such as surgery followed by
external beam radiation.

2.3.1 Surgery
Radical prostatectomy is an operation to remove the prostate gland and some of
the tissue around it. This operation may be done by open surgery or by laparoscopic
surgery through small incisions.

In open surgery, the surgeon uses an incision to reach the prostate gland. When
the incision is made in the lower belly, it is called the retropubic approach. A
radical prostatectomy using the retropubic approach is the most common treatment
for prostate cancer. In this procedure, the surgeon may also remove lymph nodes
in the area so that they can be tested for cancer. When the incision is made in
the groin, it is called the perineal approach. The recovery time after this surgery
may be shorter than with the retropubic approach. If the surgeon wants to remove
lymph nodes for testing, he must make a separate incision. If the lymph nodes are
believed to be free of cancer based on the grade of the cancer and results of the PSA
test, the surgeon may skip the lymph node removal.

For laparoscopic surgery, the surgeon makes several small incisions in the belly. A
lighted viewing instrument called a laparoscope is inserted into one of the incisions.
The surgeon uses special instruments to reach and remove the prostate through the
other incisions.

The main goal of either type of surgery is to remove all the cancer. Sometimes
that means removing the prostate as well as the tissues around it. Some tumors can
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be removed using a nerve�sparing technique, which means carefully cutting around
those nerves to leave them intact.

Risks and complications of radical prostatectomy include:

� Excessive bleeding, the most common surgical complication, is usually the
result of a blood vessel being injured during the operation.

� Bladder neck contracture, usually the result of scar tissue encircling and nar-
rowing the bladder neck, causes a dribbling urinary stream. In a recent study
of over 1000 men who had undergone radical prostatectomy, 2.8 percent re-
ported persistent di�culty with bladder neck contracture.1 Outpatient surgery
performed with a cystoscope can relax the contracture.

� Damage to rectum or ureters is rare and can usually be repaired during surgery.

� Blood clots, due to sluggish blood �ow in the legs, are another rare occurrence
with prostate surgery. During recovery, compression stockings help maintain a
continuous blood �ow in the legs. Walking after surgery is another important
way to pump blood from the legs to the heart.

� Death is a risk of all surgery involving anesthesia, but an extremely rare oc-
currence in radical prostatectomy.

2.3.2 Radiotherapy
Radiation therapy uses controlled high�energy rays to treat malignant tumors. One
of the main e�ects of radiation is the damage of DNA cells, making them unable to
divide and reproduce, or simply die. Cancer cells are more sensitive to radiation be-
cause they divide more quickly than normal cells. Normal cells can also be damaged
by radiation, but they can repair themselves more e�ectively.

The goal of radiation therapy is to maximize the dose to abnormal cells while
minimizing exposure to normal cells (Figure 2.3). The e�ects of radiation are not
immediate; the treatment bene�t occurs over time. Typically, more aggressive tu-
mors, whose cells divide rapidly, respond more quickly to radiation.

However, there is no gain in simply increasing the total radiation dose, since
increased tumour control coupled with an equally increased complication rate yields
no better therapeutic margin. The goal is to increase tumour control without in-
creasing normal�tissue injury. It is radiation injury in normal tissues that limits
the dose that can be delivered to tumors, even with the best physical 3D dose
distributions.

Smaller doses per fraction (and therefore more of them) has been found to spare
late complications for the same acute response and tumour e�ect. Using smaller
doses enables higher total doses to be delivered, without increasing undesired side�
e�ects.

Radiation is given with the intent of destroying the tumor and curing the disease
(curative treatment). However, not all disease or cancer can be cured with radiation.
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Figure 2.3: 3D view of a radiotherapy prostate treatment displaying 5 �eld beam
arrangement and resultant dose distribution.

Sometimes radiation is used to prevent tumors from developing or spreading (pro-
phylactic treatment, after surgery). Radiation may be used alone or in combination
with other treatments such as surgery, chemotherapy or immunotherapy. If used
before surgery, radiation will shrink the tumor to make it easier to remove. If used
after surgery, radiation will destroy tumor cells that may have been left behind.

Further details about radiotherapy are given are given in section 2.4.
Risks of radiation therapy include:

� Urinary side e�ects: An increased urgency to urinate and/or a stinging sensa-
tion when urinating. These side e�ects can be alleviated by medication. Only
rarely do more serious problems like urinary retention occur which might ne-
cessitate the temporary use of a catheter. A very small minority might expe-
rience more serious problems like urinary retention, blood in the urine and so
on. This minority may require major medical intervention to deal with their
problems.

� Rectal side e�ects: Rectal discomfort or a tendency to diarrhoea, abdominal
pains or rectal bleeding. The occurrence of rectal bleeding is certainly a func-
tion of the dose and treatment at 80 Gy or thereabouts is likely to lead to
about a doubling of rectal bleeding cases compared to 70 Gy treatments but
the incidence is still reasonably low. Nevertheless, it does emphasise the in-
creasing importance of more accurate targeting methods like IMRT at higher
doses.
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2.3.3 Prostate Brachytherapy
Brachytherapy is a minimally invasive procedure where the radiation oncologist
implants tiny permanent radioactive seeds (about the size of a grain of rice) into
the prostate where they irradiate the cancer from inside the gland. The implanted
seeds are small enough that they will not be felt by the patient. Depending on the
patient's circumstances, either radioactive Iodine (I�125) or palladium (Pd�103) will
be used. Brachytherapy is also referred to as interstitial radiation therapy or seed
implant therapy.

Figure 2.4: Needles containing the seeds are inserted through the skin using ul-
trasound guidance. A posterior x�ray of the patient shows the disposition of the
implanted seeds (right handside).

Before the seeds are implanted, the patient receives anesthesia. Needles contain-
ing the seeds are then inserted through the skin of the perineum (the area between
the scrotum and anus) using ultrasound guidance, as can be seen in Figure 2.4.
The seeds remain in the prostate, where the radioactive material gives o� localized
radiation for a number of months to destroy the prostate cancer.

Seed implantation is an e�ective treatment for men with localized prostate
cancer. It requires no surgical incision and o�ers patients a short recovery time.
Brachytherapy can be an outpatient procedure, and most men go home the same
day as their treatment. Additionally, most men can return to their normal activities
a few days after treatment

Depending on the type of cancer, prostate brachytherapy may be combined with
external beam radiation therapy.

2.3.4 Hormone Therapy
All prostate cells are stimulated by the male hormone called testosterone. Some
types of prostate cancer cells actually require high doses of this hormone. By elim-
inating testosterone, hormonal therapy can temporarily slow down the growth of
the prostate cancer cells but not stop it. The testicles produce 95% of a man's
testosterone.

There are three basic methods of hormonal deprivation therapy:
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� Orchiectomy, a surgical procedure to remove the testicles.

� LHRH therapy administers "luteinizing hormone-releasing hormone," or LHRH
analogs. Usually taken orally by the patient, LHRH prevents the testicles from
producing male hormone. The therapy saves the testicles and works as well
as surgical castration.

� Combined androgen blockage orally administers the female hormone estrogen
(or other substance) to stop the testicles from producing the male hormone.

2.3.5 Cryotherapy
The goal of cryotherapy is to eradicate prostate cancer by freezing the prostate gland.
After receiving anesthesia, the doctor inserts needles into the prostate gland through
the perineum, the area between the scrotum and anus. The needles produce very
cold temperatures. Freezing destroys the entire prostate, including any cancerous
tissue within it.

Cryotherapy uses ultra�thin needles to produce ice balls of extreme sub-zero tem-
peratures. The doctor uses ultrasound to accurately guide insertion of the needles,
precisely control the size and shape of the ice balls and monitor the freezing.

2.4 Radiation Therapy
2.4.1 Principles of radiation therapy
All types of radiation therapy follow these general principles:

1. Precisely locate the target

2. Shape the radiation beam to the target

3. Hold the target in place

4. Accurately aim the radiation beam

5. Deliver a radiation dose that damages abnormal cells yet spares normal cells

2.4.1.1 Precisely locate the target

Any tumor, lesion or malformation to be treated with radiation is called a target.
When locating a target, the doctor needs to know several things: its location in
the body, its size and shape, and how close it is to important organs and structures
(organs at risk). Diagnostic scans such as computerized tomography (CT) and
magnetic resonance imaging (MRI) have greatly improved over the years, allowing
doctors to locate tumors and diseases earlier, when they are smaller. Also, positron
emission tomography (PET) and functional MRI (fMRI) scans provide information
about the function of critical areas next to the target.
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Determining the exact location and border of a target within normal tissue is not
always clear on diagnostic scans. Radiation oncologists can use a technique called
stereotaxis to precisely locate targets, especially small deep ones. Stereotactic means
to locate a structure by use of three dimensional coordinates (x, y, and z axis). First,
a stereotactic head or body frame is attached over the target area. Next, a CT or
MRI scan is taken and interpreted by computer software. The stereotactic frame
shows up on the scan and helps the doctor pinpoint the exact location of the target
(Figure 2.5). In some cases, stereotactic localization is performed using internal
landmarks, such as bones, and a frame is not necessary.

Figure 2.5: The stereotactic frame serves as a reference on the MRI scan allowing
the doctor pinpoint the exact location of the target.

2.4.1.2 Shape the radiation beam
It is crucial that the radiation dose is delivered only to the target. Shaping the beam
to match the target minimizes exposure to normal tissue. The problem is that most
tumors are irregularly shaped and most radiation beams are round. Beams can be
shaped using treatment planning software and hardware.

Treatment planning software High-end computers and software are used to
plan the treatment so that all beams meet at a central point within the target,
where they add up to a very high dose of radiation. The software uses the patient's
CT or MRI images to form a 3D view of his anatomy and the target (Fig. 5). The
radiation oncologist uses di�erent settings in the software to create a �nal radiation
prescription adapted to each patient. The prescription includes:

� correct radiation dose of each beam (measured in rads or Gy)

� correct size and shape of the beams

� number and angle of treatment arcs
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� number of treatment sessions

Hardware . Radiation beams can be shaped by attaching blocks or collimators
to the radiation machine to block a portion of the beam. The goal is to shape the
beam to the exact contour of the tumor and minimize exposure to normal tissue.
Block devices shape the beam in a linear fashion and are only able to squarely shape
the beam (Figure 2.6). Collimator devices are able to shape the beam into circular
or elliptical shapes (Figure 2.7). Multileaf collimators can focus and shape the beam
in in�nite ways and are the most precise method at this time (Figures 2.8 and 2.9).

Figure 2.6: Conventional radiotherapy delivers a radiation beam along a single
treatment arc. It uses blocks to shape the radiation beam in a square-edged fashion.

2.4.1.3 Hold the target in place
Once the target is located, the radiation oncologist must hold the body as still as
possible to accurately aim the radiation only at the target and to avoid healthy
tissue. This is especially di�cult in areas that are normally moving, such as the
lungs and abdominal organs. Immobilization is also important for smaller targets,
because a slight shift in position can move the target out of the radiation beam's
path. Immobilization devices are used to prevent movement and secure the body
area to the treatment table. These devices include molds, masks and stereotactic
head or body frames (Figure 2.10). Molds and masks are custom-made from plastic
to �t the patient's body exactly and are used during each treatment.

2.4.1.4 Accurately aim the radiation
Multiple radiation beams are aimed so that they all focus at a central point within
the target, where they add up to a high dose of radiation. In order to accurately
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Figure 2.7: 3D conformal radiotherapy delivers radiation beams in multiple arcs at
various angles. It uses collimators to shape each radiation beam in an elliptical-
shaped fashion to conform the dose to the tumor (orange).

Figure 2.8: Intensity modulated radiotherapy (IMRT) delivers radiation beams in
multiple arcs, similar to 3D conformal. It uses sophisticated inverse planning soft-
ware and multileaf collimators to both shape the radiation beam and change the
intensity within each beam to deliver the optimum dose.
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Figure 2.9: A dosimetry comparison between a 3�beam conventional 2D treatment
(left), a 6�beam 3D conformal radiation treatment (center), and a 7�beam intensity
modulated radiotherapy (IMRT) treatment. The Planning Target Volume (PTV)
is represented by the solid red line. A better dose conformity to the PTV can be
achieved in the IMRT treatment.

Figure 2.10: Immobilization devices: stereotactic frame used for treatments of the
brain, head and neck (left) and body cradle for treatments of the lower abdomen
(center and right). Credit to http://www.medint.de/43.0.html.
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deliver radiation, both the patient and the machine must be correctly aligned with
each other.

� Patient Alignment Depending on the body area to be treated, di�erent tech-
niques may be used to position the patient's body, including: skin markers,
laser lights and x-ray positioners. Laser lights are used to make sure the patient
is level and straight on the table. X-ray positioners take stereoscopic x-rays
of the patient's anatomy and match them to the position in the treatment
plan images (Figure 2.11). The Electronic Portal Imaging Device (EPID) has
become an important tool for the clinician to verify the shape and the location
of the therapy beam with respect to the patient's anatomy. The device uses
the high energy treatment beam to project the body interior of the patient
onto a �uorescent screen that is scanned by a camera. A treatment simulation
takes place as a result of which a simulator image is captured. The EPI allows
a veri�cation of patient position relative to bony structures.

� Machine Alignment Several types of machines used to create a radiation beam
and aim it at the target. Each machine o�ers a di�erent level of accuracy and
ability to deliver various radiation techniques to treat the target.

Figure 2.11: Using radio�opaque skin markers, the patient's anatomy is matched to
the position in the treatment planning software to verify correct positioning.

A Linear Accelerator (LINAC, �gure 2.12), is the most common type of ra-
diation machine. It accelerates electrons using a specialized high�powered vacuum
tube (magnetron or klystron) and a complex bending magnet arrangement which
produces a beam of between 6 and 30 million electron�volt (MeV) of energy. The
electrons can be used directly or they can be collided with a target (usually made
of tungsten) to produce a beam of X�rays. The radiation beam produced by a
LINAC can be shaped and aimed from a variety of directions by rotating the ma-
chine and moving the treatment table. The advantage of LINAC-based systems is
their versatility. They:

� are used for both radiotherapy and radiosurgery treatments
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Figure 2.12: Multiple beams are delivered by rotating the patient table and the
gantry. Speci�c systems are proposed by Common LINAC, Siemens and Accuray.

� treat any area of the body

� treat large and small tumors

� use highly focused radiation sources

� produce high intensity radiation

� can use techniques such as Intensity Modulated Radiotherapy (IMRT)

TheCyber Knife system (�gure 2.13), is an SRS system utilizing contemporary
technology that is designed to be the most accurate and �exible tool available for
aggressive therapeutic irradiation. The CyberKnife was designed to address the
limitations of frame�based SRS systems and expands the application of radiosurgery
to sites outside of the head. It is the only system to incorporate a miniature linear
accelerator mounted on a �exible, robotic arm. An image�guidance system that
can track target location during treatment also enables the CyberKnife to o�er
superior targeting accuracy without the need for the invasive head frame. While
Gamma Knife and LINAC�based systems can perform stereotactic radiotherapy in
the brain, true radiosurgery for areas outside of the brain is di�cult if not impossible
to perform with these systems. Advantages of the CyberKnife include:

� No invasive head frame or other rigid immobilization device is required

� The ability to deliver radiation (1-5 fractions) on targets throughout the body,
not just the brain
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Figure 2.13: The CyberKnife combines continuous image-guidance technology with
a compact linear accelerator that has the �exibility to move in three dimensions
according to the treatment plan (www.accuray.com).

� Precise targeting (within 1 mm) of selected lesions in the brain and body

� A unique ability to provide real time monitoring of the treated target through-
out treatment using an advanced image-guidance system

� Tracking during treatment for limited target motion (e.g. due to small patient
movements)

The Gamma Knife system uses 201 converging beams of gamma radiation
(cobalt-60). All 201 beams meet at a central point within the target, where they
add up to a very high dose of radiation. In contrast to LINAC, the Gamma Knife
does not move around the patient. Rather, the patient is placed in a helmet unit
that allows the target to be placed exactly in the center of the converging beams.
The features of Gamma Knife systems include:

� used for radiosurgery only

� limited to treating head and neck lesions

2.4.1.5 Deliver an optimal dose
Radiation is most e�ective if a high and homogenous dose is given to the tumor
while surrounding normal tissues are maximally spared. Accurate determination of
the (smallest possible) volume to be irradiated is therefore essential.

To avoid ambiguity in the de�nition of the radiotherapy target volumes, the In-
ternational Commission on Radiation Units and Measurements (ICRU) has de�ned
a number of treatment volumes for use in RT planning ([ICR 1993, ICR 1999]). The
Gross Tumor Volume (GTV) is the gross palpable or visible malignant growth,
which is normally outlined by hand in CT or MRI slices. A margin is added around
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the GTV to take into account potential "subclinical" invasion. This margin added
to the GTV de�nes the Clinical Target Volume (CTV). To ensure that all parts
of the CTV receive the prescribed dose, additional safety margins for geometric
variations and uncertainties must be considered. The Planning Target Volume
(PTV) is de�ned as the CTV plus a margin taking into consideration all possible
geometrical variations of the CTV during treatment, such as internal organ motion
and patient positioning errors during subsequent fractions.

The risk of missing part of the cancer cell population must be balanced against
the reduction of the risk of severe and serious normal tissue complications. The bal-
ance between disease control and risk of complications often entails the acceptance
of reduced probability of cure in order to avoid severe and serious treatment-related
complications [Beasley 2005] (Figure 2.14).

Example scenarios are described.

Figure 2.14: Schematic representations of the relations between the di�erent volumes
(GTV, CTV, PTV, and PRV) in di�erent clinical scenarios.

Scenario A: A margin is added around the Gross Tumor Volume (GTV) to take
into account potential "subclinical" invasion. The GTV and this margin de�ne the
Clinical Target Volume (CTV). In external beam therapy, to ensure that all parts
of the CTV receive the prescribed dose, additional safety margins for geometric
variations and uncertainties must be considered. An Internal Margin (IM) is added
for the variations in position and/or shape and size of the CTV. This de�nes the
Internal Target Volume. A Set�up Margin is added to take into account all the
variations/uncertainties in patient-beam positioning. CTV + IM + SM de�ne the
Planning Target Volume (PTV) on which the selection of beam size and arrangement
is based.
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Scenario B: The simple (linear) addition of all factors of geometric uncertainty,
as indicated in Scenario A, often leads to an excessively large PTV, which would be
incompatible with the tolerance of the surrounding normal tissues. In such instances,
instead of adding linearly the Internal Margin and the Set Up Margin, a compromise
has to be sought and a smaller PTV has to be accepted.

Scenario C: In the majority of the clinical situations, a "global" safety margin
is adopted. In some cases, the presence of Organs at Risk dramatically reduces
the width of the acceptable safety margin (e.g., presence of the spinal cord, optical
nerve, etc.).

Organs at Risk The compromise to be accepted when delineating the PTV is
due to the presence of Organs at Risk. Such organs at risk are normal tissues
whose radiation sensitivity and location in the vicinity of the CTV may signi�cantly
in�uence treatment planning and/or absorbed dose level. A dose above the tolerance
limit, even to a small volume, might totally impair the function of certain organs,
as is the case with the spinal cord (myelitis). A precise delineation of the Organs at
Risk is of vital importance.

Therefore, and as for the CTV, movements and changes in shape and/or size, as
well as the set-up uncertainties, must be considered for the organs at risk.

2.4.2 Dose�Volume Histograms and Isodose lines
The purpose of the Dose�Volume Histogram (DVH) is to assist the physician in
evaluating the selection of complicated treatment plans and objectively determining
the ideal plan for a given patient by summarizing the 3�D dose distribution data for
the organs at risk (OAR) in the treatment volume and displaying it in a graphical
format.

In a DVH, the variables are the dose received by the patient (measured inGrays)
and the volume(s) of tissue receiving any dosage. These can be visualized in either
of two ways; through "cumulative" ("integral") or "direct" ("di�erential") dose�
volume histograms. The direct DVH is a histogram of the dose bins and the fre-
quency of occurrence of each dose. (Figure 2.15, left and center) These are not
frequently used in plan evaluation.

Rather, the cumulative DVH is most frequently utilized (Figure 2.15, right). In
this type of DVH, the vertical axis can represent the percent of total tissue volume
that receives a dose greater than or equal to a speci�ed dose. The horizontal axis,
however, represents cumulative dose. For example (Figure 2.16, left), the �rst bin
displays the volume of tissue that received at least zero Gray (Gy), 100 percent; the
second bin displays the volume that received at least 1Gy, 99 percent; etc. DVHs
can also be speci�ed in terms of total volume. Ideally, the DVH displays 100 percent
of the planning target volume (PTV), receiving 100 percent of the prescribed dose
and very low volumes of normal structures receiving very little dose (Figure 2.16,
right).
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Figure 2.15: Di�erent dose�volume histograms (DVHs).

Figure 2.16: Cumulative dose�volume histograms (DVHs).
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Figure 2.17: Isodose lines.

For the DVH to be calculated, the volumes of interest are outlined on each
contiguous and parallel slice of a given patient's CT scan. The anatomy is then
divided into a volume grid. By de�ning the grid's matrix size, the resolution is
de�ned. This, in turn, establishes the volume elements � or voxels � for the identi�ed
anatomy; the volume being the product of the three dimensions of the voxel (Figure
2.17).

2.4.3 Radiotherapy for prostate carcinoma
Dose escalation has shown to be e�ective in radiotherapy treatment of prostate
cancer. Especially intermediate risk patients bene�t from high, concentrated doses
(higher than 70Gy) [Kupelian 2005]. Because prostate cancer is often found to be
multifocal, the entire gland is commonly considered the gross tumor volume for
radiation treatment planning purposes [Michalski 2006].

Rectal and bladder toxicity are the main limiting factors in dose escalation
[Schultheiss 1997]. The Patterns of Care Study stated that the incidence of severe
rectal and bladder complications almost doubled when dose levels were increased
beyond 70Gy with conventional treatment [Leibel 1984]. Three dimensional confor-
mal radiotherapy (3D�CRT) in comparison to conventional radiotherapy resulted
in lower rates of late rectal toxicity [Dearnaley 1999a] and allowed the safe admin-
istration of doses up to 80Gy. Intensity�modulated radiotherapy (IMRT) has been
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indicated to be bene�cial in comparison with 3D�CRT and made further dose esca-
lation to 86.4Gy possible [Zelefsky 2002].

The improvements from conventional RT to 3D�CRT and from 3D�CRT to
IMRT are due to more conformal dose distributions with the high dose region con-
�ned to the target volume and sparing of organs�at�risk [Oh 1999, Zelefsky 2000].
The correlation between the volume of the rectum within the high dose region and
the risk for late rectal toxicity suggested a dose volume e�ect [Lee 1996a].

Reliable tools for a robust delineation of the prostate, bladder and rectum are
therefore essential for a successful treatment plan.

2.4.4 Adverse E�ects and Quality of Life
Despite advances such as 3-dimensional conformal radiotherapy and intensity-modulated
radiotherapy, the bladder and rectum still sustain scatter radiation.

The adverse e�ects of external beam radiotherapy often are grouped into 3 ma-
jor categories: bowel, urinary, and sexual. Adverse e�ects may be acute (occurring
during or shortly after external beam radiotherapy) or may persist or appear several
months after treatment is completed (chronic). The distinction between acute and
chronic is made from the time frame during which the adverse e�ect is experienced,
with chronic conventionally de�ned as more than 90 days from initiation of external
beam radiotherapy. The incidence and severity of adverse e�ects is in�uenced by sev-
eral factors, including coexistent medical conditions (i.e., diabetes), prostate local-
ization accuracy, treatment technique (ie, conventional external beam radiotherapy,
3D-CRT, or IMRT) [Zelefsky 2001, Dearnaley 1999b, Ryu 2002, Michalski 2003]
dose conformity to the prostate, and the radiotherapy dose level and volume of
the structure that is irradiated (ie, the dose-volume relationship) [Pollack 2002].
Thus, the likelihood of complications can be mitigated by treatment planning that
considers these factors.

2.4.4.1 Bowel Toxicity

Acute bowel toxicity may begin after the �rst few weeks of external beam radio-
therapy and manifests as acute enteritis from its e�ect on the small intestine (when
the pelvic lymph nodes are included in the treatment �eld) or the rectum. The
severity of this adverse e�ect is proportional to the volume of irradiated bowel. Se-
rious long-term bowel complications may occur in a small proportion of patients and
may manifest as diarrhea, proctalgia, mucous discharge, or hematochezia; anorectal
strictures, obstruction, ulceration, or perforation are decidedly uncommon. Lawton
et al [Lawton 1991] found that 3% of patients treated more than 2 decades ago in 2
large-scale prospective trials experienced moderate or severe bowel sequelae. How-
ever, diarrhea and proctopathy are self-limited in half of patients within the �rst
year, and nearly three quarters resolve within 2 years [Pilepich 1988]. Recent studies
showed that considerably higher doses (78-81 Gy) given with 3D-CRT techniques re-
sulted in either no or minimal long-term morbidity in approximately 90% of patients,
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with severe toxicity limited to 1% of patients [Zelefsky 2001, Ryu 2002]. Restricting
the volume of rectum exposed to more than 70 Gy and using IMRT were associated
with a reduced risk of long-term complications [Zelefsky 2001, Pollack 2002].

2.4.4.2 Urinary Toxicity

Most patients experience some degree of urinary morbidity during external beam
RT. Cystitis is caused by irritability of the bladder detrusor musculature or in�am-
mation of the urothelium and is characterized by urinary urgency, frequency, or
dysuria. Prostatic edema may aggravate preexistent urinary retention from benign
prostatic hypertrophy, which may lead to urinary hesitancy, diminished force of
stream, or incomplete voiding. These symptoms often are lessened with short�term
use of medication (e.g., tamsulosin) and typically resolve within 2 to 3 weeks after
treatment is completed. Chronic urinary complications are uncommon, but bladder
neck contracture and reduced bladder capacity may result in urinary urgency and fre-
quency. Bladder neck contracture or urethral stricture may cause urinary retention,
and submucosal bladder or urethral telangiectasia may produce hematuria. Law-
ton et al [Lawton 1991] concluded that approximately 8% of patients experienced
moderate or severe chronic urinary toxicity. Nonetheless, more than half of these
complications were urethral strictures, which generally can be dilated on an outpa-
tient basis, and most patients experience spontaneous resolution within a year of
symptom onset [Pilepich 1988]. These observations were con�rmed in more contem-
porary series in which doses of 79.2 to 81.0 Gy were used [Zelefsky 2001, Ryu 2002].
Urinary incontinence is uncommon after external beam RT; Lee et al [Lee 1996b]
reported a rate of 1.3% at 5 years with a greater likelihood among patients who
underwent prior transurethral prostatic resection (2% vs 0.2%).

2.4.4.3 Sexual Function Side�e�ects

Assessment of sexual function after external beam radiotherapy is complex and may
be fraught with inaccuracy due to the limitations and variations in the de�nition
of erectile dysfunction and the methods used to establish its presence and origin.
Some patients have compromised erectile function due to concurrent illnesses such
as diabetes mellitus or arteriosclerosis or from certain medications taken for these or
other conditions. As summarized by Robinson et al [Robinson 1997] the likelihood of
maintaining erectile function after radiotherapy ranges from 20% to 86%, depending
on the de�nition of potency and the institutional report. It appears that the primary
etiology of RT-induced erectile dysfunction is from a disruption in the vascular
system of the penile corporal structures [Zelefsky 1998]. The proportion of the
corpus spongiosum that receives various radiotherapy dose levels is associated with
erectile dysfunction [Roach 2004, Wernicke 2004]; therefore, measures that reduce
radiotherapy dose to these structures lessen the risk of dysfunction [Roach 2004,
Wernicke 2004].

Unlike reports of complication rates, health-related quality of life refers to the
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physical, psychological, and social domains of health that are in�uenced by a per-
son's experiences, beliefs, expectations, and perceptions. These domains typically
concentrate on items relevant to sexual, urinary, and bowel dysfunction [Altwein 1997].
Several publications describe quality-of-life outcomes in patients who underwent ex-
ternal beam radiotherapy [Wei 2002, Clark 2003, Potosky 2004] for localized prostate
cancer. Most reports identi�ed patients from a medical institution's cancer registry,
applied various restrictions for study inclusion, and mailed questionnaires to po-
tential study participants as a 1�time investigation. Many such e�orts were com-
promised by the study design, leading to uncertainty in interpretation and clinical
application of the results. Furthermore, the demographic features, overall state
of health, and baseline symptom status in�uence the type of treatment rendered
[Clark 2003, Potosky 2004] , which makes it di�cult to compare the e�ects of vari-
ous treatments on quality of life.

Accurate delineation methods could greatly help to reduce these side e�ects,
with a signi�cant impact on the the patient's quality of life.

2.5 Motivations behind our proposed method
The aim of our work is the development of a fast, automatic approach that allows
the treatment planning time to be accelerated as much as possible. This would
alleviate the work load of the medical experts in the delineation process, reduce the
patient's waiting time before each treatment session, and augment the accuracy of
the radiation therapy, resulting in an improvement of the patient's quality of life
and a reduction of possible side e�ects.

We have therefore designed and implemented a fully automatic method for the
localization and (coupled) delineation of the prostate and its organs at risk and in CT
scans (section of the lower abdomen of patients undergoing radiation therapy. The
approach must be adaptable and, if needed, the result may be manually improved by
a medical expert. The motivations behind this are explained in the next subsections.

2.5.1 Why Automatic Delineation (vs. Manual Segmentation)
The day�to�day positional changes in the target volumes of cancers such as prostate,
bladder, and rectum, can be a limiting factor in a radiation therapy treatment. This
is particularly true for dose escalation, whose e�ects rely heavily on the delineation
of the target structures as well as the organs at risk. In the case of prostate cancer,
the characteristics of the organs at risk (bladder, rectum) are highly variable and
have an important in�uence on the shape and location of the target organ itself
(prostate). The variability of these soft tissues includes shape, size and intensity,
the latter depending on the presence (partial or total) or absence of a contrast agent.

The segmentation task has traditionally been assigned to medical experts. How-
ever, manual editing is not only tedious and time consuming, but also particularly
prone to variability and errors [Gao 2007].
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Semi�automatic or interactive approaches for segmentation allow the pratician
to have better control over the segmentation process [Freedman 2005a, Lee 2004].
However, they remain time consuming and, especially for large databases, an auto-
matic approach is desirable.

2.5.2 Why coupled deformation? In�uence of Bladder and Rectum
shape on Prostate

Several studies have been carried out to assess the movement and deformation of
the prostate caused by its surrounding organs (bladder and rectum)([Melian 1997,
Crook 1995, Haken 1991, Schild 1993]).

Organ displacements from each patient are combined to form a data set from
which a mean organ displacement (MODorgan) is calculated with corresponding
standard deviation. MODprostate values of 1 to 8 mm, due to rectal and bladder
distension, were measured by Ten Haken et al[Haken 1991] using the centre of mass
of the prostate derived from CT images. Greater movements of a Foley catheter
balloon (i.e. 0 to 20 mm) due to rectal and bladder distension were also measured.
The e�ects of rectal wall and bladder movement have been separately measured
using CT images[Schild 1993]. A 3D CT scan registration method based on Chamfer
matching has been used to quanty the correlations between rectal �lling, leg motions,
and prostate motion during conformal therapy of the prostate in [van Herk 1995].
In the study, a strong correlation was found between rectal volume and anterior�
posterior translation and rotation around the left�right axis of the prostate. Bladder
�lling, leg and pelvic rotations were found to have much less in�uence on prostate
motion.

Given the neighbouring position and the marked interaction between bladder,
prostate and rectum deformations, a joint study of these organs is the natural di-
rection for segmentation purposes.

2.5.3 Why Prostate, Bladder and Rectum?
A precise delineation of the treatment volume as well as the organs at risk in the
frame of radiotherapy dose planning is of vital importance.

In the radiation treatment planning for prostate carcinoma the entire prostate
gland is commonly considered the Gross Tumor Volume. Since the organs at risk
(OARs) in this case are the bladder and rectum, our study comprises the delineation
of the three of them.

2.5.4 Why CT Scans and not MRI?
CT scans have various uses in the context of cancer detection and treatment. They
can be used as a tool to aid diagnosis of a problem; the radiographer may spot
something during an ultrasound scan which needs a closer look � the CT scan can
o�er a more detailed picture. A series of CT scans at di�erent stages of radiotherapy
treatment can be used to assess the response of a tumour to that treatment, giving
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the radiographer and oncologist a series of "before" and "after" pictures of the pa-
tient's body. The CT scanner is also used prior to starting a course of radiotherapy,
to help the specialist plan a course of radiotherapy, i.e. deciding exactly where to
aim the radiotherapy X�rays, and at what intensity. During the planning CT scan
some indelible marks may be put on the patient's skin to ensure a perfect alignment
under the radiotherapy machine for each session. Furthermore, since a CT scan's
information is based on the density of the tissues, it may be directly "fed" to the
machine that performs the dose calculation in the radiation treatment planning.

The X�Ray attenuation unit used for CT Scan voxel intensity determination is
called a Houns�eld Unit. It characterizes the relative density of a substance. Each
pixel is assigned a value between -1000 to +1000. These standards were chosen as
they are universally available references and suited to the key application for which
computed axial tomography was developed: imaging the internal anatomy of living
creatures based on organized water structures and mostly living in air, e.g. humans.
Common substance densities are shown in Table 2.1.

Substance Density in H.U.
Air -1000
Fat -50

Water 0
Soft tissue such as muscle +40

Soft tissue with contrast agent +200 to +1000
Calculus +100 to +400
Bone +1000

Table 2.1: Substance densities in Houns�eld Units

Contrary to CT scans, the use of MRI for treatment planning in patients with
prostate cancer is quite limited. This is owing to the lack of tissue density infor-
mation for the correction of inhomogeneities used in dose calculation as well as to
the presence of intrinsic system�related and object�induced image MR distortions
[Khoo 1999].

It could indeed be useful to incorporate both the information in CT scans and
in MRI images. The registration of both image modalities has been studied, in
the frame of prostate segmentation for radiotherapy planning, in [van Herk 1998,
C.C. 2003, van Dalen J.A. ] among others. Although interesting, the frameworks are
not directly applicable in our case, due to the high variability in tissue appearance,
as well as the geometric uncertainties of MR reconstruction.

For the above reasons, we have based our studies on CT scans.

2.5.5 Why Adaptable? Variability in the target structures
As shall be precised throughout the chapters, the segmentation of the prostate, blad-
der and rectum is very challenging. All three of them are soft tissues, which entails
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Figure 2.18: Di�erent bladder characteristics make the segmentation task challeng-
ing and have an in�uence on the prostate. From left to right: homogenous contrasted
bladder, non�homogenous bladder and homogenous non�contrasted bladder (sagit-
tal views). For illustrative purposes, the second row shows the same images with
the target organs outlined in blue (rectum), red (prostate) and green (bladder).

a large variability in shape (knowing that they in�uence each other's shapes, as seen
in section 2.5.2). The bladder's and rectum's �llings change among patients, and
within the same patient throughout the day (see �gures 2.18 and 3.6). Furthermore,
di�erent patient preparations may have been carried out before the image acquisi-
tion process (contrast agent administered to the bladder or not, air insu�ation for
the rectum, the presence or absence of a probe, variability in the �llings). These
factors greatly in�uence the size, shape and appearance (intensities, homogeneity)
of the structures. Since the three structures are neighbors, they have borders or
frontiers that touch. Consequently, the size, shape and appearance of one organ
in�uence the characteristics of its neighbors and or their touching borders.

In chapter 3 we will show that authors have chosen to address these challenges by
proposing di�erent approaches. Interestingly, hypotheses are often made concerning
the characteristics of the structures. The more assumptions they make, the more
restricted the applicability of their method becomes.

We, on the other hand, have taken the problem of structure variability as a
challenge: adaptability has been fully incorporated into our goals. We would like
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Figure 2.19: Di�erent rectum characteristics make the segmentation task challenging
and also have an in�uence on the prostate. In the �rst row, sagittal views of rectums
with heterogenous �llings (left), air insu�ation (center left), presence of both a
probe and a slight contrast agent (center right), and one almost empty (right). For
illustrative purposes, the second row shows the same images with the target organs
outlined in blue (rectum), red (prostate) and green (bladder).
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to be able to automatically adapt to di�erent bladder, prostate and rectum shapes
and appearances, without hindering the quality of the segmentation result.

Each organ we have targeted presents speci�c challenges that will be addressed
in detail in chapters 4 (bladder), 5 (prostate) and 6 (rectum).

2.6 What's next
Before proceeding to fully develop our approach (chapters 4 to 6), we review in the
next chapter several approaches that have been proposed to deal with some or all
of the challenges that we face.
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In this chapter, we introduce several families of methods that can be applied
to the segmentation problem. Section 3.1 gives a general description, while section
3.2 shows how they have been applied to the problem that interests us, i.e., the
segmentation of lower abdomen structures. The advantages and disadvantages of
the methods when applied speci�cally to the segmentation of the bladder, prostate
and rectum will be detailed in section 3.2.

3.1 Overview of Segmentation Methods
We brie�y describe several common approaches that have appeared in the literature
on medical image segmentation. A comprehensive review on the subject can be
found in [Sonka 2000].

39
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A wide variety of image properties can be used to guide the segmentation process,
such as intensity, edges, and texture. In addition to information derived from the
image, prior knowledge can also be incorporated to further improve performance.
According to the use of these informations, segmentation methods may be grouped
into several families:

1. Manual segmentation approaches,

2. Thresholding approaches,

3. Classi�ers,

4. Clustering approaches,

5. Markov random �eld models,

6. Arti�cial neural networks,

7. Deformable models, and

8. Atlas�guided approaches.

3.1.1 Manual Segmentation Approaches
Because of the di�culty to accurately and reliably delineate structures in medical
images, this task has traditionally been assigned to human operators. However,
given the improvements achieved over the past years by imaging tools (commercial
MR scanners now routinely resolve images at millimetric resolution, digital cameras
can convert histological sections into million-pixel images) the manual segmenta-
tion phase has become an intensive and time�consuming task. A trained operator
typically has to go through around eighty 256x256 images, slice by slice, to extract
the contours of the target structures, one after the other. This manual editing is
not only tedious but particularly prone to errors, as assessed by various intra or
inter-operator variability studies ([Collier 2003, Saarnak 2000, Fiorino 1998] among
others). The results are often di�cult if not impossible to reproduce; even expe-
rienced operators display signi�cant variability with respect to their own previous
delineation for di�cult structures, as illustrated in �gure 3.1.

For 3D delineation, editing tools usually display 3D data in the form of a 3 syn-
chronized, 2D orthogonal views (sagittal, coronal and axial) onto which the operator
draws the contour of the target structure. The output data therefore consists of a
series of 2D contours from which a continuous 3D surface has to be extracted. This
is a non�trivial post�processing task, itself prone to errors. Moreover, since the
operator has to mentally reconstruct the 3D shape of the structure from a series of
2D views, interslice inconsistencies and bumps are inevitable (see �gure 3.1). More
robust segmentation methods can usually be derived from true 3D structure models
in that they can ensure globally smoother and more coherent surfaces across slices.
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Figure 3.1: Sagittal view of three experts' delineations of the prostate in the same
image (left). Since the delineation is usually performed slice by slice in the axial
plane, inter�slice bumps and inconsistencies are visible in the other planes (sagittal
plane inconsistencies outlined in red on the right).

3.1.2 Thresholding and Image�Processing

A thresholding procedure attempts to determine an intensity value, called the thresh-
old, which separates the desired classes. The segmentation is then achieved by
grouping all pixels with intensity greater than the threshold into one class, and
all other pixels into another class. The partition is usually generated interactively,
although automated methods do exist [Sahoo 1988, Sezgin 2004]. Thresholding typ-
ically does not take into account the spatial characteristics of an image; this causes
it to be sensitive to noise and intensity inhomogeneities.

The watershed algorithm uses concepts from mathematical morphology [Gonzalez 1992]
to partition images into homogeneous regions [Vincent 1991]. It can be considered
as a thresholding applied to gray-level images, which are interpreted as topographic
surfaces ( i.e., �height maps�). This method can su�er from oversegmentation, which
occurs when the image is segmented into an unnecessarily large number of regions.
Thus, watershed algorithms in medical imaging are usually followed by a postpro-
cessing step to merge separate regions that belong to the same structure.

Region growing is a technique for extracting a region of the image that is con-
nected based on some prede�ned criteria [Haralick 1985]. In its simplest form, region
growing requires a seed point that is manually selected by an operator, and extracts
all pixels connected to the initial seed with the same intensity value. Region growing
can be sensitive to noise, causing extracted regions to have holes or even become dis-
connected. Conversely, partial volume e�ects can cause separate regions to become
connected.

A survey on thresholding techniques is provided in [Sahoo 1988].
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3.1.3 Classi�cation
Classi�er methods seek to partition a feature space derived from the image using
data with known labels [Schalko� 1992, Bezdek 1993]. The features used can be
related to texture or other properties, or they can simply be intensity values. Clas-
si�ers require training data that are manually segmented and then used as references
for automatically segmenting new data.

A simple classi�er is the nearest�neighbor classi�er [Duda 1973], where each pixel
or voxel is classi�ed in the same class as the training datum with the closest intensity.

The k�nearest�neighbor (kNN) classi�er is a generalization of this approach,
where the pixel is classi�ed according to the majority vote of the closest training
data (see [Tapley 1995] for details). The kNN classi�er is considered a nonparametric
classi�er since it makes no underlying assumption about the statistical structure of
the data.

Another nonparametric classi�er is the Parzen window (see [Tapley 1995]), where
the classi�cation is made according to the majority vote within a prede�ned window
of the feature space centered at the unlabeled pixel intensity.

A commonly used parametric classi�er is the Bayes classi�er (see [Androutsos 1997]
for numerous examples). It assumes that the pixel intensities are independent sam-
ples from a mixture of probability distributions, usually Gaussian. Training data is
collected by obtaining representative samples from each component of the mixture
accordingly. Classi�cation of new data is obtained by assigning each pixel to the
class with the highest posterior probability.

A disadvantage of classi�ers is that they generally do not perform any spatial
modeling. The use of the same training set for a large number of images can lead
to biased results which do not take into account anatomical and physiological vari-
ability between di�erent subjects.

3.1.4 Clustering
Clustering algorithms essentially perform the same function as classi�er methods
without the use of training data. Thus, they are termed unsupervised methods. In
a sense, clustering methods train themselves using the available data. Three com-
monly used clustering algorithms are the k-means algorithm [Coleman 1979], the
fuzzy k-means algorithm [Dunn 1974, Bezdek 1993], and the expectation-maximization
(EM) algorithm [Lei 1992, Liang 1994]. The k-means clustering algorithm clusters
data by iteratively computing a mean intensity for each class and segmenting the
image by classifying each pixel in the class with the closest mean [Jain 1988]. The
fuzzy k�means algorithm generalizes the k�means algorithm [Bezdek 1993], allowing
for soft segmentations based on fuzzy set theory [Zadeh 1965]. The EM algorithm
applies the same clustering principles with the underlying assumption that the data
follows a Gaussian mixture model. It iterates between computing the posterior prob-
abilities and computing maximum likelihood estimates of the means, covariances,
and mixing coe�cients of the mixture model. Like classi�er methods, clustering al-
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gorithms do not directly incorporate spatial modeling and can therefore be sensitive
to noise and intensity inhomogeneities.

3.1.5 Markov random �eld models
Markov Random Field (MRF) models spatial interactions between neighboring or
nearby pixels [Li 1995]. In medical imaging, they are typically used to take into ac-
count the fact that most pixels belong to the same class as their neighboring pixels.
MRFs are often incorporated into clustering segmentation algorithms such as the
k�means algorithm under a Bayesian prior model [Pappas 1992, Rajapakse 1997,
Held 1997, Goldszal 1998]. The segmentation is then obtained by maximizing the
posterior probability of the segmentation given the image data using iterative meth-
ods such as iterated conditional modes [Besag 1986] or simulated annealing [Geman 1984].
A di�culty associated with MRF models is proper selection of the parameters con-
trolling the strength of spatial interactions [Li 1995]. Computation time is also often
an issue.

3.1.6 Arti�cial neural networks
Arti�cial neural networks (ANNs) are networks of nodes that are capable of per-
forming elementary computations. The learning process is achieved through the
adaptation of weights assigned to the connections between nodes.

An example application to abdominal organs can be found in [Koss 1999]. ANNs
can also be used in an unsupervised fashion as a clustering method [Zaim 2005], as
well as for deformable models [Vilariño 2003].

Neural networks are appealing for a number of reasons, namely; they seem to
"learn" without supervision, they can be created by users with very little mathe-
matical model building experience, and software for building neural networks is now
readily available. Neural networks have perhaps a special appeal to the medical
community because of their super�cial resemblance to the human brain (a structure
with which most physicians are comfortable), and seem to promise "prediction"
without the di�culties associated with use of mathematics.

ANNs are rich and �exible nonlinear systems that show robust performance in
dealing with noisy or incomplete data and have the ability to generalize from the
input data. They may be better suited than other modeling systems to predict out-
comes when the relationships between the variables are complex, multidimensional,
and nonlinear as found in complex biological systems.

The di�culty in developing models using arti�cial neural networks is that there
are no set methods for constructing the architecture of the network. Another lim-
itation of neural network models is that standardized coe�cients and odds ratios
corresponding to each variable cannot be easily calculated and presented as they are
in regression models. Neural network analysis generates weights, which are di�cult
to interpret as they are a�ected by the program used to generate them [Baxt 1995].
This lack of interpretability at the level of individual variables (predictors) is one of
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the most criticized features in neural network models [Ohno-Machado 1999].

3.1.7 Deformable models
Deformable models [Kass 1988, Staib 1992, Cohen 1993], whether implicitly or ex-
plicitly represented (see section 3.1.7.1), are physically motivated, model�based tech-
niques for delineating region boundaries using closed parametric curves or surfaces
that deform under the in�uence of internal and external forces.

To delineate an object boundary in an image, a closed curve or surface must
�rst be placed near the desired boundary and then allowed to undergo an iterative
relaxation process.

Internal forces are computed from within the curve or surface to keep it smooth
throughout the deformation (section 6.7.1). External forces are usually derived from
the image to drive the curve or surface towards the desired feature of interest (section
3.1.7.3).

These models provide a global vision of the structure to be segmented, and they
allow for the incorporation of relevant information such as regularisation (section
6.7.1) and shape constraints (section 3.1.7.4), among others.

A general review on deformable models in medical image analysis can be found
in [McInerney 1996] and in [Montagnat 2001].

3.1.7.1 Model representation

There are two forms of deformable models.
In the parametric or explicit form [Kass 1988, Metaxas 1993, Delingette 1994,

Fischler 1973, Terzopoulos 1991, Staib 1992, Cohen 1993, Xu 1998], contours are
represented explicitly as parameterized curves or surfaces that evolve in a Lagrangian
fashion. This form is not only compact, but is robust to both image noise and
boundary gaps as it constrains the extracted boundaries to be smooth. However,
it can restrict the degree of topological adaptability of the model, especially if the
deformation involves splitting or merging of parts.

Geometric or implicit deformable models [Osher 1988, Osher 2003, Sethian 2001,
Mumford 1989, Caselles 1995a, Caselles 1995a, Chan 2001, Suri 2002] are imple-
mented in the level set based curve evolution framework. Contours are embeded
implicitly as level sets of higher�dimensional level set functions, and evolve accord-
ing to an Eulerian formulation. They are designed to handle topological changes
naturally but, unlike the parametric form, they are not robust to boundary gaps
and require a greater computation time (mostly in 3 dimensions and higher).

3.1.7.2 Internal or regularisation forces

Internal forces play a key role for regularisation purposes. They render the energy
functional locally convex, thus allowing the model to deform while respecting certain
regularity criteria.
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Several internal forces have been proposed in the literature [Kass 1988, Cohen 1991].
In general, they involve contour curvature or di�erential characteristics of superior
order.

3.1.7.3 Data�driven forces

In traditional deformable models, image forces come primarily from edge (i.e., sig-
ni�cant image intensity gradient) information. Such reliance on edge information,
however, makes the models sensitive to noise and highly dependent on the initial
estimate. There have been signi�cant e�orts to integrate region information into
deformable models. In [Ron 1994], local region analysis strategies are introduced
for Active Contour Models. But the optimization of the integrated energy function
is mostly heuristic. In [Zhu 1995], a generalized energy function that integrates re-
gion growing and boundary-based deformations was proposed. They proposed the
idea of a region competition to control the model deformation. In this formulation,
however, the parameters of the regional intensity statistics can not be updated simul-
taneously with the boundary shape parameters so that the energy function has to
be minimized in an iterative way. A method using explicit parametric deformable
models that take into account model interior texture information is proposed in
[Huang 2004]. Chan and Vese [Chan 2001] present a level�set method based on
the Mumford�Shah model [Mumford 1989], whose main idea is also to consider the
information inside the regions, and not only at their boundaries.

3.1.7.4 Introduction of shape models

The image data may not be su�cient to extract the structure of interest; therefore,
prior knowledge has to be introduced. When the structure's shape remains similar
from one image to another, a shape model can be built from training samples.
Several types of shape models have been proposed [Cootes 1995a, Leventon 2000,
Freedman 2005b, Tsai 2004, Cremers 2004, Rousson 2004, Dam 2004]. Such models
can be used to constrain the extraction of similar structures in other images. A
straightforward approach is to estimate the "allowable" model shape that best �ts
the structure in the observed image [Tsai 2004, Dam 2004, Rousson 2005b]. This
assumes the shape model to be generic enough to describe the new structure. A
noise model may also be added to the shape prior [Lecellier 2006].

3.1.8 Atlas�guided registration approaches
The atlas is generated by compiling information on the anatomy that requires seg-
menting. This atlas is then used as a reference frame for segmenting new images.
The standard atlas-guided approach treats segmentation as a registration problem
[Maintz 1998]. It �rst �nds a one-to-one transformation that maps a pre�segmented
atlas image to the target image that requires segmentation.

Because the atlas is already segmented, all structural information is transferred
to the target image. An advantage of atlas-guided approaches is that labels are
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transferred as well as the segmentation. Even with non-linear registration methods
however, accurate segmentations of complex structures is di�cult due to anatomical
variability.

An atlas�guided approach to the segmentation of abdominal structures (liver,
kidneys and spinal cord) can be found in [Park 2003]. A feasibility study for an
atlas�guided segmentation of bladder, prostate, rectum and femoral heads can be
found in [Bondiau 2004].

3.2 Segmentation of target and organs at risk for prostate
radiotherapy

Accurate contouring of the Gross Tumor Volume (GTV) (de�ned in section 2.4.1.5)
and critical organs is a fundamental prerequisite for successful treatment of can-
cer by radiotherapy. This task is speci�cally more challenging in the case of the
prostate cancer. The main reasons are �rst, there is almost no intensity gradient
at the bladder-prostate interface. Second, the bladder and rectum �llings change
from one treatment session to another and that causes variation in both shape and
appearance. Third, the shape of the prostate changes mainly due to boundary condi-
tions, which are set (due to pressure) from bladder and rectum �llings. In addition,
the presence of structures such as the seminal vesicles and the bladder neck near
the base, urethra, pelvic musculature, and the posterior part of the pubic arch near
the apex, makes the automatic boundary delineation di�cult.

Several approaches to automate this process have been proposed. In this section,
we give an overview of recent semi�automatic and automatic techniques that have
been investigated for the segmentation of bladder, prostate and rectum volumes.

3.2.1 Bladder Segmentation
The bladder is a soft�tissue structure which, in di�erent pelvic CT scans, may show
very di�erent characteristics. Variability includes size, shape, intensity and contrast
among di�erent patients, and even within the same patient at di�erent times of the
day.

Size and Shape Variabilities are mainly due to bladder �llings, and the
deformation caused by surrounding organs. CT scans of the same patient throughout
treatment planning sessions (or even during the same day) may show the bladder
with completely di�erent characteristics. See �gure 3.3 for some examples.

Intensity Variability If the patient has been given a contrast agent before
the scan, the bladder can appear as an homogenous, highly contrasted structure
in which the contrast agent is fully visible. However, if the contrast agent has not
fully arrived in the bladder, the latter may appear as a non�homogenous structure.
In this case, and since the contrast agent is more dense than urine, the gravity
pulls it towards the ground, thus de�ning a highly contrasted lower zone where
the contrast agent has settled, a non�contrasted upper zone, and an intermediate
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Figure 3.2: Di�erent intensity characteristics make the bladder segmentation task
challenging. From left to right, homogenous non�contrasted bladder, two non�
homogenous bladders (up to di�erent levels) and an homogenous contrasted bladder
(sagittal views). The second row shows the bladders outlined in the same images.

"intensity gradient" region where between the two. If no contrast agent has been
administered whatsoever, the bladder appears as an homogenous, non�contrasted
structure. All of the above cases are illustrated in �gure 3.2.

We present an overview of di�erent semi�automatic and fully automatic bladder
segmentation methods that have been proposed in the literature.

3.2.1.1 Non�rigid registration approaches

These methods have been tested for CT bladder segmentation (see [Unal 2005] for a
combined segmentation and registration approach). However, the considerable inter
and intra�patient variation in soft tissue (slimmer and less slim patients, �lling of
the bladder at the moment of the CT scan, presence of contrast agent) may cause
nearby structures to undergo �unnatural� deformations necessary for the atlas to
adapt to each patient's speci�c bladder shape.

3.2.1.2 Mathematical morphology approaches

Mathematical morphology approaches are useful for bladder segmentation, for sev-
eral reasons: the topology of the shape is known, the methods are easier to automate,
and they can be quickly tuned and computed. Variations of these approaches have
been tested in [Camapum 2004] and [Mazonakis 2001] (region growing based algo-
rithms) and in [Bueno 2001] (watershed based algorithm). However, they are quite
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Figure 3.3: Di�erent bladder shapes and sizes (sagittal views). The second row
shows the bladders outlined in the same images.

dependent on the quality of the image, and intensity inhomogeneities within the
structures are not taken into account.

3.2.1.3 Shape deformation approaches

Shape deformation approaches include geometric [Gibou 2005, Broadhurst 2005,
Stough 2007] and parametric [Bueno 2004] deformable models. They are quite �exi-
ble, since shape priors may be incorporated [Gibou 2005, Fenster 2001, Rousson 2005a,
Freedman 2004, Freedman 2005a, Broadhurst 2005], an atlas can serve as initializa-
tion [Ripoche 2004], they can be made to follow fuzzy criteria [Bueno 2004], and
they allow for more than one structure to evolve simultaneously (e.g. the prostate
and bladder, as in [Rousson 2005a]). However, they often require either training
[Freedman 2004], user interaction [Gibou 2005, Freedman 2005a], or assume ho-
mogenous intensity structures [Stough 2007].

3.2.2 Prostate�Bladder Segmentation
The main factors at the source of the variability of the prostate are patient movement
and the in�uence of the neighboring (and highly variable) bladder and rectum. The
in�uence of the bladder's �llings on the shape of the prostate while it interacts with
an endorectal echographic probe has been addressed in [Marchal 2005]. The lack of
intensity gradient at the bladder�prostate interface in the case of non�contrasted
bladders accounts for the fact that both organs are often segmented simultaneously,
in order to �nd a viable common border. A non�homogenous intensity bladder will
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Figure 3.4: Di�erent prostate shapes and border conditions for the bladder and
prostate. Both structures are outlined in green (bladder) and red (prostate) in the
second row of images.

make the prostate�bladder interface de�ned in some regions and fuzzy in others. If
a �exible approach is sought, this frontier variability should be taken into account.

Examples of the complexity of the bladder�prostate segmentation method are
illustrated in �gure 3.4. The high variability of the bladder and rectum shapes
which, in turn, change the boundaries of the prostate, also add to the di�culty of
the segmentation process (see �gure 3.5).

Several automated and semi�automated approaches for prostate and coupled
bladder�prostate segmentation have been proposed. An overview of these methods
is presented in the following section.

Figure 3.5: Di�erent bladder intensities condition its shared border with the
prostate, making their segmentation process challenging.
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3.2.3 Un�coupled Bladder and Prostate Segmentation
3.2.3.1 Registration Approaches
These methods have been tested for CT bladder[Unal 2005] and prostate[Davis 2005,
Malsch 2006] segmentation.

In particular, [Davis 2005] presents an automatic approach to quantify prostate
motion based on deformable image registration, as well as on a bowel gas de�ation
algorithm to minimize correspondence errors.

However, heavy variations in soft tissue (shape, size, intensity) are di�cult to
capture by these approaches, but they remain quite useful for initialization purposes.

3.2.3.2 Mathematical Morphology Approaches
Variations of these approaches have been tested in [Camapum 2004, Mazonakis 2001].
They are easy to automate and can be quickly tuned and computed, but they are
strongly dependent on the quality of the image.

3.2.3.3 Shape Deformation Approaches
Deformable models are quite �exible, since they can include shape priors[Rousson 2005a,
Freedman 2005a, Broadhurst 2005], atlas initialization[Ripoche 2004], fuzzy criteria[Bueno 2004]
and multiple structure deformation[Rousson 2005a]. Explicit models have been used
for both prostate[Freedman 2004, Dam 2004, Pekar 2004] and bladder[Bueno 2004]
segmentation. Implicit models have also been used to this end (see [Broadhurst 2005]
for prostate and [Tsai 2003] for bladder segmentation).

3.2.3.4 Other Approaches
Other approaches include neural networks[Lee 2004], radial searching[Xu 2003], po-
lar transform based methods[Zwiggelaar 2003] and genetic algorithms[Cosío 2005,
Ghosh 2006], among others.

3.2.4 Multiple Structure Segmentation
When multiple neighboring structures are segmented simultaneously, a purely in-
dependent approach for each of them may lead to unnatural results. For instance,
the resulting segmentations may show overlaps and intersections that are virtually
impossible with real life organs. Several authors have approached this issue and
proposed di�erent solutions.

3.2.4.1 Overlap penalization
This is an a�posteriori solution, in which overlaps must occur in order to be penal-
ized. Variations have been proposed for both explicit[Zimmer 2005] and implicit[Rousson 2005a]
deformable models. In both cases, overlaps are punished in terms of energy mini-
mization. The �rst approach couples multiple active contours in 2D video sequences
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through a unique energy function. The second presents a Bayesian inference frame-
work where a shape prior can be applied on any of the structures. However, neither
approach have been applied in contexts in which intensity inhomogeneities must be
handled.

3.2.4.2 Statistical shape and appearance model approaches

These methods attemps an a�priori solution to overlaps. Prior information has a
strong in�uence on the segmentation processes of the individual structures, in an
e�ort to avoid overlaps instead of letting them happen and then resolving them.

Approaches in this category have been used in [Freedman 2004, Paragios 2002,
Pizer 2005, Vese 2002, Yezzi 2002], among others. In [Pizer 2005], a segmentation
method using both an intensity prior based on intensity pro�les at each point and
a geometric typicality (shape prior) is proposed. In [Paragios 2002, Vese 2002,
Yezzi 2002], a perfect partition of the image into classes of similar intensities or
textures is achieved. However, these techniques treat objects sharing similar image
characteristics as a single item; thus, topological constraints between them cannot
be enforced in the absence of a clear delimitation of the structures (as is the case
with several non�contrasted bladders and prostates in our database).

3.2.5 Rectum Segmentation and Integration
Several approaches for rectum segmentation, although not as many as for that of
the bladder or prostate, can be found in the literature.

The complexity of the rectum segmentation task lies mainly in the varied and
temporary nature of its �llings and on the preparation of the patient prior to image
acquisition. Indeed, the shape and appearance of the rectum are in�uenced by
several factors:

� Contrast Agent A contrast substance may have been given to the patient,
making the rectum walls' intensity lighter when compared with its surround-
ings.

� Air Insu�ation Some patient's rectums are insu�ated with air in order to
expand it and facilitate the visibility.

� Fillings An empty rectum's shape is quite di�erent from that of a full one.
The unpredictability of the �llings' nature are also a factor (solid, gas).

� Probe A probe is sometimes used during the patient's examinations, which
is fully visible in the resulting images.

These factors render a �exible approach to the segmentation of the rectum even
more challenging. Example images are shown in �gure 3.6.

We present, in the following subsections, several approaches that have been
proposed and applied in the frame of rectum segmentation.
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Figure 3.6: Di�erent rectum shapes and appearances. From left to right, presence
of contrast agent and probe, no contrast agent but probe, empty rectum, di�erent
�llings, and air insu�ation. The rectums have been delineated in blue in the second
row of images.

3.2.5.1 Mathematical Morphology Approaches
O. Silva et al.[Silva 2004] propose a 2D region growing method with multiple seeds
to construct a mosaic image, followed by a watershed transform.

Mazonakis et al. [Mazonakis 2001] also assess a region growing approach for the
segmentation of the (homogenous intensity) rectum, bladder and prostate.

[Bueno 2001] test a morphological segmentation technique for the segmentation
of 2D CT scans of the lower abdomen.

These methods are limited to homogenous structures, and tend to perform poorly
when an organ's limits with respect to surrounding structures are not clearly de�ned.

3.2.5.2 Implicit Model Deformation Approaches
[Gibou 2005] propose an intensity�based speed function for the evolution of an im-
plicit deformable model. Using a Mumford�Shah functional, they seek to separate
the image into regions with respect to their respective average intensity value. In the
presence of organ regions where adjacent structures have similar average intensity
values, it is left to the user to place a wireframe in the region where the boundary
is not clearly characterized by jumps in the image intensity. They apply their ap-
proach, among others, to the segmentation of the bladder and rectum (independent
of each other).

This semi�automatic approach does not seem appropriate for segmentation of
highly intensity�variable structures (such as the rectum) whose boundaries with
many surrounding structures, and thus in large regions, are not clearly de�ned.

Tsai et al.[Tsai 2004] present an extension to the shape�based deformable active
contour model, in order to allow simultaneous multiple structure segmentations.
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Multiple signed distance functions are employed as the implicit representations of
the multiple shape classes within the image. The coupling among shapes is achieved
by deriving a parametric model by applying principal component analysis to the
collection of these multiple signed distance functions. Their method is applied to
the joint segmentation of the prostate, rectum and the internal obturator muscles
in MRI images.

Although the resulting algorithm is able to utilize the co�dependencies among
the di�erent shapes to aid in the segmentation process, the inter�dependence in the
shape of lower abdomen structures such as rectum and bladder is not necessarily
clear. The fact that the bladder is �lled in one patient's case does not necessarily
mean that the rectum is full as well, and vice�versa. Since their variability is mainly
due to their respective �llings, and since the latter are independent of one another,
the study of their joint shapes would yield an inaccurate relationship that would
bias the segmentation process.

3.2.5.3 Explicit Model Deformation Approaches

The authors in [Freedman 2004] present a segmentation algorithm, applied to the
prostate and the joint segmentation of prostate and rectum, that uses learned mod-
els for both the shape and appearance of objects to achieve segmentation. Based
on matching probability distributions of photometric variables and learned shape
and appearance models, the result is the segmentation that best aligns the apriori
information. In [Freedman 2005b] a similar approach is used to segment bladder,
prostate and rectum. The method relies on an intensity model of the interior of
the structures, thus making assumptions about their �llings. However, in the case
of the rectum, the highly variable nature of its �llings could be hardly captured by
an appearance model, making their approach inaccurate in a database like ours.
The images are not previously put in a common frame of reference (registration),
and the initial position of the model is �xed, which provides little �exibility. In the
case where neighboring structures have very similar intensities, an indistinguishable
boundary and similar topology, there is a risk of mistakenly segmenting one with
the model destined to the other (this may occur, for instance, with the bladder and
prostate). A similar risk exists in the case where rectum and prostate share intensity
characteristics (for empty rectums, for example).

[Xiao 2001] propose an extended active contour framework for the segmentation
of the rectal wall multilayer in ultrasound images. They detect the rectal layers
from inner to outer using deformable models. The currently segmented layer serves
as initialization for the segmentation of the next, by means of a cost function with
low local costs on features that exhibit strong edge features, as well as a local cost
function that compensates broken image segments. In our case, given the high
variability in the rectum's �llings, an intensity�guided segmentation method based
on the interior of the structure would be inaccurate.
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3.2.5.4 Related Approaches

Since the rectum is, essentially, a tubular organ, its segmentation can be compared
to that of other tube�like structures. Numerous approaches for the segmentation
of structures with similar characteristics can be found in the literature, including
blood vessels extraction approaches, centerline computation and skeletonization al-
gorithms, and tubular constraint enforcement.

Vessel extraction A comprehensive survey and review of vessel extraction
approaches can be found in [Kirbas 2004]. However, there are several di�erences
with respect to the rectum:

� The rectum is unique, and its position somewhat known, as opposed to the
several vessels that must �rst be detected to be segmented.

� Blood vessels are tubular structures with relatively small and constant diam-
eter, which cannot be said of the rectum.

� Vessels have homogenous intensity, as opposed to the rectum.

� Vessels show complex tree or network structures with tubular branches, sim-
ilar to those present in neural networks, lymphatic, tracheas etc. These are
challenges not present in the case of the rectum.

The above di�erences make the vessel extraction techniques interesting, yet not
suitable for the rectum delineation.

Centerline computation The tubular structure of the rectum can be exploited
for its segmentation by computing, for instance, a centerline. Several approaches
to automatic centerline extraction have been proposed. We brie�y review some
representative approaches.

� A �rst class of methods attempts to �nd centerlines of tubular structures as
they are manifest directly in intensity (MR or CT) images. These methods do
not assume that the surfaces of such structures have �rst been extracted (see,
for example, [Santamaría-Pang 2007]). Aylward and Bullit [Aylward 2002],
Wink et al. [Wink 2004] and Frangi et al [Frangi 1998] present centerline
tracking approaches in which tubular structures are identi�ed using properties
of the Hessian matrix. However, in order to be detected this way, the tubular
structures must be su�ciently "thin", which is not the case of the rectum.

� A second class of methods aims to �nd centerlines of tubular structures which
have �rst been segmented from 3D MR or CT intensity images. Some rep-
resentative approaches include those by Bitter et al. [Bitter 2001], Paik et
al. [Paik 1998], [Flasque 2000] and Ge et al. [Ge 1999]. These methods are
often used in the frame of CT colonography since, in these cases, the colon
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is assumed to show a contrast agent and to have been air insu�ated, which
greatly facilitates the segmentation task.

In the case of the rectum, its variability from a constant diameter tube structure
as well as its intensity variability renders the �rst class of method inadequate. The
second class assumes that the structure has already been segmented, which is not
our case.

Some deformable model approaches include the "skeleton" in the model itself, as
opposed to extracting it from the binary segmentation of the structure. This is the
case of M�Reps, which are representations of �gures by medial atoms [Pizer 2003].

Tubular constraints Explicit deformable model approaches may incorporate tubu-
lar constraints. Cylindrical or line�like shapes parametrized by centerlines have been
proposed in ([Frangi 1998, Krissian 2000, de Bruijne 2003, Wink 2004, Yim 2001,
Fridman 2004, Volkau 2005, Montagnat 1999b]). These models often require user
interaction, and the strong tubular constraints prevent them from representing
shapes that di�er more than slightly from a �xed diameter tube. A symmetry�
seeking approach that depends on a user�placed centerline has been proposed in
[Terzopoulos 1987].

Other model approaches Implicit deformable models have become very pop-
ular due to their ability to handle changes of topology and adapt to the shape
of complex structures. Geometric models may be based on gradient information
(Geodesic Active Contours, [Caselles 1995b]) or region�based intensity information
[Paragios 2000, Chan 2001, Rousson 2003, Pichon 2004]. In the �rst case, a variable
interior with unpredictable gradients, such as that of the rectum, would hinder its
evolution. In the second case, the estimation of the region statistics is based on the
assumption that image intensity is a discriminant tissue descriptor, again not the
case in the rectums of our database.

Geometric deformable models have been used for the segmentation of tubu-
lar structures by speci�c adaptations that include smart initializations of the model
[Deschamps 2001, Bemmel 2003], modi�cations in the energy functional[Hernandez 2004]
or hybrid approaches[Chen 2004].

3.3 Overview of our Methodology
Our goal is the fully automatic delineation of the prostate and its organs�at�risk in
the context of radiotherapy planning. In the process of selecting a methodology to
be the building block of our method, we had to take into account several points:

1. The (highly) heterogenous nature of our database of images. The grow-
ing number of CT scans in the database we use for training and testing has
been acquired in di�erent imaging centers and under di�erent protocols (in-
cluding Hôpital de l'Archet in Nice, and images from di�erent centers provided
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by DOSIsoft) strongly limit the assumptions that can be made about shape
and appearance. Homogenous (contrasted and non�contrasted) as well as
non�homogenous bladders, prostates with fuzzy and less fuzzy borders, and
rectums showing contras agent or not, �lled, empty, or with a probe, are all
combined in our database. Our method must be able to automatically adapt
to and segment all these kinds of structures. Throughout the course of this
thesis, the size of our CT database has grown from 5 to 20 CT images. The
preparation protocols for the patients vary to a considerable extent (contrast
agent administered to the patient or not, presence of a probe, rectum air in-
su�ation and mixed �llings). The images themselves can be divided into 3
groups: the �rst consists of CT scans of around 80 axial slices of 256x256 vox-
els each. The distance between voxel centers in successive slices is of 3 mm,
and the voxel sizes in the sagittal and coronal planes are of 1.87 mm each. The
second group includes images of about 125 axial slices of 512x512 voxels each.
Their voxel size is of 0.97mm x 0.97 mm x 2 mm (sagittal, coronal and axial
planes, respectively). The third group comprises images of size 256x256x40
(sagittal, coronal and axial, respectively), with voxel sizes of 1.67 mm x 1.67
mm x 4 mm.

2. The (in�)homogeneities in bladder intensity make its segmentation more
challenging. However, we would like to be able to exploit the information con-
cerning the localization of these zones. That includes the fact that homogenous
bladders can be either contrasted or non�contrasted, and that, in the case of
non�homogenous structures, the contrast agent is pulled by gravity and thus,
the contrasted zone would be located under (i.e., closer to the ground) the
non�contrasted zone. An approach that would allow us to de�ne "zones" that
could serve to segment the di�erent regions in the bladder would be interesting.

3. The often fuzzy prostate borders would need more information than just
image intensity in order to be correctly segmented. The introduction of other
information for the prostate, such as the results of a shape study, as well as
information on the type of bladder in the image and their common interface
would be desirable in those cases. An approach that could allow a "collabo-
rative" approach for the joint segmentation of both structures might also be
desirable.

4. The di�erent �llings of the rectum (air insu�ation, clean, not clean,
probe, contrast agent or not) according to various acquisition protocols deter-
mine its characteristics in each image. We would like a method to be �exible
enough in terms of intensity to accommodate the di�erent appearances, while
preserving shape coherency and avoiding an invasion of surrounding organs
and their segmentations.

Any assumptions concerning shape, size or intensity that we made concerning
bladder, prostate or rectum would limit the amplitude of applicability of our method.
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The key factor that has therefore guided and inspired the approaches presented
throughout this manuscript has been, therefore, adaptability both to shape and
to intensity variability.

In general, the approaches that we have found in the literature impose quite
strong shape and/or appearance constraints on the structures involved. The meth-
ods are therefore restricted to homogenous structures, or structures with character-
izable inhomogeneities, which are not always the case in our database of images.

We are thus motivated to propose a fully automatic framework for coupled
bladder�prostate segmentation. The method should adjust itself to di�erent kinds
of bladder (homogenous, di�erent levels of inhomogeneities). The characteristics of
the interface between bladder and prostate in the image may be taken into account
in the application of a non�overlapping constraint on the deformable models. Since
the prostate shows a much better statistical coherency in shape among patients than
the bladder ([Rousson 2005a]), a prostate shape prior could prove to be useful. For
the rectum, the proposed method must be �exible enough to accommodate large in-
tensity variations that are unpredictable in advance, but should maintain a certain
coherency in terms of shape, not too distant from a certain reference which might
be, for example, an average rectum shape.

To comply with all these requirements, we have chosen our method to be based
on explicit deformable models and, more speci�cally, simplex meshes.
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Bladder Segmentation

Contents
4.1 Challenges in Bladder Segmentation . . . . . . . . . . . . . . 59

4.1.1 Intensity variability . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Shape and Size Variability . . . . . . . . . . . . . . . . . . . . 61

4.2 Contribution and Outline . . . . . . . . . . . . . . . . . . . . 62
4.3 Preliminary processing . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Image Cropping . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 Determination of the Presence of a Contrast Agent . . . . . . 67

4.4 Initial structure approximation . . . . . . . . . . . . . . . . . 69
4.4.1 Homogenous Non�Contrasted Bladders . . . . . . . . . . . . 71
4.4.2 Contrasted Bladders . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Mesh deformation: binary stage . . . . . . . . . . . . . . . . 73
4.5.1 Geometry of a 3D simplex mesh . . . . . . . . . . . . . . . . 74
4.5.2 Mesh Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.3 Automatic division of the mesh into zones . . . . . . . . . . . 77

4.6 Mesh deformation: gray�scale stage . . . . . . . . . . . . . . 78
4.7 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Challenges in Bladder Segmentation
The bladder is a hollow organ located in the lower abdomen that holds urine (see
�gure 4.1). It is held in place by ligaments that are attached to other organs and
the pelvic bones. The bladder's walls relax and expand to store urine, and contract
and �atten to empty urine through the urethra.

The bladders in our CT image database show quite di�erent shape, size and
intensity characteristics, as detailed in the next section.
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Figure 4.1: The bladder (green) on a standing patient (left), and how we see it when
the patient is lying down (center) and on an actual CT scan (right).

4.1.1 Intensity variability
Sometimes an intravenous contrast is used to highlight and to enhance certain organs
such as the bladder. The contrast agent (usually an iodine compound) is injected
into the bloodstream, and it circulates throughout the body. The kidneys and liver
quickly eliminate the contrast, which is then temporarily stored in the bladder. The
CT's x�ray beam is weakened as it passes through the blood vessels and the organs
that have "taken up" the contrast. The bladder is enhanced by this process and
shows up as an hypersignal area on the CT images, with an intensity similar to that
of the bones (between +200 and +1000 H.U.).

1. If no contrast agent has been administered to the patient, the bladder is
seen as an homogenous structure with an intensity range similar to other soft
tissues (around +40 H.U.). An example is shown at the center of �gure 4.2.

2. If a contrast agent has been administered to the patient, two situations may
arise:

� If the contrast agent is fully visible in the bladder image, the result
is an homogenous, contrasted structure, such as the one at the left hand
side of �gure 4.2.

� However, if the time between contrast administration an CT scan acqui-
sition is not su�ciently long, the contrast agent may enhance only a
part of the bladder. This is due to the patient's position (lying down)
and the fact that the contrast agent, being a dense product, is pulled by
gravity and therefore concentrates in the portion of the bladder that is
closer to the ground. In this case, the bladder can be seen as a non�
homogenous structure, showing both a contrasted and a non�contrasted
portion, as well as an intermediate zone between the two, where an in-
tensity gradient can be appreciated. An example of this case is shown on
the right handside of �gure 4.2.
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Figure 4.2: Examples of shape and size variability for the bladder (sagittal views).
From left to right, homogenous contrasted bladder, homogenous non�contrasted
bladder, and heterogenous bladder showing a lower contrasted zone and an upper
non�contrasted zone. The second row shows the bladders outlined in green.

This is summarized in �gure 4.3.

4.1.2 Shape and Size Variability
Since the bladder is a soft tissue structure, patient movement, position and its
surrounding structures may modify its shape. The variable nature of its �llings
further in�uence the shape and size of the bladder. Although homeomorphic to a
sphere, signi�cant changes in size and shape can be noticed in �gure 4.2

The concept that summarizes the challenges involved in the automatic segmen-
tation of the bladder is, therefore, that of adaptability (to di�erent shapes, sizes
and intensities), without the need for human interaction. Di�erent bladders present

Seed Voxel Intensity

No Contrast Agent

Homogenous Non�Contrasted Bladder

Contrast Agent

Non�Homogenous BladderHomogenous Contrasted Bladder

Figure 4.3: The presence or absence of a contrast agent greatly in�uences the blad-
der's appearance.
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in our database are illustrated in �gure 4.4.
The eventual intervention of an expert may be interesting, since perhaps medical

experts may wish to manually improve the �nal results. Our method contemplates
that possibility, and allows for human intervention at the end of the automatic
segmentation process.

4.2 Contribution and Outline
The bladders that appear in the CT images used in the approaches cited in section
3.2.1 are homogenous and mainly non�contrasted. The interaction of an expert
is often required either for initialization, or to choose patient�speci�c parameters.
Strong assumptions are often made concerning its shape and/or intensity.

The novelty of our approach resides in the automatic initialization method
(seed voxel detection) and the ability to adapt to di�erent bladder images (ho-
mogenous intensity with high contrast, homogenous intensity with low contrast, or
non�homogenous intensity with di�erent contrast zones). We take full advantage of
the capacity of simplex meshes to be divided into zones. A new histogram�based
external force is developped to guide the deformation of these zones, so that they
adjust to the underlying bladder intensity zones in the case of non�homogenous
structures.

Our approach is three�fold. It incorporates non�rigid registration based on sur-
rounding bone structures to provide a reliable spatial initialization, mathematical
morphology based operations to compute a good initialization of the underlying
structure and deformable models to re�ne and smooth the segmentation while en-
forcing model constraints and forbidding segmentation �leakage� to neighboring soft
tissue structures.

The overall framework for the segmentation of the bladder that we propose is as
follows:

1. First, preliminary treatments are performed (section 4.3) in order to put the
images in a common frame of reference. This is achieved through registration
using a special polya�ne method. Next, the region in the image on which
computations are perfomed is reduced in order to save processing time.

2. As described in section 4.3.3, the bladder is then located and classi�ed as
homogenous or non�homogenous, contrasted or non�contrasted (Figure 4.3).
The segmentation begins by computing an approximation of the structure
using a method that has been speci�cally designed to this end.

3. A simplex mesh is deformed to �t the approximation of the bladder. This step
is described in section 4.5.

4. The mesh segmentation is eventually re�ned and smoothed using the bladder
in the CT image itself as a guide (section 4.6).
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Figure 4.4: Di�erent types of bladders make the segmentation task challenging (sagittal
views). First two rows: original images. Third and fourth row: the same images, with the
bladder outlined in green.
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Figure 4.5: Examples of wrong pairings (orange lines) that may arise if no zones
are de�ned for registration. The bladder's intensity variability from one image to
another renders the resulting transformation unreliable.

4.3 Preliminary processing

4.3.1 Registration

For our application, the goal is to place all of the patients' data in a common space
while deforming the soft tissues as little as possible. In fact, taking soft tissues as
landmarks for the registration process can greatly mislead the process. For instance,
in the case of non�homogenous bladders, the contrasted portion has similar intensity
to that shown by the bones (and, therefore, by the neighboring femoral heads),
while the non�contrasted part is similar in appearance to other nearby soft tissues.
In the case of an homogenous bladder image being registered to a non�homogenous
bladder image, for instance, it is likely that wrong pairings would result in unnatural
distortions of the structures (see �gure 4.5).

However, the images do contain more "stable" structures, i.e., structures that
are not easily deformed and whose intensity is quite predictable from one image to
another. These structures are the pelvic bones. If we are able to register the images
based on these structures (by de�ning zones, for example) and then interpolating the
resulting transformation to yield a dense deformation �eld, the resulting registration
would be much more reliable.

We have used the locally a�ne registration framework proposed in [Commowick 2006],
which allows us to register local areas in the images using a�ne transformations
having few degrees of freedom. The novel polya�ne framework and Log�Euclidean
regularization ensure a smooth, coherent and invertible transformation all over the
image. Registration is achieved quite e�ciently in 3D.

The fact that this algorithm performs the registration based on selected zones, as
well as the results shown in the next section (and published in [Commowick 2006]),
prove that it is well adapted to this type of application.
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Figure 4.6: Locally a�ne transformations are computed for each zone, and they are
then interpolated in the Log�Euclidean space to generate a dense, yet invertible,
transformation.

4.3.1.1 Locally A�ne Registration

Commowick et al. present an e�cient and general framework for locally a�ne reg-
istration. The transformations are parametrized by local a�ne components, associ-
ated to prede�ned areas. The use of a Log�Euclidean polya�ne framework and a
Log�Euclidean regularization among a�ne components guarantee an invertible and
anatomically consistent transformation [Arsigny 2006]. Their method to combine
local a�ne transformations to obtain a global transformation and their regulariza-
tion scheme is detailed in appendix A. The principle of locally a�ne registration is
illustrated in �gure 4.6

Locally A�ne Registration Applied to Bone Registration in Lower Ab-
domen Area We tested the performance of the locally a�ne registration algo-
rithm in the frame of high�precision radiotherapy planning (see [Commowick 2006]).
The aim was to develop an automatic method for soft�tissue localization in the lower
abdomen area, based on CT images.

The position of the soft tissues was estimated with respect to a set of landmarks
established in more stable surrounding structures showing a better contrast in CT
images. All the patients' images were registered to a common space, and the quality
of the results was measured by comparing the position of landmark points in the
pelvic bones in the registered images. For our feasibility study, the landmarks have
been the centers of mass of the femoral heads. Regions around these points (in our
case, the femoral heads themselves) are used as a�ne component localizations in
the registration algorithm.

All the patients' images are registered with respect to a reference image. The
process consists of two stages: a global a�ne registration is performed using a block�
matching algorithm (see [Commowick 2006]), and then the locally a�ne algorithm
is applied.



66 Chapter 4. Bladder Segmentation

Figure 4.7: Registration result on the pelvis. The femoral heads of the reference
image (left) have been outlined in red, and this outline has been superimposed over
the �oating image after a global a�ne registration (center), and the �oating image
after using locally a�ne registration (right). The femoral heads contours in the
reference image match the (locally a�ne) registered femoral heads best.

For a qualitative evaluation, the obtained results are compared with a plain a�ne
transformation in �gure 4.7. Besides the observable improvements with respect to
the a�ne transformation, the locally�a�ne registered images remain consistent from
an anatomical point of view, even outside the regions de�ned for the registration
process.

For a quantitative assessment, a comparison has been carried out with the results
of a dense, non�rigid registration algorithm [Cachier 2003]. Table 4.1 shows the
norm of the Euclidean distance between the landmarks in the registered images and
the corresponding landmarks in reference image.

Landmark
Patient # 1 2 3 4
Left head (DT) 3.53 1.20 2.51 4.37
Left head (MAF) 3.44 1.00 2.11 3.30
Right head (DT) 1.11 1.55 1.03 3.78
Right head
(MAF)

1.33 1.59 0.88 3.19

Table 4.1: Registration results on femoral head centers. Distances in millimeters
between the expected femoral head centers and those obtained from the registration
(locally a�ne: MAF ; dense transformation: DT).

The results of this method are at least as good as the results obtained through
non�rigid registration. This fact becomes even more evident if computation time is
taken into account (3 minutes as opposed to 10 minutes for a fully non�rigid ap-
proach). This method performs the registration based on speci�c zones and ensures
consistent results all over the image.

Therefore, seeking a locally a�ne transformation using zones around bone struc-
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Figure 4.8: 3D view of the 5 di�erent zones de�ned around bone structures that
were used for the registration of the images in our database. Left and right femoral
heads are shown in red, the sacrum bone is shown in blue, and the left and right
ischiatic tuberosities are displayed in green. The background image is the reference
CT image used for registration.

tures is better adapted to the registration of lower abdomen images with highly vari-
able soft tissues than a dense transformation solution, which would try to match
the entire �oating image.

How We Apply Locally A�ne Registration In order to put our database
images in a common frame of reference, the locally a�ne registration algorithm
has been applied using zones de�ned around 5 pelvic bone structures: the femoral
heads, the sacrum bone, and both ischiatic bones, as illustrated in �gure 4.8. The
chosen reference image is of size 256x256x80 (sagittal, coronal and axial planes,
respectively). Its voxel size is 1.87 mm x 1.87 mm x 3 mm. This image was chosen
as reference because of its good bone structure contrast and de�nition, and also
because its relatively high voxel size helps to avoid the creation of partial volume
e�ects due to interpolation when registering lower voxel size images. Sample results
are shown in �gure 4.9.

4.3.2 Image Cropping
4.3.3 Determination of the Presence of a Contrast Agent
When we determine whether the bladder shows the presence of a contrast agent
or not, the bones are not taken into account in the registered image. We then
establish a region of interest based on a probability map of the bladder's position in
the registered images and, within this region, we seek for the highest intensity voxel
located in a neighborhood with low intensity variability. This will be our seed voxel
(see �gure 4.11). The probability map is obtained by accumulating the intensities of
the binary expert segmentations of the bladders in the registered images, as shown
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Figure 4.9: Axial views of the registered image, with the zones used during registra-
tion outlined. The anatomical coherency of the registered image has been preserved.
From top to bottom, femoral heads' zones (red), sacrum zone (blue) and ischiatic
tuberosities' zones (green).
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Figure 4.10: Registered image before (top) and after (bottom) cropping. From left
to right, sagittal, coronal and axial views.

on the left hand side of �gure 4.11. Since the images have been registered based
on the pelvic bone structures, the positions of the latter have become known, and
they can therefore be eliminated (or simply ignored) when determining the region
of interest for the bladder.

The fact that CT image voxel intensities are de�ned in standard Houns�eld
Units (H.U.) allows us to de�ne a �xed threshold level for deciding whether the
found (seed) voxel belongs to a contrasted soft tissue (intensities around +200 to
+1000 H.U.) or to a non�contrasted soft tissue (intensities of about +40 H.U.). We
have established the level from which tissues are considered as contrasted to be +200
H.U.

If the intensity of a small neighborhood around the chosen seed voxel corresponds
to the intensity of non�contrasted soft tissues (based on the threshold de�ned above),
the bladder is considered as non�contrasted. Otherwise, it is considered as showing
a contrast agent, and we must determine whether it is homogenously contrasted
(one zone of homogenous grey�level values) or no�homogenous. Since the location
of the contrast agent is in�uenced by gravity, it tends to gather in the lower portion
of the bladder, so in the non�homogenous case we can speak of a very contrasted
"lower" zone and a less contrasted "upper" zone.

In all three cases, we proceed to approximate the structure, as described in the
next section.

4.4 Initial structure approximation
Next, a binary approximation of the bladder is computed. In order to obtain this
approximation, we have devised our own Progressive Region Growing, a mod-
i�ed version of seeded region�growing that incorporates mathematical morphology
operations. The method is detailed in algorithm 1.
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Figure 4.11: A starting point is sought within a region determined by the probability
map of the bladder's position in registered images. The most contrasted voxel of
each image within that region is chosen as seed. From left to right: region (red)
determined by the probability map and the chosen seed (pointed by the red arrow) in
homogenous contrasted, non�homogenous, and homogenous non�contrasted bladder
images.

Algorithme 1 The Progressive Region Growing algorithm.
Input: Image (image) and seed point (seed)
Output: The resulting approximation RG

RG = seed

Compute intensity mean M and std. dev. SD around seed

De�ne lowThreshold and highThreshold based on M , SD and seed

while (RG is smooth in 3D) & (lowThreshold not too low) do
Decrease lowThreshold

RG = RegionGrowing(image, seed, lowThreshold, highThreshold)
MorphologicalClosing(RG, StructuringElement)
Check3DSmoothness(RG)

end
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Each step corresponds to a traditional region growing with a progressively softer
inclusion criterion, followed by a mathematical closing using a spherical structuring
element of a 5 voxel radius in all directions (given the image voxel size, it is equivalent
to 9.3 x 9.3 x 15mm) . The lowThreshold and highThreshold values are initially
de�ned as M-2*SD and M+2*SD, respectively, while the value of lowThreshold is
always required to be greater than 0. The inter�slice thickness of our images, which
is di�erent depending on the direction (typically, 1.875 mm in X, 1.875 mm. in Y and
3 mm in Z), is taken into account for the de�nition of the radius of the structuring
element in each direction. Every time an image voxel is examined for inclusion,
the structuring element is used to check a neighborhood around the candidate. If
a su�cient (user�determined) percentage of neighboring voxels also corresponds to
the intensity criterion, the candidate voxel is included in the result (we used 80%).
Otherwise, it is discarded.

The size of the structuring element has been chosen to be small enough to �t into
the bladder, but large enough so that it does not �t into surrounding organs that are
comparatively "thin" such as the seminal vesicles or the colon. The morphological
step aids in the prevention of leakages into those organs, which must not be included
in the computed approximation of the bladder.

We begin by applying a small number of progressive region growing steps that do
not enforce the smoothness constraint, in order to overcome possible irregularities
in the initial growth. The enclosed region then continues to be enlarged as long
as the result remains "smooth" in 3D. The smoothness criterion that we use is the
following: if the resulting approximation has leaked into thin neighboring structures,
there will be a sudden, drastic change in the area of the segmentation in nearby (even
successive) z slices. This sudden change can be detected by looking at the derivative
of the area in successive slices.

An optimization of progressive region growing has been implemented in order to
avoid computing the whole approximation at each iteration, but just including the
newly accepted voxels each time.

4.4.1 Homogenous Non�Contrasted Bladders
In the case of homogenous, non�contrasted bladders, one progression of our modi�ed
region growing su�ces to approximate the whole structure. An example is illustrated
in �gure 4.12.

4.4.2 Contrasted Bladders
In the case of bladders showing the presence of a contrast agent, the most con-
trasted zone is approximated �rst, since the characteristics of the chosen seed voxel
(most contrasted point, within a low�variance neighbourhood, and with a high like-
lihood of belonging to the bladder) will place it in that region.

The modi�ed, progressive region growing is applied, as shown in �gure 4.14,
with a lowest tolerable threshold of +200 H.U. (i.e., the region is grown while the
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Figure 4.12: A sample progression of the modi�ed region growing to generate an
approximation of an homogenous, non�contrasted structure.

Figure 4.13: A sample progression of the modi�ed region growing to generate an
approximation of contrasted structures or zones.

intensities correspond to contrasted tissues).
Once this progression stops, we must still determine whether the bladder in the

image is homogenous or not. In order to do this, we search for a second seed voxel
that would correspond to a potential "upper" (in the Y sense), non�contrasted zone.
To this end, a search region is determined above the contrasted zone that was just
approximated, and a seed is sought within it. This seed must be located in this
zone, and within a neighborhood of homogenous intensity corresponding to that of
non�contrasted soft tissue.

� If such a voxel is found, we assume that the bladder is non�homogenous, and
that a seed for its upper, non�contrasted region has been found. A second
progression of region growings is then launched in order to approximate it.

� On the other hand, if no such voxel is found, the bladder is considered to be
homogenously contrasted. In that case, the approximation of the contrasted
zone is the approximation of the whole structure.
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Figure 4.14: A second seed is sought for the upper, non�contrasted region. If one is
found, a second progression of the modi�ed region growing is launched to generate
the approximation of non�contrasted zone.

Figure 4.15: A second seed is sought for the upper, non�contrasted region. If none
is found, the approximation of the structure is that of the contrasted zone.

The search for a second seed voxel for a non�homogenous bladder and the sub-
sequent evolutions are depicted in �gure 4.14. In the case of an homogenously
contrasted bladder, a second seed with the desired characteristics is unlikely to be
found; therefore, the approximation that was just computed is considered as having
enclosed the whole bladder (�gure 4.15).

In all cases, the process of progressive region growing provides us with a 3D
binary image corresponding to the approximation of the bladder in the image, as
well as its intensity characteristics, including the (in�)homogeneity of the structure,
the mean and the variance of each zone. These parameters will be used to guide the
deformation of a simplex mesh (section4.6).

4.5 Mesh deformation: binary stage
The binary approximations computed in the previous section serves to guide the
preliminary stages of deformation (both global and local) of an initial simplex mesh.
Since the bladder is a structure homeomorphic to a sphere, the initial mesh is a
sphere whose radius is the average (largest) diameter of the manually segmented
bladders in our database.

In the case of non�homogenous bladders, the approximation consists of two con-
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nected components (upper and lower zones). In order to generate only one binary
component to guide the mesh, the two regions are joined using mathematical mor-
phology tools (an opening operation). For homogenous bladders, the approximation
does not need to be modi�ed, and is thus used "as is".

4.5.1 Geometry of a 3D simplex mesh
A Simplex Mesh[Delingette 1994] is a representation of discrete surfaces that
presents a regular structure in which each vertex is connected to exactly 3 neighbors.
In surface meshes (2�simplex meshes), the 3 neighbors of vertex pi (p1
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ni =
p1

i ∧ p2
i + p2

i ∧ p3
i + p3

i ∧ p1
i

||p1
i ∧ p2

i + p2
i ∧ p3

i + p3
i ∧ p1

i ||
(4.1)

Let Ci be a circle of radius ri centered at ci, circumscribed to the three vertices
(p1

i , p2
i , p3

i ), and let Si be the sphere of radius Ri centered at oi, circumscribed to
the tetrahedron (p1

i , p2
i , p3

i ).
The metric parameters ε1

i , ε2
i and ε3

i (
∑

j εj
i = 1, ∀j, 0 < εj

i < 1) are the
barycentric coe�cients of projection p⊥i of pi on the plane of its 3 neighbors. They
control the relative space between a vertex in the mesh and its neighbors.

The simplex angle constitutes a measure of the local curvature at vertex pi

and is de�ned as follows:




ϕi ∈ [−π, π]

sin(ϕi) = ri
Ri

sign(pip
1
i .ni)

cos(ϕi) = ||oici||
Ri

sign(oici.ni)

The simplex angle can be interpreted as a geometrical angle in the plane (pi, ci, oi).
The set of parameters ε1

i , ε2
i , ϕi su�ces to de�ne the shape of a 2�simplex mesh,

apart from a simple scaling.
The geometry of 2�simplex meshes is illustrated in �gure 4.16.

4.5.2 Mesh Evolution
For the deformation step, a hierarchical approach is used: the initial mesh undergoes
rigid and a�ne transformations that globally place the mesh as accurately as possible
over the binary approximation of the bladder. After this step, the mesh begins to
progressively undergo globally-constrained deformations [Montagnat 1998], which
allow it to adapt itself to smaller variations in the data.

The position of vertex i of the mesh at time t + 1 (V t+1
i ) is computed following

equation 4.2.

V t+1
i = V t

i + (1− δ)(V t
i − V t−1

i ) + λ(αf int
i (V t

i ) + βfext
i (V t

i )) + (1− λ)fglobal
i (4.2)



4.5. Mesh deformation: binary stage 75

Figure 4.16: Geometry of 2�simplex meshes (credit to [Montagnat 1999a]).

where λ is the locality parameter, δ is a damping coe�cient, α controls the
in�uence of internal (i.e. regularization) forces for that vertex, and β weights the
external (i.e. image) forces acting on the vertex. We start with λ = 0, a purely
global (rigid + a�ne) deformation, and move progressively towards a more local
deformation (0 < λ < 1).

The idea behind each of these forces in the context of simplex meshes is the
following: from the current mesh, a second, target mesh (considered "ideal") is
computed, and the �rst one is pulled towards it, with the aim of improving the
segmentation.

Global force (fglobal) serves to align a simplex mesh as well as possible with the
data found in the image. In other words, the global force considers the target mesh
as an a�ne deformation of the mesh at the previous iteration. When parameter λ

in equation 4.2 is equal to 0, global forces dominate the deformation process.
The global force is computed through an iterative closest point algorithm[Besl 1992,

Zhang 1994], which consists of the iteration of 3 main stages:

1. Pairing Each model's vertex is aligned with a data (image) point.

2. Estimation A transformation is computed in order to minimize the distance
between the transformed model and the data points.

3. Update The transformation is applied to the model.

First, each vertex is put in correspondence with a "salient" data point (for ex-
ample, a point of strong intensity gradient). Let cp(V t

i ) be the data point associated
to vertex V t

i . Given n pairings, at time t the transformation T t is sought in the
space of a�ne transformations such that the sum of the squared distances between
the vertices of the deformed model and the corresponding data points is minimized,
as shown in equation 4.3.
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T t = argminT t∈Taffine

d−1∑

i=0

||T t(V t
i )− cp(V t

i )||2 (4.3)

T t is estimated within the space of a�ne transformations. Registration is
achieved through the application of a global force �eld de�ned by fglobal(V t

i ) =
T t(V t

i )− V t
i .

An a�ne transformation can be seen as the combination of a rigid transfor-
mation and a translation, without angle preservation. This transformation has 12
degrees of freedom and can be expressed as a base changement matrix A (3x3) and
a translation t:

∀T = (A, t) ∈ Taffine, T (pi) = Api + t (4.4)

The optimal translation is obtained by the displacement of the barycenter, and
the criterion to be optimized in the barycentric space is:

∀C(A) =
n∑

i=1

||Api − cp(pi)||2 (4.5)

The optimum that minimizes the norm of the data's noise is obtained when
∂C(A)

∂A = 0, meaning that A =
∑

yx(
∑

xx)−1, where
∑

xx =
∑n

i=1 pip
T
i , and

∑
yx =∑n

i=1 PPP (pi)pT
i is the cross�covariance matrix.

Internal forces f int involve a regularization of the mesh. One of the advantages
of simplex meshes is that this regularization is easy to implement by using the
concept of simplex angle.

The internal force can be seen as an attraction of model vertex pi towards the
point p̃i which is de�ned by its 3 neighbors and by the parameters ε̃1

i , ε̃
2
i , ϕ̃i. Metric

parameters ε̃1
i and ε̃2

i are de�ned according to the desired distribution of the vertices
on the model's surface, while ϕ̃i allows the determination of the type of continuity
expected of the surface. This curvature constraint imposes a certain regularity of
the simplex angle, and therefore of the discrete curvature of a surface:

ϕ̃i =
∑

pj∈Vη(i)

ϕj

|Vη(i)| (4.6)

The value of the simplex angle at each vertex tends to equal that of its neighbors.
The resulting internal forces make the model converge towards a shape of constant
curvature which, in the case of 3D simplex meshes of genus 0, is a sphere: this is the
C1 constraint. The C0 constraint would consist in minimizing the simplex angle.
In the rest of this manuscript, the internal constraint used will be the C1 one.

The neighborhood of a vertex i is de�ned as the set Br(i) of vertices located
within a sphere of radius r. The parameter of the topological size of the neigh-
borhood η corresponds to the rigidity of the surface. The mesh deformations are
more localized if the rigidity parameter is small, and a�ect the surface on a larger
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zone when the rigidity parameter increases. The rigidity parameter allows for the
smoothing of the curvature on a neighborhood of variable size.

External force fext is a data�driven force that tries to align the current mesh
with salient points in the image.

In order to guide the deformation of the simplex mesh, we determine at each
model vertex an external forces directed along the direction of the normal to the
model's surface. Following [Delingette 1999], the data point to serve as attractor
will be sought within a certain distance along this normal. This approach has 2
advantages: on one hand, a limitation on the maximum search distance for a data
attractor reduces the potential in�uence of outlier points, and on the other hand, it
speeds up the process of �nding such a point by restricting the search space.

In our case case, since the image is binary, the structures's borders are well
de�ned, the chosen attractor is the point along the surface normal that shows the
highest intensity gradient norm value.

Parameters: λ is a globality coe�cient: if it equals 1, only a global (a�ne) defor-
mation is possible. As λ decreases, more local deformations (i.e., guided by internal
and external forces) are authorized to the mesh. At the beginning of the deformation
process, only global deformations are allowed (λ = 1) in order to initially position
the model over the image data. Throughout the deformation process, the value of
λ is progressively lowered, to allow for more "local" deformations so that the model
can adjust to smaller details in the target image.

β is the image data coe�cient. With β = 0, the mesh undergoes only a regular-
ization process.

The δ parameter weights the importance of inertia on the deformation process:
the previous iteration is considered to have an in�uence on the following one.

The initial mesh deformation over a binary approximation of the target structure
makes the whole procedure more robust in the presence of noisy data and outlier
points in the original image. Some initial deformation stages are shown in �gure
4.17.

4.5.3 Automatic division of the mesh into zones
In order to re�ne the result of the initial mesh deformation, we use the image itself,
as opposed to the computed approximation. However, the intensity characteristics
of the underlying bladder in the image must be taken into account. We adjust the
deformable model to the type of bladder present in the image as follows:

For non�homogenous bladders: A Chamfer distance map is computed with
respect to the upper and lower zones in the bladder, whose approximations were
obtained through progressive region growing (see algorithm 1). These distance maps
are used to label each vertex of the simplex mesh as belonging to the "upper" (non�
contrasted), "middle" (interface, intensity gradient zone between upper and lower)
or "lower" (contrasted) zone. Each portion of the model will evolve under di�erent
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Figure 4.17: From left to right, the target non�homogenous bladder in an image,
the generated binary approximation, an initial mesh before and after progressive de-
formations to �t the approximation, and the result superimposed over the original
target bladder. This resulting segmentation, seen in red over the original image, can-
not be further re�ned without taking into account the intensity (in�)homogeneities
within the structure.

Figure 4.18: In order to divide the mesh into zones that correspond to the intensity
ranges in the underlying bladder, Chamfer distance maps to the upper and lower
zone approximations are computed. The model's vertices are assigned to one or the
other according to their distance values to each of the zones. An intermediate zone,
corresponding to an intensity gradient between the upper and lower, is also de�ned.

forces, according to the characteristics of the target structure in the nearby region.
This is illustrated in �gure 4.18. The resulting divided mesh is shown in �gure 4.19.

The middle zone is established in order to avoid the "wasp�waisted" results that
occur with only two regions. Especially for very contrasted bladders, and because
of partial volume e�ect, the intermediate zone will contain an intensity range that
matches neither the �pure� upper nor lower portion of the bladder.

For homogenous bladders: since the whole bladder has similar intensity prop-
erties, the mesh will deform itself globally under the same rules. Therefore, no zone
division is needed.

4.6 Mesh deformation: gray�scale stage
Once the mesh properly delineates the binary approximation of the bladder, the
segmentation is re�ned, each mesh zone will evolve guided by the registered image
itself and by a new histogram based force that we have devised to this end.

We propose an extended framework of deformable-model based image segmenta-
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Figure 4.19: Divided mesh, showing the upper, middle and lower zones. If the mesh
is deformed to �t an homogenous bladder, no zone division is performed (i.e., it has
only one region).

tion where the sought active contour or surface S(µ)) results from the minimization
of an energy. The surface S is pulled both towards Ss, a �smooth� surface that
lies in the vicinity of S(µ) (for regularization purposes) and Si, an estimated target
surface corresponding to the boundaries of an anatomical structure in an image.

We propose a new histogram�based approach for estimating Si(µ) given S(µ)
and I. In this method, the boundary points are assumed to be the ones for which
the inside voxels have a high probability of belonging to the inside region while the
outside voxels have a low probability of belonging to the inside region

Rather than basing the segmentation on an intensity range, we rely on the
histogram of the interior of the current target structure, making no assumption on
the intensities found in surrounding organs or on previous cases (training data).

If we assume that the normal N(µ) at S(µ) is oriented outwards, the boundary
surface Si(µ) can be computed at each iteration as S(µ) + s?, with:

s? = arg min
s∈[−L;L]

Es (4.7)

where

Es =
v=L∑

v=−L

Gσ(|v − s|) ∗ f(I(S(µ) + v N), µ, σ, sgn(v − s)) (4.8)

where s is the position of each vertex of the �nal mesh we want to evaluate, v is
the position of the voxels along the normal of the mesh at vertex s, and f(i, µ, σ, sgn)
is a con�dence estimation.

This con�dence function is a piecewise constant function designed so that it will
heavily penalize the energy term if a voxel is mistakenly placed inside or outside the
mesh, and reward (i.e., lower the energy) if a voxel belonging to the inside of the
structure is correctly placed inside the mesh. It depends on two terms: | I(S(µ)−µ

σ | ≤ 2
and sgn(v−s). For instance, if the �rst term is false (i.e., the voxel's intensity is not
compatible with the intensities found inside the structure) and the second term is
true (i.e. the voxel is located inside the mesh), a positive penalization value is added
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to the energy term. Function Gσ de�nes a weight for the voxels that are taken into
account at each iteration step; it may be a Gaussian p.d.f., a generalized rectangle
function, or a combination of the two. The parameters are fully adjustable, to
penalize more (or less) a non�homogeneity inside the structure or zone. This force
is illustrated in Figure 4.20.

f(I(S(µ)+v N), µ, σ, sgn(v−s)) =





+10, if | I(S(µ)−µ
σ | > 2 and sgn(v − s) ≤ 0

−1, if | I(S(µ)−µ
σ | ≤ 2 and sgn(v − s) ≤ 0

−1, if | I(S(µ)−µ
σ | > 2 and sgn(v − s) > 0

+1, if | I(S(µ)−µ
σ | ≤ 2 and sgn(v − s) > 0

(4.9)
As can be noticed from equation 4.9, an inside voxel that does not belong is

much more heavily penalized in terms of energy value than an outside voxel that
belongs inside the model.

Figure 4.20: Image voxels that are mistakenly included in, or excluded from the segmenta-
tion are penalized with locally greater values of f (exempli�ed in the red box in the picture),
and a subsequent increase in the total energy E. Voxels that are correctly included or ex-
cluded in the segmentation lower the total energy. The mesh will be pulled towards the
potential surface that has minimal energy (s∗).

4.7 Results and Analysis
The accuracy of an individual experimental (in our case, automatic) segmentation
is usually given through some measure of a region's overlap and its distance from
the ground truth, such as the Hausdor� distance ([Huttenlocher 1993]). Let A =
a1, ..., am and B = b1, ..., bn denote two �nite point sets. Then the Hausdor�
distance is de�ned as

H(A,B) = max(h(A, B), h(B, A)) (4.10)
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I H Sensit. PPV RHD
1 NH 0.94 0.73 2.7
2 H 0.96 0.80 3.0
3 H 0.87 0.81 3.7
4 NH 0.94 0.81 4.0
5 H 0.97 0.78 3.0
6 NH 0.93 0.81 3.0
7 NH 0.94 0.89 2.0
8 H 0.92 0.79 4.0
9 H 0.97 0.88 2.3
10 H 0.80 0.94 4.7

I H Sensit. PPV RHD
11 H 0.75 0.98 5.7
12 H 0.93 0.86 3.3
13 H 0.91 0.95 5.3
14 H 0.92 0.92 2.0
15 H 0.88 0.97 2.7
16 H 0.91 0.95 2.0
17 NH 0.84 0.93 3.7
18 NH 0.91 0.90 2.0
19 NH 0.83 0.86 4.0
20 H 0.76 0.83 3.7

Figure 4.21: Sensitivity, Positive Predictive Value and robust Hausdor� distance (95%
quantile, all values in mm.) of the automatic segmentation with respect to the ground truth
in homogenous (H) and non�homogenous (NH) bladder images. The average sensitivity and
positive predictive value are of 0.89 and 0.87 respectively, with standard deviations of 0.066
and 0.072. The mean robust Hausdor� distance (i.e., 95% quantile) is 3.34 mm with a
standard deviation of 1.086 mm. (Maximum, minimum) value pairs are of (0.97, 0.75),
(0.98, 0.73) and (2.0, 5.7) for sensitivity, positive predictive value and robust Hausdor�
distance, respectively.

where

h(A,B) = maxa∈Aminb∈B(||a− b||) (4.11)

Another strategy for evaluating a single�object segmentation is to view each
voxel as an instance of a detection task, which gives rise to metrics for sensitivity and
Positive Predictive Value, among others. Sensitivity is the true positive fraction of
the segmentation, the percentage of voxels in an image correctly classi�ed as lying
inside the object boundary. Sensitivity is de�ned as follows:

Sensitivity =
TP

TP + FN
(4.12)

where TP is the number of true positives, and FN is the number of false nega-
tives. A sensitivity of 1 in our case means that the automatic segmentation includes
the manual (expert) segmentation. Positive Predictive Value (PPV), the ratio
of true positives to the sum of true positives and false positives, is another pos-
sible detection�based accuracy metric. PPV indicates the percentage of positive
classi�cations that are correct. It can be de�ned as

PPV =
TP

TP + FP
(4.13)

where TP is the number of true positives, and FP is the number of false pos-
itives. A PPV of 1 means that the manual (expert) segmentation includes the
automatic segmentation. Therefore, a sensitivity and a PPV of 1 indicate that
the automatic and manual segmentations match exactly. The above measures are
illustrated in Figure 4.22.
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Figure 4.22: The image on the left shows hypothetical automatic (red) and ground
truth (blue) segmentations. The sensitivity of the automatic segmentation is the
ratio TP

TP+FN , while the positive predictive value is de�ned as TP
TP+FP . On the right,

the image illustrates the computation of the Hausdor� distance between surfaces A

and B.

Our method has been tested in a database of CT images showing both homoge-
nous and non�homogenous bladders (see also [Costa 2007b]). Figure 4.21 shows
some quantitative measures of the results. The sensitivity and the positive pre-
dictive value of the automatic segmentation with respect to the expert delineation
have an average of 0.89 and 0.87 respectively, with standard deviations of 0.066 and
0.072. The mean robust Hausdor� distance [Huttenlocher 1993] (i.e., 95% quantile)
is 3.34 mm with a standard deviation of 1.086 mm. The segmentation process on
a registered image takes less than a minute on a standard laptop computer. Some
example results can be seen in Figure 4.23.

The results are quite good, despite the variable quality of both the images and
the expert segmentations. The modi�ed region growing algorithm provides a good
initialisation for both homogenous and non-homogenous bladders, while the mesh
deformation steps improve or correct the �nal segmentation and apply a shape
regularization as well.

The automatic segmentation is sometimes misled by a fuzzy bladder�prostate
interface, which causes a �leakage� of the model into the prostate and, consequently,
an increased distance with respect to the expert delineation. We are able to partially
avoid this by imposing strong regularization constraints on the model, but, as a side
e�ect, the mesh is prevented from attaining high�curvature zones within the bladder.
To address both problems and further improve the results, we propose a framework
for the simultaneous segmentation of the prostate and bladder with non�overlapping
constraints on the models in the next chapter.

Figure 4.24 illustrate the main di�culties encountered, mostly due to fuzzy bor-
ders with neighboring organs. The resulting segmentations for entries 3 and 20 in
table 4.21 show a slight under segmentation (seen in the axial slice). A portion of
the prostate or of the sigmoid may be sometimes included by the mesh (seen in the
sagittal slice), due mainly to a fuzzy interface, i.e., a lack of border de�nition.
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Figure 4.23: Some segmentation results (sagittal and 3D views), with an homogenous
contrasted bladder (left, entry 13 in table 4.21), a non�homogenous bladder (center, entry
7 in table 4.21) and an homogenous, non�contrasted bladder (right, entry 16 in table 4.21).
In the non�homogenous case, the 3 zones of the resulting mesh (upper, middle and lower)
can be seen.
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Figure 4.24: "Leakages" that may occur due to a fuzzy bladder border. From left to
right, sagittal, coronal and axial views of the automatic segmentation results for the im-
ages corresponding to entries 3 (top row) and 20 (bottom row) in table 4.21 (worst cases
encountered).
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Coupled Segmentation of Bladder
and Prostate
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5.1 Challenges in Prostate Segmentation
Just like its surrounding structures (bladder and rectum), the prostate (�gure 5.1)
is a soft tissue, and thus in the absence of a contrast agent its density in Houns�eld
Units is undistinguishable from that of its neighbors. One can appreciate the di�-
culty of the segmentation problem in this context: the prostate organ presents no
distinct "edge" in the CT scan itself (e.g., see image 5.2), so a purely edge�based
segmentation method would not be reliable.

This task is also di�cult for radiation oncologists who perform the segmentation
manually. Even determining "ground truth" in such cases is subjective, and often
times di�erent experts' segmentations based on the same image show important
di�erences (see and example in Figure 5.2). However, the experts make use of
their knowledge in pelvic anatomy and take the intensity similarities into account
while contouring. In our case, and since the prostate shape shows a certain shape
coherency among patients, the results of a shape study prove to be useful for its
delineation.

In the case where a contrast agent has been given to the patient, the bladder
becomes more visible in the image, and so does its common interface with the
prostate. However, di�erent contrast levels within the bladder increase or decrease
the de�nition of its border, making it well de�ned and visible in some zones while
still blurry in others. We show examples of this phenomenon in �gure 5.3.

85
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Figure 5.1: The prostate on a standing patient (left), and how it is seen when the
patient is lying down (center and right), all shown in red, sagittal views.

Figure 5.2: Inter expert variability in the delineation of one prostate. From left to
right, sagittal, coronal and axial views.

Figure 5.3: The bladder�prostate interface (encircled in red) may be clearly visible
(left), visible only in certain regions (center) or fuzzy (right).
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Once again, and just like in the case of the bladder, our challenge is adaptability
to shape and intensity variabilities.

5.2 Contribution
We propose a fully automatic method for the coupled 3D localization and segmenta-
tion of the prostate and bladder in CT scans of the lower abdomen of male patients.
A �exible approach on the bladder allows the process to easily adapt to high shape
variation and to intensity inhomogeneities that would be hard to characterize (due,
for example, to the level of contrast agent that is present). On the other hand, a
statistical shape prior is enforced on the prostate.

We also propose an adaptive non�overlapping constraint that arbitrates the evo-
lution of both structures based on the availability of strong image data at their
common boundary. In the regions where the prostate�bladder interface is visible,
we weight in favor of a more intensity�based model deformation. However, when the
border is not clear, a shape prior introduced on the prostate helps de�ne the "rea-
sonable" frontier that we look for. In the case of non�homogenous bladders where
the borders are visible only in certain regions, a "negotiation" of the intensity�based
and the shape�based approaches takes place, arriving at a point of equilibrium that
best balances both informations.

5.3 Outline
As with the bladder, our approach incorporates non�rigid registration based on
surrounding bone structures to provide a reliable spatial initialization as well as a
cropping step to reduce computation time.

The overall framework for the joint segmentation of the bladder and the prostate
that we propose is as follows:

1. We assume that the images are already in a common frame of reference and
cropped, following section 4.3. We also assume that the segmentation of the
bladder has already been perfomed, following the steps described in chapter 4
up to the grayscale deformation stage, and that the resulting bladder model
is therefore available.

2. As described in section 5.4, a starting point is found inside the prostate, and a
3D prostate model (simplex mesh) is initialized. The initial deformation of the
prostate model is performed independently of the bladder model. The external
force used to deform the mesh is the same as it is for homogenous bladders,
using intensity information from the starting point inside the prostate. A
shape prior is imposed during this deformation stage.

3. The simplex meshes corresponding to the bladder and the prostate are then si-
multaneously deformed using a context�dependent non�overlapping constraint,
as described in section 5.5.
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5.4 Prostate segmentation
In order to segment the prostate in CT scans, we rely on prior information (section
5.4.1) concerning its position (section 5.4.1.1), its shape (section 5.4.1.2), and its
intensity (section 5.4.1.3). Once this information has been computed, it will serve
to guide the deformation of an individual simplex mesh (section 5.4.2) to generate
a �rst approximation of the organ. This approximation will then be re�ned and
boundary con�icts with the bladder will be resolved through the joint deformation of
the bladder and prostate models. A specially adapted assymmetric non�overlapping
constraint has been desinged for this purpose and is described in section 5.5.

5.4.1 Prior Information
5.4.1.1 Prostate localization

We use prior information on prostate localization, which has been computed based
on the expert's segmentations of the structure in our database images. These seg-
mentations (as binary images) had previously been placed in a common frame of
reference for bladder segmentation purposes using a non�rigid registration approach
(see section 4.3.1).

5.4.1.2 Shape statistics

The shape of the prostate across large patient population shows statistical coherency
[Rousson 2005a], and since the image data is often not su�cient to establish the
outline of this structure, it is helpful to incorporate shape prior knowledge. We
built a shape model of the prostate from a database of (registered) training samples
(CT images and their corresponding segmentations of the prostate performed by an
expert). An initial deformable model was used to �t (in a coarse to �ne manner) the
manual segmentations of the prostates in the database, thus assuring a reasonable
point correspondence between the models. Its deformation is similar to that of the
binary stage described in section 4.5.

We have modeled prostate shape variability in terms of eigenmodes. The method
is based on a principal component analysis (PCA) of organ shapes and allows for
the reduction of the large dimensionality of geometry information from multiple CT
studies to a few�parametric statistical model of organ deformation.

Eigenmodes are 3D vector �elds of correlated displacements of the organ surface
points and can be seen as fundamental "modes" of the patients' prostate geometric
variability. The amount of variability represented by the eigenmodes is quanti�ed
in terms of corresponding eigenvalues. Weighted sums of eigenmodes describe organ
displacements/deformations and can be used to generate new organ geometries.

Parametrization of organ geometries The prostate shape has been parametrized
by the set of positions of M surface points: if ~xj(i) denotes the position of the jth
point in the ith prostate CT, then the surface shape vector
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Figure 5.4: In�uence of the �rst four computed eigenvalues (white wireframe) for
the prostate mean model in the registered image space (shown in red). The left
column shows the mean model minus 1 eigenvalue for each eigenvector, while the
right column shows the mean plus 1 eigenvalue for each eigenvector.
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bi = (~x1(i), ..., ~xM (i)) ∈ IR3M (5.1)

represents the geometry of the organ in the ith CT (i = 1, ..., N).
It is important that each ~xj in equation 5.1 corresponds to the same anatomical

position in each of the N prostates, i.e., the series of corresponding positions
~xj(1), . . . , ~xj(N) provides anatomical point�tracking information.

To this end, we have �rst put all the expert segmentations of the prostate in the
registered�image space by applying to each segmentation (in the form of a binary
image) the same registration transformation as the one applied to the original image.
Once in the registered space, we have deformed the same initial mesh (a 3D sphere)
to match each of the (registered) expert's segmentations of the prostate images, in
order to assure a point correspondence. Their mean model µ1 was subsequently
computed and deformed to match once again the expert's segmentations of the
prostates, to reduce eventual bias.

The fact that the registration transformation (computed using the locally�a�ne
registration method described in section A) is invertible allows us to move from the
non�registered image space to the registered space and back, with complete liberty.

Statistical Model of Organ Geometric Change Based on PCA It is as-
sumed that the set of surface shape vectors {bi}i=1,...,N can be seen as samples
from a random process. Obviously, for anatomical reasons, displacements of the M

surface points due to organ motion and deformation are highly correlated, which
implies that the underlying dimensionality of this multivariate statistical problem
is actually much smaller than 3M .

We are thus interested in correlated displacements of the surface points. For
this 3Mdimensional problem with N samples we use a method from multivari-
ate statistics, Principal Component Analysis (e.g. [Manly 2004, Jolli�e 2002]).
This type of approach is known as a Point�Distribution Model (PDM) in the
literature[Cootes 1995a] and has been applied to problems like population mod-
elling of anatomical shape variability[Lorenz 2000] or semi�automatic 3D organ
segmentation[Pekar 2004].

Decomposition of organ geometry samples into eigenmodes Applied
to the problem of organ geometric change, PCA works as follows. The �rst two
moments of the probability distribution, i.e. the mean shape vector b̄ ∈ IR3M

and the centered covariance matrix C ∈ IR3M × IR3M , are calculated according
to equations 5.2 and 5.3.

b̄ =
1
N

N∑

i=1

bi (5.2)
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C =
1

N − 1

N∑

i=1

(bi − b̄).(bi − b̄)T

=
1

N − 1
BBT (5.3)

Here the column vector (bi − b̄) describes the displacements of the geometry at
time ti relative to the the mean shape, and ().()T denotes the outer product of these
two 3M�dimensional vectors. Forming a matrix B ∈ IR3MN from the N centered
shape vectors, the covariance matrix can be rewritten to the compact form on the
second line of equation 5.3.

In case the probability distribution which governs the assumed random process
is a multivariate normal distribution, it is already uniquely characterized by these
�rst two moments. For the problem of internal organ motion/deformation consid-
ered here, the exact type of probability distribution is unknown a priori. However,
considering only the �rst two moments can still serve as an approximation, where
the covariance matrix represents the organ geometric variability.

Correlations of the 3M variables are re�ected by the existence of nonzero o��
diagonal elements of the covariance matrix, implying that the probability distribu-
tions of the variables are not independent. Diagonalization of the covariance matrix
results in eigenvectors ql ∈ IR3M , which represent statistically independent modes
of deformation, the so�called eigenmodes. Under the assumption of a multivari-
ate Gaussian distribution these eigenmodes approximately describe the deformation
characteristics. Each eigenmode de�nes a 3D vector�eld of correlated displacements
δ~xj ∈ IR3 for the M surface points: ql = (δ~x1,l, ..., δ~xM,l).

σ2
l = λl (5.4)

The eigenvectors give a new basis of the 3M�dimensional parameter space, in
which the assumed multivariate normal distribution decomposes into 1D Gaussian
distributions along the directions of the eigenvectors. Quantitatively each eigenvalue
λl is the statistical variance of the N measured geometry samples projected on the
lth eigenvector as new basis vector 5.4.

Implementation issues The size of the resulting covariance matrix can be a pro-
hibitive issue in terms of computation time when it comes to its diagonalization. An
interesting solution to this problem has been proposed in [Cootes 1995b], in which
the a smaller matrix is diagonalized instead, and a relationship is found between the
eigenvalues and eigenvectors of the smaller matrix to those of the initial covariance
matrix.

Construction of organ geometries using eigenmodes The eigenvalues im-
pose an importance ranking on the eigenmodes with respect to the representation of
geometric variability. The dominant eigenmodes, i.e., the eigenmodes with largest
eigenvalues, are the "principal" deformation modes, which span the space in which
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Mode Eigenvalue
1 693.10
2 524.17
3 382.36
4 275.63
5 201.73
6 171.68
7 134.15
8 123.74
9 113.01
10 94.14
11 84.07
12 73.33
13 67.70
14 50.49
15 47.87

Figure 5.5: Eigenvalues corresponding to the �rst 15 computed eigenvectors for prostate
shape variations (based on 24 expert segmentations). For our purposes, only the �rst
8 eigenvectors were taken into account, wich represent 82.3 % of the total sum of the
eigenvalues.

the majority of deformations occur. New geometry samples can be generated by
deforming the mean shape by a weighted sum of L dominating eigenmodes.

b̄ = b̄ +
∑L

l=1 clql ||ql|| = 1 (5.5)

According to the theory of PCA, the coe�cients cl ∈ IR obey Gaussian dis-
tributions with the corresponding eigenvalues as variances (equation 5.5). Thus
the dominating eigenmodes can serve as statistical model of individual organ mo-
tion/deformation with only a small number of parameters.

We applied the method to our patient dataset of prostate segmentations to assess
the shape variation. The spectrum of eigenvalues was found to be dominated by only
few values (8), indicating that the geometric variability of the prostate is governed
by only few patient speci�c eigenmodes. Some of them are illustrated in �gure 5.5.
However, prostate shapes in new images may not be included in the space spanned
by the chosen eigenvectors, so additional criteria has been added in the deformation
process to add expressiveness to the deformable model.

5.4.1.3 Intensity information

We obtain initial information about the intensity of the prostate in each registered
image from a small region inside the target structure. We de�ne this region around
a starting point located inside the mean shape model. We choose, among all the
potential starting points, one located in a neighbourhood showing little intensity
variance (i.e., lower than a certain threshold) within a previously computed interval.
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5.4.2 Initial prostate model deformation
Since the deformation �eld for the prostate has been studied and a mean model has
been computed (section 5.4.1.2), it is natural to use that mean shape model as the
initial mesh for the segmentation process.

At each time step t, the position of vertex Vi in the prostate model is computed
according to equation 5.6.

V t+1
i = V t

i + λ(α(fPCA
i ) + δ(f int

i ) + β(fext
i )) + (1− λ)(fglobal

i ) (5.6)
This evolution formula is similar to the one for the bladder, except for the added

in�uence of fPCA, the PCA�based regularization force. The value of its weight, α,
has been empirically set to 0.4.

5.4.2.1 Shape prior force fPCA

The force fPCA pulls the current model S towards SS, a �smooth� surface that
belongs to the space spanned by the computed PCA modes of variation (for regu-
larization purposes) and fext pulls it towards SI, an estimated target surface corre-
sponding to the boundaries of the anatomical structure in the image.

This force is applied every 5 model evolution steps, as follows:

1. The current mesh St
i is registered (similarity), by distance minimization vertex

by vertex, with respect to the mean PCA model Sµ.

2. The displacement with respect to Sµ in the registered space is computed and
projected onto the PCA space. This projection is then added to the mean
model, resulting in PPCA(St

i ), the projected current model.

3. PPCA(St
i ) is registered with respect to St

i , yielding SPCA
i (as opposed to ap-

plying the inverse registration transformation on the projected model, which
would yield unstable results).

These steps are illustrated in �gure 5.6.
Why not apply, at the third point, the inverse registration transformation that

was computed in point 1? The main concern with a PCA�driven force is that given
a shape, there is no guarantee that either the center of mass of the mesh (i.e. the
average of all mesh points) or the global mesh size will be preserved after the PCA
projection. If there exists a bias on position or size and this bias remains the same
throughout the iterations, it could have an important in�uence on the resulting
mesh: it may grow too much, or simply move, which would make the segmentation
process unstable.

That is the reason behind our choice, at point 3, of re�registering the projected
result on the mesh before projection instead of applying the inverse of the �rst
registration transformation to it.

This deformation process is iterated until the model stabilizes (i.e., the defor-
mation at each iteration becomes small enough to be neglectable). It is then time



94 Chapter 5. Coupled Segmentation of Bladder and Prostate

Figure 5.6: Application of the shape constraint to the model at time t (white) (the
mean PCA shape is shown in red, left). The model is �rst registered (similarity) to
the mean PCA model (center�left). Then, their di�erence is computed, projected
onto the PCA space, and added to the mean model (center�right). The result is
a�nely registered with respect to the model at time t (shown now in green, right).

to bring the prostate�bladder model interaction to resolve eventual common border
con�icts or overlaps.

5.5 Context�Dependent Coupled Deformation
We present a coupled segmentation framework in which an asymmetric, non�overlapping
constraint is enforced. The non�overlapping of the structure models is achieved
through the use of a speci�cally designed force to each mesh in the coupled defor-
mation process. At each deformation step, the areas enclosed by both the prostate
and bladder models are checked for intersection. If such an intersection exists, a
new elastic force, proportional to the distance maps to the meshes, is added to both
models in order to drive them appart (see �gure 5.7).

If the prostate�bladder interface is su�ciently de�ned (as in the case of con-
trasted bladders), we apply a symmetric non�overlapping force to both models. If,
on the other hand, the interface is blurry, a higher priority is given to the model
that contains the most information (such as a shape prior), which is, in our case,
the prostate mesh.

Our proposed asymmetric, context dependent non�overlapping constraint com-
prises interaction forces between the prostate and bladder meshes (FPoB, or the
force of the prostate on the bladder, and FBoP ). To this end, the prostate shape
model P , the bladder model B and the strength of the border between the two in
the image (f(|| 5 I||)) are taken into account, as shown by equations 5.7 and 5.8.

FBoP = −ηP ∗ ((5DmapB)/|| 5DmapB||) ∗ (DmapB − τB) ∗ f(|| 5 I||) (5.7)

FPoB = −ηB ∗ ((5DmapP )/||5DmapP ||) ∗ (DmapP − τP ) ∗ (1− f(||5 I||)) (5.8)

where
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Figure 5.7: Computation of the non�overlapping force for the bladder. If an overlap exists,
forces are applied on the bladder and prostate meshes to separate them. In the case of the
bladder, the force is applied in the direction of the gradient of the distance map to the
prostate. Similarly, in the case of the prostate, the force is based on a distance map to the
bladder.

Figure 5.8: Examples of the e�ect of the non�overlapping constraint in both partially
clear (�rst row) and fuzzy (second row) prostate�bladder interfaces. From left to right, the
independent evolution of prostate and bladder models, their coupled evolution with our
non�overlapping constraint, and a 3D view of the result.
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f(|| 5 I||) =

{ ||5I||
ϑ , if || 5 I|| ≤ ϑ (i.e., zone with low contrast)

1, if || 5 I|| > ϑ (i.e., zone with high contrast)

Parameters ηP and ηB weight the strength of the repulsion force, DmapB and
DmapP are the distance maps to the bladder and prostate models, respectively, τB

and τP are thresholds chosen on the distance maps (to establish a minimum distance
between the models, if desired), ||5I|| is the norm of the image gradient, and ϑ is a
threshold on the image gradient value to distinguish contrasted from non�contrasted
prostate�bladder interfaces.

In case of model overlap on a contrasted zone, priority is given to the bladder
(since the prostate, not showing any contrast agent, must have "invaded" the bladder
in the image). It is then the bladder model that pushes the prostate model, and the
force FPoB is eliminated by setting the value of f(|| 5 I||) to 1.

However, when an overlap occurs in a non�contrasted zone, there is no intensity
information to privilege one model over the other. Therefore, both models push
each other away.

5.6 Results and Analysis
The automatic segmentation algorithm was applied to a database of 16 CT images of
the lower abdomen of male patients (see also [Costa 2007a]). The results were com-
pared to experts' segmentations of bladder and prostate (the manual segmentation
sets used for training and validation are disjoint). Figure 5.9 shows the obtained sen-
sitivities and positive predictive values: the average sensitivity / positive predictive
value is 0.81 / 0.85 for the bladder, and 0.75 / 0.80 for the prostate.

For the validation of the prostate segmentations, we were able to assess the
inter�expert variability thanks to a database of 5 CT images in which the prostates
had been segmented by 3 di�erent experts. We used the STAPLE [War�eld 2004]
algorithm to compute a mean expert segmentation, and compared both the manual
(expert) and automatic segmentations with respect to this mean. Further details
about this algorithm can be found in B. The results (Figure 5.10) show that the
automatic segmentations are not far from the ones performed by the experts. The
sensitivity values are somewhat higher than the positive predictive values in the
automatic case, indicating a slight over�segmentation of the structure.

The �rst case in table 5.10 is illustrated in �gure 5.11. The automatic prostate
segmentation is shown in red, and the manual segmentations performed by the �rst,
second and third experts are shown in magenta, green and blue, respectively. The
�gure shows the slight over�segmentation of the automatic method detected in �gure
5.10, mostly towards the feet of the patient.

Some resulting segmentations for the bladder and prostate are illustrated in
�gure 5.12. The results are promising, in spite of the low saliency (sometimes even
indistinguishability) of the prostate in the images. The bladder�prostate interface
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Bladder Prostate
Image Sensit. PPV Sensit. PPV

1 0.82 0.94 0.73 0.99
2 0.87 0.95 0.86 0.92
3 0.88 0.94 0.75 0.91
4 0.86 0.89 0.95 0.72
5 0.89 0.97 0.72 0.81
6 0.86 0.86 0.79 0.81
7 0.91 0.96 0.86 0.87
8 0.87 0.85 0.82 0.94
9 0.87 0.93 0.76 0.84
10 0.88 0.84 0.85 0.84
11 0.91 0.93 0.80 0.89
12 0.82 0.77 0.72 0.89
13 0.69 0.92 0.79 0.64
14 0.82 0.79 0.89 0.82
15 0.94 0.97 0.79 0.90
16 0.85 0.97 0.74 0.77

Mean 0.86 0.90 0.80 0.85
Std. Dev 0.05 0.06 0.06 0.08

Min 0.69 0.77 0.72 0.72
Max 0.94 0.97 0.95 0.99

Figure 5.9: Sensitivity and Positive Predictive Value results of the automatic segmentation
of the bladder (left) and prostate (right) with respect to the one performed by an expert.
The respective mean, standard deviation, minimum and maximum values are also indicated.

Expert 1 Expert 2 Expert 3 Automatic
Image Sensit. PPV Sensit. PPV Sensit. PPV Sensit. PPV

1 0.82 0.87 0.98 0.80 0.94 0.91 0.98 0.71
5 0.80 0.99 0.99 0.64 0.90 0.96 0.85 0.72
6 0.82 0.89 0.96 0.75 0.99 0.97 0.81 0.81
9 0.92 0.95 0.98 0.69 0.77 0.98 0.92 0.66
10 0.91 0.91 0.96 0.96 0.97 0.84 0.79 0.89

Mean 0.85 0.92 0.97 0.77 0.91 0.93 0.87 0.76
Std. Dev. 0.05 0.04 0.01 0.12 0.08 0.05 0.07 0.09

Min 0.80 0.87 0.96 0.64 0.77 0.84 0.79 0.66
Max 0.92 0.99 0.99 0.96 0.99 0.98 0.98 0.89

Figure 5.10: Sensitivity and Positive Predictive Value of both the expert and au-
tomatic segmentations of the prostate, with respect to the computed mean expert
segmentation using the STAPLE [War�eld 2004] algorithm. Mean, standard devia-
tion, minimum and maximum values are also indicated.



98 Chapter 5. Coupled Segmentation of Bladder and Prostate

Figure 5.11: Automatic and manual segmentations of the prostate, corresponding
to the �rst case in image 5.10. The automatic delineation is shown in red, while that
of the 3 experts are shown in magenta, green and blue. From left to right, sagittal,
coronal and axial views.

is correctly found. As the experts have con�rmed, the prostate border that is not
shared with the bladder is di�cult to delineate, since there is little or no image
information in this zone. This introduces some variability in the �gures.

Figure 5.13 shows the resulting segmentations for entry 13 in table 5.9. A fuzzy
prostate�bladder interface and the absence of clear delimitations towards the lower
border of the prostate (left hand side in the sagittal slice) are at the source of the
di�erences with the manual expert segmentation.

In the next chapter, we include the rectum in the joint segmentation process,
since it is also an organ at risk during prostate cancer radiotherapy.
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Figure 5.12: Automatic segmentation results for bladder (green contour) and
prostate (red contour) for entries 4, 7, 11, 12, 14 and 15 in table 5.9. From left
to right, sagittal, coronal and axial views.



100 Chapter 5. Coupled Segmentation of Bladder and Prostate

Figure 5.13: Automatic segmentation results for bladder (red contour) and prostate
(green contour) for the worst case encoutered (entry 13 in table 5.9). From left to
right, sagittal, coronal and axial views. The blue contour shows the segmentation
performed by an expert.
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Rectum Segmentation and
Integration
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6.1 Challenges in rectum segmentation
With the advent of conformal radiotherapy for prostate cancer it is possible to
deliver higher doses than in the past while maintaining an acceptably low rate of
moderate/severe late side e�ects. However, when trying to escalate the tumour dose,
an increased risk of treatment�related toxicity can be expected, rectal bleeding being
one of the major limiting factors.

When applying dose restrictions to the rectum, contouring becomes a signi�-
cant factor that determines the risk of rectal toxicity. The results of recent studies
[Fiorino 2002, Boehmer 2006, Guckenberger 2006] show that di�erent ways of rec-
tal contouring signi�cantly in�uence doses to the rectum. Therefore, an accurate

101
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Figure 6.1: Di�erent rectum �llings. From left to right, empty, non�contrasted
rectum, air insu�ated rectum, mixed �llings rectum and presence of a probe.

segmentation of the rectum's outer wall is key to an adapted radiotherapy dose
planning for the prostate with as little rectal toxicity as possible.

As has been pointed out in the cited work (chapter 3), most approaches to
rectum segmentation rely on a certain number of assumptions concerning shape and
intensity within the structure in the images. Such hypotheses are usually plausible in
CT scan databases in which the prior patient preparation (air insu�ation, contrast
agent, etc.) is the same.

However, in our case, our database is composed of CT images that come from
various centers, and whose acquisition has been made under signi�cantly di�erent
protocols. The variability in the �llings of the rectum images in our database can be
appreciated in �gure 6.1. They include completely empty, non�contrasted structures
(left), air�insu�ated cases (center�left), mixed �llings (center�right) and mixed �ll-
ings with a probe (right). The changes in structure shape, size and intensity values
are di�cult to characterize, and make the task of automatic rectum segmentation
very challenging. These challenges are, once more, centered around adaptability to
shape and intensity variabilities of the structures.

6.2 Rectum Delineation Endpoints
Several de�nitions for the start and end points for rectum delineation have been pro-
posed. We choose the one adopted in recent literature [Akimoto 2004, Peeters 2006],
in which the rectum is delineated from the end of the anal canal to the point at
which it turns into the sigmoid colon (�gure 6.2).

A rule of thumb would be that the rectum ends when there is a strong change
in direction (i.e., when there is a point of high curvature, where it becomes either
the anal canal or the sigmoid). Some manual expert segmentations are shown for
illustrative purposes in �gure 6.3.

6.3 Contribution
We propose a fully automatic method for the 3D localization and segmentation of the
rectum in CT scans of the lower abdomen of male patients. Our approach performs
an initial isolation of the rectum structure, based on prior information concerning its
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Figure 6.2: Anatomy of the rectum. From left to right, the rectum of a standing
patient, the same shown in the lying position, and a real CT example of an expert's
rectum delineation, all in blue (sagittal views).

Figure 6.3: Expert segmentations of di�erent rectums. Top row: original (registered
and cropped) images. Bottom row: the same images, with the manual rectum
segmentations outlined in blue (sagittal views).
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surrounding organs (bladder, prostate, bone structures). Then, a deformable skele-
ton is applied, based on a distance map computed from the resulting image, in order
to have a better initialization of the rectum's global position. Around this skeleton,
a 3D simplex mesh is constructed and then deformed in such a way that not only
segmentation is achieved, but the remaining neighboring organs (seminal vesicles)
are also avoided. A novel tubular constraint is applied on the mesh throughout the
deformation process.

Since no assumptions about the rectum's �llings are made, the method easily
adapts to shape variations and intensity inhomogeneities that would be hardly char-
acterizable, such as those introduced by air, residues, contrast agent, probes, etc.
This process is detailed in the following sections.

6.4 Outline
As can be seen in �gure 6.2, the structures that are potentially connected to the
rectum in the images and/or have similar intensities, therefore most likely to mislead
the deformable model of the rectum are:

� Pubic bone structures.

� Bladder.

� Prostate.

� Surrounding fat tissue.

� Seminal vesicles.

These structures are either progressively eliminated (section 6.5), or care-
fully avoided. An image of the rectum (as isolated as possible) is generated, and a
centerline for the structure is then computed and deformed on this image, as ex-
plained in section 6.6. This deformed centerline is later used within the deformation
of a 3D model (simplex mesh) whose goal is to contour the rectum. Surrounding,
potentially misleading organs that may have been left in the image, such as the
seminal vesicles, are avoided by imposing a tubular constraint on the simplex
mesh (section 6.7).

6.5 Substraction stage
6.5.1 Pubic bone structures
In order to eliminate the pubic bone structures, we rely on the same multi�a�ne
registration that has already been performed on the images (see Section 4.3). This
registration process is based on regions de�ned around the pelvic bone structures;
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Figure 6.4: An example image to which a mask is applied to eliminate the surround-
ing bone structures. From left to right, original image, mask, fusion of the image
and the mask, and the resulting image once the masked bones have been eliminated.
First row, sagittal views, and second row, axial views.

the registered images have, thus, a consistent bone position. A binary mask cor-
responding to these bones su�ces to eliminate them from the images (set them to
intensity value 0).

An example of an original image, the binary mask and the resulting image can
be seen in �gure 6.4.

6.5.2 Bladder and Prostate
The automatic segmentations of the bladder and the prostate performed as described
in chapters 4 and 5 serve to create binary masks that correspond to those structures.
These masks are used to "erase" these structures from the image (i.e., set their
intensities to 0) .

To continue with the example in �gure 6.4, the segmented bladder and prostate
are shown, as well as the resulting image once these structures have been eliminated,
in �gure 6.5.

6.5.3 Surrounding fat tissue
Surrounding fat tissue is e�ectively eliminated by means of mathematical morphol-
ogy operations (threshold with a �xed threshold interval of (-200, -10) H.U.).

Resulting images are exempli�ed in �gure 6.6.
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Figure 6.5: Example image and the corresponding segmentations of the bladder
(green) and prostate (red) shown in the left column. To the right, the same image
from which the bladder and prostate have been eliminated. In the �rst row, sagittal
views, and in second row, axial views.

Figure 6.6: The resulting image once the fat tissues surrounding the structures have
been eliminated. The rectum can be seen outlined in blue, and the seminal vesicles
in orange. Top row, sagittal views, and bottom row, axial views.
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6.5.4 Seminal Vesicles
As can be seen in �gure 6.6, the seminal vesicles are still left in the image, and
must be avoided from the rectum segmentation. To this end, we rely on a tubular
constraint imposed on a deformable model, as described in the Section 6.7.3.

6.6 Centerline alignment
At this stage of the process, we have a certain knowledge about where the rectum
is not, but we still don't know how to precisely contour its boundaries.

6.6.1 Building an initial rectum mesh
All the expert segmentations of the rectums (in the form of binary images) that we
have in our database are based on images that are already in a common frame on
reference as mentioned in section 6.5.1. These binary images are accummulated into
one, in order to build an a�priori probability map for each voxel of belonging to the
rectum. The result of this process can be seen in �gure 6.7.

We create a template mesh to serve as initialization for the model deformation
stage by thresholding this probability map by 80%, and then deforming a spherical
simplex mesh to �t this binary image (�gures 6.7 and 6.8).

However, this initial mesh would be unable to accommodate the large variability
of the rectum's shape (global positionning, size and shape due to di�erent �llings)
on its own. We rely on the computation of the rectum's centerline in order to
better position this mesh before beginning its deformation, as detailed in the next
subsection.

6.6.2 Deforming a template skeleton
The deformable skeleton, which corresponds to the computed centerline of the initial
rectum's mesh, is a line of vertices, one per Z slice, whose positions lie in the (x,y)
plane. Since the z coordinate of each vertex remains �xed, the likelihood of having a
stable structure is greater. This structure will evolve much like a traditional model,
driven by both data�driven and regularization forces, to better �t the centerline of
the real rectum in the underlying image. Once its evolution is �nished, the centerline
of the initial rectum model will be adjusted to this skeleton, resulting in an improved
position initialization.

Data driven forces The input data is a binary image whose background (i.e.
voxels with value 0) corresponds to the structures that are considered as not be-
longing to the rectum (as described in section 6.5). A Chamfer distance map to
this background region is computed. The image voxel in each z slice whose distance
value to this background is greatest (i.e., the points most likely to belong to the
"skeleton" of the rectum in the image) will attract the corresponding deformable
template skeleton vertex. Hence, at each iteration, the deformable skeleton will be
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Figure 6.7: An image of all the registered expert rectum segmentations superim-
posed, which originate a probability map for the rectum's position (top row). A
binary image of the initial rectum model is then obtained by thresholding this map
(bottom row, with the resulting mesh superimposed). From left to right, sagittal,
coronal and axial views.

Figure 6.8: 3D view of the initial rectum simplex mesh.
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Figure 6.9: Chamfer distance to the outside, i.e., non�rectum portion of the image.
The centerline of the initial rectum mesh (shown in red) will constitute a skeleton
that will be attracted to the points with highest distance value (shown in white).
From left to right, sagittal and axial views.

Figure 6.10: Internal (regularization) forces for the deformable skeleton. Each vertex
is moved so as to minimize the �rst derivative of the position of its two neighbors.

pulled towards the potential center of the image's rectum in each z slice. This is
illustrated in �gure 6.9.

Regularization forces The regularization force C0 seeks to minimize the �rst
square derivative of the skeleton; that is, it will pull each mesh vertex half way
towards the middle of its two neighbours (see �gure 6.10). At the �rst and last
vertices, a similar force is computed using the previous two points. Notice that this
can be done multiple times, increasing the regularization process.

A few iterations of the whole process (data�driven forces + regularization forces)
are su�cient since, due to the very limited number of skeleton vertices, the skeleton's
deformation process is very fast, and the result constitutes a good initialization.

In order to adapt the initial rectum model so that it �ts around this skeleton,
the center of each axial slice in the initial mesh is computed. To this end, the
model is rasterized into a binary image, a Chamfer distance map is computed to the
"outside" (i.e., the background) of the resulting structure, and the center points are
chosen as the points of greatest distance value for each z slice. The initial model is
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Figure 6.11: Regularization applied to the initial translated mesh, based on the
deformable skeleton.

then translated so that each of the computed center points �ts the corresponding
vertex of the target skeleton. Since this translation may yield irregular results, a few
regularization steps are run on the translated mesh to ensure a smooth initialization.

For this regularization, parameters α and λ are set to 1, a C1 regularization is
applied, and the others terms are eliminated by setting the other parameters to 0
in the evolution equation 4.2. A sample result may be seen in �gure 6.11.

6.7 Mesh deformation stage
The model obtained in the previous section undergoes a similar deformation process
to that of the prostate mesh. However, in this case, the shape constraint is replaced
by a new tubular constraint. At time step t, the position of vertex Vi in the
rectum model is computed according to Equation 6.1.

V t+1
i = V t

i + λ(α(f tube
i ) + β(fext

i ) + δ(f int
i )) + (1− λ)(fglobal

i ) (6.1)

where V t
i and V t+1

i are the positions of vertex i at time t and t+1, respectively.
As with the prostate, parameter λ is a locality parameter that varies throughout the
deformation from λ = 0 (a purely global deformation) to 0 < λ < 1, more localized
deformations. The in�uences of f tube (the tube constraint force), fext (an image
force that pulls towards high gradient value points) and f int (internal regularization
force) are weighted by parameters α, β and δ, respectively.

Further details are given in the following sections.

6.7.1 Internal Forces
The chosen regularization force, C1, seeks to regularize the curvature at each vertex
with respect to its neighbours, using the simplex angle, as described in 4.5.2.

6.7.2 External Forces
The image on which the external forces for the rectum model are based is the result
of the elimination of the rectum's surrounding organs from the original image (i.e.,
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their intensities set to 0), as has been described in section 6.5. An external force
that follows the gradient of this image is applied during the model deformation stage
in this case.

At each time step t, the current model S(u) (which is already well positioned,
following section 6.6.2) is pulled towards a nearby surface Sext(u) that best inter-
polates points in the image that are close and whose gradient value is high, as can
be seen in equations 6.2 and 6.3.

Sext(u) = S(u) + s ∗ ~n (6.2)
where

s = arg max
v
|| 5 I(S(u) + v ∗ ~n)|| (6.3)

6.7.3 Tubular constraint
The rectum being a tube�like structure, we constrain its evolution by pulling the
3D model, with more or less strength, towards a nearby tubular shape. This is
achieved by computing, at each iteration, tubular surface Stube and by pulling the
mesh towards it with a strength given by a tube constraint weight.

A simple, tempting way to compute Stube would be in a 2D fashion, as follows:
the current model's center at each z slice is computed as the average position of the
vertices whose z coordinates are closest to the given z value. The biggest possible
ellipse is then �t inside the model for that slice, and the current mesh is then pulled
towards this ellipse.

However, although simple to implement, continuity cannot be assured between
contiguous slices with this constraint, as far as the sizes of the 2D ellipses are
concerned. Indeed, since the constraint is two�dimensional, irregularities often arise
in the computed tubular surface.

Instead, in order to implement a 3D tubular constraint, we generate a nearby
tubular structure to attract the current model as follows:

� Generate a binary image corresponding to the volume enclosed by the current
mesh at time t.

� The 3D Chamfer distance map to the outside (background) of this volume is
then computed, in a similar way to the one presented in 6.6.2. The centerline
of this binary image is composed of, for each slice z, the voxel containing the
maximum value of the distance map (in that slice).

� A binary image of the target tubular structure is then constructed with suc-
cessive 3D spheres, each centered at a di�erent centerline point, whose radii
equal the Chamfer distance value to the outside at that point (see �gure 6.12).

The Chamfer distance map to the outside of this new tubular structure is com-
puted. The current model will be attracted towards the tubular structure, in the
direction of the gradient of the Chamfer distance map.
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Figure 6.12: Tubular approximation of the rectum based on the Chamfer distance
map to the outside of the current mesh (sagittal view).

Figure 6.13: The resulting segmentation for the example rectum image. From left
to right, sagittal, coronal and axial views, as well as the 3D model superimposed
over the image.

This constraint is applied every 5 mesh deformation iterations. This constraint
can be classi�ed as internal force, since the distance map we use to build it is
computed from the mesh itself, and not from the image.

The obtained segmentation for the example image is shown in �gure 6.13.

6.8 Results and analysis
The validation of the automatic segmentations of the rectum were performed for the
slices where a manual segmentation is available. The deformable model sometimes
continues to segment the rectum in slices that are beyond the point where the expert
has decided to stop his or her own delineation, but this does not necessarily mean
that the automatic model is "wrong".

The proposed segmentation method for the rectum has been applied to a database
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of 20 registered CT images of the lower abdomen of male patients. The results were
compared to the (also registered) manual delineations performed by an expert. The
expert segmentations used to build the initial models and the ones used for valida-
tion purposes are disjoint.

This comparison, in terms of sensitivity, positive predictive value and robust
Hausdor� distance (95% quantile, in mm.), can be seen in �gure 6.14. From these
results, we have obtained a mean sensitivity and mean positive predictive value for
the bladder of 0.87 and 0.92, respectively, with standard deviations of 0.12 and 0.08.
The mean sensitivity and mean positive predictive value for the prostate are 0.88 and
0.81, with standard deviations of 0.11 and 0.13. For the rectum, the mean sensitivity
and mean positive predictive value are 0.83 and 0.76, with standard deviations of
0.13 and 0.08.

One interesting point on this topic is that, while the bladder and the prostate
were jointly segmented, the rectum is segmented using the prostate and bladder seg-
mentations as input. This can seem as a drawback since, sometimes, fuzzy prostate
borders may cause the prostate model to grow and overlap the rectum, and perhaps
a non�overlapping constraint between prostate and rectum in a joint segmentation
framework could be useful.

It would indeed be interesting to perform a joint segmentation of the three
organs: bladder, prostate and rectum. However, a big advantage of our algorithm
is its ability to accommodate the large variability of protocols and prior patient
preparation for the rectums in our image database. Assumptions about its interior
are carefully avoided, and the rectum is segmented by isolation, based on exterior
(neighboring organ) information. In order to be able to introduce, for instance, a
non�overlapping constraint on the rectum and prostate models, assumptions should
be made about the interior of both structures so that a criterion could be established
to decide which model pushes which and under what conditions. We have made the
choice to privilege a broad applicability over minor prostate�rectum model overlaps
that may sometimes occur, since the latter can be easily corrected by an expert if
considered necessary.

Several automatic rectum segmentations are illustrated in �gure 6.15. Final
segmentations for prostate, bladder and rectum are shown in �gure 6.17.

Figure 6.16 shows the automatic segmentation result for the rectum (blue con-
tour) as well as the manual delineation (red contour) for entry 3 in table 6.16. The
automatic segmentation has been mislead by the lack of de�nition of the rectum's
boundaries. The tubular constraint also proves to limit the expressiveness of the
deformable model, since it becomes more di�cult for the mesh to adapt to highly
irregular borders.

A quantitative analysis of the bladder segmentation results, grouped by target
appearance (homogenous, non�homogenous) and according to the obtained over
or under segmentations, is shown in Figure 6.18. The table shows that similar
results in terms of sensitivity and positive predictive value are obtained for ho-
mogenous and non�homogenous bladders indistinctively, whith perhaps a tendency
to slight under�segmentation in the non�homogenous cases. On the other hand,
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Image Bladder Prostate Rectum
Sensit. PPV H.D. Sensit. PPV H.D. Sensit. PPV H.D.

1 0.94 0.92 2.0 0.76 0.81 3.3 0.78 0.79 6.0
2 0.68 0.81 4.5 0.70 0.63 4.3 0.87 0.77 5.7
3 0.95 0.72 2.5 0.98 0.85 3.3 0.54 0.62 5.2
4 0.91 0.88 3.0 0.77 0.73 2.7 0.66 0.62 5.0
5 0.90 0.91 5.3 0.73 0.65 3.3 0.86 0.78 4.3
6 0.72 0.97 3.7 0.73 0.79 4.7 0.60 0.75 3.7
7 0.93 0.95 2.0 0.84 0.83 2.7 0.72 0.80 3.7
8 0.64 0.99 3.7 0.77 0.97 4.7 0.91 0.89 5.7
9 0.83 0.91 4.0 0.78 0.99 2.7 0.93 0.83 6.0
10 0.90 0.94 3.3 0.99 0.91 3.3 0.61 0.80 3.3
11 0.95 0.93 4.7 0.94 0.99 2.3 0.90 0.70 6.0
12 0.93 0.94 4.3 0.95 0.61 4.0 0.90 0.79 6.3
13 0.94 0.99 2.0 0.81 0.79 3.0 0.93 0.84 7.0
14 0.99 0.98 2.0 0.99 0.93 3.0 0.96 0.81 5.3
15 0.72 0.99 3.7 0.97 0.77 3.0 0.94 0.72 5.7
16 0.90 0.90 3.7 0.99 0.61 3.7 0.92 0.63 6.7
17 0.94 0.99 3.0 0.98 0.72 3.3 0.88 0.93 3.3
18 0.65 0.97 4.0 0.99 0.72 4.7 0.87 0.68 3.7
19 0.96 0.94 3.7 0.99 0.95 2.3 0.93 0.81 3.0
20 0.99 0.72 3.3 0.99 0.95 2.3 0.87 0.72 4.3

Mean 0.87 0.92 3.42 0.88 0.81 3.33 0.83 0.76 4.99
Std. Dev. 0.12 0.08 0.96 0.11 0.13 0.79 0.13 0.08 1.24

Min 0.64 0.72 2.00 0.70 0.61 2.30 0.54 0.62 3.00
Max 0.99 0.99 5.30 0.99 0.99 4.70 0.96 0.93 7.00

Figure 6.14: Sensitivity, Positive Predictive Value and robust Hausdor� Distance (95%
quantile, in mm.) results of the automatic segmentations of the bladder, prostate and rec-
tum with respect to the ones performed by an expert. Mean, standard deviation, minimum
and maximum values are also indicated.
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Figure 6.15: The resulting segmentation for the example rectum image. From left
to right, sagittal, coronal and axial views superimposed over the original (registered
and cropped) image. The results correspond to entries 2, 5, 11, 14, 17 and 19 in
table 6.14.
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Figure 6.16: Automatic (blue) and manual (red) rectum segmentations for the
worst�case encountered (the image that corresponds to entry 3 in table 6.14). From
left to right, sagittal, coronal and axial views. This image illustrates the limita-
tions induced by the imposition of a tubular constraint (it is more di�cult for the
model to attach to highly irregular structure contours) as well as those caused by
the lack of de�nition of the structure's borders (i.e., the over segmentation seen in
the sagittal slice).

under�segmentation is comparatively more frequent than over�segmentation, al-
though both occur in relatively few cases. This occurs when there is a su�ciently
large di�erence between the intensities of the interior of the bladder and that of
the bladder wall, and is independent of the presence of contrast agent in the struc-
ture. However, contrast agent may cause a partial volume e�ect in the image, which
could also in�uence the �nal result. An illustration of these phenomenons is shown
in Figure 6.19.

Figure 6.20 shows that the method has a tendency to over�segment the prostate,
rather than under�segment it. This is independent of the presence or absence of a
contrast agent in the bladder, since the over�segmentation occurs towards the feet
of the patient, and more rarely towards the rectum, when the latter is empty (and
thus, of similar intensity value). The reason behind this tendency is the fact that
there is no intensity information to guide the deformable model (or even the medical
experts in their manual delineations). This causes the model to expand, as long as
there is no shape or intensity information to avoid it. The posterior evaluation of
the automatic segmentation results has, however, been approved and accepted as
viable by the same medical experts who performed the original manual delineations
of the structure. These �ndings are shown in Figure 6.21.

Results for the rectum are shown in Figure 6.22. More often than not, the struc-
ture is over�segmented, and this occurs almost systematically towards the endpoints
of the rectum. This is due to the fact that the start and endpoint of the rectum
are di�cult to de�ne precisely, and therefore medical experts may begin and end
the manual segmentations at di�erent points. This entails di�erences with the au-
tomatic segmentation, which does not incorporate hard�coded information about
this. The de�nition and incorporation of such data would be an interesting perspec-
tive. The threshold that serves to eliminate fat tissue may sometimes cause small
"holes" inside the rectum which don't connect to the surrounding fat, since they
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Figure 6.17: Automatic segmentations of the bladder, prostate and rectum, over the
original (registered and cropped) image. From left to right, sagittal, coronal and
axial views, as well as the 3D models of the results corresponding to entries 7, 8, 14
and 17 in table 6.14.

Group and nb. of imgs. Sensitivity PPV
Mean Std. Dev. Mean Std. Dev.

Homogenous (12) 0.87 0.11 0.91 0.08
Non�homogenous(8) 0.84 0.17 0.95 0.03
Under�segmented(5) 0.68 0.03 0.94 0.07
Over�segmented(2) 0.97 0.02 0.72 0.01

Figure 6.18: Statistics for bladder segmentation, grouped by (non�)homogeneity, over or
under segmentation. The number of cases in each group is speci�ed in parentheses.
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Figure 6.19: Automatic segmentations of the bladder, following �gure 6.18. An
intensity di�erence between the bladder and bladder wall is often at the origin of
the under�segmentations. However, it is not systematic, as shown by the center�
right image. An example of a (rare) over�segmentation is shown in the rightmost
image, towards the seminal vesicles, where there is no di�erence in intensity with
the seminal vesicles.

Case and nb. of imgs. Sensitivity PPV
Mean Std. Dev. Mean Std. Dev.

Over�segmented (7) 0.90 0.12 0.67 0.06

Figure 6.20: Statistics for prostate segmentation, showing a general slight over�
segmentation. Number of cases is indicated in parentheses.

Figure 6.21: Automatic segmentations of the prostate are shown in green. Over�
segmentation may occur (compared to manual segmentations, in red), mostly where
there is no intensity information to limit the evolution of the model.

Case and nb. of imgs. Sensitivity PPV
Mean Std. Dev. Mean Std. Dev.

Under�segmented (3) 0.64 0.06 0.78 0.02
Over�segmented (10) 0.90 0.03 0.75 0.06

Figure 6.22: Statistics for rectum segmentation, showing greater tendency to over�
segmentation. Number of occurrences is indicated in parentheses. Sensitivity and positive
predictive values clearly characterize the over�segmentation.
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Figure 6.23: Automatic segmentations of the rectum, following �gure 6.22. Over�
segmentation may occur, mostly towards the start and endpoints of the rectum,
which are also variable among medical expert segmentations. Automatic (green)
and manual (red) segmentations are shown.

Case and nb. of imgs. Mean Std. Deviation
Sensit. PPV R.H.D. Sensit. PPV R.H.D.

1.875x1.875x3 (7) Bladder 0.86 0.88 3.28 0.11 0.08 1.27
Prostate 0.79 0.78 3.4 0.09 0.08 0.76
Rectum 0.72 0.73 4.8 0.13 0.07 0.92

0.97x0.97x3 (7) Bladder 0.88 0.95 3.4 0.11 0.03 1.07
Prostate 0.89 0.88 3.3 0.09 0.13 0.81
Rectum 0.88 0.81 5.65 0.11 0.05 1.16

1.67x1.67x4 (6) Bladder 0.86 0.92 3.56 0.14 0.10 0.35
Prostate 0.98 0.79 3.21 0.01 0.13 0.91
Rectum 0.90 0.75 4.45 0.03 0.10 1.45

Figure 6.24: Statistics for segmentation results, according to the voxel size of the original
image. Table shows sensitivity, positive predictive values and robust Hausdor� distance
measures.

are protected by the rectum wall. This thin wall might not be enough to prevent
the deformable model from passing through it, and eventually under segmenting the
structure. An illustration can be found in Figure 6.23.

The results of a quantitative analysis of the results according to image resolution
is shown in �gure 6.24. More accurate results are obtained, as may be expected,
when the quality of the original image is better.
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Conclusion and Perspectives
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7.1 Synthesis of Contributions
In this manuscript we have proposed a novel, incremental method for the automatic
segmentation of the prostate, as well as that of its organs at risk (bladder and
rectum), in the frame of radiotherapy dose planning.

The heterogenous nature of the structures in the CT scans of our database, we
have been confronted with many speci�c challenges, all of which are centered around
two axes:

� Adaptability to shape variability: The target structures being soft tis-
sues their shapes are prone to changes due to patient motion and positioning.
Furthermore, the bladder and rectum are hollow organs whose �llings may
change throughout the day and, therefore, di�er among patients and image
acquisitions.
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� Adaptability to intensity variability: The preparation of the patient be-
fore image acquisition, the soft nature of the tissues and the variability of their
�llings strongly in�uence the appearance of the target organs.

These research axes have given rise to several contributions in both national and
international conferences, which we will detail in the next subsections.

7.1.1 Registration
We have contributed to the assessment and validation of the locally a�ne regis-
tration framework that was used to put the database images in a common space.
This registration method seems truly appropriate for the problem, as the di�erences
in intensity would mislead standard non�rigid registration methods. Using a�ne
transformations to register the bone structures and a log�euclidean interpolation al-
lows us to choose simple similarity measures and avoid registration errors induced by
intensity dissimilarities in organs that must be aligned (such as with the registration
of homogenous and non�homogenous bladders).

7.1.2 Bladder segmentation
The challenge of automatic segmentation of heterogenous bladder images (con-
trasted, non�contrasted, homogenous intensity, non�homogenous intensity) is rarely
addressed in the literature. We have proposed a fully automatic method for the de-
tection and initial approximation of the bladder, as well as the determination of the
presence or absence of a contrast agent (progressive region growing). This method
relies neither on strong shape assumptions nor on appearance a�priori. Following
this computed approximation, a method for the automatic division of a 3D de-
formable model to adjust to the structure's (in�)homogeneities in each image was
proposed and assessed. A new force designed to guide the deformation of each zone
so that intensity homogeneity is enforced within each zone has also been presented
and thoroughly tested, with positive results.

7.1.3 Bladder�prostate segmentation
Since the prostate shown a certain shape coherency among patients, and the inten-
sity information that could guide the segmentation process is insu�cient, we have
presented a method for the automatic segmentation of the prostate by imposing a
shape constraint based on Principal Component Analysis of the structure's shape.
We have proposed an asymmetric non�overlapping constraint that is able to adjut
to di�erent frontier intensities.

7.1.4 Rectum segmentation
The segmentation of the rectum is particularly challenging due to the highly vari-
able nature of its �llings, which dictate its shape and appearance. Documented ap-
proaches to automatically adjust to this variability are rare, and strong assumptions
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are made concerning mostly the patient preparation before the image acquisition.
This leads to rigid constraints on the applicability of the method. We have devised a
completely novel approach that makes little or no assumptions about the structure's
appearance. The idea of segmentation by isolation of the structure, as opposed to
a delineation based on strong prior assumptions, is unprecedented. The adaptive
tubular constraint that we propose provides a suitable initialization to all kinds of
rectums that are present in our database.

The heterogeneity of the structures and the automatic results obtained shows a
large adaptive capability of the method, which was our goal in the �rst place.

7.1.5 Evaluation
We have assessed the results of our segmentation approach on an heterogenous
database of CT scans of the lower abdomen of male patients that had undergone
di�erent preparations prior to image acquisition. We have also evaluated inter�
expert variability for prostate segmentation and had good results overall, despite
the complexity of the segmentation task.

7.2 Perspectives
Many perspectives are open to pursue this work, ranging from technical improve-
ments to more theoretical aspects of the problems at stake.

We describe these perspectives in the following subsections.

7.2.1 Bladder segmentation
Although highly adaptive, the absence of a well�de�ned bladder�prostate interface
may cause the bladder model to partly invade the prostate. This issue is resolved
by introducing a coupled deformation of the bladder and prostate models, as we
have done, but it may still be interesting to search for possible improvements in the
independent deformation stage.

7.2.2 Bladder�prostate segmentation
The inter� and intra� expert variability in the delineation of the prostate makes the
validation of an automatic method di�cult. Although we have been able to com-
pare the automatic results with that of 5 di�erent experts for some images, further
assessment of this variability could be performed. In particular, more manual seg-
mentations by more di�erent experts may provide further insight into the problem,
and it may result in more clinical experience being incorporated into the models.

7.2.3 Rectum segmentation
The results obtained from the application of our method to a database of CT images
has shown that the method is �exible enough to accommodate marked di�erences
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from one rectum to another. It would be interesting to incorporate a joint deforma-
tion of the rectum, the bladder and the prostate models, with speci�cally designed
constraints to avoid overlap. However, our segmentation of the rectum is depen-
dent on that of the bladder and the prostate. Without further information about
the rectum's interior, how could a priority be established (i.e., which model pushes
which) in the case of an overlap?

Another challenge would be to devise a method that automatically eliminates the
seminal vesicles from the image. The seminal vesicles are currently avoided during
rectum segmentation using a tubular constraint. However, on the images of the
database, these structures are hardly visible. Another set of more precise images,
or MRI images, would be needed to get a proper segmentation. The comparison of
the results of both methods would be an interesting addition.

Although promising results have been obtained for the rectum itself, the model
sometimes goes beyond the de�ned start and end points of the structure, entering
part of the anal canal and/or the sigmoid. These "leakages" do not a�ect the result
for the rectum nor its usefulness for radiotherapy planning, but they could de�nitely
be improved if segmentations of the anal canal and of the sigmoid are desired. As
the constrast in the anal canal area is far from su�sient, another shape information
is needed to have a correct segmentation: from expert segmentation or from another
type of image. This might inspire a useful extension to our work.

7.2.4 Validation
The availability of more expert segmentations of the structures would broaden the
spectrum of possible validations, and would give more insight into the problem
and other possible improvements or solutions. Statistics on intra� and inter�expert
variability allowed us to position the automatic segmentations with respect to the
results of manual delineation, but a greater number of experts and their manual
segmentations would enlarge the possibilities of evaluation.

The locally�a�ne non�rigid registration method has been validated on the femoral
heads. However, it we apply it to other pelvic bone structures as well, in a step
that is essential to the success of our segmentation method. Further tests and vali-
dation concerning the registration of the other bone structures would be useful for
a quantitative assessment of the registration process.

7.3 General perspectives
7.3.1 Multi�sequence segmentation: inclusion of MRI
One of the main reasons to include a statistical shape study in the prostate segmen-
tation process is the di�culty to determine the structure's boundaries, which are
often hardly visible in CT images. In MRI images, on the contrary, the structure's
visibility is better, which would weigh in favor of a multi�sequence segmentation
approach. However, there are some limitations to this approach.
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First, there are some known di�culties associated with multi�spectral analysis,
such as bias correction and reconstruction artifacts for MRI images. The fact that
MRI sequences are expensive for the patient is also a limiting factor, and paired
sequences (CT and MRI) are rare in the frame of radiotherapy planning and treat-
ment.

Another practical problem is the fact that the target tissues are soft (and there-
fore subject to changes due to patient positioning, movement, and type and level of
�llings in the case if the bladder and rectum). The waiting time and the patient's
movements between the CT scan and the MRI acquisition could cause a change in
position, size, appearance (due to a change of �llings) or shape of the target struc-
tures, and a simple a�ne registration would not su�ce to align the organs in both
images. It would be interesting to study this problem and device a method that
could align the soft structures properly between the CT and the MRI images, so
that full advantage can be taken of both the density information present in CT and
the better de�nition of the structures in MRI.

7.3.2 Base structure for shape modeling
The force designed in section 4.6 requires a clear knowledge of the positions of the
"interior" and the "exterior" of each model. Although rare in our experiments, a
folding of the mesh would cause a confusion at the time of application of the forces,
mistaking the interior for the exterior and viceversa, with obvious consequences for
the segmentation results. The detection of these foldings is not an easy task.

The use of level sets (i.e., implicit deformable models) would be of help, since
the model in that case is the zero�level�set of a function, and the "interior" and
"exterior" can always be found. In fact, an intersting perspective would be to adapt
the current process from simplex meshes to level sets.

� The force would be implemented the same way it is with simplex meshes, apart
from the fact that the interior would be determined by the value of the level
set function.

� The shape statistics used during prostate deformation could also be enforced.
However, the process would be more costly in terms of computation time, since
the model registrations that take place at each shape constraint application
would be image based, instead of discrete mesh registrations.

� However, splitting the mesh into zones (as is required for bladder segmenta-
tion), would be more di�cult. Using a discrete mesh, an injective function
can be de�ned from its vertex set to a set of zones. In the case of level sets,
the division of the structure would have to be computed at each iteration.

� Since our tube constraint is computed based on a binary image, it would be
easy to adapt to a level set framework.

To conclude, although level sets would solve the problem of folding, they would
also create some new di�culties, including an increase on the computation time.
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7.3.3 Outlook
The segmentation framework proposed in this thesis will be integrated and used in
real clinical environments thanks to the collaboration with DOSISOFT (www.dosisoft.com),
within the european project MAESTRO (Methods and Advanced Equipment for
Simulation and Treatment in Radio�Oncology). Snapshots of some segmentation
results in this system that will be made available to hospitals and clinics can be
found in appendix C.
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Locally A�ne Registration
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A.1 Locally A�ne Registration
A.1.1 Locally A�ne Transformations
Locally a�ne transformations are parameterized by a �nite number N of a�ne
components. Precisely, each component consists of an a�ne transformation Ai and
of a non�negative weight function wi(x) which models its spatial extension: the
in�uence of the ith component at point x is proportional to wi(x). Furthermore,
they assume that for all x,

∑N
i=1 wi(x) = 1, i.e. the weights are normalized.

In order to obtain a global transformation from several weighted components
and obtain an invertible transformation, the authors use a Log�Euclidean polya�ne
framework, which basically consists in averaging in�nitesimal displacements associ-
ated to each a�ne component. The resulting global transformation is obtained by
integrating an Ordinary Di�erential Equation (ODE), which can be done in a very
e�cient way. Log-Euclidean polya�ne transformations are always invertible, and
their inverse can also be very e�ciently computed.

A.1.2 Log�Euclidean Regularization
The authors use the 4x4 matrix representation of 3D a�ne transformation given
by homogeneous coordinates. Whenever the amount of rotation present in an a�ne
transformation A is less than π radians, one can de�ne the logarithm of A, simply
via the principal logarithm of the matrix representing A. This matrix logarithm is
of the form:

(
M v

0 0

)
, where M is a 3x3 matrix (not necessarily invertible) and

v a 3D vector. Conversely, a unique a�ne transformation is associated to any 4x4
matrix B of the latter form via its matrix exponential.
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Taking the logarithm of a�ne transformations corresponds to linearizing the
(curved) a�ne group around the identity, while conserving excellent theoretical
properties (invariance with respect to inversion in particular). This allows to perform
Euclidean (i.e. vectorial) operations on a�ne transformations via their logarithms.

This representation of a�ne transformations by vectors allows the direct gener-
alization of classical vectorial regularization techniques.

For example, one can de�ne a Log-Euclidean elastic energy between a�ne com-
ponents:

Reg(Ai, wi) =
N∑

i=1

∑

j 6=i

pi,j‖ log(Ai)− log(Aj)‖2, (A.1)

where pi,j =
∫
Ω wi(x).wj(x)dx/

∫
Ω wi(x)dx, which take into account the spatial

extensions of the components. Furthermore, one can de�ne a �uid energy by regu-
larizing the transformation corrections ∆Ai instead of the a�ne transformations Ai

in (A.1). In the sequel, ‖.‖ is set to ‖M‖2 = Trace(M.MT ) (Frobenius norm).

A.1.3 Registration Algorithm
In the locally a�ne registration implementation, we chose to de�ne entire areas
which would adopt an a�ne behavior. Since convoluting areas with a gaussian kernel
would penalize small areas neighboring large areas, the authors have implemented
the weighting function for each area as a function of the minimal distance to the
area: wi(x) = 1/(1 + α.dist(x, areai)2). These weights are normalized.

The framework described so far is also independent of how each a�ne component
of the transformation is evaluated. For our application, we have chosen to optimize
all the a�ne components at the same time using a multi�resolution scheme. At
each resolution, an alternate optimization is performed between the estimation of
the a�ne components and the regularization of the transformation. The estimation
of a�ne transformation corrections is done using a block-matching algorithm, which
uses a correlation coe�cient as a similarity measure. The transformation corrections
∆Ai of AM−1

i are estimated at iteration M from the pairings (xv, xv + dv) using a
least trimmed squares weighted procedure, which minimizes the following energy:

E(∆Ai) =
∑

v

‖
N∑

i=1

wi(xv + dv)AM−1
i .(xv + dv)

−
N∑

i=1

wi(xv)∆Ai.A
M−1
i .xv‖2. (A.2)

The balance between the regularization and the a�ne corrections is done by a
parameter λ ∈ [0, 1], which acts as a percentage of the mean Frobenius norm of the
a�ne transformation corrections ( 1

N

∑N
i=1 ‖log(∆Ai)‖).

All the computations are done using the simple displacement averaging method
(??). One can indeed assume that the corrections are su�ciently small for the
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transformation to remain invertible. The Log�Euclidean polya�ne framework is
used only at the end of the registration to ensure the invertibility of the �nal trans-
formation and to compute its inverse.





Appendix B

The STAPLE algorithm

The STAPLE algorithm, presented in [War�eld 2004], is used in this manuscript to
test inter�expert variability for the delineation of the prostate, and to position the
automatic results obtained with our proposed method with respect to this variability
(chapter 5.

We describe this algorithm based on the Expectation�Maximization (EM) method,
and we then move on to explain how this framework can be used to estimate the
"most likely" segmentation, as well as the expert parameters, based on the available
segmentations.

B.1 The Expectation�Maximization (EM) algorithm
The EM algorithm was introduced in [Dempster 1977] and later revised by [Van Leemput 1999].
We propose here the demonstration shown in [Flandin 2004], in which the EM is
presented as an alternating minimization of similarity by means of the introduction
of a hidden variable T.

We call di the observed data of a problem, realizations of a random vectorial
variable D. We also consider a set of hidden variables T associated to D. Finally,
θ is the set of model parameters used to estimate the probability distribution of D.
We will describe these parameters for our speci�c application in the next section.

The parameters can be estimated by maximizing their resemblance to a certain
dataset. The log�resemblance is then written as follows:

L(θ) = log p(D|θ). (B.1)

The estimation of θ is therefore the following:

θ̂ = arg max
θ

L(θ). (B.2)

However, this formulation is usually di�cult to maximize. The EM algorithm
allows the resolution of this problem by introducing hidden variable T to the re-
semblance, and then maximizing this formulation in an alternating procedure. We
therefore introduce T into equation B.1 by using the law of computation of condi-
tional probabilities:

p(D|θ) =
p(D,T|θ)
p(T|D, θ)

. (B.3)
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By introducing the probability distribution p̃(T), we obtain the following for-
mulation for the log�resemblance:

L(θ) = log
(

p(D,T|θ)
p(T|D, θ)

p̃(T)
p̃(T)

)

= log
(

p(D,T|θ)
p̃(T)

)
+ log

(
p̃(T)

p(T|D, θ)

)
. (B.4)

Since this equation is true for any T, we compute the expectation over variable
T:

L(θ) =
∑

T

p̃(T) log
(

p(D,T|θ)
p̃(T)

)

︸ ︷︷ ︸
L(p̃,θ)

+
∑

T

p̃(T) log
(

p̃(T)
p(T|D, θ)

)

︸ ︷︷ ︸
KLD(p̃(T)‖p(T|D,θ))

. (B.5)

The second term of this equation is the Kullback�Leibler divergence between
p̃(T) and p(T|D, θ), which has the property of being always positive, and zero
only when both distributions are equal. L(p̃, θ) is therefore a lower bound for the
log�resemblance for any distribution T. Therefore, maximizing L(θ) is equivalent
to maximizing L(p̃, θ) if p̃(T) = p(T|D, θ). The EM algorithm is based on this
principle, and applies an alternate maximization as shown in algorithm 2.

Algorithme 2 General EM Algorithm
1: Initialization of parameters θ0 at iteration 0
2: répéter
3: Expectation step: computation of p̃t+1(T) = p(T|D, θt)
4: Maximization step: computation of θt+1 = arg maxθ L(p̃t+1, θ).
5: jusqu'à the log�resemblance stops evolving.

Function L(p̃t+1, θ) depends on the particular problem at stake. Finally, it can
be shown (see [Flandin 2004] for more details) that maximizing L(p̃t+1, θ) for θ is
equivalent to maximizing the following function Q(θ):

Q(θ) =
∑

T

p̃t+1(T) log p(D,T|θ). (B.6)

B.2 Application to multi�label segmentations
B.2.1 Problem formalization
In the multi�label case, L−1 structures are manually segmented by K experts. The
background of the image is also considered as a structure (with label 0). Therefore,
the observed data D are these manual segmentations, dij corresponds to the label
assigned to voxel i by expert j. For simplicity, we will call di the vector of observed
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data, such that di = di0, ..., diK−1. T corresponds to the true segmentation, which
takes its values from the set {0, ..., L − 1}, in which label 0 corresponds to the
background class.

Parameters θjs′s correspond, for each expert j, to the probability p(Dij = s′|Ti =
s) that he will label voxel i as belonging to class s′ even though it really belongs to
class s. Finally, πl , g(Ti = l) is the a priori probability of �nding a voxel whose
label is l, independently of its spatial position. It is estimated as the mean of the
percentage of voxels labeled as l in the images.

πl =
1

KN

N∑

i=1

K−1∑

j=0

δ(dij , l) (B.7)

o δ(dij , l) corresponds to the Kronecker delta function, whose value is 1 when dij is
l, and 0 otherwise. The model parameters θ will therefore be:

θ = {θ0, ..., θK−1} (B.8)

B.2.2 Expectation Step
In this stage, we compute the a posteriori probability p(T|D, θt). Since we assume
a spatial independence, the probability W t+1

si at each voxel i can be computed as
follows:

W t+1
si , p̃t+1(Ti = s) = p(Ti = s|D = di, θ

t). (B.9)

This equation corresponds to the probability of obtaining label Ti = s, knowing
the observed data di and the expert parameters θt obtained in the previous iteration.
By using Bayes' law, we obtain:

W t+1
si , πsp(D = di|Ti = s,θt)

p(D = di|θt)
. (B.10)

where πs is the a priori probability of obtaining label s in segmentation T. We note
that, following Bayes' law, p(D = di|θt) =

∑
l πlp(D = di|Ti = l, θt), which allows

us to write W t+1
si as follows:

W t+1
si , πsp(D = di|Ti = s,θt)∑L−1

l=0 πlp(D = di|Ti = l, θt)
. (B.11)

We also assume that the experts are independent, which leads to the following
relation:

p(D = di|Ti = s,θt) =
K∏

j=1

p(Dj = dij |Ti = s, θt
j). (B.12)

We notice that p(Dj = dij |Ti = s, θt
j) = θt

jdijs. This allows us to simplify W t+1
si

as follows:
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W t+1
si =

πs

(∏K−1
j=0 θt

jdijs

)

∑L−1
l=0 πl

(∏K−1
j=0 θt

jdij l

) . (B.13)

B.2.3 Maximization Step
From this evaluation of p̃t+1(T), we wish to �nd the maximum of Q(θ), de�ned in
equation B.6. To that end, we write that function using the problem data:

Q(θ) =
∑

i

L−1∑

l=0

W t+1
li log p(D = di, Ti = l|θ). (B.14)

We use, once more, Bayes' law:

p(D = di, Ti = l|θ) = p(D = di|Ti = l,θ)p(Ti = l|θ). (B.15)

We can then rewrite Q(θ) as follows:

Q(θ) =
∑

i

L−1∑

l=0

W t+1
li log (p(D = di|Ti = l,θ)p(Ti = l|θ)) (B.16)

=
∑

i

L−1∑

l=0

(
W t+1

li log πl

)
+

∑

i

L−1∑

l=0

K−1∑

j=0

(
W t+1

li log p(Dj = dij |Ti = l, θj)
)
.

The following constraint on θj is added:
∑

s′ θjs′s = 1. Since the �rst term of
the equation does not depend on θj , we obtain, for each θj , the following set of
equations:





∂(Q(θ)+λ1
P

s′ θjs′s)
∂θjs′s

= λ1 +
P

i:dij=s′ W
t+1
si

θjs′s
= 0,

∑
s′ θjs′s = 1

(B.17)

This is a linear system, and its solution can be written as:

θt+1
js′s =

∑
i:dij=s′ W

t+1
si∑

i W
t+1
si

(B.18)

B.3 Application to mono�label segmentations
B.3.1 Problem formalization
We are interested in the case where only one structure has been segmented by each
expert. The choices of experts dij take their values from the set {0, 1}, the value
1 meaning that the voxel belongs to the sought structure. The background is also
considered as a structure in itself.
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The parameters for each expert are, in this case, pj , θj11 = p(Dij = 1|Ti = 1)
and qj , θj00 = p(Dij = 0|Ti = 0), since the other parameters can be derived by
substraction: θj01 = 1 − pj and θj10 = 1 − qj . Only one π is enough, as well. We
have π , π1 = g(Ti = 1), π0 also being obtained by substraction: π0 = 1 − π.
Finally, in this case, only W t+1

1i (called W t+1
i in this case) is computed, since W t+1

0i

can be obtained as 1−W t+1
i .

B.3.2 Expectation Step
The W t+1

i are obtained by using equation B.13, which can be simpli�ed by using
the properties of θj . War�eld et al. simplify W t+1

i by de�ning αi and βi as follows:

αi =
∏

j:dij=1

θt
j11

∏

j:dij=0

θt
j01 =

∏

j:dij=1

pt
j

∏

j:dij=0

(1− pt
j) (B.19)

βi =
∏

j:dij=0

θt
j00

∏

j:dij=1

θt
j10 =

∏

j:dij=0

qt
j

∏

j:dij=1

(1− qt
j) (B.20)

W t+1
i are therefore computed as follows:

W t+1
i =

παi

παi + (1− π)βi
(B.21)

B.3.3 Maximization Step
The maximization step uses the same equations as for the multi�label segmentations
case. These equations are only used to compute parameters pt+1

j and qt+1
j , and their

formulation is simpli�ed as follows:




pt+1
j =

P
i:dij=1 W t+1

iP
i W t+1

i

qt+1
j =

P
i:dij=0(1−W t+1

i )
P

i(1−W t+1
i )

(B.22)





Appendix C

Snapshots of IsoGray

Figures C.1 and C.2 show some shapshots of the IsoGray system, which incorporates
the segmentation methods proposed in this thesis, and will be made available to
hospitals and clinics through the DOSISOFT company (www.dosisoft.com).
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Figure C.1: 3D view of the automatic segmentations of the bladder and prostate,
IsoGray software.
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Figure C.2: Automatic segmentations of the bladder and prostate, performed
through the methods described in this thesis, and integrated into the IsoGray soft-
ware.
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