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ABSTRACT

We are interested in the fully automatic delineation of the
bladder in CT images in the frame of dose calculation for
conformational radiotherapy. To this end we fit a series of
3D deformable templates to the contours of anatomical struc-
tures. The novelty of our approach resides in the ability to
automatically adapt to different kinds of bladder images (ho-
mogenous, non–homogenous, contrasted or non–contrasted).
The adaptation of the algorithm to inhomogeneities within the
bladder improves the accuracy of the segmentation. We val-
idate our approach on a database of tomodensitometric (CT)
images of the lower abdomen of male patients.

1 Introduction

An essential part of the conformal treatment planning pro-
cedure is the segmentation of target volumes and organs at
risk in CT images. Bladder and rectum are considered as the
organs at risk that should be protected against high dose of
radiation during treatment of prostate cancer.

Because of the difficulty to accurately and reliably delin-
eate structures in medical images, this task has traditionally
been assigned to medical experts. However, manual editing is
not only tedious but particularly prone to errors, as assessed
by various intra or inter-operator variability studies [1].

Our aim is the development of an automatic method for
the localization of lower abdomen structures, to reduce the
time interval between imaging and treatment.

We approach the issue of boundary finding as a process of
fitting a series of deformable templates to the apparent con-
tours of anatomical structures. We choose simplex meshes
to model the templates, owing to their fairly simple geome-
try, which eases the incorporation of deformation constraints.
Given the high variability of soft tissues, a locally affine regis-
tration algorithm based on the more stable pelvic bone struc-
tures is first applied to place the images within the same frame
of reference. An initial simplex mesh then undergoes both
global and local deformations to fit the boundaries of a patient–
specific approximation of the target organ. The segmentation
is then refined by deforming the model on the tomodensito-
metric image itself. The result can later be interactively mod-
ified and/or corrected by the user. We apply our method to the
segmentation of the bladder.

2 PREVIOUS WORK ON BLADDER SEG-
MENTATION

The segmentation of pelvic structures is a difficult task since
it involves soft tissues that present a very large variability in
shape, size [2] and intensity, the latter depending on the pres-
ence (partial or total) or absence of a contrast agent.

Semi–automatic or interactive approaches for bladder seg-
mentation allow the pratician to have better control over the
segmentation process [3, 4]. However, they remain time con-
suming and, especially for large databases, an automatic ap-
proach is desirable.

2.1 Non–rigid registration approaches

These methods have been tested for CT bladder segmenta-
tion (see [5] for a combined segmentation and registration ap-
proach). However, the considerable inter and intra–patient
variation in soft tissue (slimmer and less slim patients, fill-
ing of the bladder at the moment of the CT scan, presence of
contrast agent) may cause nearby structures to undergo ”un-
natural” deformations necessary for the atlas to adapt to each
patient’s specific bladder shape.

2.2 Mathematical morphology approaches

Mathematical morphologyapproaches are useful for bladder
segmentation, for several reasons: the topology of the shape
is known, the methods are easier to automate, and they can
be quickly tuned and computed. However, they are quite de-
pendent on the quality of the image. Variations of these ap-
proaches for bladder segmentation have been tested in [6] and
[7] (region growing based algorithms) and in [8] (watershed
based algorithm).

2.3 Shape deformation approaches

Shape deformationapproaches include geometric [9, 10] and
parametric [11] deformable models. They are quite flexible,
since shape priors may be incorporated [9, 12, 2, 13, 3, 10],
an atlas can serve as initialization [14], they can be made to
follow fuzzy criteria [11], and they allow for more than one
structure to evolve simultaneously (e.g. the prostate and blad-
der, as in [2]). However, they often require either training [13]
or user interaction [9, 3].



Fig. 1. Different types of bladders make the segmentation task
challenging. From left to right, homogenous contrasted bladder,
non–homogenous bladder and homogenous non–contrasted bladder
(sagittal views).

3 METHOD
The bladders that appear in the CT images used in the pre-
viously cited approaches are homogenous and mainly non–
contrasted. The interaction of an expert is often required ei-
ther for initialization, or to choose patient–specific parame-
ters. The novelty of our approach resides in the automatic
initialization method (seed voxel detection) and the ability
to adapt to different bladder images (homogenous intensity
with high contrast, homogenous intensity with low contrast,
or non–homogenous intensity with different contrast zones).
A new histogram–based external force is also introduced.

3.1 Outline

Our approach is three–fold. It incorporatesnon–rigid regis-
tration based on surrounding bone structures to provide a re-
liable spatial initialization,mathematical morphologybased
operations to compute a good initialization of the underlying
structure anddeformable modelsto refine and smooth the seg-
mentation while enforcing model constraints and forbidding
segmentation ”leakage” to neighboring soft tissue structures.

First, the bladder is located and classified as homogenous
or non–homogenous, contrasted or non–contrasted (Figure 1).
Then, the segmentation begins by computing an approxima-
tion of the structure through mathematical morphology oper-
ations. A simplex mesh is deformed to fit this approximation,
and is later refined and smoothed using the bladder in the CT
image itself. We are working on using these robust bladder
segmentations for segmenting the prostate.

3.2 Preliminary processing

In order to put the CT images in a common reference frame,
locally–affine registration [15] is performed on the pelvic bone
structures (since they show lower variability than smooth tis-
sues) and then interpolated to the other structures in the im-
age. This allows us to perform the same cropping process on
all the images to drastically reduce the computation time and
also reduce or eliminate potential distractions for the algo-
rithm (i.e., surrounding organs). We also determine whether
the bladder shows the presence of a contrast agent or not,
based on a threshold on the highest voxel intensity found
among soft tissues. Later, the bladder will be labeled as ho-
mogenous (one zone of homogenous grey–level values) or
non–homogenous (two main zones: a very contrasted ”lower”

zone and a less contrasted ”upper” zone).

3.3 Initial structure approximation

A binary approximation of the structure is then computed. In
order to obtain this approximation, we apply a modified ver-
sion of seeded region–growing that incorporates mathemati-
cal morphology operations. A region growing algorithm with
progressively laxer inclusion criteria and a closing operation
is successively applied to the image, in order to obtain a se-
ries of rough partial segmentations of the bladder that even-
tually include it entirely. The morphological closing with a
sufficiently large structuring element together with the eval-
uation of a stop criterion at each iteration allow us to avoid
”leakage” of the region growing segmentation into surround-
ing structures (in particular, ”thin” structures such as the sem-
inal vesicles).

In the case of bladders showing the presence of a contrast
agent, a region is progressively grown using a highly con-
trasted voxel located within a zone of low intensity variability
as seed point. Since the location of the contrast agent is influ-
enced by gravity, it tends to gather in the lower portion of the
bladder. Therefore, we subsequently look for a potential ”up-
per”, non–contrasted region by looking for a seed point with
similar characteristics to the first one (but different intensity
range), near the upper part of the contrasted zone. If such
a point is not found, the bladder is labeled as homogenous,
and the segmentation of the contrasted zone is taken as an ap-
proximation of the whole bladder. On the other hand, if an
upper region seed point is found, the bladder is classified as
non–homogenous and a progressive region growing sequence
is run for the upper part. The progression for different types
of bladders is illustrated in Figure 2.

The process of progressive region growing provides us
with the intensity based characteristics, such as mean and co-
variance matrix, that characterize each zone of the bladder.

3.4 Mesh deformation: binary stage

The binary approximation computed in the previous step serves
to guide the preliminary stages of deformation (both global
and local) of a simplex mesh.

A hierarchical approach is used: The initial mesh under-
goes rigid and affine transformations that globally place the
mesh as accurately as possible over the binary approximation
of the bladder. After this step, the mesh begins to progres-
sively undergo globally-constrained deformations [16], which
allow it to adapt itself to smaller variations in the data.

The initial mesh deformation over a binary approximation
of the target structure makes the whole procedure more robust
in the presence of noisy data and outlier points in the origi-
nal image. Further details on the deformation process can be
found at [17].

3.5 Automatic division of the mesh into zones

In order to account for the high variability of the target struc-
ture, we adjust the deformable model to the type of bladder



One seed point. Two seed points. One seed point.

Fig. 2. Progression of modified region growing algorithms for dif-
ferent types of bladders (sagittal views). Seed points are indicated by
arrows. The end result in each case will be the initial approximation
that guides the first stages of the model deformation.

present in the image:
For non–homogenous bladders: The initial simplex mesh

is divided into three zones. A Chamfer distance map is com-
puted with respect to the segmented upper and lower zones.
These distance maps are used to assign each vertex to upper,
middle or lower zone. Each portion of the model will evolve
under different forces, according to the characteristics of the
target structure in the nearby region.

For homogenous bladders: Since the whole bladder has
similar intensity properties, the mesh will deform itself glob-
ally under the same rules. Therefore, no zone division is
needed.

3.6 Mesh deformation: gray–scale stage

Once the mesh properly delineates the binary approximation
of the bladder, the segmentation is refined guided by the reg-
istered image itself and a histogram based force that we have
devised to this end.

We propose an extended framework of deformable-model
based image segmentation where the sought active contour
or surfaceS(u)) results from the minimization of an energy.
The surfaceS is pulled both towardsSS, a ”smooth” sur-
face that lies in the vicinity ofS(u) (for regularization pur-
poses) andSI, an estimated target surface corresponding to
the boundaries of an anatomical structure in an image.

We propose ahistogram–basedapproach for estimating
SI(u) given S(u) and I[x]. In this method, the boundary
points are assumed to be the ones for which theinside voxels
have a high probability of belonging to the inside region while
theoutside voxelshave a low probability of belonging to the
inside region

Rather than basing the segmentation on an intensity range,
we rely on the histogram of the interior of the current target
structure, making no assumption on the intensities found in
surrounding organs or on previous cases (training data).

If we assume that the normaln(u) atS(u) is oriented out-
wards, the boundary surfaceSI(u) can be computed at each
iteration asS(u) + s? n with:

s? = arg min
s∈[−L;L]

v=LX
v=−L

Gσ(|v−s|)∗f(I(S(u)+v n), µ, σ, sgn(v−s))

wheres is the position of each vertex of the final mesh
we want to evaluate,v is the position of the voxels along the
normal of the mesh at vertexs, andf(i, µ, σ, sgn) is a con-
fidence estimation. This confidence is a piecewise constant
function that serves to increase or decrease the energy term,
depending on the values of two expressions:|I(S(u)−µ

σ | ≤ 2
andsgn(v−s). For example, if the first term is false (i.e., the
voxel’s intensity is not compatible with the intensities found
inside the structure) and the second term is true (i.e. the voxel
is located inside the mesh), a positive penalization value is
added to the energy term. FunctionGσ defines a weight for
the voxels that are taken into account at each iteration step;
it may be a Gaussian p.d.f., a generalized rectangle function,
or a combination of the two. The parameters are fully ad-
justable, to penalize more (or less) a non-homogeneity inside
the structure or zone. If needed, at the end of the automatic
segmentation process the results may be manually improved
by an expert.

Fig. 3. Image voxels that are mistakenly included in the segmen-
tation (inside the mesh) are heavily penalized (energy equals +10 in
this example). Voxels that are correctly included or excluded in the
segmentation have negative energy. The mesh will be pulled towards
the potential surface that has minimal energy.

4 RESULTS AND PERSPECTIVES
The method has been tested in a database of CT images show-
ing both homogenous and non–homogenous bladders. Figure
4 shows some quantitative measures of the results. The sen-
sibility and the positive predictive value of the automatic seg-
mentation with respect to the expert delineation have an aver-
age of 0.894 and 0.8695 respectively, with standard deviations
of 0.0658 and 0.0721. The mean robust Hausdorff distance is
of 3.34 mm with a standard deviation of 1.0855 mm. The
segmentation process on a registered image takes less than a
minute on a standard laptop computer. Some example results
can be seen in Figure 5.



I H Sensib. PPV RHD
1 NH 0.94 0.73 2.7
2 H 0.96 0.80 3.0
3 H 0.87 0.81 3.7
4 NH 0.94 0.81 4.0
5 H 0.97 0.78 3.0
6 NH 0.93 0.81 3.0
7 NH 0.94 0.89 2.0
8 H 0.92 0.79 4.0
9 H 0.97 0.88 2.3
10 H 0.80 0.94 4.7

I H Sensib. PPV RHD
11 H 0.75 0.98 5.7
12 H 0.93 0.86 3.3
13 H 0.91 0.95 5.3
14 H 0.92 0.92 2.0
15 H 0.88 0.97 2.7
16 H 0.91 0.95 2.0
17 NH 0.84 0.93 3.7
18 NH 0.91 0.90 2.0
19 NH 0.83 0.86 4.0
20 H 0.76 0.83 3.7

Fig. 4. Sensibility, Positive Predictive Value and robust Hausdorff
distance (95% quantile, all values in mm.) of the automatic seg-
mentation with respect to the ground truth in homogenous (H) and
non–homogenous (NH) bladder images.

Fig. 5. Segmentation results (sagittal and 3D views). In the non–
homogenous case (middle image), the 3 zones of the mesh (upper,
middle and lower) can be seen.

The results are quite good, despite the variable quality of
both the images and the expert segmentations. The modified
region growing algorithm provides a good initialisation for
both homogenous and non-homogenous bladders, while the
mesh deformation steps improve or correct the final segmen-
tation and apply a shape regularization as well.

The automatic segmentation is sometimes misled by a fuzzy
bladder–prostate interface, which causes a ”leakage” of the
model into the latter and, consequently, an increased distance
with respect to the expert delineation. We are able to par-
tially avoid this by imposing strong regularization constraints
on the model, but, as a side effect, the mesh is prevented
from attaining high–curvature zones within the bladder. To
address both problems and further improve the results, we are
working on the simultaneous segmentation of the prostate and
bladder with non–overlapping constraints on the models.

The work described in this article was performed in the framework of the European

Integrated Project MAESTRO which is granted by the European Commission.
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