
1

Realistic Simulation of the 3D Growth of Brain
Tumors in MR Images Coupling Diffusion with

Biomechanical Deformation
Olivier Clatz∗, Maxime Sermesant∗, Pierre-Yves Bondiau†, Herv́e Delingette∗, Simon K. Warfield‡,
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Abstract— We propose a new model to simulate the 3D growth
of glioblastomas multiforma (GBMs), the most aggressive glial
tumors. The GBM speed of growth depends on the invaded tissue:
faster in white than in gray matter, it is stopped by the dura
or the ventricles. These different structures are introduced into
the model using an atlas matching technique. The atlas includes
both the segmentations of anatomical structures and diffusion
information in white matter fibers.

We use the finite element method (FEM) to simulate the
invasion of the GBM in the brain parenchyma and its mechanical
interaction with the invaded structures (mass effect). Depending
on the considered tissue, the former effect is modeled with a
reaction-diffusion or a Gompertz equation, while the latter is
based on a linear elastic brain constitutive equation. In addition,
we propose a new coupling equation taking into account the
mechanical influence of the tumor cells on the invaded tissues.
The tumor growth simulation is assessed by comparing the
in-silico GBM growth with the real growth observed on two
magnetic resonance images (MRIs) of a patient acquired with
six months difference. Results show the feasibility of this new
conceptual approach and justifies its further evaluation.
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I. I NTRODUCTION

A. Motivation

The majority of the primary tumors of the central nervous
system are from glial origin, among which the glioblastomas
multiforma (GBMs) are the most aggressive. Despite the
substantial research effort against these pathologies, patients
treated with state-of-the-art therapy at Centre Antoine Lacas-
sagne have a median survival of approximately 1 year.

Relatively little progress has been made toward the con-
struction of a general model describing the growth of these
tumors. The interest to carry out a simulation of the tumor
growth is multiple. First, it provides a better understanding
of the physiology of the tumor growth. Second, it could help
predict the tumor evolution from a limited number of time pa-
tient observations. Third, solving an inverse problem based on
this model could be used to quantify the tumor aggressiveness
in a given patient. Last, such a model could improve therapy
planning (in surgery or radiotherapy) by better defining the

invasion margins based on the local estimation of the tumor
cell density.

A primary objective of our model is to investigate the
3D invasion of brain tumors and in particular the respective
influence of the tumor diffusion and mass effect. The work
reported in this paper, including a case study, should be seen
as a proof-of-concept toward this goal.

B. Assessing the Tumor Growth Rate

The invasion speed of some lesions can be more important
than others, due to a greater ”aggressiveness”. From a time
series of MR images, it is possible to picture the 3D invasion of
GBM in the brain [1]. Since tumors can exhibit different rates
of growth, it is then possible to find the best model parameters
-that best match the predicted with the observed invasion- to
characterize the local or global tumor aggressiveness. In other
words, aggressiveness can be considered as one of the hidden
parameters of the model and could be estimated by solving
the following inverse problem: given a time series of images,
the hidden parameters can be estimated as those resulting in
the most realistic simulation with respect to the data.

C. Therapy Planning

In radiotherapy treatments, the delineation of the Clinical
Target Volume (CTV) has to take into account the presence
of isolated malignant cells in the area surrounding the edema.
Such malignant cells cannot be seen in a T2-weighted MR
image. By estimating a tumor cell density, our approach could
help to estimate the risk of finding isolated malignant cells
outside the edema, and thus can help to delineate the CTV.

Furthermore, the segmentation of the Gross Tumor Volume
1 and 2 (GTV1 and GTV2, see Section II-C for a short
description of the GTV classification and [2] for further
details) is performed on a MR image acquired before therapy.
Because a significant delay may occur between the image
acquisition and the radiotherapy treatment, our tumor model
could predict the additional tumor invasion at the treatment
time.
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Once a patient with a GBM has been treated, the recurrence
occurs on average one year later. Radio-necrosis, which is a
radiotherapy complication, has the same signal in MRI as the
tumor recurrence, but its growth law is different. Here again, a
numerical model could be used to discriminate radio-necrosis
from tumor recurrence.

Finally, we believe that anin-silico tumor growth model
could be of great interest for neurosurgeons since they have
to estimate the trade-off between risks and benefits of surgical
procedures. Indeed, the combination of a functional atlas with
the tumor simulation could help predicting future functional
impairments upon the tumor invasion in the patient’s brain.

II. PREVIOUS WORK AND CONTRIBUTIONS

A. Tumor Growth Models

Without loss of generality, tumor growth models can be
classified into two categories depending on their observation
scale:

• Cellular and microscopic models. These models describe
the cellular division speed. Basic models consider the
behavior of isolated cells (exponential, Gompertz), while
more complex models take into account the interaction
between the cells and their environment (cellular au-
tomata).

• Macroscopic models. These models describe the evolu-
tion of the local tumor cell density. Most of these models
rely upon a reaction-diffusion equation to account for the
tumor propagation.

1) Exponential:The first work on an exponentially growing
population was performed by Reverend T.R. Malthus in 1798.
The exponential growth is the simplest proliferation law. It
describes the population density N(t) at any timet as a
function of the initial population density N(0) and the constant
growth rate k:N(t) = N(0)ekt. k depends on the intrinsic
aggressiveness of the tumor. This function is better suited for
quantifying the growth of small tumors during a short time
[3].

2) Gompertz:Malthus work was later modified, in particu-
lar by Gompertz (1825). Beyond a certain size, the exponential
growth gradually slows down to reach a Malthusian asymptotic
limit N∞. The initial exponential growth characterised by its
growth ratek is later limited to an asymptotic rate:

∂N

∂t
= kN ln

(
N∞
N

)
{k,N∞} > 0 (1)

The so-called ”Gompertz Growth Law” has been used to
describe the growth rate of solid avascular tumors at the
population level and succeeded in specific clinical application
[4], [5].

3) Cellular Automata:Since the Gompertz and the expo-
nential models do not take the interactions between cells and
tissues into account, they are good approximations for the
initial microscopic tumor growth only. The cellular automata
models make the link between the microscopic proliferation
and the macroscopic diffusion models.

This approach differs from deterministic approaches be-
cause it computes each division and interaction at a cell scale

to simulate the macroscopic behavior of the tumor growth.
Cellular automata are used to simulate the early growth of
the tumors and to examine their early vascularization and
metabolism.

The cells and micro-vessels affect the extra-cellular con-
centration which, in turn, affect back the evolution of each
automaton [6]. Complex models take into account the devel-
opment of the social behavior, expressed in the co-operative
cellular movement [7]. Some cellular automata are available
on the Internet1.

4) Diffusive Models:On the one hand, the exponential and
Gompertz cellular models represent a good approximation of
the microscopic behavior of the GTV1 in the GBM, which
is not really affected by the nature of the surrounding tissue.
On the other hand, the macroscopic diffusive component of
the GBM depends on the nature of the brain tissue. Recent
attempts have been made to model this infiltrating component,
taking into account local diffusivity parameters.

The diffusive models propose a macroscopic way of con-
sidering the tumor growth. Major contributions in this domain
refer to the reaction-diffusion formalism introduced by Murray
in the early 1990 and later formulated as a conservation
equation [8], [9]:

∂c

∂t
= − div (J) + S(c, t)− T (c, t) (2)

• c represents the tumor cell density.
• J represents the diffusion flux of tumor cells2, which we

assume to obey Fick’s law, i.e. the diffusion flux of cell
is proportional to the gradient of tumor cell density:

J = −DT ∇c (3)

DT is the diffusion coefficient of tumor cells.
• S(c, t) represents the source factor function, describing

the proliferation of tumor cells.
• T (c, t) is used to model the efficacy of the tumor treat-

ment.

This diffusion equation is the basis of major contributions
related to diffusive tumor models [10], [9]. Other models
[11] include the mechano-chemical aspect of cell mobilities
by including an active mobility term in the reaction-diffusion
equation.

B. GBM Tumor Growth

1) Classification and Mortality:Glioblastomas can be clas-
sified as primary or secondary. Primary GBMs represent the
majority of cases (60%), more frequent in older patients
(> 50 years). Secondary GBMs typically develop in younger
patients (< 45 years) through malignant progression from
a low-grade astrocytoma. This progression shows a large
variability, from 1 to 10 years. Whereas both are classified as
glioblastomas, there is increasing evidence that primary and
secondary GBMs evolve as distinct diseases.

1http://calliope.gs.washington.edu/software/
otherSoftware.html

2Except when using homogeneous coordinates, ”” represents a3×1 vector
and ” ” a 3× 3 matrix.
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Despite the substantial research effort toward improving
tumor treatment, no significant advances in the treatment of
GBMs have occurred in the past 25 years. Without therapy,
patients with GBMs usually die within 10 months. Patients
treated with state-of-the-art therapy, including surgical resec-
tion, radiation therapy, and chemotherapy, have a median
survival of approximately 1 years [12]. To date, there is no
evidence that patients with a secondary GBM have a better
prognosis than patients with a primary GBM.

2) Glioblastoma Models:Previous publications focusing on
GBM models isolate two key characteristics: a proliferation
component and a diffusion component [11], [9], [13], [14].
These two characteristics can be related to the categories
described in Section II-A: the proliferation component often
corresponds to the central active part of the tumor and can
be described with a cellular proliferation law. The diffusion
component is generally associated to the external part of the
tumor and can be described by a diffusion law. GBMs can
thus be described as a combination of two different growth
models depending on the considered tumor area (central active
or external).

C. Contributions

In this paper, we propose a patient-specific simulator of
GBM growth, including the brain deformation (mass effect)
induced by the tumor invasion. The simulation relies on a
model discretized with the Finite Element Method (FEM)
initialized from the patient MRIs. Additional structures (such
as the white matter fiber directions, gray matter) have been
included in the patient model using an atlas.

Furthermore, we propose to make the link between the
radiotherapy classification of tumors in Gross Tumor Volumes
(GTV) proposed in some protocols for radiotherapy treatment
[2] and the two distinct invasion behaviors:

• The GTV1 is associated with the expansion component.
Because it does not infiltrate the tissue, this proliferation
is directly correlated with a volume increase. By creating
new cells, the GTV1 pushes away the surrounding struc-
tures. It is therefore responsible for the major mechanical
mass effect. For instance, the GTV1 volume increase is
described in our model by an exponential law.

• The GTV2 is associated with the diffusion component. It
invades adjacent structures by a diffusion process and is
responsible for the infiltration in white and gray matter.
This diffusion component expands faster than the GTV1
but exhibit little mass-effect. The GTV2 is thus described
in our model with a reaction-diffusion equation. In ad-
dition, we propose to model the associated mass effect
with a coupling equation which links the mechanical to
the diffusion process.

An example of the usual GTV segmentation can be seen on
Figure 1. The model is initialized using a standard segmented
patient MRI.

Compared to the previous publications dealing with the
tumor growth modeling problem ([10], [9], [15]), our approach
includes several improvements:

(A) (B)

Fig. 1. MR images of a patient (A) T2; (B) GTV1 (dark red) and GTV2
(light blue) segmentations overlaid on the T2 MRI.

• The use of diffusion tensor imaging to take into account
the anisotropic diffusion process in white matter fibers
(as opposed to the isotropic reaction-diffusion formalism
of Swanson et al. [9]).

• The use of the radiotherapy volume classifications to ini-
tialize the source of the diffusion component (as opposed
to point sources in [9]).

• A new coupling equation between the reaction-diffusion
and the mechanical constitutive equation to simulate
the mass-effect during of the virtual glioblastoma (VG)
growth.

• The initialization with a patient’s tumor and a quantitative
comparison with the observed invasion in the later patient
MR images.

III. G LIOBLASTOMA GROWTH SIMULATION

A. Overview of the Method

Our GBM growth simulation consists of two coupled mod-
els:

1) A model of the multiplication and diffusion of the tumor
that describes the evolution of the tumor densityc over
time in the brain.

2) A model of the expansion of the tumor that predicts the
mass effect induced by both the tumor proliferation and
infiltration.

The coupling between these two models is further described
in Section III-D.2.b but it assumes the following behavior: the
mass effect is directly related to the tumor densityc but c is
not influenced by the mass effect.

This simple coupling leads to a four step algorithm de-
scribed in Figure 2 :

• Image segmentation and registration.The two gross
volumes - GTV1 and GTV2 - are manually delineated
by an expert (who regularly segments these tumors in
MR images for clinical radiotherapy treatments) from
the patient MR images. The patient MR images (both
March and September) are registered with respect to an
anatomical atlas. This atlas includes for each voxel the
location of the main cerebral structures and diffusion
tensors in the white matter.
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• Meshing and Initialization. A tetrahedral mesh of the
patient’s brain is built based on the anatomical segmenta-
tion of the patient image registered in the atlas reference
frame. Tissue properties are assigned to their associated
tetrahedra using the atlas. Furthermore, the value of the
tumor densityc is initialized based on the GTV1 and
GTV2 segmentations by interpolating between the two
boundaries.

• Simulation. The simulation of the VG diffusion and
expansion is performed following the mechanical and
diffusion equations discretized with the finite element
method.

• Comparison. At the end of the growth process, the sim-
ulated deformations are applied to the registered March
images of the patient. Then, the relevance of the model
is evaluated by comparing both the predicted tumor iso-
density contours and the brain deformation with the
registered patient MR images acquired six months later.

To make the registration and the computation more accu-
rate, we chose to make all computations in the anatomical
atlas space since it has the largest image resolution. Every
patient image (March and September) is thus registered to the
anatomical atlas image. In addition, we introduce the diffusion
information through the registration of a DTI to the anatomical
atlas. The registration of pathological to healthy subject images
is still an open problem and there is no validated non-rigid
registration algorithm considered as a gold-standard. However
some authors proposed different approaches aiming at limiting
the tumor-induced deformation artifacts. For example, the
approach of Dawant et al. [16] corrects the mass effect
induced by the volume variation of tumors. However, this
method is not suited for GBMs, also showing a diffusion
component involving mechanical deformations. We chose to
solve this problem using an affine transformation which limits
the number of degrees of freedom. Ultimately, the complete
simulation could be performed in the patient space with a high
resolution anatomical MRI and a DTI of the patient.

B. Pre-Processing of MR Images

1) Patient: The standard imaging protocol for brain tumor
radiotherapy has been used for this study. Three sequences,
T1, T2, and T1 with gadolinium injection (exported in Dicom-
3 format) were used. Two different MRI series of the same
patient were acquired with 6 months difference (Figure 3). The
size and format of the images are shown in Table I. These
MRIs have been acquired in the standard follow-up, after
surgical resection, radiotherapy treatment and/or chemotherapy
[17]. No treatment was administrated for the recurrent GBM
before clinical symptoms appeared (in September for the
considered patient).

2) Tumor Segmentation:The initial tumor location is used
to set the boundary conditions of our model. This was
performed manually by a medical expert using the three
acquisition modalities. Because the external ring of the Gross
Tumor Volume 1 (GTV1) represents the most active part of the
tumor, it is enhanced by gadolinium. Its boundary is defined as
the area of contrast enhancement observed on the T1-weighted

Fig. 2. Flowchart of the proposed approach

#1

#2

T1 T1+ gadolinium T2
injection

Fig. 3. Close up view of the tumor region on the first (#1), and second (#2)
MRI series (T1 - T1 + gadolinium injection - T2), acquired respectively in
March and September 2001.

MRI following gadolinium injection. The GTV2 takes into
account the probability of presence of isolated malignant cells
in the edema surrounding the tumor. Its boundary is delimited
by the area of hyper-signal in the T2-weighted MRI.

3) Registration:All images (patient acquisitions in March
and September, DTI) have been registered to the anatomical
atlas image. Thus two distinct affine registrations have been
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Image size Voxel size (mm)
Patient MRI T1 256*256*60 1.015*1.015*2
Patient MRI T2 256*256*64 1.015*1.015*1.9
Atlas MRI T1 181*217*181 0.6*0.6*0.6
Atlas MRI T2 181*217*181 0.6*0.6*0.6

Atlas DTI 256*256*36 1.0*1.0*4.0

TABLE I

MRIS CHARACTERISTICS

performed to:

• register the DTI image to the anatomical atlas. The
transformation was first estimated between the anatomical
atlas and the T2 weighted MR image acquired in the same
space as the diffusion gradient images. Once measured,
we applied the transformation to the diffusion tensor
image to get the tensors in the anatomical atlas space.

• register the patient images to the anatomical atlas. The
transformation was estimated between the anatomical
atlas and the T2 weighted MR image of the patient
(both September and March). The transformation is then
applied to every image of the patient to register them in
the anatomical atlas space.

Every registration is computed using the Baladin software
[18]. This algorithm computes the transformation in three steps
in a coarse to fine approach:

• Estimate the displacementsd
(
Xi

)
of a domainV com-

posed of voxels centered inXi (Xi ∈ V starting with the
full image) from the reference image to the target image
based on a block matching approach. In our case, we use
the sum of squared differences as a similarity measure,
since both images are the same image modality.

• Find the optimal affine transformationT (X) = F X +
C that minimizes the distance error with respect to the
measured displacementsd(Xi):

T = arg min
T

 ∑
Xi∈V

∥∥T (Xi)− d(Xi)
∥∥2

 (4)

• Discard the outliers using a least trimmed square estima-
tor [19].

To obtain a better matching between deep brain structures,
we removed the skull from both images and compute the
transformations on brains only.

4) Building an Atlas: An atlas usually consists of an
anatomical MR image and an associated label for each voxel
representing the nature of the tissue. In our case, we propose
to add a diffusion tensor information to the white matter
fiber labeled voxels. Therefore, this atlas was built from two
images: a labeled MR image used as an anatomical atlas, and
a diffusion tensor image registered with the anatomical MRI.

a) Anatomical Atlas:We used a fully artificial MRI for
the anatomical atlas, generated by the ”brainweb” software
[20]. The delineation of the structures is then performed with
different thresholds on this MRI [21]. However an asymmetry
exists and can introduce a bias. Thus we mirrored the right part
of the head to generate a perfectly symmetrical atlas MRI (see

Fig. 4. Visualization of the brain surface mesh and the different structures
included in the model: (1) the skull, (2) gray matter, (3) white matter, (4)
ventricles, (5) falx cerebri.

Figure 4). Artificial MRI characteristics are shown in Table I.
We focused on different structures of interest for the purpose of
tumor growth simulation: skull, ventricular system, brain (gray
matter and white matter) and falx cerebri (see Figure 4).This
atlas is used to segment the image of the patient acquired in
March.

b) Diffusion Tensor Information:The GBM is a tumor
of glial origin and grows preferentially in the white matter
fiber directions [22]. To take this fact into account and to be
more accurate in both direction and speed of progression of
the tumor, data from Diffusion Tensor Imaging (DTI) was used
in the white matter.

The DTI measures the variance of the conditional probabil-
ity P (X|X0, t), which represents the probability of finding a
water molecule at a positionX and at timet given its original
positionX0:〈(

X −X0

)
.
(
X −X0

)T
〉

= 6Dw t (5)

Where〈Y 〉 stands for Expectation(Y).
This DTI is reconstructed fromn diffusion gradient images

(n ≥ 6) and a null gradient image (T2 weighted). This
diffusion is about2.9 × 10−3 mm2 s−1 in pure water and
three times larger in the fiber direction (1.2×10−3 mm2 s−1)
than in the transverse direction0.4× 10−3 mm2 s−1 [23].

Different methods have been proposed in the literature to
apply an affine transformation to a diffusion tensor image.
Alexander et al. [24] proposes 3 methods (no re-orientation, lo-
cal rigid and preservation of principal components), suggesting
to use the third method for multi-subject non rigid registration
of soft tissue. In addition to the local rigid strategy, Sierra
[23] also proposes a local affine and a local affine without
scaling re-orientation strategy, arguing in favor of the local
rigid strategy. Xu. et al. [25] proposed a re-orientation strategy
based on a statistical estimation of the local fiber orientation.
It seems however that there is no real consensus on the right
method to use to warp tensors. We chose to apply the affine
transformation without scaling, following [23] which seems
to best account for shearing while preserving the volume of
the tensor. However, further experiments are definitely needed
to confirm the validity of this choice. Using notations defined
in Section III-B.3 for the affine transformation, the registered
diffusion tensor imageD′

w is mathematically defined as:



6

D′
w(X0) = F

[
Dw(F−1(X0 − C))

]
FT (6)

We require that the affine registration process does not
change the underlying tissue absolute diffusivity properties.
Following the original idea of Sierra [23], the final diffusion
tensor is normalized by the transformation scaling factor
det(F )2, so thatdet(D) = det(D′).

The tensor registration is decomposed in three steps:
• Finding the affine transformationT which displaces a

voxel at positionX taken in the T2 weighted MRI from
the original patient DTI dataset to the positionX ′ =
T (X) = F X + C in the atlas image.

• ComputeD∗
w = Dw(F−1(X0−C)) which corresponds

to registering each gradient image in the atlas geometry.
• ComputeD′

w (X0) = 1
det(F )2F D

∗
w F

T .

C. Growth of the Tumor: Evolution of the Tumor Cell Density

1) Diffusion Equation: We rely on the reaction-diffusion
model (Equation 2) to account for the growth and the spread-
ing of tumor cells in the brain parenchyma outside the GTV1.
The GTV1 is used as a source-volume for the diffusion of
tumor cells. This volume is thus a fixed boundary condition of
our model, which tumor cell densityc is equal to the maximum
tumor cell carrying capacity of the brain parenchymaCmax,
estimated to be equal to3.5 × 104 Cellsmm−3 [26], [14].
Since the purpose is only to simulate the tumor growth before
(or without) treatment, we will not model the treatment term
T (c, t). Consequently, the images we chose for the simulation
were acquired before the first clinical symptoms appeared and
before starting the radio-therapy and chemo-therapy treatment.
In addition we propose to model the anisotropy of malignant
tumor cell diffusion in the white matter considering a diffusion
tensorDt:

J = −Dt ∇c (7)

Dt represents the local diffusivity of the tissue with respect to
tumor cells and depends on the white matter fibers direction
and the nature of the tissue.

Different equations can model the source factorS(c, t). For
example, the gompertz law can be used:

S(c, t) = ρc ln
(
Cmax

c

)
(8)

or the classical second order polynomial equation:

S(c, t) = ρc

(
1− c

Cmax

)
(9)

leading to the Fisher reaction-diffusion equation. To minimize
the number of tumor-intrinsic parameters, and to simplfy the
model, we use a linear function to model the source factor,
reflecting its aggressiveness:

S(c, t) = ρc (10)

Then combining Equations 10 and 7 with 2, we can express
the reaction-diffusion law:

∂c

∂t
= div

(
Dt ∇c

)
+ ρ c (11)

In this equation,c represents the normalized cell density.
The real cell densityC is obtained by multiplyingc with the
carrying capacity of the tissueCmax. As a consequence the
tumor cell density is bounded between 0 and 1 (c ∈ [0, 1]),
so that the increase ofc is stopped when reaching the value
1. This implies a saturation effect, limiting the application of
Equation 11 to the tumor density rangec ∈ [0, Cmax] and to
the points of the brain located outside the GTV1. The local
behavior of the tumor therefore only depends on the diffusion
tensorDt and the source factorρ.

To better understand the role of anisotropy in the diffusion
process, we solved Equation 11 on two test-cubes (see Figure
5). In these examples, the tumor cell density is fixed toCmax

for the central part of the tumor (initialized as a random shape,
central blue part in the cube of Figure 5).

Dt = D0

[
1 0 0
0 1 0
0 0 1

]
Dt = D0

[
0.1 0 0
0 1 0
0 0 0.1

]
Fig. 5. Behavior of the reaction-diffusion equation on test cases. (Left)
isotropic. (Right) anisotropic. The tumor cell density is fixed toCmax for
the central part of the tumor (initialized as a random shape, central blue part
in the cube).

2) Model Parameters and Initialization:Because the diffu-
sion process does not occur in the skull or in the ventricles,
we only mesh the brain. We will see later that this mesh is
also compatible with mechanical boundary conditions. Then,
we propose the following characteristics for the model:

• Since the conductivity of the skull and the ventricles
is null, the flux at the mesh surface should be zero.
Therefore the boundary condition for the mesh surface
is:

J · ~n = 0 (12)

• To the best of our knowledge, there exists no quantitative
evaluation of the diffusion of tumor cells in white matter
fibers. In particular, the comparison of the influence of
anisotropy on the diffusion of water molecules versus
tumor cells has not been studied yet. In this article,
we assume that the anisotropic ratio of diffusion is the
same for water molecules and tumor cells so thatDt =
αDw (α constant value). However, further experiments
are needed to validate this hypothesis. Indeed, it could
be that this relation may vary depending on the tumor
aggressiveness. We use the previously described diffusion
atlas (see Section III-B.4) to initialize the tumor cell
diffusion tensorDt in white matter.

• There are several indications that GBMs diffuse more
slowly in the gray matter than in the white matter [27].
The diffusivity in gray matter is thus chosen as a fraction
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Tissue diffusivity (10−3 mm2 s−1)
White matter α ·Dw (anisotropic)

Gray matter β ·max(Dt) (isotropic)

Ventricles 0 (isotropic)
Skull 0 (isotropic)
Falx cerebri 0 (isotropic)

TABLE II

DIFFUSIVITY PROPERTY OF THE ATLAS SEGMENTED TISSUES

Fig. 6. Diffusion model and boundary conditions summary.

of the maximum diffusivity in white matterβ = Dgray

Dwhite
,

and isotropic.The intrinsic aggressiveness of the tumor is
then controlled by two parametersα andβ. β is adjusted
to visually best simulate thein-silico diffusion of the
GBM in gray matter for our patient:β = 1

100 .
• Because tumor cells cannot diffuse through the falx cere-

bri, we set the diffusivity of every tetrahedron crossing
the falx to zero. One can notice on Figures 4, 6, 7 and
9 that the falx is not a simple plane between the two
hemispheres, but tumor cells can actually diffuse from
one hemisphere to the other across the corpus callosum.

• The GTV1 capacity is set to the maximum carrying ca-
pacity of the brain tissueCmax (3.5×104 Cellsmm−3).

• As discussed in [28], one cannot determine bothα and
ρ from two different instants only. We thus arbitrarily
set ρ = η

100 (η is defined in Section III-D.1). Theα
parameter is then adapted to qualitatively fit the diffusion
of the model with the images of the patient acquired 6
months later. We foundα = 5 × 10−3, which leads to
a maximum diffusion value of10−5mm2s−1. This value
is consistent with the diffusion value used in [9] (2 times
smaller). However, inter-subject diffusion parameters are
difficult to compare, since different tumors can have
different diffusion properties.

The material diffusivity values are summed up in Table II.
Figure 6 summarizes the diffusion model and the boundary
conditions. The model is first used to solve the stationary

version of Equation 11, so as to interpolate thec function
between the two initial contours delineating the GTV1 and
GTV2 (Figure 7).

D. Growth of the Tumor: Mechanical Model

1) Brain Constitutive Equation:One can find in the liter-
ature several rheological experiments performed on the brain
tissue. Most relevant ones in this domain are certainly those
conducted by Miller [29] and Miga et al. [30]. In particular,
Miller has carried out several in-vivo experiments on pig
brains. He suggests that brain tissue can be modeled with an
homogeneous hyper-viscoelastic non-isotropic material.

(A) (B)

Fig. 7. Tumor initialization in the finite element model. (A) GTV1. (B)
GTV2.

We use the classical continuum mechanics formalism ([31]
p.28) to describe the mechanical behavior of the brain
parenchyma. Since the deformation is very slow, we propose
to use the static equilibrium equation:

div
(
σ
)

+ fext = 0 (13)

with σ the internal stress tensor (Pa, also known as the Cauchy
stress tensor) andfext the external force applied on the model
(N, also known as body forces).

Although brain tissue is a non-linear and viscoelastic ma-
terial, the experiments of Miller indicated that the 1D stress-
strain non-linear constitutive equation of the brain parenchyma
can be approximated for very slow deformations (>> 50 sec)
by:

σ =
2
γ5

(1− g1 − g2)
(
−1− γ + γ3 + γ4

)
∗

(
(2C200)

(
1− γ − γ3 + γ4

)
+ C100γ

2
)

with:
• γ is related to the strainε: ε = ln(γ).
• σ is the uni-axial stress.
• g1 = 0.450, g2 = 0.365
• C100 = 263Pa, C200 = 491Pa

Since the growing process is very slow in our case (>> 1
day), and the measured deformation in the parenchyma is in
the small deformation range (≤ 5%), we propose to linearize
this equation. We thus consider a linear relationship for both
the constitutive equation and the strain computation:

σ = K ε (14)

ε =
1
2

(
∇u+∇uT

)
(15)
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• K is the elasticity tensor (Pa).
• ε is the linearized Lagrange strain tensor expressed as a

function of the displacementu (no units).
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Fig. 8. (Left) constitutive equation proposed by Miller and linear approxi-
mation; (right) stress error made with the linear approximation.

By minimizing the squared stress error made with the linear
elasticity approximation in the range of small compressions
(ε ∈ [−0.1 ; 0.0 ]), we found an optimal Young modulusE =
694Pa. The absolute stress error for this value is then below
4.2Pa (cf Figure 8).

2) Mass Effect:We propose to make the difference between
the mass effect induced by the GTV1 volume expansion and
by the diffusion of tumor cells into the rest of the brain. We
thus consider two distinct equations describing the mass effect.

a) Inside The GTV1:Because the GTV1 is modeled as
a pure cell proliferation and since the associated tissue is
considered as saturated with tumor cells, this proliferation
directly acts as a volume increase on the GTV1. This volume
increase∆V can be computed at timet:

∆V = Vt − V0 = V0

(
eηt − 1

)
Based on the proposed model,η can be approximated by

the average volume increase of GTV1 in GBM. We found
η = 2.2 × 10−3day−1. However, because of the GTV1
inhomogeneity and because cells can be exchanged between
the GTV1 and the GTV2,η does not directly characterize the
GTV1 cells aggressiveness but represents an average volume
expansion speed. As proposed in [32] we use a penalty method
to impose this volume variation via a homogeneous pressure
into the GTV1.

b) Outside The GTV1:Wasserman et al. proposed in [33]
to model the mechanical expansion of the tumor volume by a
pressureP proportional toN/V , with N the total tumor cell
count and V the total volume of the tumor. We propose a new
equilibrium equation to model the mechanical impact of the
tumor on the invaded structures outside the GTV1.

div
(
σ − λ I3 c

)
+ fext = 0 (16)

This equation is the differential version of the law proposed
in Wasserman et al. paper. It can be locally interpreted as a
tissue internal pressure proportional to the tumor concentra-
tion.

3) Model Parameters and Initialization:The proposed me-
chanical model is similar to the one proposed to predict intra-
operative deformations [34]. It has the following characteris-
tics:
• a qualitative examination of the images did not show

displacement between the brain and the skull, hence we

Tissue Young Poisson
Modulus (Pa) Coefficient

White 694 0.4
Gray Matter 694 0.4
Falx Cerebri 200,000 0.4
Ventricles 0 0
Skull ∞ 0.5

TABLE III

MECHANICAL PROPERTIES OF THE DIFFERENT SEGMENTED TISSUES OR

EQUIVALENT BOUNDARY CONDITIONS

assume that the brain does not slide on the skull. Since
the skull is considered rigid, we fixed the brain mesh
surface vertices. However, a brain-skull and a brain-falx
cerebri sliding contact should be considered for patients
showing a more significant mass effect, as proposed in
[35], [29], [34].

• We use the linearized 3D homogeneous version of
Miller’s constitutive equation (see III-D for details), the
Young modulus is set to694Pa. One could also consider
the additional anisotropy due to the white matter fibers.
However without significant rheological experiments on
this subject, we consider the brain tissue to be isotropic.
We propose to model the brain parenchyma as almost
incompressible, the Poisson coefficient is thus set to0.40.

• Based on the intra-cranial flow model of Stevens [36],
considering that the cerebro-spinal fluid production is not
affected by the tumor growth, and because the growth
process is very slow, we can consider that the ventricular
pressure is not affected by the tumor growth. Therefore
we let ventricular vertices free without additional internal
pressure.

• The falx cerebri is a stiff fold of the dura-mater in the
mid-sagittal plane and sustains part of the hemispheres
internal pressure. We propose to stiffen the part of the
mesh consisting of the falx. Based on the experimental
results [37], we chose its Young modulus equal to2 ×
105Pa.

• We chose a coupling factorλ which minimizes the
quantitative difference between the model and the real
deformations:λ = 1.4 × 10−9N mmCells−1. It cor-
responds to a15% volume increase for a tissue with a
saturated tumor cell densityCmax.

The material mechanical properties are summarized in Table
III. Figure 9 shows the mechanical model and the boundary
conditions.

E. Finite Element Method Discretization

We use the finite element method to discretize both prob-
lems. This numerical method suited for solving problems
described by a partial differential equation (PDE) searches
for solutions in a sub-vectorial space of finite dimension.
The solution is thus expressed in the discretized domain by
the shape functions and its associated nodal unknowns (more
details about the general finite element framework can be
found in [38]). Details of the FE modeling and numerical
schemes are given in Appendices .
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Fig. 9. Mechanical model and boundary conditions summary.

IV. RESULTS

After performing the simulation, we registered both the
deformations and the tumor density to the first patient MRI
(03/2001). Results are presented in two parts, the mass effect
and the tumor invasion.

A. Mass Effect

Figure 10 shows the displacement of the brain parenchyma
due to the mass effect. Even if the largest displacements occurs
nearest the GTV1, distant tissues in the same hemisphere can
be affected by the tumor growth. The average displacement
at the GTV1-GTV2 boundary is about 3 mm. Figure 11
shows a close-up view on structure displacements induced by
the mass effect. We can also observe that the tumor pushes
the mid-sagittal plane away. The tumor has an influence on
ventricle size: we measured a volume variation∆V = 4.6 ml
for the lateral ventricles for an initial volume of25 ml. To

Fig. 10. Displacement of the tissues induced by the tumor mass effect

quantify the accuracy of the simulation, a medical expert
manually selected corresponding feature points3 on the patient
MRIs so as to estimate these landmark displacements between
March and September 2001. These measured displacements
can then be compared to model-simulated ones. Table IV
shows the result of this comparison. The average displacement

3the positions of the landmarks in the image are available on the permanent
web-page: http://www-sop.inria.fr/epidaure/personnel/
Olivier.Clatz/landmarks_tumor_growth/Page.html

for selected landmarks is 2.7 mm and the corresponding
average error is 1.3 mm.

A second experiment was run without modeling the me-
chanical influence of the reaction-diffusion outside the GTV1
(modeled by Equation 16). We could thus evaluate the (me-
chanical) improvement added by the modeling of the reaction-
diffusion component versus a simple volume expansion of the
GTV1. Keeping the model unchanged (without modifying the
pressure penalty constraint in the GTV1), the average error
measured on landmarks is 80% higher (2.2 mm). This error
remains 20 % higher (1.6 mm) after optimizing the volume
variation of the GTV1 to minimize the landmark error.

This experiment demonstrates the benefit of modeling the
mechanical influence of the reaction-diffusion component. The
remaining error on the mechanical coupling might be due to
various phenomena:

• The ratio between the average deformation amplitude (2.7
mm) and the image resolution (1.0 mm) is not sufficient
to make accurate measurements.

• The average error (1.3 mm) is in the range of manual
selection error.

• The deformation might be more important in the sulci
interstitial space than in the brain parenchyma. In such
a case, a finer mesh and different constitutive equations
would be necessary to model the deformation.

1 2 3

Fig. 11. Visualization of the mass effect. 1. T1 MRI 03/2001, 2. T1 MRI
09/2001, 3. T1 MRI 03/2001 deformed with the simulated displacement field.

B. Reaction-Diffusion

Since we want to compare the simulation with the patient
MRI, a correspondence between thec value and the MRI gray
level needs to be established. Such a correspondence cannot
however be found for two reasons:

• The hyper-signal observed in the T2 MRI does not
directly correspond to the tumor but to the edema.

• Unlike CT, MRI is not a calibrated measure. Thus no
absolute correspondence can be made between the gray
level and the nature of the tissue.

Indeed, this correspondence has been measured on CT
images. Tracqui et al. suggested a8000 cells mm−3 threshold
of detection in [14] for an enhanced CT scan. Figure 12 present
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# Measured displacement Simulated displacement Error norm Norm error Angular
[x,y,z] norm (mm) [x,y,z] norm (mm) (mm) (mm) error o

1 [-3.0,1.0,1.0] 3.3 [-2.1,0.9,1.2] 2.6 0.9 0.7 11
2 [-1.0,-4.0,0.0] 4.1 [-0.8,-2.3,0.8] 2.7 1.8 1.4 18
3 [-1.3,-0.3,0.0] 1.3 [-1.3,-0.5,-0.1] 1.4 0.2 0.1 9
4 [-3.0,0.0,-0.6] 3.0 [-2.0,0.9,1.9] 2.9 2.9 0.1 56
5 [-2.3,-4.3,1.3] 5.0 [-1.7,-3.6,2.2] 4.7 1.2 0.3 14
6 [-0.6,0.0,-0.3] 0.7 [-1.5,0.5,0.3] 1.6 1.1 0.9 41
7 [-0.6,-1.0,-0.3] 1.2 [-0.3,-0.1,-0.2] 0.4 1.0 0.8 41

TABLE IV

COMPARISON BETWEEN THE MEASURED(M) AND THE SIMULATED DISPLACEMENTS (S) ON SELECTED LANDMARKS. (ERROR NORM) = ‖M − S‖.

(NORM ERROR) = ‖M‖ − ‖S‖. (ANGULAR ERROR) = M̂ S.

the result of the GBM simulation above8000 cells mm−3

on 8 different axial brain slices. These figures show a good
agreement between the simulation and the data. The model
manage to simulate complex tumor behaviors: for example,
the ”Y” shape around the putamen observable on slices 3 and
4 of Figure 12 is recovered. Also, almost non-invaded tissues
in March 03 could get a significant and realistic invasion 6
months later (slices 1,5).

The simulation of the tumor-density evolution may be
subject to different potential error sources:

• the segmentation based on an atlas matching method, may
be improved using a more complex transformation (for
example the non-linear registration method proposed in
[39]).

• The registration of another subject DTI assumes that
inter-subject variability on white matter distribution is
limited, but this assumption and potential limitations need
to be further studied.

• The adequacy of the reaction-diffusion equation to model
the tumor invasion.

• Approximations made by the finite element method, and
the error due to the discretization.

The influence of every factor will be part of our upcoming
research.

V. PERSPECTIVES ANDFUTURE WORK

We consider two distinct potential areas of research for
the current model. One consists in improving the model for
simulation, the other is related to the clinical validation and
applications.

A. Model Improvement

Previous results have demonstrated the ability of the numer-
ical model to predict the tumor invasion. However, the model
could be enhanced with additional characteristics:

• When diffusing into the brain parenchyma, the tumor also
affects the fibers of the white matter [40], [22]. This
modification of the fiber structure in the invaded area
could be taken into account by updating the diffusion
tensorDt.

• We could evaluate the adequacy of more complex diffu-
sion laws, like the active cell model proposed by Tracqui
et al. [11], to account for the growth of the GBM.

• The model could greatly benefit from the use of more
patient-specific images. More precisely, patient DTI cap-
turing the white-matter fiber directions could greatly
improve the accuracy of the simulation.

• Using alternative numerical methods like finite differ-
ences on a structured grid could increase the resolution
of the simulated tumor growth.

• Multi-scale models are important for improving therapies,
and linking growth models at a cell and at a molecular
scale with the reaction-diffusion equation remains our
long-term goal.

B. Clinical Validation and Applications

Because this article describes a proof-of-concept aiming
to demonstrate the feasibility of modeling complex tumors,
we consider the comparison of the simulated tumor growth
with the follow-up MR image of the patient as a preliminary
step toward a clinical validation. In the future, we wish to
develop methods dedicated to parameter identification and
clinical validation, including:

• the correlation of the VG prediction with histo-
pathological analysis of the patient’s brain, especially
under the threshold of detection of the scanner.

• The inclusion of functional information to the atlas to
allow the prediction of functional loss induced by the
tumor growth.

• The study of the influence of the therapeutic intervention
on the GBM invasion to better estimate the appropriate
time for radiotherapy and surgery treatments, as proposed
in [41].

We also wish to evaluate the relevance of the model on more
patient datasets. This evaluation relies upon the influence of
the initialization in the diffusion process, particularly in the
GTV2. Finally, we wish to investigate the extension of the
diffusive tumor model to other organs (lungs, muscles).
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(A) (B) (C) (D)

Fig. 12. Result of the GBM growth simulation on slices #1 → 5 of the
brain. (A) MR T2 image of the patient in March 2003. (B) MR T2 image
in March 2003 + superimposed simulation initialization contours. (C) MR
T2 image of the patient in September 2003 (corresponding slice after rigid
registration). (D) Contours of the 6 months tumor growth simulation above
8000 cells mm−3 superimposed on the MR T2 image in September 2003.

APPENDIX

a) Elements:We use a linear tetrahedron (P1) element
to discretize our brain domain (more details about the mesh-
ing procedure can be found in the next section). Then the
displacementu of any pointX of the domain is defined as:

u(X) =
3∑

j=0

hj(X)uj (17)

And the cell densityc:

c(X) =
3∑

j=0

hj(X)cj (18)

where hj(X), j = 0, . . . , 3 are the shape functions that
correspond to the linear interpolation inside a tetrahedron and
uj is the displacement of vertex j of the tetrahedron. Using
the homogeneous coordinates, the shape functionshj(X) are

related to the coordinatesPj of a tetrahedron vertices by:

X = P H
x
y
z
1

 =


px
0 px

1 px
2 px

3

py
0 py

1 py
2 py

3

pz
0 pz

1 pz
2 pz

3

1 1 1 1



h0

h1

h2

h3

 (19)

Note that the gradient∇u(X) is constant inside the tetrahedra.
More details about the computation of the shape function and
its properties can be found in [42].

b) Mechanical Functional:The displacement field solu-
tion of the mechanical problem is obtained by minimizing the
potential energy functionalEp:

Ep =
1
2

∫
Ω

Tr
[
εK ε

]
dΩ−

∫
Ω

fext U dΩ (20)

Then combining Equations 17 and 15 with 20 we can explicitly
compute the potential energy:

Ep =
1
2

[u]T [K] [u] − [f ]T [u]

The minimization condition can indeed be written as a linear
system:

[K] [u] = [f ] (21)

Details of the matrix[K] computation can be found in [42].
c) Diffusion Functional:Searching the solution of Equa-

tion 11 on a domainΩ (the brain) in a functional spaceV (here
V = H1) is equivalent to solving:

∀ψ ∈ V,
∫

Ω

∂c

∂t
· ψ =

∫
Ω

(
div

(
D∇c

))
· ψ +

∫
Ω

ρ c · ψ

Using the divergence theorem on the first term of the right
side, and taking into account boundary conditions (details can
be found in [38]), yields:

∀ψ ∈ V,
∫

Ω

∂c

∂t
· ψ = −

∫
Ω

D∇c · ∇ψ +
∫

Ω

ρ c · ψ (22)

Then combining 18 with 22 and takingψ = hj inside the
tetrahedra, we can write the diffusion functional as:

N∑
i=1

∂ci
∂t

∫
Ω

hihj = −
N∑

i=1

ci

∫
Ω

D∇hi · ∇hj

+
N∑

i=1

[ci]
∫

Ω

ρ hihj

[M ]
∂ [c]
∂t

= (ρ [M ]− [D]) [c] (23)

With the rigidity and mass matrices defined as:

[M ] = [Mi,j ] =
∫

Ω

hihj

[D] = [Di,j ] =
∫

Ω

D∇hi · ∇hj

In addition, we performmass lumpingwhich consists in
concentrating the mass of tetrahedra on their vertices. The
mass matrix for tetrahedronT is then defined as:

[Mi,j ] = 0 [Mi,i] =
∑

T/(pi∈T )

V (T )
4
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d) Mesh Generation:The full meshing procedure can be
decomposed in three steps:
• Using the atlas segmented brain, a surface mesh is

generated with the fast marching cube algorithm [43].
• This surface mesh is then decimated with the YAMS

(INRIA) software [44].
• The volumetric mesh is finally generated from the surface

one with another INRIA software: GHS3D [45]. This
software optimizes the shape quality of all tetrahedra in
the final mesh.

Since the structures considered in the segmentation (white
matter fiber bundles, sulci) have a small size (between 1 and
4 mm), a fine mesh consisting of 250,000 tetrahedra has been
used to mesh the brain.

e) Tetrahedra Labeling:In order to assign each tetra-
hedron its mechanical and diffusive properties from the five
segmented classes in the atlas, the atlas-voxels contained
in a tetrahedron have to be listed. We propose to ”slice”
every tetrahedron, and include a voxel in a tetrahedron if its
barycentric coordinates are positive. Analytically a voxel is
assigned to the tetrahedron if:{

∀i ∈ [1..4] ,
[
P−1X

]
i
> 0

}
Each tetrahedron is finally classified according to the dominant
voxel class in its volume. Based on this classification, the
properties of the tetrahedra can be assigned according to
Tables II and III.

f) Mechanical Equation: Numerical Integration:The lin-
ear system 21 can be written for each vertex i:

[Ki,i] [ui] +
∑

j∈N (i)

[Ki,j ] [uj ] = [fi] (24)

WhereN (i) is the set of neighboring vertices of vertex i.
The principle of relaxation algorithms consists in moving

each vertex in order to locally solve Equation 24 (see [46] for
details):

[
+ui

]
= [Ki,i]

−1 [fi]−
∑

j∈N (i)

[Ki,i]
−1 [Ki,j ] [uj ] (25)

This method does not need the computation of a global
stiffness matrix inverse, and could also be used for real-time
simulation.

g) Reaction-Diffusion Equation: Numerical Integration:
We propose an unconditionally stable implicit numerical
scheme for the reaction-diffusion equation integration. Equa-
tion 23 thus becomes:

[M ]
[c]τ+∆τ − [c]τ

∆τ
+ [D] [c]τ+∆τ

− ρ [M ] [c]τ+∆τ = 0

Which can be written as:(
(1− ρ∆τ) + [M ]−1 [D]∆τ

)
[c]τ+∆τ = [c]τ (26)

In this way, Equation 23 is transformed into a linear system
taking the form KU=F. The resolution method proposed for
Equation 24 can then be used to solve the linear system 26.
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