Robust Non-Rigid Registration to Capture Brain
Shift from Intra-Operative MRI

Olivier Clatzf, Herve Delingetté, lon-Florin Talo$, Alexandra J. Golbl; Ron Kikinisf, Ferenc A. Jolesz
Nicholas Ayachg, Simon K. Warfield

* Epidaure Research Project, INRIA
(Institut National de Recherche en Informatique et Automatique) de Sophia Antipolis, France
f Surgical Planning Laboratory,
Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
fComputational Radiology Laboratory,
Brigham and Women’s Hospital, Children’s Hospital, Harvard Medical School, Boston, USA

Abstract—We present a new algorithm to register 3D pre- artifacts due to different factors (surgical instruments, hand
operative Magnetic Resonance (MR) images to intra-operative movement, radio-frequency noise from bipolar coagulation).
MR images of the brain which have undergone brain shift. This Recent advances in acquisition protocol [1] however make it

algorithm relies on a robust estimation of the deformation from ible t L ith limited artifacts duri
a sparse noisy set of measured displacements. We propose Lossibie 1o acquire Images with very limited artitacts during

new framework to compute the displacement field in an iterative the course of a neurosurgical procedure.
process, allowing the solution to gradually move from an ap-
proximation formulation (minimizing the sum of a regularization
term and a data error term) to an interpolation formulation (least
square minimization of the data error term). An outlier rejection
step is introduced in this gradual registration process using a
weighted least trimmed squares approach, aiming at improving
the robustness of the algorithm. We use a patient-specific model
discretized with the finite element method (FEM) in order to
ensure a realistic mechanical behavior of the brain tissue.

To meet the clinical time constraint, we parallelized the slowest
step of the algorithm so that we can perform a full 3D image
registration in 35 seconds (including the image update time) on a Fig. 1. The 0.5 T open magnet system (Signa SP, GE Medical Systems) of
heterogeneous cluster of 15 PCs. The algorithm has been testedhe Brigham and Women’s Hospital
on six cases of brain tumor resection, presenting a brain shift of
up to 14 mm. The results show a good ability to recover large  The intra-operative MR scanner enhances the surgeon’s
displacements, and a limited decrease of accuracy near the tumor yiew and enables the visualization of the brain deformation
resection cavity. during the procedure [2], [3]. This deformation is a conse-

Keywords: Non-rigid registration, intra-operative magnetic resoquence of various combined factors: cerebro spinal fluid (CSF)
nance imaging, finite element model, brain shift leakage, gravity, edema, tumor mass effect, brain parenchyma
resection or retraction, and administration of osmotic diuretics
[4]-[6]. Intra-operative measurements show that this defor-
mation is an important source of error that needs to be

A. Image-Guided Neurosurgery considered [7]. Indeed, imaging the brain during the procedure

The development of intra-operative imaging systems nhgwkes the tumor resection more effective [8], and facilitates
contributed to improving the course of intra-cranial neurd:omplete resections in critical brain areas. However, even if
surgical procedures. Among these systems, the 0.5T intfae intra-operative MR scanner provides significantly more
operative magnetic resonance scanner of the Brigham dRfprmation than any other intra-operative imaging system,
Women's Hospital (Signa SP, GE Medical Systems, Figuﬂe's qot clinically possmle.to acquire image modall_t|es like
1) offers the possibility to acquirs6 x 256 x 58 (0.86 mm, diffusion tensor MR, functional MR or high resolution MR
0.86 mm, 2.5 mm) T1 weighted images with the fast spin eclf®ages in a reasonable time during the procedure. lllustrated
protocol (TR = 400, TE = 16 ms, FOV = 220x220 mm) in $£xamples of image guided neurosurgical procedures can be
minutes and 40 seconds. The quality of evedy x 256 slice found on the SPL web-sife. _
acquired intra-operatively is fairly similar to images acquired NON-rigid registration algorithms provide a way to over-
with a 1.5T conventional scanner, but the major drawback 6PM€ the intra-operative acquisition problem: instead of time-
the intra-operative image remains the slice thickness (2.5 mm);http:,,splweb_bwh_harvard_edu:8000,pages,pmjects/

Images do not show significant distortion, but can suffer fromrv/mrt.html

I. INTRODUCTION



consuming image acquisitions during the procedure, the intfare-operative image and the image from the intra-operative
operative deformation is measured on fast acquisitions of intsszanner.
operative images. This transformation is then used to match
the pre-operative images on the intra-operative data. To ge
used in a clinical environment, the registration algorithm must
hence satisfy different constraints: 1) Modeling the Intra-Operative DeformatiorBecause of
« Speed. The registration process should be sufficiently f48¢ lower resolution of the intra-operative imaging devices,
such that it does not compromise the workflow during th@odeling the behavior of the brain remains a key issue to intro-
surgery. For example, a process time less than or eqdicea priori knowledge in the image-guided surgery process.
to the intra-operative acquisition time is satisfactory. ~The rheological experiments of Miller significantly contributed
« Robustness. The registration results should not be altef8cthe understanding of the physics of the brain tissue [11].
by image intensity inhomogeneities, artifacts, or by thiis extensive investigation in brain tissue engineering showed
presence of resection in the intra-operative image_ very gOOd concordance of the hyper-ViSCOQlaStiC constitutive
« Accuracy. The registration displacement field should r&quation within vivo and in vitro experiments. Miga et
flect the physical deformation of the underlying organ. &. demonstrated that a patient-specific model can accurately
The choice of the number and frequency of image acquisitioﬁi§nU|ate both the intra-operative gravity and resection-induced
during the procedure remains an open problem. Indeed, thBrgin deformation [12], [13]. A practical difficulty associated
is a trade-off between acquiring more images for accuratdth tht_ase models is the extensive time necessary to mesh
guidance and not increasing the time for imaging. The optim#€ brain and solve the problem. Castellano-Smith et al. [14]
number of imaging sessions may depend on the proced@fdressed the meshing time problem by warping a template
type, physiological parameters and the current amount 1Besh to the patient geometry. Davatzikos et al. [15] proposed
deformation. Other imaging devices (stereo-vision, laser rangétatistical framework consisting of pre-computing the main
scanner, ultrasound...) could be additionally used to assist fHede of deformation of the brain using a biomechanical
surgeon in his decision. Those perspectives are currently unfitdel. Recent extensions of this framework showed promising
investigation in our group [9]. results for intra-operative surgical guidance based on sparse
In this paper, we introduce a new registration algorithréata [16].
designed for image-guided neurosurgery. We rely on a biome2) Displacement-Based Non-Rigid Registratidn:this pa-
chanical finite element model to enforce a realistic deformati®¢r, We propose a displacement-based non-rigid registration
of the brain. With this physics-based approasipriori knowl- method consisting in optimizing a parametric transformation
edge in the relative stiffness of the intra-cranial structuré®m a sparse set of estimated displacements.
(brain parenchyma, ventricles...) can be introduced. Alternative methods include intensity-based methods where
The algorithm relies on a sparse displacement field dfe parametric transformation is estimated by minimizing a
timated with a block matching approach. We propose @obal voxel-based functional defined on the whole image. It
compute the deformation from these displacements using $ipuld be noted that although these algorithms are by nature
iterative method that gradually shift from an approximatioaomputationally expensive, the work of Hastreiter et al. [17]
problem (minimizing the sum of a regularization term and Based on an openGL acceleration, or the work of Rohlfing
data error term) towards an interpolation problem (least squé&feal. [18] using shared-memory multiprocessor environments
minimization of the data error term). To our knowledge, thi# speed up the free form deformation-based registration [19]
is the first attempt to take advantage of the two classiogicently demonstrated that such algorithms could be adapted
formulations of the registration problem (approximation an the intra-operative registration problem.
interpolation) to increase both robustness and accuracy of thd he following review of the literature is purposely restricted
algorithm. to registration algorithms based on approximation and inter-
In addition, we address the problem of information distripolation problems in the context of matching corresponding
bution in the images (known as the aperture problem [10] proints using an elastic model constraint.
computer vision) to make the registration process depend on a) Interpolation: Simple biomechanical models have
the spatial distribution of the information given by the structureeen used to interpolate the full brain deformation based
tensor (see Section II-A.5 for definition). on sparse measured displacements. Audette [20] and Miga
We tested our algorithm on six cases of brain tumor resest al. [21] measured the visible intra-operative cortex shift
tion performed at Brigham and Women’s hospital using thesing a laser range scanner. The displacement of deep brain
0.5 T open magnet system. The pre-operative images wstrictures was then obtained by applying these displacements
usually acquired the day before the surgery. The intra-operatag boundary conditions to the brain mesh. A similar surface
dataset is composed of six anatomi@alb x 256 x 58 T1 based approach was proposed by Skrinjar et al. [22] and
weighted MR images acquired with the fast spin echo protocun et al. [23] imaging the brain surface with a stereo
previously described. Usually, an initial intra-operative MRision system. Ferrant et al. [24] extracted the full cortex
image is acquired at the very beginning of the procedurand ventricles surfaces from intra-operative MR images to
before opening of the dura-mater. This image, which doesnstrain the displacement of the surface of a linear finite
not yet show any deformation, is used to compute the rigelement model. These surface-based methods showed very
transformation between the two positions of the patient in agpod accuracy near the boundary conditions, but suffered from
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as lack of data inside the brain [6]. Rexilius et al. [25] followed « segment the brain, the ventricles and the tumor.
Ferrant's efforts by incorporating block-matching estimated « Build the patient-specific biomechanical model of the
displacements as internal boundary condition to the FEM brain based on the previous segmentation.

model (leading to the solution presented in Section 1I-C.2). « Select blocks in the pre-operative image with relevant
However the method proposed by Rexilius was not robust to information.

outliers. Ruiz-Alzola et al. [26] proposed through the Kriging « Compute the structure tensor in the selected blocks.
interpolator a probabilistic framework to manage the noise

distribution in the sparse displacement field computed with  Mesh construction Block matching Dense displacement
the block matching algorithm. Although first results show algorithm field computation
itati i it i iffi i Segmentation .
qualitative good_ mat(_:hmg, it is anflcult tq assess the realism o i - Block selections Stcrgfﬁgﬂct tensor
of the deformation since the Kriging estimator does not rely | "'si¢resistration | J ; > . _
; Biomechanical model| | PS¢ displacement Iterative hybrid
on a physical model. Construction field estimate algorithm

b) Approximation: The approximation-based registration
consists in formulating the problem as a functional minimiza-
tion decomposed into a similarity energy and a regularization
energ.y .Be(.:ause Its formulanon.leads to well posed prOblenlllsg. 2. Overview of the steps involved in the registration process.
the similarity energy often relies on a block (or feature)
matching algorithm. In 1998, Yeung et al. [27] showed impres- - . . .
sive registration results on a phantom using an apprOXimationglgéeat:dattrt\zeir:t?;c-jo;r)ee%;ti:/aeu?r?lazeetv;/seigr:lr;)itzae;)eﬁ‘ig“;fe
formulation combining ultrasound speckle tracking with " . . .

. e : uisition of the image to be registered, after the beginnin
mechanical finite element model. Hata et al. [28] register ?he rocedure Indged the ri %d motion between tﬁe twg
pre-operative with intra-operative MR images using a mutu P ’ ’ 9

information based similarity criterion (see Wells et al. papé)rrg:tfgi 0f.:22 Z?;]eent ('; e;gmﬁfg ngmi grsrt !ng'?ffégmr/g
for details about mutual information [29]) and a mechanical g qui Very beginning urgicaip ure,

finite element model to get plausible displacements. He co Sfore openlr.1g the skull and.the durg. " .

perform a full image registration using a stochastic gradientAﬁer th.e.flr.st |ntra-operat|\(e_ apqwsﬁmn showmg d‘?for'
descent search in less than 10 minutes, for an average errof'gfions, it is |r_np(_)rtant t9 minimize the computation time.
40% of true displacement. Rohr et al. [30] improved the basi soon as th'_s image 1 acqu_lred,_ we comput_e for each
block matching algorithm by selecting relevant anatomici_f;eded block in the pre-operative image the displacement

=== Computed before the acquisition of the image to be registered
=== Computed after the acquisition of the image to be registered

landmarks in the image and taking into account the anisotropitat Minimizes a similarity measure. We chose the coefficient
correlation as the similarity measure, also providing a

matching error in the global functional. Shen et al. [311 fid i th 4 displ f block
investigated this idea of anatomical landmarks and propos Qfidence in the measured displacement for every block.

an attribute vector for each voxel reflecting the underlying Ne registration problem, combining a finite element model
anatomy at different scales. In addition to the Laplaciaffith @ sparse displacement field, can then be posed in terms
smoothness energy, their energy minimization involves v approximation and interpolation. The two formulations

different data similarity functions for pushing and pulling th&oWever come with weaknesses, further detailed in Section II-
displacement to the minimum of the functional energy. C.1. We thus propose a new gradual hybrid approach from the
approximation to the interpolation problem, coupled with an

Il. METHOD outlier rejection algorithm to take advantage of both classical

We have developed a registration algorithm to measuymulations.

the brain deformation based on two images acquired before

and during the surgery. The algorithm can be decompos/gd

into three main parts, presented in Figure 2. The first part

consists in building a patient specific model correspondingl) SegmentationWe use the method proposed by Mangin

to the patient position in the open-magnet scanner. Patiegt-al. [32] and implemented in Brainvisto segment the brain

specific in this algorithm’s context refers to having a coarde the pre-operative images (see Figure 3). The tumor segmen-

finite element model that approximately matches the outi@tion is extracted from the pre-operative manual delineation

curvature of the patient’s cortical surface and lateral ventriculareated by the physician for the pre-operative planning.

surfaces. The second part is the block matching computatior2) Rigid Registration:We match our initial segmentation

for selected blocks. The third part is the iterative hybrid solvéo the first intra-operative image (actually acquired before the

from approximation to interpolation. dura mater opening) using the rigid registration software de-
As suggested in Figure 2, a large part of the computation cegloped at INRIA by Ourselin et al. [33], [34]. This software,

be done before acquiring the intra-operative MR image. In tlaso relying on block matching, computes the rigid motion

following section, we propose a description of the algorithihat minimizes the transformation error with respect to the

sequence, making a distinction between pre-operative améasured displacements. Detailed accuracy and robustness

intra-operative computations. Indeed, since the pre-operativeasures can be found in [35].

image is available hours before surgery, we can use pre-

processing algorithms to: 2http:/Avww.brainvisa.info/

Pre-Operative MR Image Treatment



3) Biomechanical Model:The full meshing procedure isan attribute considered for the matching of two voxels [31].
decomposed into three steps: we generate a triangular surfReeent works assess the problem of ambiguity raised by
mesh from the brain segmentation with the marching cubt®e anisotropic character of the intensity distribution around
algorithm [36]. This surface mesh is then decimated with voxel in landmark matching-based algorithms: edges and
the YAMS software (INRIA) [37]. The volumetric tetrahedrallines lead respectively to first and second order ambiguities,
mesh is finally built from the triangular one with anothemeaning that a block correlation method can only recover dis-
INRIA software: GHS3D [38]. This software optimizes thelacements in their orthogonal directions. Rohr et al. account
shape quality of all tetrahedra in the final mesh. for this ambiguity by weighting the error functional related to

The mesh generated has an average number of 10,000 tegeech landmark displacement with a covariance matrix [30].
hedra (about 1700 vertices), which proved to be a reasonablén this paper, we consider the normalized structure tensor
trade-off between the number of degrees of freedom and thg defined in the pre-operative imadeat positionOy, by:
Gecision avou e e o a0y E G (GHOONTHON

. e = . (1)

We rely on the finite element theory (see [39] for a complete trace |G (VI(Or))(VI(Or))"]
review of the finite element formalism) and consider an incon¥?1(Oy,) is the Sobel gradient computed at voxel posit@pn
pressible linear elastic constitutive equation to characterize twed G' defines a convolution kernel. A Gaussian kernel is
mechanical behavior of the brain parenchyma. Choosing thsually chosen to compute the structure tensor. In our case,
Young modulus for the brain tissué = 694 Pa and assuming since all voxels in a block have the same influence, we use
slow and small deformations(10%), we have shown that thea constant convolution kernel in a block, so that each
maximum error measured on the Young modulus with respe&t1(O;))(VI(O))T has the same weight in the computation
to the state of the art brain constitutive equation [11] is less T,.
than 7% [40]. We chose a Poisson’s ratio= 0.45, modeling This positive definite second order tensor represents the
an almost incompressible brain tissue. Because the ventricdésicture of the edges in the image. If we consider the clas-
and the subarachnoid space are connected to each othersita ellipsoid representation, the more the underlying image
CSF is free to flow between them. We thus assume very spdsembles to a sharp edge, the more the tensor elongates in
and compressible tissue for the ventriclds £ 10Pa and the direction orthogonal to this edge (see image D of Figure
v = 0.05). 3). The structure tensor provides a three dimensional measure

4) Block Selection:The relevance of a displacement estief the smoothness of the intensity distribution in a block and
mated with a block matching algorithm depends on the exi#us a confidence in the measured displacement for this block.
tence of highly discriminant structures in this block. Indeedn Section II-C, we will see how to introduce this confidence
an homogeneous block lying in the white matter of the préa the registration problem formulation.
operative image might be similar to many blocks in the intra-
operative image, so that its discriminant ability is lower thag g5k Matching Algorithm

a block centered on a sulcus. We use the block variance 5o k | . hi he block
to measure its relevance and only select a fraction of allAlSO known as template or window matching, the bloc

potential blocks based on this criterion (an example of 5832tching algorithm is a simple method used for decades in
block selection is given in Figure 3). computer vision [41], [42]. .It makes 'Fhe assumption that a
The drawback of this method is a selection of blockdlobal deformation results in translation for small parts of
in clusters where overlapping blocks share most of théne image. Then the _global ComP'eX optimization Pmb,'em
voxels. We thus introduce the notion of prohibited connectivitga‘n be decomposed into many simple ones: considering a
between two block centers to prevent two selected blocRPCK B(Ox) in the reference image centered @), and a
to be too close to each other. We implemented a variety gffilarity metric between two blocks/ (B(O.), B(Os)), the
connectivity criteria, and obtained best results using the S§Ck matching algorithm consists in finding the positiens
connectivity (with respect to the central voxel), preventinfat maximize the similarity:
two distinct b!ocks ofT x 7 x 7 voxe_ls to s_hf_;\re more thf_;\r_l argmax [M (B (O), B(0'}))] 2)
42% overlapping voxels. Note that this prohibited connectivity o’
criterion leads to a maximum of 30,000 blocks selected in &erforming this operation on every selected block in the pre-
average adult brairr{ 1300 cm?) imaged with a resolution of operative image produces a sparse estimation of the displace-
0.86 mmx 0.86 mmx 2.5 mm. Note also that thex 7 x 7 ment between the two images (see Figure 4). In our algorithm,
blocks used in this paper are about three times longer in e block-matching is an exhaustive search performed once,
Z direction because of the anisotropic voxel size. and limited to integral voxel translation. It is limited to the
In addition, to anticipate the ill-posed nature of findindprain segmentation, thus restricting the displacements to the
correspondences in the tumor resection cavity, we performiatia-cranial region.
the block selection inside a mask corresponding to the brainThe choice of the similarity function has largely been
without the tumor. debated in the literature, we will refer the reader to the article
5) Computation of the Structure Tensadlt: has been pro- of Roche et al. [43] for a detailed comparison of them. In
posed in the literature to use the information distributioaur case, the mono-modal (MR-T1 weighted) nature of the
around a voxel as a mean of selecting blocks [26] or asgistration problem allows us to make the strong assumption
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Fig. 3. lllustration of the pre-operative processes. (A) pre-operative image.
(B) segmentation of the brain and 3D mesh generation (we only represent the
surface mesh for visualization convenience). (C) Example of block selectigt
choosing 5% of the total brain voxels as blocks centers. Only the cent
voxel of the selected blocks is displayed. (D) Structure tensor visualizati

ar
as ellipsoids (zoom on the red square), the color of the tensors demonstrgEq;\;3

the fractional anisotropy.

. 4. Block matching-based displacements estimation. Top left: slice of the
-operative MR image. Top right: intra-operative MR image. Bottom: the

se displacement field estimated with the block matching algorithm and
rposed to the gradient of the pre-operative image (5% block selection,
using the coefficient of correlation). The color scale encodes the norm of the

displacement, in millimeters.

of an affine relationship between the two image intensity

distributions. The correlation coefficient thus appears as,)gp:

natural choice adapted to our problem:

_ Yxep(Br(X) — Br)(Br(X) — Br) 3

> xep Br(X)Br(X) — BpBr .
Where Br and By denote respectively for the block in the
floating and in the reference image, amtfor the average
intensity in blockB. In addition, the value of the correlation
coefficient for two matching blocks is normalized between 0
and 1 and reflects the quality of the matching: a value close to
1 indicates two blocks very similar while a value close to 0 for
two blocks very different. We use this value as a confidence in
the displacement measured by the block matching algorithm.

C. Formulation of the Problem: Approximation Versus Inter-
polation

As we have seen in Section I-B, the registration problem
can be either formulated as an approximation, or as an
interpolation problem. In this section, we will show how
to formulate our problem in both terms and describe the
associated advantages and disadvantages.

1) Approximation: The approximation problem can be for-
mulated as an energy minimization. This energy is composed
of a mechanical and a matching (or error) energy:

W= U'KU  +(HU - D)TS(HU — D)
N——

Mechanical energy

@ .

Matching energy

U the mesh displacement vector, of side, with n
number of vertices.

K the mesh stiffness matrix of side x 3n. Details about
the building of the stiffness matrix can be found in [44].
H is the linear interpolation matrix of siz&p x 3n. One
mesh vertex;, i € [1 : n] corresponds to three columns
of H (columns[3xi+1: 34+ 3]). One matching point
k (ie one block cente@);) corresponds to three rows of
H (rows 3%k +1:3x%k+ 3]). The3 x 3 sub-matrices
[H]; are defined as{H]y., = diag(h;, hj, h;) for the
four columnsc;, j € [1 : 4] corresponding to the four
pointswv,, of the tetrahedron containing the center of the
block Oy, and [H];; = 0 everywhere else. The linear
interpolation factoth;, j € [1 : 4] are computed for the
block centerO;, inside the tetrahedron with:

-1

xT xT T xr T
hi Ve Ve, Vg Vg, Oy,
y y
ho | _ | v¥ Y vl L vy, Oy, ®)
- z z z z z
hs v Vi, vi v, Ok
ha 1 1 1 1 1

D the block-matching computed displacement vector of
size 3p, with p number of matched points. Note that
HU — D defines the error on estimated displacements.
S the matching stiffness of siz&p x 3p.

Usually, a diagonal matrix is considered in the matching



energy aiming at minimizing the sum of squared errors. o that the deformed structures never reach the measured
our case, this would lead 9 = 2. I defines the identity displacements (visible on Figure 5 for the ventricles and
matrix, o defines the trade-off between the mechanicabrtical displacement).

energy and the matching energy, it can also be interpreted
as the stiffness of a spring toward each block matching
target (the unit ofa is N.m™1). The% factor is used

to make the global matching energy independent of the
number of selected blocks.

We propose an extension to the classical diagonal stiffness
matrix S case, taking into account the matching confidence
from the correlation coefficient (Equation 3) and the local
structure distribution from the structure tensor (Equation 1) in
the matching stiffness. These measures are introduced throug
the matrix.S, which becomes a block-diagonal matrix whose
3 x 3 sub-matricesS;, are defined for each block as:

(07
Sk = —ci Ty, (6)
p

The influence of a block thus depends on two factors:

« the value of the coefficient of correlation: the better the
correlation is (coefficient of correlation closer to 1), then
the higher the influence of the block on the registration
will be.

« The direction of matching with respect to the tensor of
structure: we only consider the matching direction co-
linear to the orientation of the intensity gradient in the
block.

The minimization of Equation 4 is classically obtained by

solving 2% = 0:
ow
S = [K+H'SH|U - H'SD =0 @)
Leading to the linear system:
[K+H"SH|U =H"SD (8)

Fig. 6. Solving the registration problem using the interpolation formulation

leads to poor matches. Top left: intra-operative MR image intersecting the
tumor. Top right: result of the registration of the pre-operative on the intra-

operative image using the interpolation formulation (Equation 14). Middle

left: estimated displacement using the block matching algorithm (same slice).
Middle right: norm of the recovered displacement field using the interpolation
formulation. Bottom: zoom on the registration displacement field around the
tumor region (red box) indicates disturbed displacements.

Fig. 5. Solving the registration problem using the approximation formulation 2) Interpolation: The interpolation formulation consists in

(shown on the same slice as Figure 4). Left: dense displacement computeﬁ ing th timal mesh displ m that minimize th
the solution of Equation 8. Right: gradient of the target image superimpos ga g the Op . al mesh d splacemenifstha e the
ata error criterion:

on the pre-operative deformed image using the computed displacement fi
We can observe a systematic error on large displacements. .
Y ge dsp arg min (HU — D)" (HU — D) 9)

Solvi_ng I_Equation 8 forll leads to the_ solution of the_The vertex displacement vectbrsatisfying Equation 9 is then
approximation problem. As shown on Figure 5, the mai iven by:

aanntgge of this formulat!on lies in its ablllty to smooth Fh U (HTH)A 0D (10)
initial displacement field using strong mechanical assumptions.

The approximation formulation however suffers from a sys- In this paper, the possible values fér are restricted to
tematic error: whatever the value chosen forand «, the integral voxel translations. However the displacement of a
final displacement of the brain mesh is a trade-off betwesingle vertex depends on all the matches included in the
the pre-operative rest position and the measured positicwsrounding tetrahedra, so that its displacement is a weighted



combination of all these matches. The mesh thus also serve®Ve developed an algorithm which takes advantage of both

the function of regularization on the estimated displacementsrmulations to iteratively estimate the deformation from the

Therefore, if the ratio of the number of degrees of freedoapproximation to the interpolation based formulation while

(U) to the number of block displacemerd) is small enough rejecting outliers. The gradual convergence to the interpolation

(typically < 0.1), sub-voxel accuracy (with respect to thesolution is achieved through the use of an external fdrce

"true” transformation) can be expected, even with integraldded to the approximation formulation of Equation 8, which

displacements. Conversely, if the previous ratio is greater thaalances the internal mesh stress:

or close to one, the regularization due to the limited number

of degrees of freedom is lost, and the transformation can be [K+H"SH|U=H"SD+F (15)

discontinuous because of the sampling effect. Using a refined

mesh could thus induce an additional displacement error (lipis force F; is computed at each iteratianto balance the

to half a voxel Size), and makes this method inappropriate WSh internal forcd(U;. This leads to the iterative scheme:

estimate brain tissue stress. The ratio used for this paper is

about 15 matches per vertex. Fy <= KU (16)
Solving Equation 10 without matches in a vertex cell, lead to U <« [K+H"SH] - [H'SD+F;] (17)

an undetermined displacement for this vertex. The sparseness

of the estimated displacements could thus prevent some ar€he transformation is then estimated in a coarse to fine

of the brain from moving because they are not related to aapproach, from large deformations to small details up to the

blocks. One way of assessing this problem is to take iniaterpolation. We propose in appendix a proof of convergence

account the mechanical behavior of the tissue. The problerthe algorithm toward the interpolation formulation.

is turned into a mechanical energy minimization under the This new formulation combines the advantages of robust-

constraint of minimum data error imposed by Equation 1@ess to noise at the beginning of the algorithm and accuracy

The minimization under constraint is formalized through the&hen reaching convergence. Because some of the measured

Lagrange Multipliers stored in a vectat: displacements are outliers, we propose to introduce a robust

block-rejection step based on a least-trimmed squares algo-

rithm [45]. This algorithm rejects a fraction of the total blocks

The Lagrange multiplier vectdr of size 3n can be interpretedP@sed on an error functiog, measuring for block k the -
as the set of forces applied at each vertex U in order §70" between the current mesh displacement and the matching

impose the displacement constraints. Note that the second téafget:

W =UTKU + FTHT (HU — D) (12)

FTHT(HU — D) is homogeneous to an elastic energy. Once & = ||Sk [(HU )i — Di]|l (18)
again, the optimal displacements and forces are obtained by
writing that % = 0 and 2% = 0. One then obtain: Dy, (HU), and[(HU), — Dy] respectively define the mea-
_ sured displacement, the current mesh-induced displacement
KU+H"HF = 0 (12) and the current displacement error for the bldek¢;, is
HTHU —HTD = 0 (13) thus simply the displacement error weighted according to the
direction of the intensity gradient in block. However, our
A classic method is then to solve : experiments showed that the block matching error is rather
K HTH] U 0 multiplicative than additive (i.e. the larger the displacement
[HTH 0 } L&] = {HTD} (14)  of the tissue, the larger the measured displacement error).

_ _ _ ~ Therefore, we modifie to take into account the current
The main advantage of the interpolation formulation is agstimate of the displacement:

optimal displacement field (that minimizes the error) with

respect to the matches. However, when matches are noisy or
-worse- when some of them are outliers (such as in the region
around the tumor on Figure 6), the recovered displacement is
disturbed and does not follow the displacement of the tissukiS @ parameter of the algorithm tailored to the error distribu-
Some of the mesh tetrahedra can even flip, modeling a non diZh on matches. Note that a log-error function could also have
feomorphic deformation. This transformation is obviously ndteen used. With such a cost function, the rejection criterion is

physically acceptable, and emphasizes the need for selectigre flexible with points that account for larger displacements.

iteration involving an outlier rejection step.

The number of rejection steps based on this error function,
as well as the fraction of blocks rejected per iteration are

1) Formulation: We have seen in Section II-C that thedefined by the user. The algorithm then iterates the numerical
approximation formulation performs well in the presence aftheme defined by Equations 16 and 17 until convergence.
noise but suffers from a systematic error. Alternatively, solvingigure 7 gives an example of the registered image and the
the exact interpolation problem based on noisy data is redsociated displacement field at convergence. The final regis-
adequate. tration scheme is given in Algorithm 1.

£ = 1Sk [(HU)r — Dy]|
AICHU) ]I+ 1

(19)

D. Robust Gradual Transformation Estimate



Algorithm 1 Registration scheme
1: Get the number of rejection steps; from user
2: Get the fraction of total blocks rejectefs; from user
3: for i=0tong do
5. Uy < [K+HTSH] ' [HTSD + F
6: for all Blocks kdo
7.
8
9

Compute error functiorgy,
end for
: Rejecti—i blocks with highest error functiog
10 RecomputeS, H, D
11: end for
12: repeat
13:  F; < KU;
1. Uy < [K+HTSH| "' [HTSD + F)]
15: until Convergence

'yl
¥
¢ ¥
i
T3
|
‘ \

Fig. 7. Solving the registration problem using the proposed iterative approactgg
(Algorithm 1). Top left: result of the registration of the pre-operative on the
intra-operative image using the iterative formulation (same slice as Figure 6)
Top right: norm of the recovered displacement field. Bottom: zoom on the
registration displacement field around the tumor region (red box) indicate

realistic displacements. Fig. 8. Visualization of the block-rejection step on the same patient as Figure
6 (2.5% of blocks rejected per iteration). Left: initial matches. Middle: after 5
iterations (12.5% rejection). Right: final selected matches after 10 iterations of
block rejection (25% of the total blocks are rejected). The region around the
2) Parameter settingMWe used? x 7 x 7 blocks, searching tumor seems to have a larger rejection rate than the rest of the brain (especially

inall x 11 x 25 window (We used a Iarger window in thebeIOW the tumor). A closer look at this region (bottom row) reveals that lots

. . . . . cé matches around the tumor point toward a wrong direction.
direction of larger displacement: following gravity as observe

in [46]) with an integral translation step dfx 1 x 1.

Although the least trimmed squares algorithm is a robust to4l
estimator up to 50% of outliers [45], we experienced that 10°

cumulated rejection rate representing 25% of the total initigl The last parameter is the matching stiffnessEven if it

) - . - . does not influence the convergence, its value might indeed
selected blocks is sufficient to reject every significant outlier. S ) .

: L : L disturb the rejection steps if the convergence rate is too
Figure 8 shows the evolution in the ouliers rejection schemsﬁ

A variation of + 5% does not have a significant influence ow. The largest displacements could indeed be considered as

. . - .. outliers if the matching energy does not balance fast enough
on the registration. Below 20%, a quantitative examinatio . . .

. . the mechanical one. Therefore we chose a matching stiffness
of the matches reveals that some outliers could remain. OVer ;.. (k)

30%, relevant information is discarded in some regions, the n» reflecting the average vertex st|ffneS§ (note that
displacement then follows the mechanical model in the£ Is value does not depend on the number of vertices used to
regions mesh the volume), so that at least half of the displacement is

already recovered after the first iteration. Experiments showed

A defines the breakup point between an additive andti‘?‘at the results are almost unchanged (max. differendel

multiplicative error model: with displacements less (respef:ﬁm) whena is scaled (multiplied of divided) by a factor of
tively more) than% mm, the model is additive (respectively

multiplicative). This value thus has to be adapted to the 3) Implementation Issues and Time Constraifihe me-

accuracy of t?]e maltchesj,x V:]h'Chb's cIoseI_y relactjed to Fhe ﬂo_'éﬁanical system was solved using the conjugate gradient (see
|1n Images. The V? ue oh has been estlmat'e _f?mpmcr? Y147] for details) method with the GMM++ sparse linear system
5 gave best results, but we encountered significant changgges The rejected block fraction for 1 iteration was set to

. ; ek
(average difference on Eth displacemen2 efl0™ mm, stan- , go4 and the number of rejection steps to 10. The following
dard deviation of4 x 10~“ mm and maximum displacement

difference of1.1 mm on the dataset) for variations of lambda 3http:/Aww.gmm.insa-tlise.fr/getfem/gmm_intro



computation times have been recorded on the first patient o
our database, using a Pentium IV 3Ghz machine running thq#
sequential algorithm:

« Block matching computation— 162 sec.

« Building matrices S, H, K and vector B— 1.8 sec.

« Computing external force vector (Equation 16} 7 x
10~2 sec / iteration.

« Solve system (Equation 18— 9 x 1072 sec / iteration.

« Blocks rejection— 12 x 1072 sec / iteration.

« Update H, S, D— 25 x 102 sec / iteration.

Most of the computation time is spent in the block matching
algorithm. We developed a parallel version of it using PYM
able to run on an heterogeneous cluster of PCs, and takin
advantage of the sparse computing resource available in
clinical environment. This version reduced the block matching
computation time to 25 seconds on an heterogeneous gro
of 15 PCs, composed of 3 dual Pentium IV 3Ghz, 3 dual
Pentium IV 2Ghz and 9 dual Pentium Il 1Ghz. Similar
hardware is widely available in hospitals and additionally
very inexpensive compared to high-performance computers®
The full 3D registration process (including the image updatcj
time) could thus be achieved in less than 35 seconds, aftgf
15 iterations of the algorithm. We think that this time is |§
compatible with the constraint imposed by the procedure.

Ill. EXPERIMENTS

We evaluated our algorithm on 6 pairs of pre and intra- [
operative MR T1 weighted images. For every patient, thej\
intra-operative registered image is always the last full MR i
image acquired during the procedure (acquired one to four
hours after the openlqg Of the dura)' The. skin, skull, ar'gg. 9. Result of the non-rigid registration of the pre-operative image on
dura are opened, and significant brain resection was perforng&dintra-operative image. For each patient: (top left) pre-operative image;

at this time. The 6 experiments have been run using tﬁef right) int][aHOPerative image; (bottom rlleft_) result of the registr(z’;tion:
. ] rmation of the pre-operative image on the intra-operative image; (bottom
same set of parameters. Figure 9 presents the 6 pre Operﬁgﬁ% gradient of the intra-operative image superimposed on the result image.

image registrations compared with the intra-operative images enhanced region on patient’s 4 image indicates that the resection is

on the slice showing the largest displacement (which do&somplete. The white dotted line shows where the outline of the tumour is
. . . ~ . predicted to be after deformation (top right). It shows a reasonable matching

_nOt necess‘_”‘r"y show the _resectlon caw?y)Pre operative, with the tumor margin in the deformed image (bottom right).

intra-operative and warped images are shown on corresponding

slices after rigid registration.

The registration algorithm shows qualitatively good results: ) o ]
the brain parenchyma. It shows some limitations for ventricles

the displacement field is smooth and reflects the tissue beh ) A : ;
ior, the algorithm can still recover large deformations (up tBXPansion (patient 4 and 6 of Figure 9) or collapse (patient 5

14mm for patient 5). We wish also to emphasize the fact thk Figure 9), where the error is approximately between two
the algorithm does not require manual interaction making 3'd three millimeters.
fully automatic following the intra-operative MR scan. The accuracy of the algorithm has been quantitatively
We can observe that the quality of the brain segmentatigdaluated by a medical expert selecting corresponding feature
has a direct influence on the deformed image, for examgeints in the registration result image and the target intra-
patient 3 of Figure 9 had a brain mask eroded on the frongerative image. This landmark-based error (not limited to
lobe which misses in the registered image. The deformatisthplane error) estimation has been performed on every image
field however should not suffer from the mask inaccuracfpr 9 different points. Figure 10 presents the measured error
since the brain segmentation is not directly used to guide tf@¥ the 54 landmarks as a function of the displacement of the
registration. The assumption of local translation in the blockissue and Figure 11 presents the measured error for the 54

matching algorithm seems to be well adapted to the motion lghdmarks as a function of the distance to the tumor. Table |
gives the global values of the registration error.

Sm%’mf;’qnégg:-ggx’g‘éms’een o the web site The error distribution presented on figure 10 looks un-
http://splweb.bwh. harvard.edu:8000/pages/ppl/oclatz/ correlated to the displacement of the tissue. This highlights

registration/results.html the potential of this algorithm to recover large displacements.
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All patients | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6
Max. displacement (mm) 13.18 6.73 4.10 7.77 5.74 13.18 4.60
Mean displacement std. dev. (mm)| 3.77+£3.3 3.63+2.4 | 241419 | 2.8943.0 | 2.71+1.9 | 8.06+4.5 | 2.36+1.3
Mean error+ std. dev. (mm) 0.75:0.6 | 0.73:0.8 | 0.69:0.6 | 0.45+0.5 | 0.58:0.5 | 0.88+0.8 | 1.16+0.5
Max. error (mm) 2.50 2.50 1.92 1.21 1.21 2.10 1.88
Mean relative error (%) 19 20 28 15 21 10 49
TABLE |

QUANTITATIVE ASSESSMENT OF THE REGISTRATION ACCURACY

Displacement (mm) IV. CONCLUSION
B S S S S We presented in this article a new registration algorithm
for non-rigid registration of intra-operative MR images. The
P algorithm has been motivated by the concept of moving
§ 2 ) . <+ Patient 1 from the approximation to the interpolation formulation while
g n : . . XiZI;ZEIi rejecting outliers. It could easily be adapted to other interpo-
- IR . s ||, patemts lation methods, e.g. parametric functions (splines, radial basis
Sl e e e . * Patient 6 functions ...) that minimize an error criterion with respect to
05 the data (typically the sum of the squared error).
The results obtained with the six patients demonstrate the
° applicability of our algorithm to clinical cases. This method
Landmark-Based Evaluation of the Registration Error as a Function . . .
of the Estimated Tissue Displacement seems tO be We” SUIted tO Capture the meChanlca| bra|n

deformation based on a sparse and noisy displacement field,
limiting the error in critical regions of the brain (such as in

Fig. 10. Measure of the registration error for 54 landmarks as a function §1€ tumor segmentation). The remaining error may be due to
the initial error (i.e. as a function of the real displacement of tissue, estimatgge |imitation of the linear elastic model.

with the landmarks). Regarding the computation time, this algorithm successfully
meets the constraints required by a neurosurgical procedure,
making it reliable for a clinical use.

Distance o the Tumor Margin (mm) This algorithm extends the field of image guided therapy,

0 20 40 60 80 100 allowing the visualization of functional anatomy and white

‘ ‘ ‘ matter architecture projected onto the deformed brain intra-

25 operative image. Consequently, it facilitates the identification

of the margin between the tumor and critical healthy structures,

2 + Patient 1

L. Patient 2 making the resection more efficient.

15 hatonta In the future, we will explore the possibility to extend the

) * *  patents framework developed in this paper to other organs such as the
Plal T st oty x kidney or the liver. We also wish to adapt multi-scale methods

05 to our problem, as proposed in [48], to compute near real-time

deformations. In addition, we will investigate the possibility

Landmark-Based Evaluation of the Registration Error as a Function to include more complex priori mechanical knowledge in

of the Distance to the Tumor . . . . . .
regions where the linear elastic model shows limitations.

Measured Error (mm)
.

0
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Fig. 11. Measure of the registration error for 54 landmarks as a function of o i
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Whereas the error is limited (table I: 0.75 mm in average, 2.5

mm at maximum), Figure 11 shows that the error somewhat in- APPENDIX

creases when getting closer to the tumor. Because a substantisife propose in this appendix the proof of convergence of
number of matches are rejected as outliers around the tuntbe numerical scheme of Equation 17 toward the interpolation
the displacement is more influenced by the mechanical mod@imulation of Equation 9. All theorems used in this appendix
in this region. The decrease of accuracy may be a consequerexe be found in [49]. We start with classical results from the
of the limitation of the linear mechanical model. Howeveffjnite element theory, the stiffness matik is positive semi
the proposed framework is suitable for more com@exriori  definite:

knowledge on the behavior of the brain tissue or the tumor. K>0 (20)
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and assuming that we have more than 3 spring constraints ¢@ T. Hartkens, D. Hil, A. Castellano-Smith, D. Hawkes, C. M. Jr,

the mesh, the matrixX + H” SH is positive definite:

K+HTSH>0 (21)

(71
in addition sinceH” SH is symmetric with all coefficients

> 0, it is positive semi-definite; [8]

HTSH >0 (22)

From Equation 20 and Equation 22 we can write ( [49] p166)°!

K+HTSH-K>0 o K+HTSH>K  (23) &9
11
and combining with Equation 21 leads to: -
[12]
K+H'SH > K (24)

We call §; and¢; (i € [1 : 3 % n]) the eigenvalues of
respectivelyK + H'SH and K sorted in decreasing order.!
The numerical scheme of Equation 17 can be written as:

(25)

T T [14]
[K + HTSH]| Uiy1 = HYSD + KU,

Since K + HTSH is non singular, we can write the system
in the formU,,, = AU; + B: [15]

U1 = [K + H'SH| KU, + [K + H'SH] 'H"SD
(26)

This system converges if and only if the eigenvalygsof
[K+HTSH]_1K satisfy: Vi, 0 < |¢;] < 1. From 20 and
21 we can write:vi, ¢; > 0 ( [49] p227). Moreover,K +
HTSH > K > 0 induces that the largest eigenvalig,,, of
([K + HTSH]7'K) satisfies¢,a. < 1 ( [49] p171) which
concludes the proof of convergence (again, for more than/t8!
non-collinear matches).

Now that we proved the convergence, one can have
the equation of the displacement field U after convergenBél
Ui = Uy):

[K+ H'SH|U = H"SD + KU

(16]

[17]

(27)  [20]
which implies that:

[21]

[HT'SH|U = H"SD (28)

Equation 28 is exactly the solution of the matching ener%2
minimization (Equation 4), meaning that the proposed scherne

solves the interpolation problem.
[23]
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