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Abstract— We propose a dynamic model of cerebrospinal fluid
and intracranial pressure regulation. In this model, we investigate
the coupling of biological parameters with a 3D model, to improve
the behavior of the brain in surgical simulators. The model was
assessed by comparing the simulated ventricular enlargement
with a patient case study of communicating hydrocephalus.

In our model, cerebro-spinal fluid production-resorption sys-
tem is coupled with a 3D representation of the brain parenchyma.
We introduce a new bi-phasic model of the brain (brain tissue and
extracellular fluid) allowing for fluid exchange between the brain
extracellular space and the venous system. The time evolution of
ventricular pressure has been recorded on a symptomatic patient
after closing the ventricular shunt. A finite element model has
been built based on a CT scan of this patient, and quantitative
comparisons between experimental measures and simulated data
are proposed.
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I. INTRODUCTION

Different ventriculostomy surgical simulation systems have
been developed in the past years. While only considering
the geometry of the brain and visual feedback in their early
development stages [1], these systems progressively evolved
to incorporate force feedback [2], [3]. However, none of these
system are able to simulate properly the behavior of the brain
and its interaction with the cerebro-spinal fluid. We believe
the lack of biological relevance of these simulators is a major
restriction towards their adoption for training of surgeons.

We propose a dynamic model of cerebrospinal fluid and
intracranial pressure regulation, coupling a volumetric biome-
chanical model with a scalar representation of the CSF circu-
lation. The mathematical simplicity of the interaction of CSF
with brain in this model makes it adequate for integration in
a real time surgical simulation system.

Three main components influence ICP: CSF production,
circulation, and drainage. The normal CSF dynamics can be
described as follow: CSF is mainly produced by the choroid
plexus in the lateral and third ventricles. The CSF then
flows along the aqueduct of Sylvius, into the fourth ventricle,
then through the lateral foramina of Luschka and the medial
foramen of Magendie to reach the subarachnoid space. CSF
resorption takes place through arachnoid granulations in the
sagittal sinus.

High intraventricular pressure hydrocephalus (as opposed
to normal pressure hydrocephalus) are pathological states
encountered when CSF circulation or drainage is modified.
Communicating hydrocephalus is characterized by the obstruc-
tion of CSF in the sub-arachnoid space.

Mathematical models of CSF hydrodynamics found in the
literature can be classified into two categories: scalar and
spatial (2D and 3D) models (see Section II-A). Scalar models
[4]–[6] have been used to quantify the CSF outflow resistance
or the pressure-volume index.

To the best of our knowledge, current spatial models [7],
[8] have only considered non-communicating hydrocephalus.
These models assume a pressure gradient in the parenchyma.
However, recent experimental studies tend to demonstrate that
this hypothesis may not be valid [9], [10].

Subarachnoid hemorrhage is the presence of blood within
the subarachnoid space, which affects the CSF outflow re-
sistance. As a consequence, the pressure of CSF increases,
and ventricles enlarge. Our model has been used to simulate
hydrocephalus: the temporal evolution of brain deformation
and ventricular pressure after closing the shunt are computed.
Model parameters have been estimated based on a retro-
spective case study with pressure measures and images. A
quantitative evaluation of the residual error is proposed.

II. HYDROCEPHALUS MODELS

A. Literature Review

1) Scalar Models: The first representation of the cerebral
hydrodynamics was done by Monroe [11] and modified by
Kellie [12]. The Monroe-Kellie doctrine simply assumes that
the brain, CSF, and blood are enclosed within a rigid shell,
so that any increase in volume of one of the compartments
implies a decrease of the others. In 1972, Guinane [4] proposed
an equivalent circuit analysis of CSF hydrodynamics (Figure
1). This system is governed by the following differential
equation:

C
∂P

∂t
+

P

R1
= Q1 +

PD

R1
(1)

P is the CSF pressure inside the ventricles. C is a constant
that describes the relationship between the volume VCSF and
the pressure P in the ventricles: C(P ) = ∂VCSF /∂P . R1

is the CSF absorption resistance. Q1 is the flow rate of CSF
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Fig. 1. Equivalent circuit analysis of CSF hydrodynamics proposed by
Guinane [4]. The symbol � represents a perfect flow supply (constant CSF
production rate in the choroid plexus). The symbol � stands for a perfect
pressure supply (constant the sagittal sinus pressure).

produced in the choroid plexus. PD is a threshold pressure
under which the absorption stops (usually taken as the sagittal
sinus pressure).

The successive updates of this model mainly consisted of
improving the relationship ∂VCSF /∂P , the influence of which
is major on the dynamic behavior of the model. Recently,
Sivaloganathan et al. [5] showed that any model based on a
two compartment assumption (brain and CSF) can be derived
from Equation 1 using an appropriate pressure-volume (P-V)
relationship C (P ).

The two-compartment model has only recently been modi-
fied to add several additional compartments. In 2000, Stevens
et al. [6] proposed a four-compartment model that included
the rest of the body.

2) Spatial Models: An alternative to the scalar models was
proposed by Nagashima et al. [7] in 1987 to model a non-
communicating hydrocephalus. His 2D model was based on
the linear consolidation theory of Biot [13], discretized with
the finite element method (FEM). In the linear consolidation
theory, the brain is approximated as an elastic porous medium
containing CSF in the extracellular space. The CSF flow is
then described by Darcy’s law:

n
(
vf − vs

)
+ K∇p = 0 (2)

Where n is the porosity, vf and vs are respectively, the
velocities of the fluid and the solid phases (m s−1), K is the
hydraulic permeability (m4 N−1 s−1), and p is the interstitial
fluid pressure (N m−2).

The authors propose to impose a pressure gradient between
the ventricles and the cortex as a boundary condition, inducing
(as a consequence of Darcy’s law, Equation 2) a CSF flux
through the brain parenchyma. Note that in this model, the
CSF and the extracellular brain fluid are a single phase.

The work of Nagashima et al. has been later extended by
Peña et al. [8] to the study of local measures (void ratio,
effective stress, stretch), also on a 2D model.

Recently, the elastic modulus of the brain parenchyma in the
biphasic model has been revised by Taylor et al. [14]: closer
to 600 Pa rather that in the range (3-100 kPa), as proposed in
previous studies.

B. Proposed Model

1) Introduction: The weakness of scalar models resides in
their inability to describe the expansion of the ventricular wall,

or the collapse of the ventricles upon insertion of a shunt. Up
to now, the spatial models could not include CSF production
and resorption phenomena as boundary conditions.

We propose a new model of communicating hydrocephalus,
combining a 3D patient-specific biphasic model of the brain
with a scalar description of the CSF production-resorption cy-
cle. We consider the two-compartment model (brain and CSF),
and introduce the spatial finite element model to compute the
pressure volume relationship.

In this model, the CSF is free to flow through the aqueduct
of Sylvius, which is not obstructed. The circulation of CSF
through the brain parenchyma and the ventricular wall is
thus neglected. The CSF pressure P is different from the
brain interstitial fluid pressure p, and the ventricular wall
displacement is determined by the effective pressure P ∗ =
P − p on the ventricular wall.

Because the amount of fluid flowing through the brain is
very limited in communicating hydrocephalus, we neglect the
viscosity of the interstitial fluid, and the pressure gradient
induced by Darcy’s law 2. Nevertheless, we allow for intersti-
tial fluid exchange with blood through the blood-brain barrier
(BBB).

2) Formulation:
a) Spatial Model: We consider the brain to be a biphasic

material, composed of an elastic matrix (the brain tissue) and
interstitial fluid (the extracellular fluid) obeying the following
quasi-static linear elastic laws:

ε =
1
2

(
∇u +∇uT

)
Strain tensor definition (3)

σs = λ tr(ε) + 2 µ ε Constitutive equation (4)

σ = σs + p I3 Stress tensor definition (5)

div
(
σ
)

+ f = 0 Equilibrium equation (6)

Variables and parameters are defined in Table I. In this paper,
we consider the Young’s modulus, E, and Poisson’s ratio, ν,
to characterize the material. λ and µ are the Lamé coefficients,
computed as simple functions of E and ν (see [15]).

Symbol Quantity Unit
ε Strain tensor
u Displacement of the solid phase m
σs Effective stress (solid phase) Pa
λ & µ Lame elastic & shear modulus Pa
σ Total stress Pa
p Fluid pressure Pa
f External volumetric forces N m−3

TABLE I
VARIABLE AND PARAMETER DEFINITION.

In communicating hydrocephalus, the CSF production-
resorption cycle is comparable to the cycle described in
Section I for the healthy subject, but the hydraulic absorption
resistance in the venous system is increased as a consequence
of the subarachnoid hemorrhage. The CSF flows through the
aqueduct of Sylvius and CSF drainage through the brain is
minimal. Thus we propose to neglect the viscous effect of fluid
motion in the brain matrix, leading to a constant interstitial
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pressure, p, in the brain. As a consequence:

div (p) = 0 in the brain volume (7)
σ . n + p = P on the ventricular wall (8)

Where n is normal to the ventricle surface.
In addition, we allow for fluid exchange between the inter-

stitial space and the blood capillaries in the brain, through the
BBB (otherwise, brain could not deform since the interstitial
fluid is incompressible). This absorption flow is considered
linear with the pressure difference between the extracellular
space and the capillary pressure. The BBB hydraulic resistance
is modeled by R2:

∂ Vbrain

∂t
+

1
R2

(p− PD) = 0 (9)

b) Scalar Model: The CSF circulation in the intracranial
space is described by the general two-compartment model,
obeying the differential equation:

∂VCSF

∂t
+

P

R1
= Q1 +

PD

R1
(10)

c) Combined Model: The first term of Equation 10
can be decomposed as: ∂VCSF

∂t = ∂VCSF

∂P∗
∂P∗

∂t . Using this
formulation, the derivative of the volume of the ventricles with
respect to the effective pressure ∂VCSF /∂P ∗ can be computed
using the FEM. The mechanical model presented in Section
II-B.2.a is thus used to discretize the relation between the
volume of the ventricles and the effective pressure. The system
can then be expressed as an ordinary differential equation (see
[15] for intermediate calculus):

∂VCSF

∂P ∗

(
1 +

R2

R1

)
∂P

∂t
+

1
R1

P = Q1 +
PD

R1
(11)

3) Boundary Conditions and Integration Method: The FEM
has been used to pre-compute ∂VCSF /∂P ∗: the outer surface
of the mesh (cortex) is fixed, and we set the pressure P ∗ in the
ventricles. The use of pre-computation for the mathematical
problem enables real time update of the model position at
200Hz on a Pentium M 760 laptop (see [15] for details on the
numerical scheme). The low complexity associated with the
coupling of the proposed 3D model with a first order ordinary
differential equation makes it also adapted for integration with
other numerical integration schemes.

III. EVALUATION: CASE STUDY

A. Acquired measures
The simulation is based on a retrospective case study: the

patient was a 45 years-old woman presenting a subarachnoid
haemorrhage induced by an aneurysm rupture. An external
ventricular shunt with a pressure probe was inserted. CSF
pressure was recorded during a shunt closure. Two control
CAT scan were acquired before and after closing the shunt.
The CSF production rate was also recorded every hour (shunt
reservoir at ventricles level).

Pressure was recorded 48 hours after shunt insertion. The
pathology, characterized by the value of R1, had already
evolved: the steady state pressure after closing the shunt
was 1066 Pa (8 mmHg) lower than the pressure measured
immediately after shunt insertion.

B. Geometric model

The brain and ventricles of the patient were segmented
in the images with classical mathematical morphology oper-
ations. This segmentation has been meshed with tetrahedra
using a state of the art meshing software [16] (17 ,000 vertices,
200 ,000 tetrahedra). The third and fourth ventricles were too
collapsed in the image to be segmented, so that we made the
assumption that only the lateral ventricles deform. However,
there is no limitation in the proposed method to their inclusion
in the simulation.

C. Identification of Parameters

The unknowns of our system are R1, R2, PD, Q1, E, and
ν. Two of these parameters are assumed to be constant among
patients and are taken from the literature: the sagittal sinus
pressure, PD = 906 Pa (6.8 mmHg) [6], and the Poisson’s
ratio of the brain, ν = 0.35 [14]. Q1 is directly measured on
the graduated reservoir of the shunt every hour. We measured
an average CSF production rate Q1 = 16 ml/h. R1 is computed
from the steady state pressure, P∞, after closing the shunt:
R1 = (P∞ − PD) /Q1. To estimate E, we minimize the
closest distance d between (i) the simulated steady position of
the ventricles and (ii) the position of the ventricles observed
on the CAT image, using a Powell algorithm. The Young’s
modulus E is then defined as the value that minimizes the
sum of this squared distance on the overall ventricular surface
Ω:

arg min
E

∫
Ω

‖d‖ dΩ (12)

Finally, the value of R2 is also estimated with a Powell
algorithm, minimizing the squared difference between the
simulated pressure evolution and the measured pressure in the
ventricles. The computed values are given in table II.

Variable Value
PD 906 Pa
P∞ 1729 Pa
ν 0.35
E 7221 Pa
Q1 16 ml.h−1

R1 51 Pa.ml−1.h
R2 16 Pa.ml−1.h

TABLE II
VARIABLE VALUES.

D. Simulation of the Enlargement of the Ventricles

We used the model to simulate the progressive enlargement
of ventricles after closing the CSF shunt. In this section, we
evaluate and discuss the residual error after optimization of
the parameters.

First, the displacement error of the ventricle surface was
estimated based on the CT scan of the patient and the mesh.
The average displacement of the ventricle surface is 2 mm,
and the average error computed by the model is 0.8 mm,
which is an average relative error of 40%. Figure 3 shows
the distribution of this error on the surface of the ventricles.
As we can see, the error mainly occurs in high curvature areas,
in the occipital horn of the ventricles, where the ventricles do
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Fig. 2. CT scan of the patient in (left) opened shunt configuration, acquired
1 hour after the procedure and (middle) closed shunt configuration, acquired
48 hours after the procedure (steady state). (right) simulated CT scan after
model-computed ventricular enlargement (steady state).

not deform enough. This is also confirmed on Figure 2 (circled
area).

Second, we examined the squared difference between the
measured time evolution of the ventricular pressure in the
patient and the simulated pressure evolution (Figure 3). The
average error on measure points is 9%, with a maximum error
of 16.2% (60 minutes after closing the shunt).
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Fig. 3. Evaluation of the simulation. Left: evolution of the ventricular
pressure as a function of time after closing the shunt. Continuous line:
Measure on the patient. Dashed line: Simulated pressure increase with the
model. Right: distribution of the displacement error on the ventricle surface
mesh (mm).

E. Discussion

The error criteria and the mesh are based on segmentations
of the ventricles. This makes them sensitive to segmentation
error. In particular, if the ventricles are very contracted, as on
the open shunt configuration image (left panel of Figure 2),
part of the ventricle can be missed by the segmentation leading
to the undeformed part of the ventricle (circled area in right
panel of Figure 2).

The linearity of the model may show some limitations in the
horn of the ventricles. This error source can be of even greater
importance for patient with more acute hydrocephalus. In
addition, the influence of blood vessels and in particular auto-
regulation in the brain might be able to explain the rebound
observed on the pressure to time evolution (Figure 3).

A higher time sampling (every minute) would also allow
to capture transient phenomena. Ideally, an automatic system
should be used to record this pressure.

IV. CONCLUSION

We proposed in this article a new model of hydrocephalus,
which couples a 3D representation of the brain parenchyma
with a scalar hydraulic description of the CSF circulation in
the intracranial space. The link between the scalar and the 3D

model has been made through the relation ∂VCSF /∂P ∗, which
makes this model amenable to further improvements, either of
the mechanical constitutive equation (including a non linear
relation, for example), or of the scalar model (incorporating
additional electric equivalent components).

The current model revokes the assumption that the brain
is incompressible, and allows for brain extracellular fluid
exchange with the blood. Contrary to previous spatial models,
our model does not assume that CSF is drained through
the brain. As a consequence, we make the assumption that
interstitial fluid viscosity can be neglected, leading to a brain
pressure in agreement with the recent in-vivo measurements
[9], [10].

The evaluation of the model shows a realistic behavior,
both in terms of pressure and deformation simulation. The
mathematical simplicity of the model -linear elasticity and
ordinary differential equation for the CSF circulation- makes
its suitable for fast computation and integration in a surgical
surgery simulator.
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