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Abstract. To regularize cardiac motion recovery from medical images,
electromechanical models are increasingly popular for providing a pri-
ori physiological motion information. Although these models are macro-
scopic, there are still many parameters to be specified for accurate and
robust recovery. In this paper, we provide a sensitivity analysis of a pro-
active electromechanical model-based cardiac motion tracking framework
by studying the impacts of its model parameters. Our sensitivity analy-
sis differs from other works by evaluating the motion recovery through a
synthetic image sequence with known displacement field as well as cine
and tagged MRI sequences. This analysis helps to identify which param-
eters should be estimated from patient-specific data and which ones can
have their values set from the literature.

1 Introduction

Cardiac motion recovery has been an active research area for decades, aiming
at accurate and robust estimation of patient-specific myocardial motions from
cardiac images. Although medical image modalities, such as magnetic resonance
images (MRI), can provide observations of cardiac anatomy and apparent mo-
tion, the motion information is often sparse, spatially and temporally noisy, and
leads to qualitative rather than quantitative estimations. Therefore, a priori mo-
tion information is often required to regularize the motion estimation. To this
end, electromechanical models have been increasingly popular because of their
physiological meaningfulness [1–3].

Macroscopic electromechanical models applied to cardiac image analysis usu-
ally consist of three key components: transmembrane potential wave propaga-
tion, active contraction forces, and passive biomechanics. Although these mod-
els are somewhat simplified compared to cellular cardiac models, they still have
many parameters to be specified for clinically relevant recovery. Some authors [4,
5] have already published some sensitivity analyses in which the effects of model
parameter variations were quantified on simulated cardiac functions. These stud-
ies are useful to assess the relative impact of those parameters, however, without



(a) Synthetic data.

(b) Patient data set 1.

Fig. 1. Data used in the experiments. Left to right: heart geometry segmented
from patient MRI with synthetic fiber orientations, image frame at the end
of diastole, and image frame at the end of systole. For (a), both images were
synthesized from the MRI at the mid-diastole with the simulated deformation.

any validation on in vivo patient data, the analyses cannot provide any hints
about the validity of the model for a given patient.

In this paper, we present a sensitivity analysis of electromechanical model
parameters for patient-specific cardiac motion recovery from medical images.
Through synthetic images for which the ground truth is available, and patient
cine MRI for which the corresponding cardiac motion was estimated by experts
from tagged MRI, we studied the sensitivity of the motion recovery framework
proposed in [1] with respect to the model parameters. This analysis can aid
finding which parameters should be estimated from patient-specific measure-
ments and which can have their values set from the literature. It also evaluates
the physiological plausibility of the adopted cardiac electromechanical model by
comparing the simulated displacements with the expert-estimated motions from
the tagged MRI.

2 Motion Recovery with Electromechanical Model

The cardiac motion recovery framework in [1] was tested, which uses the ProAc-
tive Deformable Model whose dynamics equation is:

MÜ + CU̇ + KU = Fb + αFc + βFimg (1)

with M, C, and K the mass, damping, and stiffness matrices respectively. Fb

comprises different external loads from boundary conditions. Fc and Fimg are



(a) Synthetic data.

(b) Patient data set 1.

Fig. 2. Recovered geometries at the end of systole. Left to right: short-axis and
long-axis views of recovered geometries overlapped with images. (a) Yellow line
represents the ground truth, and red and cyan lines represent the recovered
geometries with the image force scaling parameter β = 0 and 45 respectively.
(b) Red, blue, and cyan lines represent the recovered geometries with the image
force scaling parameter β = 0, 15, and 45 respectively.

the vectors for active contraction forces and image-derived forces respectively. α
and β are scaling parameters involved in the sensitivity analysis.

To obtain the contraction force vector Fc, the electrical activation times com-
puted using a multi-front anisotropic Eikonal approach were used to provide the
contraction forces along given fiber orientations [6]. The blood pressures on the
ventricular walls were provided by prescribed atrial pressures in the filling phase,
a three-element Windkessel model in the ejection phase, and ventricular volu-
metric constraints in the isovolumetric phases. The image force vector Fimg was
computed using a correlation-based 3D block-matching algorithm [7] combined
with image intensity gradients, tracking the motions of the salient cardiac fea-
tures on the heart surfaces. The linear and anisotropic biomechanical properties
are included in K, whose stiffness is specified by the Young’s moduli along and
across the fibers (Ef , Ecf ). The sensitivity analysis of cardiac motion recovery
can be performed by solving (1) with varying parameters.
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(a) (b) (c)

Fig. 3. Synthetic data. Displacement difference magnitude versus the change of
model parameters at the end of systole. (a) Active force scaling parameter α.
(b) Fiber orientations θ. (c) Cross-fiber Young’s modulus Ecf . Different colors
encode different values of the image force scaling parameter β.

3 Experiments

3.1 Experimental Setup

The sensitivity analysis is focused on parameters related to biomechanics. For
each data set, we first obtained a simulation which is similar to the apparent
cardiac motion in the images, then we performed cardiac motion recovery with
(1) by varying different parameters. The tested parameters include the active
force scaling parameter (α = 0, 0.6, 0.8, 1.0, 1.2) which controls the amount of
myocardial contraction, the image force scaling parameter (β = 0, 5, 15, 25, 45)
which controls the amount of image forces, the Young’s modulus across the fiber
direction (Ecf = 25, 50, 75 kPa, with Ef = 75kPa, i.e. from transversely isotropic
to isotropic), and with or without ventricular blood pressures as boundary con-
ditions. Different sets of fiber orientations (epicardium to endocardium: −θ to
+θ, θ = 20o, 40o, 60o, 80o for both left and right ventricles) were also tested. We
varied only one parameter at a time for each test.

To analyze the sensitivity of the motion recovery framework corresponding
to the above parameters, experiments were performed on one synthetic image
sequence and two patient cine MRI sequences. No patient electrophysiological
data were used during the recoveries.

Synthetic Data The synthetic image sequence was obtained through a simu-
lation using the measurements of a patient diagnosed with left bundle branch
block. The electromechanical model used in the simulation is highly nonlinear
compared with the ProActive Deformable Model used in this analysis. This non-
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(a) (b) (c)

Fig. 4. Patient data set 1. Displacement difference magnitude versus the change
of model parameters at the end of systole. (a) Active force scaling parameter α.
(b) Fiber orientations θ. (c) Cross-fiber Young’s modulus Ecf . Different colors
encode different values of the image force scaling parameter β.

linear model uses the Ciarlet-Geymonat material as the nonlinear passive me-
chanical model and the Bestel-Clement-Sorine model as the active stress model
with the consideration of actin-myosin interactions [8]. The anatomical MRI at
the mid-diastole was segmented using the semi-automatic segmentation in Car-
dioViz3D [9] to provide the heart geometry including the four basal valvular
rings of the ventricles (Fig. 1(a)), with the synthetic fiber orientations generated
according to the literature (−70o to +70o for the left ventricle, and −50o to
+50o for the right ventricle). The myocardial electrical activation was simulated
using the Eikonal model with the patient electrophysiological data from the LV
endocardium. A cycle of cardiac deformation of 1.054 s was simulated. By ex-
trapolating the obtained deformation field to the whole image space, the image
from which the heart geometry was segmented was warped into a synthetic im-
age sequence, with 34 ms/frame, and isotropic spatial resolution resolution of
1.5625 mm/voxel. In the sensitivity analysis, the models and pathological situa-
tions were assumed to be unknown, thus the parameters used in the ProActive
Deformable Model were nominal as described in [1].

Patient Data Two cine MRI sequences from patients with dilated cardiomy-
opathy were used in the experiments. Data set 1 contains a cardiac cycle in
0.87 s, with temporal resolution 29 ms/frame, 10 mm inter-slice spacing, and
in-plane resolution 1.42 mm/pixel (Fig. 1(b)). Data set 2 contains a cardiac
cycle in 0.73 s, with temporal resolution 25 ms/frame, 10 mm inter-slice spac-
ing, and in-plane resolution 1.45 mm/pixel. Both data sets have corresponding
tagged MRI sequences collected at similar time instants, therefore experts could
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(a) (b) (c)

Fig. 5. Patient data set 2. Displacement difference magnitude versus the change
of model parameters at the end of systole. (a) Active force scaling parameter α.
(b) Fiber orientations θ. (c) Cross-fiber Young’s modulus Ecf . Different colors
encode different values of the image force scaling parameter β.

perform manual tracking of the tag plane intersections to extract the short-
axis myocardial displacements as references. Furthermore, the expert-estimated
ejection fractions of data set 1 and 2 are 25% and 15% respectively.

3.2 Results and Discussions

The results of the synthetic and patient data were evaluated with the same
approach for consistency. For the patient data, as the tagged MRI were not well-
registered with the cine MRI, and the tag plane intersections were too sparse
to provide meaningful strains from the manually tracked displacements, direct
point-to-point comparisons between the recovered deformation and the reference
tag motions could not be performed. To cope with this, we compared the regional
displacements using the 17 AHA segments [10]. For both recovered and reference
motions, the mean radial and circumferential displacements of each segment were
computed, which were used to compute the displacement difference magnitude:∑

i ‖ūrecovery(i)− ūreference(i)‖
n

(2)

with ūrecovery(i) and ūreference(i) the mean displacement vectors (radial or cir-
cumferential) of the recovered and reference motions in segment i respectively,
and n the number of segments utilized. As the short-axis tagged MRI cannot
provide accurate motions around the apex, only segments 1 to 12 corresponding
to the basal and the mid-ventricular levels were used. The results of the synthetic
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(a) (b) (c)

Fig. 6. Displacement difference magnitude versus the change of fiber orientations
at the end of systole, with the active force scaling parameter α = 0. (a) Synthetic
data. (b) Patient data set 1. (c) Patient data set 2. Different colors encode
different values of the image force scaling parameter β.

data were evaluated similarly with the reference motions from the displacement
field of the simulated ground truth.

Fig. 2 shows the recovered geometries at the end of systole. For the synthetic
data, the heart geometry recovered without image forces (i.e. pure simulation
with the ProActive Deformable Model) is quite far from the ground truth, but
the one recovered with large image forces is much closer. Interestingly, in some
locations such as the endocardium of the left ventricle, the recovered geometry
with large image forces is even closer to the apparent heart surfaces than the
simulated ground truth. This shows that the recovery framework is capable of
correcting imperfectness of initial segmentation by using image intensity gradi-
ents. Similarly, for the patient data sets, the larger the image forces, the more
subject-specific the recovered geometries.

Fig. 3, 4, 5, and 7 show the changes of the displacement difference magnitude
versus the changes of model parameters under different image forces. Similar to
the observations in Fig. 2, in all tests, the larger the image forces, the closer
the recovered motions to the reference motions. Furthermore, in most cases, the
image forces show greater influences on the radial displacements rather than the
circumferential displacements. This is reasonable as cine MRI, different from
tagged MRI, can mainly provide apparent radial motions of the myocardium
instead of circumferential motions.

Comparing the sensitivities between parameters, the anisotropy of mechani-
cal stiffness is the least sensitive (Fig. 3, 4, and 5). The displacement difference
magnitudes show relatively small changes when changing from anisotropy to
isotropy with fixed fiber distributions described in the literature. On the other
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(a) (b) (c)

Fig. 7. Displacement difference magnitude versus with or without blood pres-
sures, at the end of systole. (a) Synthetic data. (b) Patient data set 1. (c) Patient
data set 2. Different colors encode different values of the image force scaling pa-
rameter β.

hand, the recovery framework is more sensitive to the active forces and the
fiber orientations. In fact, the fiber orientations mainly impact two aspects of
the model: the active contraction forces and the passive anisotropic mechanical
properties. Although the results already showed that the ProActive Deformable
Model is less sensitive to the stiffness anisotropy, we performed additional experi-
ments with different fiber orientations without active forces. As it is meaningless
to perform tests without both image and active forces, tests with β = 0 (no
image forces) were not performed. Fig. 6 shows that without active forces, the
changes of the recovery results versus the changes of fiber orientations are ig-
norable. Thus if active forces are not used, passive isotropic mechanical models
might be enough for motion estimation. Furthermore, the ranges of the displace-
ment difference magnitudes are larger when using active forces, which means
that proper active forces are very important for accurate motion recovery.

Fig. 7 shows the test results with or without using blood pressures as bound-
ary conditions. The absence of blood pressures can lead to large deviations in
the radial direction, but these deviations decrease with the increase of the image
forces. On the other hand, the effects of the blood pressures are less obvious in
the circumferential direction. This shows that blood pressure constraints are im-
portant when image information is not reliable, but strong image information as
boundary conditions can compensate for improper blood pressure specifications.

The red lines in the plots correspond to the absence of image forces, so they
provide an objective evaluation of the simulation accuracy of the ProActive De-
formable Model through the in vivo patient data. As the in-plane resolutions are
between 1.42 and 1.56 mm/pixel, the minimum displacement difference magni-



tudes in the pure simulations are between one and two pixels. This shows that the
model can reproduce patient-specific cardiac deformation when the parameters
are properly adjusted.

4 Conclusion

From the above discussions, we conclude that the cardiac motion recovery frame-
work is less sensitive to the anisotropy of the passive biomechanical model, and
is more sensitive to active forces, fiber orientations, and blood pressures, espe-
cially when image information does not provide strong constraints. Therefore, if
reliable image information can be extracted, the framework can correctly track
cardiac motion up to pixel size even with parameters taken from the literature
(cyan lines). On the other hand, if image quality is low, a priori information
from the electromechanical model is crucial and subject-specific fiber orientations
and blood pressures should be estimated from available measurements. Recent
progress on in vivo diffusion tensor imaging of the heart and pressure estima-
tion from flow data can complement very well such approaches. Furthermore,
the cardiac motions recovered from the synthetic images using the ProActive
Deformable Model are very close to the simulated ground truth of the nonlinear
electromechanical model. This means that even the biomechanical model used
is linear, the recovery framework can provide useful patient-specific cardiac mo-
tions for parameter estimations of nonlinear models, which can help to predict
patient-specific cardiac functions for surgical planning or treatments.
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