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Abstract

In medical image analysis, geometrical deformations are used to model intersub-
ject variability. In orthopaedic applications, the geometrical variability is usually
observable across anatomical scales. For instance, anatomical differences between
mandible bones of different patients can be found on a coarse scale, between the
entire left or right side, or on a fine scale, between teeth. Each level of granularity
has specific regions of interest in clinical applications. The challenge is to connect
the geometrical deformations to clinical regions across scales.

In this thesis, we present this connection by introducing structured diffeomorphic
registration. At the core of our method is the parametrization of geometrical defor-
mations with trees of locally affine transformations describing intersubject variability
across scales. In a second step, we statistically model the deformation parameters
in a population by formulating a generative statistical model. This model allows us
to incorporate deformation statistics as a prior in a Bayesian setting and it enables
us to extend the classical sequential coarse to fine registration to a simultaneous
optimization of all scales. This kind of group level prior is natural in a polyaffine
context, if we assume one configuration of regions that describes an entire group of
images with varying transformations for each region.

We validate our approach on a wide range of orthopaedic applications:
population-based implant design, biomechanical simulations and allograft selection
for femur and mandibles. The improved intelligibility for clinicians and accuracy
makes our method a good candidate for clinical use.

Keywords: Parametrization of diffeomorphisms, Shape statistics, Multiscale
and hierarchical trees, Log-Euclidean polyaffine transformations, Polyaffine registra-
tion, Log-Demons registration, Generative statistical model, Bayesian registration





Résumé

Dans l’analyse d’images médicales, les déformations géométriques sont utilisées pour
modéliser la variabilité entre les patients. Dans les applications orthopédiques, la
variabilité géométrique est habituellement observable à différentes échelles. Dans
le cas des os mandibulaires, par exemple, on observe des différences anatomiques
entre le côté gauche et droit sur une échelle grossière, ou entre les dents sur une
échelle plus fine. Chaque niveau de granularité contient des régions d’intérêt pour
les applications cliniques. La difficulté est de relier les déformations géométriques
avec les régions d’intérêt pour chaque type d’échelles.

Dans cette thèse, nous présentons cette liaison par l’introduction du recalage
difféomorphe et structuré. Le coeur de notre méthode est le paramétrage des dé-
formations géométriques avec des arbres de transformations localement affines qui
décrivent la variabilité entre les patients. En second lieu, nous modélisons statis-
tiquement les paramètres de déformations dans une population par la formulation
d’un modèle statistique génératif. Cette méthode nous permet d’intégrer des statis-
tiques de déformations comme une probabilité a priori dans un cadre Bayésien et
elle nous permet d’étendre le recalage classique d’un schéma grossier à un schéma
fin avec une optimisation simultanée pour toutes les échelles.

Nous validons notre approche sur plusieurs applications orthopédiques: la con-
ception des implants pour une population, des simulations biomécaniques et la
sélection d’allogreffes. L’amélioration de l’intelligibilité pour les cliniciens et de
la précision obtenue fait de notre méthode un candidat prometteur pour des usages
cliniques.

Mots-clés: Paramétrisation des difféomorphismes, Statistiques de forme, Ar-
bres multi-échelles et hiérarchiques, Transformations log-euclidiennes polyaffines,
Recalage polyaffine, Recalage log-demons, Modèle statistique génératif, Recalage
bayésien
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2 Chapter 1. Introduction

1.1 Ontology of the Human Anatomy

The term anatomy originates from the two Greek words ana and temnein, which
translate in English to apart and to cut, respectively. The origin of this word leads
us directly to the essence of this manuscript, which is to deepen our understanding
of parts of our human body and how they interact. A quote from [Benjamin 1994]
reads:

“The traditional goal of ontological inquiry in particular is to divide the
world ‘at its joint’ to discover those fundamental categories or kinds into
which the world’s objects naturally fall.”

As the reader will see this quote is an apt summary of the manuscript presented
herein. In the following, we describe the ontology of human anatomy and how it
helps us understand the underlining challenges in this field.

The Foundational Model Anatomy (FMA) ontology, as presented in
[Rosse 2008], is a formal description of classical human anatomy textbooks. In clas-
sical textbooks the anatomy is divided according to function or regions. The FMA
provides a more formal definition of the division process. At the core of the FMA
is a tree data structure that represents the hierarchical and multiscale anatomical
shape at different levels of granularity.

1.1.1 Anatomical Structure, Granularity and Relations

The FMA definition of anatomical structures is given by the following three points:

1. Anatomical structures are three-dimensional shapes

2. Anatomical structures are products of our genes

3. The parts of an anatomical structure are arrangements through our genes

Therefore, a mathematical description of anatomical structures needs to be able
to describe three-dimensional shapes that are divided into parts and interact with
other parts of the same or other anatomical structures. A quote from [Rosse 2008]
reads:

“In conclusion, anatomical structures at each level of granularity share
some structural properties inherited from their taxonomic ancestors, and
also exhibit additional properties specific to their own level. These inher-
ited and level-specific attributes account for the emergent properties of
anatomical structures at levels of increasing structural complexity. One
of these emergent properties is the potential they manifest for partici-
pating in higher level biological processes than those at a lower level...”

We can see that one central point is the tree-based description of the anatomy, where
entities at finer levels of granularity inherent properties form coarser levels. This
kind of reasoning is implicitly considered in many medical image analysis algorithms
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Figure 1.1: Top: Ontology of lumbar vertebra anatomy. Subdivision of vertebra
into anatomical regions proposed by Foundational Model Explorer, University of
Washington [Rosse 2008]. Bottom: Tree of Gaussian weights. Weights divide the
anatomy into continuous parts. The tree can be directly interpreted by clinicians.
Each Gaussian weight represents one region and is visualized as one ellipsoid thresh-
olded at σ. The red contours are extracted from CT data and one slice of the original
CT image is shown (to indicate that we work in the image domain and not only on
the contour).

http://sig.biostr.washington.edu/projects/fm/index.html


4 Chapter 1. Introduction

through a (multiscale) coarse to fine analysis. In this work, we make it explicit by
modeling the granularity with trees of geometrical deformations.

In the context of anatomy, the term granularity refers to the level of detail at
which we observe or describe the anatomical structure. It defines the extent to
which the anatomy is broken down into small parts. In Figure 1.1, the lumbar
vertebral body L2 is shown at different levels of granularity. On the top, we see a
small extract of the FMA ontology form the University of Washington [Rosse 2008].
On the bottom, an illustration of the data-driven approach that we present in this
manuscript is given.

According to FMA, anatomical relations are associations between anatomical
entities. Relations are visualized with edges between nodes in the ontology tree
(Fig. 1.1). This means that anatomical structures can not only be described by their
spatial location but also indirectly through their related structures. In the realm of
medical image analysis, researchers have been exploring these connections through
statistical analysis of cohorts of functional and structural images. Particularly in-
teresting are relations that are not obvious, e.g. relations between non-neighboring
structures [Allassonnière 2011]. By investigating these relations we might find new
anatomical knowledge that improves diagnostics for patients.

1.1.2 Intersubject Anatomical Variability – Big Data

The term ‘Big Data’ has recently been coined in popular science magazines and
newspapers to define a new discipline in the realm of statistics and artificial in-
telligence (particularly machine learning). The term defines the analysis of large
amounts of data to find patterns that help predict future events or to understand
relationships between entities within a dataset. The rise of this new discipline is
fueled by an increasing amount of data available and the increase in computational
resources.

According to an article1 in the New York Times, the prediction power of Big
Data shows promise in fields like public health, economic development and economic
forecasting. It is for instance reported that researchers found an increase of Google
search requests for terms like “flu symptoms” and “flu treatments” a few weeks before
an increasing number of flu patients visit the emergency rooms of hospitals. Another
example of its growing influence is the new initiative created by the United Nations,
called the Global Pulse, to focus on Big Data for global development. Global Pulse
will analyze messages in social networks and text messages to predict job losses,
spending reductions or disease outbreaks in different regions of the world.

Big Data can also be associated with medical imaging data to compare patho-
logical versus control subjects or groups, to track the evaluation of a disease or to
build anatomical atlases (representation of an average organ with annotation from
medical experts). At ISTB2, strong efforts have been taken to build a large database

1Steve Lohr, “The Age of Big Data”, New York Times, February 11, 2012
2Institute for Surgical Technology and Biomechanics, University of Bern
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of CT3 images of bones. This has led to a database of a total of approximately 2800
images with different anatomical structures: head, mandible, pelvis, femur, tibia,
fibula, patella, humerus and full body. If we assume that one image is 100MB, this
equals to 280GB of imaging data.

This is still a small sample size dataset compared to other Big Data applications.
For instance, the number of Twitter message per day reached 340 million by 2012,
according to an announcement4 by the company. In addition to the smaller sample
size in medical image datasets, we need to select a subset of images for a specific
clinical application, and for the validation of new methods we need manually seg-
mented or otherwise annotated data, which narrows down the number of images
actually used in a study even more. In this manuscript, we focus on the following
dataset:

• 328 CT images of tibia bones

• 309 CT images of femur bones

• 43 CT images of mandible bones

These datasets give us the opportunity to answer clinical questions in the context of
symmetric assessment of tibias and femurs, biomechanics of femurs, allograft selec-
tion for femurs, implant design for mandibles and regression models for orthopaedic
research. Two computing clusters enable us to run experiments on this amount of
data:

• dream at INRIA Sophia Antipolis, France

• obelix at University of Bern, Switzerland

To fully take advantage of the computing power available, we believe that cur-
rent algorithmic medical image approaches will move towards a more probabilistic
approach, for instance the usage of Monte Carlo simulations might become an im-
portant part of our field. In this thesis, we take first steps towards that goal by
introducing a model that could be furthered optimized by Monte Carlo simulations.
We mention some ideas along this direction of research in Chapter 5. This is also
supported by the current trend of CT and MR image acquisition. In a recent article5

in the New York Times, it was reported that the number of CTs taken by patients
tripled over the past 14 years (1996 to 2010) to 14.9%, while the number of MRIs6

quadrupled to 6.5%.
Big Data enables us to move the FMA from a description of the average anatom-

ical structure, granularity and relations towards a description of the variability of
these terms in a population of subjects.

3Computed Tomography
4“Twitter turns six”, March 21, 2012
5Alastair Gee, “Radiation Concerns Rise With Patients’ Exposure”, June 12, 2012
6Magnetic Resonance Imaging
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1.2 Modeling of the Human Anatomy

To analyze the dataset described in the previous section, the formal definition of
FMA helps to focus on the important requirements for anatomical modeling. As
explained in Section 1.1, we need a representation that is granular (description at
different levels of detail), captures different parts and describes how the different
parts are related to each other.

In this section, we try to analyze the problem of anatomical modeling from three
different points of view.

1.2.1 An Engineer’s View: Algorithmic Modeling of Organs

In the field of medical image analysis the anatomy is modeled via landmarks (points,
curves, surfaces and skeletons) or via the entire image domain. In the case of point
landmarks, a comprehensive introduction is given in [Dryden 1998]. The landmarks
in these models are typically labeled manually or extracted using feature detection
methods. For the modeling of curves, surfaces and the entire image domain, ge-
ometrical deformations are the underlying concept to warp one anatomy towards
another. The reference or template serves as the object that is to be deformed into
a target or subject anatomy. The geometrical deformation from a reference is used
in a pairwise setting. For a groupwise setting a template is chosen and subjects
are deformed towards it. The field concerned with finding geometrical deformations
for the anatomy is called medical image registration. There are at least two cases
that can be distinguished in registration: registration of images from the same sub-
ject, and intersubject registration. Registration methods deform curves, surfaces
[Vaillant 2005, Glaunès 2008, Durrleman 2008, Durrleman 2009, Durrleman 2011],
skeletons [Pizer 2003, Siddiqi 2008], or the entire image domain [Klein 2009].

Figure 1.2 visualizes an example of a geometrical diffeomorphic deformation
obtained with the log-demons algorithm [Vercauteren 2009]. Each curve represents
the trajectory along which the deformation occurs, and is generated by taking the
Exponential map from a stationary velocity field (SVF) at different time points
[Arsigny 2006, Ashburner 2007, Hernandez 2007]. A diffeomorphic deformation and
its inverse are smooth. The smoothness property guarantees no overlaps or holes in
the deformation and its inverse. Thus, we assume that the anatomies under study
have the same topology. More details on diffeomorphisms will be given in Chapter 2.

This is one example of a registration, but without an underlining physical model
it is unclear which registration method to chose. What most registration methods
have in common are the formulation of a parameterization of the geometrical defor-
mation, a regularization and an optimization method to find a local solution for the
geometric deformation. In [Klein 2009], a recent overview of popular registration
methods compares their performance on a common dataset of brain MR images.

The observation of deformations like the one shown in Fig. 1.2, indicates a con-
nection to the work on locally affine transformations. Locally affine transformations
(also called polyaffine transformations) parameterize diffeomorphisms by spatially
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Diffeomorphism Polyaffine Parametrization

Origin of rotation

Figure 1.2: Three typical intersubject geometrical deformations on the femoral head.
Each curve represents the trajectory along which the deformation occurs. For visu-
alization purposes we picked a random set of curves from the equally spaced vector
field. The color code indicates the length of the curve. Left: A parametrization
of the deformation in terms of a vector field. Right: A parameterization of the
deformation in terms of local rotations.
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weighted logarithms of affine transformations. This kind of parameterization was
pioneered in [Arsigny 2005, Commowick 2008, Arsigny 2009]. Figure 1.2, illustrates
a possible parametrization with rotations about one or multiple points. In addi-
tion to a low dimensional representation of diffeomorphisms, it opens new ways of
thinking about geometric deformations and their estimation. In this Ph.D. thesis,
this parametrization led to a new statistical estimation of geometrical deformations
(Chapter 3).

Recent developments in registration are concerned with a simultaneous regis-
tration of different anatomical scales [Risser 2010, Sommer 2011b, Sommer 2011a,
Buerger 2011, Zhang 2011]. This is a very interesting problem, since it address the
current lack of intermediate steps between a global deformation obtained from rigid
or affine registrations, and a local registration obtained from non-linear registrations.
Classical registration methods are divided into two steps, a global alignment (e.g.
rigid and affine transformations) and a non-linear transformations (e.g. diffeomor-
phic deformations). This strategy turns out to be suboptimal for certain anatomical
structure. In the case of femur bones, we improved registration results by introduc-
ing an intermediate step comprising of a registration of the three major parts of the
bone (head, shaft and condyles) prior to non-linear registration (Chapter 2). In the
case of mandible bones, we introduced a new type of hierarchical tree scheme that
is able to capture volumetric shape variability encountered at different anatomical
scales (e.g. left and right side, or teeth) (Chapter 2).

1.2.2 A Statistician’s View: Modeling of the Variability

The first step in a statistical analysis of intersubject template to subject defor-
mations could contain the computation of the mean and the covariance structure.
For deformations parameterized with SVFs (example shown in the previous sec-
tion), standard multivariate methods to compute the sample mean and covariance
matrix can be used. Other parametrizations of deformations require more sophis-
ticated non-Euclidean computations [Ma 2008, Bigot 2009, Durrleman 2009]. Re-
cently Bayesian interpretations have been introduced to statistical model deforma-
tions [Ashburner 1997, Allassonnière 2007, Allassonnière 2010]. Here, we focus on
SVFs to highlight some underlining difficulties.

The registration methods compared in [Klein 2009] have a degree of freedom
between 106 and 28 · 109. The dataset that was used for the comparison consists of
80 MRI images of the brain. Statisticians refer to these kind of problems as High
Dimension, Low Sample Size (HDLSS) problems. One way to study the covariance
structure of a dataset is to extract its mode of variation using principal component
analysis (PCA). In the statistical community, PCA is studied in the HDLSS settings
through asymptotic analysis. In contrast to classical asymptotics, where the number
of dimensions are fixed and the number of samples go to infinity, in HDLSS the
number of samples are fixed while the number of dimensions go to infinity. Even if
it is possible to show that the PCA in a HDLSS setting gives robust estimates of the
eigenvalues and eigenvectors [Jung 2012], we are confronted with an interpretability
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problem.
Let us take the case of statistical shape models (SSMs). The PCA is performed

on the deformations that are found with non-linear registration, as shown for in-
stance in [Cootes 2001]. We further assume that we can robustly estimate the first
mode. The estimated mode will most likely be a mixture of non-local shape effects.
It is unclear how to interpret the linear combination of non-local shape effects. So
it seems that this tool is not ideal to statistically analyze geometrical deformations.
To localize shape effects, we present in this Ph.D. thesis the structuring of geometri-
cal deformations in trees to handle anatomical granularity, and to preserve the tree
structure inherent in the definitions of the FMA.

In the statistics community, the importance of trees has been growing in recent
years. There have recently been two workshops very closely linked to statistical
problems on trees. At SAMSI7, a 12-month program on the “Analysis of Object
Data” was organized during the year 2010 and 2011. The program had three research
foci: Euclidean data (i.e., vectors of real numbers), mildly non-Euclidean data (i.e.
points on a manifold and shapes) and strongly non-Euclidean data (i.e. tree or graph
structured objects). One working group led by J.S. Marron was entirely dedicated
to trees in statistics. The topics discussed were, combinatorics, folded Euclidean
(maybe best known in the study of Phylogenetic Trees) and Dyck Path, among
others. The other recent workshop was on “Statistics, Geometry, and Combinatorics
on Stratified Spaces Arising from Biological Problems” and organized at the MBI8.
Topics presented during this workshop were general surveys of stratified spaces,
the geometry and statistics of geometric trees, towards statistical topology, among
others.

Developments in this field also referred to as “stratified statistics” take their
cue from more classical geometrical statistics, where data points are sampled from
smooth manifolds, or from neighborhoods of embedded manifolds. Now, however,
interesting algebraic geometry and combinatorics join the mix. Asymptotics on such
spaces are governed not only by their local structure, but also by global topology
(of the space and the data).

The tree model presented in this Ph.D. thesis has yet to fully take advantage
of these recent developments in statistics. In Chapter 5, we outline ideas on how
to use the synergies between medical image analysis and stratified statistics. Some
interesting works on this topic can be found in [Metzen 2009, Aydin 2009, Lo 2010,
Owen 2011, Feragen 2011, Aydin 2012].

1.2.3 A Clinician’s View: Intelligibility of Models

The link between the mathematical modeling of the anatomy and the clinician is
challenging. The more sophisticated our models become the less likely it is that
clinicians take the time to understand them. If they do not understand the models
then they are less likely to be used in clinical applications. This subtle balance

7Statistical and Applied Mathematical Sciences Institute in NC, USA
8Mathematical Biosciences Institute, The Ohio State University, OH, USA
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between model complexity and intelligibility for clinician is a crucial problem in
medical image analysis.

We believe that a formulation of the anatomy in terms of tree-structured re-
gions provides a good compromise. This is motivated by the online register of the
AO foundation (describe in more details in Chapter 2). The online register uses a
region-based classification scheme to guide surgeons through major steps of mandible
reconstructive surgery ranging from diagnosis, selection of the optimal surgical ap-
proach, to aftercare treatment. On a more abstract level, the regions build the basis
of FMA described in the beginning of this chapter.

In this Ph.D. thesis, we present such a model developed in close collabora-
tion with our clinical partners. This collaboration with clinicians allowed us to
explore a wide range of clinical applications (Chapter 4), and gave us a direct
feedback on problems such as intelligibility of our methods. Together with Serena
Bonaretti, University of Bern, we presented works in biomechanics [Bonaretti 2010,
Bonaretti 2011]. Work on allograft selection was conducted in collaboration with
Lucas Ritacco, Italian Hospital of Buenos Aires, Argentina [Ritacco 2012]. With
Habib Bou-Sleiman, University of Bern, we presented works on implant bending
and screw placement [Bou-Sleiman 2011, Bou-Sleiman 2012]. In collaboration with
Remi Blanc, ETH Zurich, we studied conditional shape models to regress surface
shapes of femur bones from clinical variables [Blanc 2009, Blanc 2012]. For cardio-
applications we collaborated with Kristin McLeod, Asclepios Project, INRIA Sophia
Antipolis [McLeod 2012].

1.3 Structure of the Manuscript and Contributions

Chapter 2: This chapter builds the foundation of this thesis by introducing a link
between anatomical regions and intersubject deformations, and illustrates re-
sults on femur and mandible bones. This is accomplished with a new basis for
stationary velocity fields with close links to anatomical substructures. We pro-
vide a hierarchical and multiscale tree structure for polyaffine transformations
that can be efficiently optimized with the log-demons. With our new approach,
we take a first step towards a unified algorithmic registration framework for
a "continuous" subdivision of deformations across scales. This chapter was
published as a journal article in Medical Image Analysis [Seiler 2012c]. The
journal article builds upon two published conference papers in MICCAI and
SPIE Medical Imaging [Seiler 2011b, Seiler 2011a].

Chapter 3: Here we introduce a statistical formulation of the method presented
in Chapter 2. We introduce a General Linear Model (GLM) for multiscale in-
tersubject deformations. This allows us to describe polyaffine deformations in
a generative statistical model. In this model, we can incorporate deformation
statistics as a prior in a Bayesian setting, enabling simultaneous estimation of
multiscale deformations. We show how the maximum a posteriori probability
of polyaffine transformation can be computed to obtain optimal parameter.
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We improve registration robustness and accuracy with respect to registrations
without prior. To the best of our knowledge, this is the first time that a prior
at the group level in polyaffine registration is presented. This chapter is to
be submitted as a journal article in IEEE Transactions on Medical Imaging
[Seiler 2012b]. The journal article builds upon the published conference paper
in MICCAI [Seiler 2012d].

Chapter 4: The development of the methodology presented in the previous two
chapters is driven by applications in seven clinical settings: Symmetric as-
sessment of tibias and femurs [Seiler 2009b], regression of geometrical de-
formations in femurs [Seiler 2010b], biomechanics of femurs [Bonaretti 2011,
Bonaretti 2010], allograft selection for femurs [Ritacco 2012], implant design
for mandibles [Bou-Sleiman 2012], prediction of bone surface for orthopaedic
research [Blanc 2009, Blanc 2012] and heart modeling [McLeod 2012]. This
chapter shows results in these clinical settings and summarizes works that we
co-authored using the standard log-demons and the methodology presented in
Chapter 2.

Chapter 5: In the last chapter, we make an overall conclusion of this manuscript
and give our perspective on interesting open questions. We believe the work
on statistics of trees in the context of Phylogenetic Trees has the potential to
provide interesting insights in polyaffine transformation trees. We give a short
introduction to this topic in Appendix A.

1.4 List of Publications and Awards

Journal Articles

• [Seiler 2012b] C. Seiler, M. Reyes and X. Pennec, A Generative Statistical
Model for Multiscale Diffeomorphic Deformations, To be submitted to IEEE
Transactions on Medical Imaging (TMI). Chapter 3.

• [Seiler 2012c] C. Seiler, X. Pennec and M. Reyes, Capturing the Multiscale
Anatomical Shape Variability with Polyaffine Transformation Trees, Medical
Image Analysis (MedIA), 2012. Chapter 2.

• [Seiler 2012a] C. Seiler, A. Gazdhar, M. Reyes, L.M. Benneker, T. Geiser,
K.A. Siebenrock, B. Gantenbein-Ritter, Time-Lapse Microscopy and Classifi-
cation of 2D Human Mesenchymal Stem Cells Based on Cell Shape Picks Up
Myogenic from Osteogenic and Adipogenic Differentiation, Journal of Tissue
Engineering and Regenerative Medicine, 2012. Not included in the thesis.

• [Blanc 2012] R. Blanc, C. Seiler, G. Székely, L. Nolte, M. Reyes, Statistical
Model Based Shape Prediction from a Combination of Direct Observations
and Various Surrogates. Application to Orthopaedic Research, Medical Image
Analysis (MedIA), 2012. Summarized in Chapter 4.
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• [Ritacco 2012] L. Ritacco, C. Seiler, G. Farfalli, L. Nolte, M. Reyes, D. Muscolo
and L. Tinao, Validity of an Automatic Measure Protocol in Distal Femur for
Allograft Selection from a Three-Dimensional Virtual Bone Bank System, Cell
and Tissue Banking, 2012. Summarized in Chapter 4.

Book Chapter

• [Seiler 2009a] C. Seiler, P. Büchler, L.-P. Nolte, R. Paulsen and M. Reyes,
Hierarchical Markov Random Fields Applied to Model Soft Tissue Deforma-
tions on Graphics Hardware, Recent Advances in the 3D Physiological Human
(N. Magnenat-Thalmann, J. J. Zhang, and D. D. Feng, eds.), Chapter 9, pp.
133-148, Springer London, 2009. Not included in the thesis.

Selective Peer-Reviewed Conference Papers

• [Seiler 2012d] C. Seiler, X. Pennec and M. Reyes, Simultaneous Multiscale
Polyaffine Registration by Incorporating Deformation Statistics, MICCAI,
Nice, France, October 2012. (Acceptance rate: 248 of 779 papers = 32%).
Was extended to the journal article [Seiler 2012b], Chapter 3.

• [Seiler 2011a] C. Seiler, X. Pennec and M. Reyes, Geometry-Aware Multi-
scale Image Registration Via OBBTree-Based Polyaffine Log-Demons, MIC-
CAI, Toronto, Canada, September 2011. Young Scientist Award and Student
Travel Award. (Oral podium presentation, acceptance rate: 34 of 819 papers
= 4.2%) Was extended to the journal article [Seiler 2012c], Chapter 2.

• [Bou-Sleiman 2012] H. Bou-Sleiman, C. Seiler, T. Iizuka, L. Nolte, M. Reyes,
Population-Based Design of Mandibular Plates Based on Bone Quality and
Morphology, MICCAI, Nice, France, October 2012. (Acceptance rate: 248 of
779 papers = 32%). Summarized in Chapter 4.

• [Blanc 2009] R. Blanc, M. Reyes, C. Seiler and G. Székely, Conditional Vari-
ability of Statistical Shape Models Based on Surrogate Variables, MICCAI,
vol. 5762, pp. 84-91, London, UK, September 2009. (Acceptance rate: 32%).
Summarized in Chapter 4.

Other Conference and Workshop Papers

• [Seiler 2011b] C. Seiler, X. Pennec, L. Ritacco and M. Reyes, Femur Specific
Polyaffine Model to Regularize the Log-domain Demons Registration, SPIE
Medical Imaging (Image Processing), Orlando, USA, February 2011. Was
extended to the journal article [Seiler 2012c], Chapter 2.

• [Seiler 2010b] C. Seiler, X. Pennec and M. Reyes, Parametric Regression of
3D Medical Images Through the Exploration of Non-Parametric Regression
Models, ISBI, Rotterdam, The Netherlands, April 2010. Section 4.2.
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Meshes, MeshMed, MICCAI Workshop, Toronto, Canada, September 2011.
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• [Bauer 2010] S. Bauer, C. Seiler, T. Bardyn, P. Büchler, M. Reyes, Atlas-
Based Segmentation of Brain Tumor Images Using a Markov Random Field-
Based Tumor Growth Model and Non-Rigid Registration, EMBC, Buenos
Aires, Argentina, September 2010. Not included in the thesis.

• [Bonaretti 2010] S. Bonaretti, M. Kistler, C. Seiler, M. Reyes and P. Büch-
ler, Combined Statistical Model of Bone Shape and Mechanical Properties
for Bone and Implant Modeling, CMBBE, Valencia, Spain, February 2010.
Summarized in Chapter 4.

Conference Abstracts

• [Seiler 2010a] C. Seiler, A. Gazdhar, T. Geiser, M. Reyes and B. Gantenbein-
Ritter, Mesenchymal Stem Cell Classification During Differentiation Based on
Shape Information, TERMIS, Galway, Ireland, June 2010. Not included in
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• [Seiler 2009b] C. Seiler, S. Weber, W. Schmidt, F. Fischer, N. Reimers and
M. Reyes, Automatic Landmark Propagation for Left and Right Symmetry
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Software

An ITK implementation of the presented work is available on github:

• git://github.com/ChristofSeiler/PolyaffineTransformationTrees.git
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• The paper “Geometry-Aware Multiscale Image Registration Via OBBTree-
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git://github.com/ChristofSeiler/PolyaffineTransformationTrees.git
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Chapter 2

Capturing the Multiscale
Anatomical Shape Variability with

Polyaffine Transformation Trees

This chapter was published as a journal article in [Seiler 2012c]. The journal article
builds upon two published conference papers [Seiler 2011b, Seiler 2011a].

Abstract

Mandible fractures are classified depending on their location. In clinical practice,
locations are grouped into regions at different scales according to anatomical, func-
tional and aesthetic considerations. Implant design aims at defining the optimal im-
plant for each patient. Emerging population-based techniques analyze the anatom-
ical variability across a population and perform statistical analysis to identify an
optimal set of implants. Current efforts are focused on finding clusters of patients
with similar characteristics and designing one implant for each cluster. Ideally, the
description of anatomical variability is directly connected to the clinical regions.
This connection is what we present here, by introducing a new registration method
that builds upon a tree of locally affine transformations that describes variability
at different scales. We assess the accuracy of our method on 146 CT images of
femurs. Two medical experts provide the ground truth by manually measuring six
landmarks. We illustrate the clinical importance of our method by clustering 43
CT images of mandibles for implant design. The presented method does not require
any application-specific input, which makes it attractive for the analysis of other
multiscale anatomical structures. At the core of our new method lays the introduc-
tion of a new basis for stationary velocity fields. This basis has very close links to
anatomical substructures. In the future, this method has the potential to discover
the hidden and possibly sparse structure of the anatomy.
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2.1 Implant Design for Mandible Fractures

2.1.1 Clinical Problem

Mandibular fractures most commonly result from facial trauma, with close to half
of the patients requiring surgical repair [Ellis 1985]. A majority of 75% of fractures
occur in males aged between 20 and 30 [Ellis 1985, Moore 1985], and are often caused
by physical assault. Other causes of fractures include motor vehicle collisions, falls,
and sports-related injury [Craig 2008, Kovan 2008]. For all these cases surgical
repair proves most effective, with the goal of recovering the anatomical structure
prior to the injury and thus restoring normal function. To reach this goal the surgeon
places wires or implants at the fracture site, so that the natural fusion of separated
bone pieces restores the prior structure [Fedok 1998] as closely as possible. A correct
repair aligns teeth for food intake, and restores the patient’s aesthetics.

In [Urken 1991], the authors propose a classification scheme for mandibles based
on regions according to anatomical, functional and aesthetic considerations. The on-
line register www.aofoundation.org uses the same classification (Fig. 2.1) to guide
surgeons through the major steps of mandible reconstructive surgery ranging from
diagnosis, selection of the optimal surgical approach, to aftercare treatment. Accord-
ing to [Moore 1985], the rate of fracture incidence for each of the classified region is
as follows: “Symphyseal and parasymphyseal” region 19%, “body” 24%, “angle and
ramus” 40%, “condylar process and head” 16%, and “coronoid” 1%. In addition to
this classification scheme, the mandible can be subdivided even further into smaller
regions, e.g. one region for each tooth. In the image space, this subdivision can
theoretically be performed up to the voxel level, where coarser levels enclosed finer
ones, representing a hierarchy of regions that can be organized in a tree-like fashion.
As the regions become more fine, it is harder to find a consensus among clinicians
on the size, shape and location of the region.

Recent work on biomechanical analysis of implants indicates that geometry and
topology of implants are crucial to fracture stability. In [Lovald 2009], it was shown
that implants optimized for the “body” region, (Fig. 2.1), have fracture strain
of 69% to 59% and implant stress of 34% to 27% with respect to smaller stan-
dard implants, while minimizing patient intrusion by saving 55% of implanted vol-
ume of larger standard implants. The same authors presented results on implant
optimization of the “symphyseal and parasymphyseal” region with similar results
[Lovald 2010]. In [Cervantes 2012], flexible implants that allow the surgeon to ad-
just the geometry after bone fixation are presented. Instead of pre-manufacturing
patient specific implants, there have been several works on population-based de-
signs, for femurs [Kozic 2010, Bou-Sleiman 2011, Bonaretti 2011] and mandibles
[Metzger 2011, Bou-Sleiman 2012]. In these approaches, the population is strati-
fied into several sub-populations according to morphological differences or meta-
information (e.g. gender, age, etc.). None of the aforementioned population-based
approaches consider the bone mineral density in addition to the surface geometry,
even though [Lovald 2009, Lovald 2010] reported its importance to achieve optimal

http://www.aofoundation.org
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Figure 2.1: Subdivision of mandible into anatomical regions proposed by the AO
foundation to classify fractures for reconstructive surgery. Implants at four different
anatomical sites are shown. Images source: www.aofoundation.org.

design and placement of screws.

2.1.2 Methodological Framework

The economical cost of patient specific implants makes this approach impracticable
at the moment, hence we focus on an intermediate goal: population-based implant
design. Common key steps to population-based design [Kozic 2010, Metzger 2011,
Bou-Sleiman 2011, Bou-Sleiman 2012] are registration to capture shape variability
as encountered in a population and statistical analysis of the registration results,
performed subsequently and independently. As mentioned, registration approaches
for implant design should consider not only bone surface information, but also vol-
umetric information describing the bone density distribution, which is needed to
compute best location and orientation of the placement of screws to fixate implants.

It is a common practice to use principal component analysis (PCA) for dimen-
sionality reduction and extraction of main modes of variation from deformations
obtained through non-linear registration. However, due to the global nature of PCA
only ad-hoc heuristics to decompose the anatomical shape into localized regions (as
shown in Fig. 2.1) of interest are available, further it is unclear how to interpret
the linear combination of different mixtures of shape effects. We therefore conclude
that an intelligible link between PCA shape models and implant design for specific
regions is missing.

M-reps [Pizer 2003, Siddiqi 2008] offer remedy for these kind of issues, by model-

http://www.aofoundation.org
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ing surface shapes locally, thus providing a better link between model and clinically
motivated regions. Focus on these regions of interest, as opposed to a full non-linear
registration, potentially increases the robustness (small number of parameters) and
intelligibility (direct connection between regions in a clinical context and shape
modeling) of the registration. Unfortunately, due to the fact that the representa-
tion is surface-only, volumetric information cannot be included into the analysis to
reconstruct bone density distributions.

Therefore we focus on another approach that allows for region-based local de-
scription of shape and volumetric information: locally affine transformations, also
called polyaffine transformations. Polyaffine transformations were introduced in
[Arsigny 2005] to fuse locally rigid and affine transformations into a diffeomorphism,
and revisited in [Arsigny 2009] to obtain faster numerical algorithms. An efficient
registration algorithm using approximations of polyaffine transformations was pre-
sented in [Commowick 2008]. In [Martìn-Fernández 2009] an extension to articu-
lated structures was presented, which considers weights (defining the influence of
each region) fixed at landmark positions along a manually defined skeleton. Other
recent work includes [Zhuang 2010], where a Locally Affine Registration Method
(LARM) is developed for cardiac MR images. LARMS works by fusing the affine
transformations directly, which can cause non-diffeomorphic transformations. These
non-diffeomorphic cases are prevented through two additional regularization steps.
The authors define regions that are important substructures of the heart and use
LARM as an initialization to robustify the subsequent non-linear registration step.
In [Seiler 2011b], we presented a polyaffine-regularized log-demons algorithm for
femur bone registration with manually fixed weights. However, we believe that
defining the regions for the locally affine deformations should not be left to the user,
because this is subjective and reduces reusability. This becomes even more evident
in the case of a multiscale representation of the geometry, where the definition of
regions and their division process is not straightforward and time consuming.

To consider more complex shapes and foster reusability, [Buerger 2011] presented
a multiscale approach with affine regions defined using a data-driven approach. The
method splits rectangular shaped regions, which are aligned along the image direc-
tions, only if certain conditions are met. [Taquet 2011] iteratively optimizes between
affine parameters and anchor positions (center of regions) estimation, through an
expectation maximization approach. The weights are estimated with a Kriging es-
timator instead of the usual Gaussian functions. In [Zhang 2011], Log-Euclidean
Polyaffine Transformations (LEPT) are employed to register multi-modal cardiac
sequences in an elaborate scheme. The algorithm iteratively adds new uniform
Gaussian weighted regions with different spatial position (mean parameter) and in-
fluence (variance parameter) until a mutual information-based criterion is satisfied.
The authors in [Freiman 2011] showed how the standard diffeomorphic demons (not
the log-demons) could be used to enforce an inhomogeneous regularization using a
local affine fitting at each voxel of the image. Even though these methods are very
promising, the link between the clinical regions (Fig. 2.1) and the regions found
by these algorithms, is either constrained by aligned rectangular shaped regions
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or spherical weights [Buerger 2011, Zhang 2011], or produce an intractable number
(around 500 or one region per voxel) of regions [Taquet 2011, Freiman 2011].

We present here a new approach with emphasis on interpretability of regions in
terms of the clinical requirements (as defined in Fig. 2.1), by introducing a hier-
archical multiscale tree structure that is motivated by the nature of the mandible
anatomy, where regions are ordered and interact with each other in a way tractable
for human understanding. Further, since we formulate a data-driven approach, our
presented algorithm can be applied to other anatomical structures without modifi-
cation. To accomplish this we contribute the following points:

1. Linear projection of Stationary Vector Fields (SVF) onto the space of
polyaffine transformations (Section 2.2).

2. Tree structured polyaffine transformations (Section 2.3).

3. Anatomy-driven definition of regions using a hierarchy of oriented bounding
boxes (Section 2.4).

4. Efficient estimation of transformation parameters with the log-demons algo-
rithm (Section 2.5).

5. Unified algorithmic registration framework for a “continuous” subdivision of
deformations across scales, see Fig. 2.2 for an illustration.

A preliminary version of this work was presented at SPIE 2011 [Seiler 2011b]
and MICCAI 2011 [Seiler 2011a] conferences. Additionally, in this paper, we extend
the method from surface-based to image-based definitions of regions and provide a
statistical analysis of the polyaffine deformations found. In the following, we first
introduce our novel way of projecting SVFs onto the space of polyaffine transforma-
tions. Second, we formulate hierarchical polyaffine transformation trees and their
estimation. Third, we conduct registration experiments on manual and hierarchical
regions for femur and mandible bones. Fourth, we connect the clinical problem with
our newly developed methodology by showing how it can be used for clustering in
the context of population-based implant design.

2.2 Projection of Stationary Velocity Fields Onto the
Linear Space of Log-Euclidean Polyaffine Transfor-
mations

In this section, we describe one of our main technical contributions, the projection of
Stationary Velocity Fields (SVF) onto the space of Log-Euclidean Polyaffine Trans-
formations (LEPT). This new projection allows us to estimate LEPTs by using the
very efficient log-demons algorithm [Vercauteren 2009]. This projection is indepen-
dent of the registration problem. It can be considered as a new basis for SVFs,
that can be closely linked to anatomical substructures (e.g. left and right side of
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Classical pipeline: Global and local New pipeline: Unified

Global level:
One transforma-
tion per image

Local level:
One transforma-
tion per voxel

Level 1

Level 0

Level 2

Level k
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affineaffine

affine affine affine affine
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Figure 2.2: Comparison of classical and newly proposed image registration pipeline.
In most classical approaches, the non-linear registration method is initialized with
an affine registration performed in advance, clearly separating the two steps. In our
new method we propose to move from global to local transformations by subdividing
the images into smaller regions, thus providing a smooth transition, while preserving
diffeomorphic deformations.

the mandible bone). In Section 2.5, we show how it can be used in the context of
registration.

In [Arsigny 2005], the authors introduced polyrigid and polyaffine transforma-
tions in the context of medical image analysis. Their works showed how to ob-
tain diffeomorphic deformations by fusing transformations using ordinary differen-
tial equations (ODE). The estimation of the transformation parameters by numer-
ically solving the ODEs was computationally expensive and therefore hard to use
in practice. To tackle the computational burden the same authors introduced the
fast Log-Euclidean polyaffine framework [Arsigny 2009]. The authors redefined the
problem by relying on the logarithms of the transformations. These logarithms are
defined in the theory of Lie groups. In practice, this results in computations of
these logarithms via matrix logarithms. The practical relevance of this theoretical
reformulation of the problem was exploited in [Commowick 2008]. In a first step,
block-matching was used to estimate each affine transformation for a predefined
region. In a second step, the algorithm fused the separately computed affine trans-
formation using the Log-Euclidean polyaffine framework to ensure invertibility. The
polyaffine transformation is not optimized but rather used as a regularization to
combine affine transformations. In this paper, we present a way to efficiently, di-
rectly and jointly estimate polyaffine transformation parameters for all regions in
one step.

The novelty of our work is to take advantage of the efficiency of the log-demons
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algorithm to generate iterative solutions of SVFs, which we then project onto the
space of LEPTs. In this way, we constrain the domain of possible solutions to
the space of LEPTs. This computation scheme is detailed in Section 2.5. In this
section, we focus only on the technicalities of the projections. To fully understand
the projection we first define LEPTs (which includes the matrix logarithm and the
exponential of matrices in terms of Lie group theory) and SVFs (which includes the
exponential map of SVFs and its inverse). Finally, we have all ingredients to define
our new projection.

2.2.1 Exponential and Logarithm of Matrices

Using homogeneous coordinates, the principal logarithm of affine transformations
can be computed in a simple way. The main point here is that the principal logarithm
of an affine transformation Ai is represented in homogeneous coordinates by the
matrix logarithm of its representationMi. This matrix logarithm takes the following
form,

log

(
Ai ti
0 1

)
=

[
Mi

0

]
,

where log stands for the principal matrix logarithm, Ai is an 3× 3 matrix and ti an
3 × 1 vector, Mi is an 3 × 4 matrix and the index i can be ignored for now, it will
become evident in Equation (2.2).

Using the principal logarithm of affine transformations one can associate to affine
transformations a family of velocity vector fields in the following way,

v(x) = Mix̃, (2.1)

where v(x) is an 3× 1 and x̃ is an 4× 1 vector.
The logarithms of affine transformations can be computed using matrix expo-

nentials and the ‘Scaling and Squaring’ method as shown in [Arsigny 2009]. For any
square matrix, we have,

exp

(
Mi

0

)
= exp

(
1/2s

[
Mi

0

])2s

.

The key idea is that the matrix exponential is much simpler to compute for matrices
close to zero. In this case, one can use only few terms of the infinite series of
exponentials, since high-order terms will be completely negligible. An even better
idea is to use Padé approximants, which provide excellent approximations by rational
fractions of the exponential around zero with very few terms.

Exactly as for exponentials, we use ‘Inverse Scaling and Squaring’ method to
compute matrix logarithms. Similarly, the idea is that logarithms are much simpler
to compute for matrices close to the identity. To transform a matrix so that it
is closer to the identity, the algorithm performs recursive computations of square
roots, using,

log

(
Ai ti
0 1

)
= 2s log

([
Ai ti
0 1

]1/2s
)
.



2.2. Projection of SVFs Onto the Linear Space of LEPTs 23

Now let us introduce the LEPT for n regions with regions indexed by i. A linear
combination of logarithms provides us with a SVF,

vLEPT(x) =

n∑
i=1

wi(x)Mix̃, (2.2)

where wi(x) are normalized weights for region i, i.e. ∀x ∈ Ω :
∑n

i=1wi(x) = 1.

2.2.2 Exponential and Logarithm of Vector Fields

In [Arsigny 2006], the authors define the exponential exp(v) of a (smooth) vector
field v(x) as the flow at time 1 of the stationary ODE ẋ = v(x). This generalizes the
equivalence between one-parameter subgroups and exponential to SVFs v and dif-
feomorphisms ψ. This equivalence exists in the finite-dimensional case as described
in the previous section. However, a proof for the existence and uniqueness of the
logarithm log(ψ) = v is still an open research question. In this work we do not
rely on it, since we only generate diffeomorphisms parameterized with SVFs using
exp(v) = ψ.

2.2.3 Our Contribution: Linear Projection

Given the velocity field v, we define the projection as the minimization of,

projM v = argmin
M

∫
Ω
λ(x)||v(x)− vLEPT(x)||2dx = argmin

M
C(M), (2.3)

where M = [M1 . . .Mn], and λ is a binary mask indicating background voxels (if
no mask is available ∀x ∈ Ω : λ(x) = 1). This is a linear least squares problem.
Using the Frobenius inner product, which generalizes the dot product to matrices,
||W ||2 = Trace(WWT), we obtain the following directional derivative (see Appendix
B on details of directional derivative of matrices):

∂WC(M) = lim
ε→0

C(M + εW )− C(M)

ε

=

∫
Ω
λ(x) Trace

( n∑
i=1

wi(x)Wix̃

)(
n∑
i=1

wi(x)Mix̃− v(x)

)T
 dx

=
n∑
j=1

Trace

Wj

∫
Ω
λ(x)wj(x)x̃

(
n∑
i=1

wi(x)Mix̃− v(x)

)T

dx

 ,
where wi(x) are normalized weights, ∀x ∈ Ω :

∑n
i=1wi(x) = 1. At the optimum,

the directional derivative should be null in all directions W , i.e. ∂WC = 0 for all
matrices W. As we have Trace(WA) = 0 for all W iff A = 0, we end up with the
system,

n∑
j=1

MiΓij = Bi,
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with

Γij =

∫
Ω
λ(x)wi(x)wj(x)x̃x̃Tdx, (2.4)

Bi =

∫
Ω
λ(x)wi(x)v(x)x̃Tdx, (2.5)

where Γ is symmetric and thus diagonalizable and the minimal norm solution is
given by the pseudo inverse:

M = [M1 . . .Mn] = BΓ+. (2.6)

2.2.4 New Metric on Stationary Velocity Fields

This new basis on SVFs gives us a new metric on SVFs,

〈vLEPT1 , vLEPT2〉L2 = mT
1Gm2, (2.7)

where G = Γ ⊗ I3, with Γ given by Equation (2.4) from the previous section. The
symbol ⊗ denotes the Kronecker product, and I3 represents the 3×3 identity matrix.

2.3 Hierarchical Structuring of Polyaffine Transforma-
tions in Trees

In this section, we assume that the weights of each region are already defined (the
definition is deferred to the next section). The aim of this section is to build the
tree structure.

Let us introduce the polyaffine transformation tree, which is a general formula-
tion of [Seiler 2011b] for n regions and k levels. Let M l

i be the ith 3 × 4 non null
components of the matrix logarithm of affine transformations at level l and vl be
the LEPT (introduced in the previous section in Equation (2.2)) at level l:

vl(x) =
n∑
i=1

wli(x)M l
i x̃, (2.8)

with

log

(
Ali tli
0 1

)
=

[
M l
i

0

]
, x̃ =

[
x

1

]
,

where

• vl(x) is a 3× 1 vector at spatial position x (3× 1 vector),

• wli(x) are scalar weights for regions i,

• Ali is the linear part (3× 3 matrix) of the affine transformation,

• tli is the translational part (3× 1 vector) of the affine transformation.
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Polyaffine tree to define hierarchical transformations

Level 0
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Figure 2.3: First three levels of space decomposition. Left: For comparison, a tra-
ditional approach using a dyadic multiresolution scheme. Right: Our new method
decomposes the image domain using a tree of Gaussian weights. Each Gaussian
weight represents one region and is visualized as one ellipsoids at σ. In addition to
the contour (in red) extracted from the CT image, one CT slice is shown to stress
that we work in the entire 3D image domain and not only with contours.

In Fig. 2.3, the tree structure is illustrated for the first 3 levels on mandible CT data.
Each node is assigned one spatial weight function wli(x) and one transformationM l

i ,
and each node has two child nodes, if it is not a leaf node.

The tree structure builds the basis of our work, in the next two sections we
elaborate on the definition of weight parameters wli(x) and the estimation of trans-
formation parameters M l

i .

2.4 Anatomy-Driven Definition of Regions

In this section, we describe the definition of weights for each regions using a hierarchy
of Oriented Bounding Boxes (OBB) for two different cases: surface contours and
voxel features from the image.

2.4.1 OBBTree on Contour Extracted from Template Image

The concept of OBB has been used extensively in computer graphics to speed up
ray tracing and interference detection computations. In [Gottschalk 1996], the au-
thors presented a hierarchical version and an algorithm to compute it efficiently. An
OBBTree is a hierarchy of OBB’s in 3D space. Let us first consider a surface (in our
case a contour of the segmented CT image). The algorithm computes OBB’s via
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PC1

PC2

PC1

PC2

Level 0

Level 1

PC2

PC1

Figure 2.4: OBBTree algorithm applied to a toy example of points for level 0 and 1.
At each level of the algorithm the pointset is split into two subsets along the first
principle component (PC1) at the intersection with the second principle component
(PC2).

Principal Component Analysis (PCA) of the vertex coordinates, which gives the ori-
entation (principle component directions) and the extent (outmost projected point
on the principle component). A refinement to avoid bias towards densely populated
patches is to sample the convex hull of the vertex coordinates and approximate the
analytic surface by a linear sum of all triangle areas. There are two ways of calcu-
lating the hierarchy, bottom-up and top-down. Top-down approaches start with all
vertices and subdivide the points into two groups at every subsequent hierarchical
level, whereas bottom-up approaches start by assigning one box per vertex and com-
bine vertices until one box contains all vertices. We used the top-down approach,
which divides the vertices into two groups by projecting the vertex coordinates onto
the principle components, and uses the mean point as the group boundary. The
algorithm stops once there are no more possible divisions along any component.
The algorithm is illustrated in Fig. 2.4 for a toy example of a set of points. In our
mandible application, points are replaced by vertices of the mandible contour.

2.4.2 OBBTree on Feature Image Extracted from Template Image

Instead of working on a subset of the image, e.g. the contour of mandible CT data
as shown in the previous section, here we propose a method to use information
from the entire image domain. There are many different ways to extract features
from medical images and choosing the most appropriate one usually depends on the
application and image modality at hand. In this work we use the following scalar
feature image extracted from the template image It(x),

ψ(x) = log(1 + ||∇It(x)||2), (2.9)
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where ∇It(x) is the gradient of the image. We take the logarithm of the gradient
to be more robust against small changes in intensities due to noise. As a next step
we generalize the PCA of vertices to feature weighted voxels. For this purpose we
introduce the feature-weighted barycenter of region Ωl

i (discretized at voxel indices
j),

x̄li =
1∑

j∈Ωl
i
ψ(xj)

∑
j∈Ωl

i

ψ(xj)xj , (2.10)

where x̄li is a 3 × 1 vector. The feature-weighted 3 × 3 covariance matrix of the
region is,

Σl
i =

1∑
j∈Ωl

i
ψ(xj)

∑
j∈Ωl

i

ψ(xj)(xj − x̄li)(xj − x̄li)T. (2.11)

We perform singular value decomposition to obtain the principle components. Fol-
lowing the same strategy as in the original OBBTree algorithm, the region is split
at the feature-weighted mean point orthogonal to the first principal component and
the splitting procedure is recursively repeated in the two new created subregions.

Finally, the spatial weight functions wli(x) are defined as multi-dimensional Gaus-
sian functions,

wli(x) = (2π)−
3
2 |Σl

i|−
1
2 exp

(
−1

2
(x− x̄li)T(Σl

i)
−1(x− x̄li)

)
, (2.12)

with singular value decomposition,

Σl
i = V l

i (αSli)
2(V l

i )T, (2.13)

where

• V l
i is a 3× 3 rotation matrix describing the orientation,

• Sli is a 3× 3 diagonal matrix of eigenvalues describing the scaling,

• α is a scalar representing the scaling parameter to control the variance in
all three directions and thus the influence of regions and its neighbors. This
parameter α is to be defined by the user and controls the smoothness of the
deformation vl.

OBBTree algorithms on contours are a special case of the presented feature
image-based algorithm, when ∀x ∈ C : ψ(x) = 1, ∀x /∈ C : ψ(x) = 0, where C is the
mandible contour.

2.5 Estimation of Transformations

Up to now, we have defined a hierarchical tree of parametric deformations which
is well fitted to the anatomy that we investigate. We now need a method to esti-
mate these parameters. In this section, we describe the basics of the log-demons
algorithm and how it is used to estimate polyaffine transformations. The main idea
is to iteratively find the optimal polyaffine transformation tree that describes the
correspondences found by the log-demons algorithm.
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Regularize correspondences:

Standard Log-Demons:
Gaussian convolution of 
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Figure 2.5: A schematic overview of the log-demons algorithm. The log-demons con-
sists of two major steps: correspondence finding and regularization. The polyaffine
transformation trees are estimated in the regularization step. The input and output
row show which variable is optimized and which variable is fixed during each step.

2.5.1 Log-Demons Algorithm

The log-demons algorithm finds diffeomorphic deformations to warp a moving image
into a fixed image. The deformations are parameterized with Stationary Velocity
Fields (SVF). A displacement vector field can be generated from a SVF through
the exponential map. The exponential map exp(v) of a smooth SVF v is defined in
[Arsigny 2006] as the flow at unit time, φ(x, 1) = exp(v(x)), of the stationary ODE,
∂φ(x, t)/∂t = v(φ(x, t)). To efficiently compute exp(v), [Arsigny 2006] proposed
to use the scaling and squaring method. The theoretical motivation lies in the
generalization of Lie Group theory to the infinite dimensional case. Although there
are still some open questions to be resolved, in practice this approach provides
good results. One interesting point of this registration framework is the efficient
optimization in the domain of SVFs. This property explains the denomination of
log-domain (or simply log-demons) registration.

The general form of the demons algorithm was formulated in [Cachier 2003] and
later in [Vercauteren 2009] an implementation with SVFs instead of displacement
vector fields was presented. The goal is to find vl that warps the moving image Is
into the fixed image It (or resamples Is in It), by minimizing the cost functional,

C
(
It, Is, vc, v

l
)

= σ−2
i Sim (It, Is, vc) + σ−2

x dist
(
vc, v

l
)2

+ σ−2
T Reg

(
vl
)
,

where

• Sim is the similarity between two images, we use the sum of squared distances
on the image intensities, Sim = 1

2 ||It − Is ◦ exp(vc)||2,

• dist is the hidden term linking Sim and Reg, we use dist = ||vc − vl||,

• Reg is the regularization term, we use Reg =
∣∣∣∣∇vl∣∣∣∣2.
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Each term has a weighting parameter σi, σx and σT . As shown in [Vercauteren 2009],
C
(
It, Is, vc, v

l
)
can be optimized alternatively over the variables vc, the correspon-

dence velocity field computed by the first optimization part of the log-demons algo-
rithm, and vl. First, minimizing,

Csim(It, Is, vc, v
l) = σ−2

i Sim (It, Is, vc) + σ−2
x dist

(
vc, v

l
)2
,

with respect to vc and fixed vl. Second, a Gaussian smoothing of vc, which mini-
mizes,

Creg

(
It, Is, vc, v

l
)

= σ−2
x dist

(
vc, v

l
)2

+ σ−2
T Reg

(
vl
)
,

when the regularization term is Reg
(
vl
)

=
∣∣∣∣∇vl∣∣∣∣2. Alternating between these two

steps, as shown in Fig. 2.5, allows for a very efficient registration.

2.5.2 Integration of the Estimation into the Log-Demons

To optimize the polyaffine transformation tree, we remove the regularization term
but we constrain the velocity field vl to be issued from a polyaffine transformation,
i.e. to have the form specified in Section 2.3, Equation (2.8). First, we minimize
the functional with respect to vc,

C(It, Is, vc, v
l) = σ−2

i

∫
Ω

(It − Is ◦ exp(vc))(x)2dx+ (2.14)

σ−2
x

∫
Ω

∣∣∣∣∣∣vc(x)− vl(x)
∣∣∣∣∣∣2 dx,

while the first term describes the sum of squared differences (SSD) image metric, the
second term is called the hidden term that allows for the splitting of the optimization.
What differs from the log-demons algorithm introduced in [Vercauteren 2009] is
that we replace the regularization step by a projection to find the closest polyaffine
transformation tree. This requires only a modification in the second step of the
optimization, schematically shown in Fig. 2.5.

Now given vc, we can solve for M l
i using linear least squares. Here we use our

newly introduced projection of SVFs onto LEPTs as described in Section 2.2.3,

projM l vc = argmin
M l

∫
Ω
λ(x)||vc(x)−

n∑
i=1

wli(x)M l
i x̃||2dx.

As shown in Equation (2.6), we end up with the following linear system of equation
to solve,

M l = [M l
1 . . .M

l
n] = BΓ+.

Here, the matrix Γ does not change for different velocity field observations as long as
the mask image and weights are fixed, hence only B needs to be recomputed for each
iterative step of the log-demons optimization. The sequential per-level estimation
with the log-demons algorithm is shown in Algorithm 1.
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Algorithm 1 Estimation of Polyaffine Transformation Tree

Sequentially estimate levels l = 0, . . . , k

• Initialize demons with previous level vl = vl−1 (for starting level v0 = 0)

• Precompute Γ

• Iterate until convergence

– Compute correspondence SVF vc

– Compute residual SVF vr = vc − vl−1

– Project vr onto M l
1, . . . ,M

l
n by solving the linear least square problem

M l = BΓ+

2.6 Femur Bone Registration with Manual Regions

In this section, we present validation results of our registration for manually defined
regions. We first present the clinical application and then show how our registration
performs w.r.t. manual landmark measurements conducted by two medical experts.
The results show that the polyaffine method improves the accuracy of the standard
log-demons registration.

2.6.1 Clinical Problem

Tumor excision is the primary treatment of aggressive or recurrent benign bone
tumors and malignant bone sarcomas. This requires an invasive surgical intervention
that entails a residual bone defect, which can be reconstructed with a fresh frozen
bone allotransplantation. In orthopaedics, recent improvements in diagnostic and
therapeutic techniques have produced an increase of the patient survival as well as
a reduction of the complication rate [Muscolo 2005]. It has been shown that the
selection of bone allograft in terms of shape and size is crucial to prevent changes
in joint mobility and load distribution, which can lead to joint fractures and early
joint degeneration [Enneking 2001]. However, current selection approaches are very
time-consuming, mostly based on manual measurements performed directly on the
bones or on three-dimensional models reconstructed from images.

We present a method to perform allograft selection through image registration.
We focus on six landmarks extracted from the velocity field obtained through regis-
trations. The six landmarks define three distances on the bone (Fig. 2.7): Transepi-
condyle distance (A), anterior-posterior distance in the medial condyle (B) and in
the lateral condyle (C). The clinical aspects of this work were recently published
in [Ritacco 2012]. Here we use the results to show the validity of our registration
compared to measurements performed by two medical experts on the landmarks
defining A, B and C.
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Level 0

Level 1

Segmented into three parts

Condyles Shaft Head

Figure 2.6: Ellipsoids representing Gaussian weights at σ for levels 0 and 1 (at
the image boundary ellipsoids are cut). The Gaussian weights are defined through
the labeled image shown on the top right, which splits the femur into three parts:
Condyles, shaft and femoral head. The red femur is the surface extracted from the
template image.

A

B C

Figure 2.7: Six femur landmarks that were measured by medical experts, which
define the three distances A, B and C.

2.6.2 Special Case of a Polyaffine Transformation Tree

To handle rotational misalignments of the femoral head and condyles we propose
to split the bone into three regions. This results in a tree with two levels as shown
in Fig. 2.6. Level 0, represents a global affine registration. Level 1, represents the
division into three parts. The middle section of the femur is defined as shaft region.
The distal and the proximal end are condyle and head region, respectively. We
initialize the tree with an anisotropic scale transform computed from the enclosing
bounding box of the entire femur.

2.6.3 Validation with Landmark Measurements by Medical Ex-
perts

We register 146 CT images of femur bones with voxel size 1 mm. The ground
truth of the ABC measurements was obtained by manually selecting the landmarks
on 3D reconstructed surface models. Two medical doctors performed these mea-
surements independently and one expert repeated the measurements after a few
days to yield the intraobserver variability. We compare four registration methods:
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First, an anisotropic scaling computed from the enclosing bounding boxes, refer-
enced hereafter with Scale. Second, a standard log-demons, referenced hereafter
with LogDemons. Third, the newly developed 2-level polyaffine tree, referenced
hereafter with Tree. Forth, a standard log-demons initialized with the transforma-
tion obtained from the Tree, referenced hereafter with Tree relaxed.

The results are shown in Fig. 2.8. For landmark distance A, the Tree is more
accurate than the LogDemons. This is quite surprising, because the number of
parameters needed to describe the LogDemons are three per voxel, with an image
size of 120 × 138 × 542, this results in a total of 107 parameters, whereas for the
Tree transformation we have one region at level 0 (12 parameters) and three regions
at level 1 (36 parameters), resulting in a total of 48 parameters. Tree relaxed shows
two outliers not present in Tree, indicating the robustness of estimating only a few
parameters as opposed to an entire field. For landmark distance B, LogDemons
and Tree perform similarly as for distance A, and Tree relaxed shows one outlier
not present in Tree. For landmark distance C, Tree shows a higher median than
LogDemons and Tree relaxed. Here Tree relaxed performs favorably.

For all three landmarks, we can state that either the Tree or Tree relaxed are
more accurate and/or more robust towards outliers. The results for Tree are particu-
larly impressive, since the number of parameters needed to describe the geometrical
deformation is five orders of magnitude smaller. The reduction in the number of pa-
rameters to estimate during the registration could explain why the results are in all
cases more robust. We believe that these improvements stem from considering tor-
sion and rotation in head and condyles which is implicitly modeled by dividing the
bone into three parts and is not considered in a standard non-linear registration. We
can thus incorporate our prior knowledge about the anatomy into the registration
process by simply defining a rough mask of expected regions. This clearly indicates
the power of the new method to capture the anatomical variability.

2.7 Mandible Bone Registration with Hierarchical Re-
gions

In the previous section, we showed registration results for manual regions defined
on femur bones. This is a special case within the family of polyaffine transformation
trees, where the tree has two levels (level 0, one region; level 1, three manually
defined regions). Now we show the more general case by computing a hierarchy of
regions. We show its usefulness for mandible bones, where we encounter different
variability at different levels. In this kind of anatomical setting, manual regions
are not tractable anymore, due to the increasing number of regions with number of
levels (grows quadratically in the case of binary trees).



2.7. Mandible Bone Registration with Hierarchical Regions 33

Intra Inter Scale LogDemons Tree Tree relaxed

0
2

4
6

8
10

Landmark Distance Measurement Error for A

Registration method

[m
m

]

Intra Inter Scale LogDemons Tree Tree relaxed

0
2

4
6

8
10

12

Landmark Distance Measurement Error for B

Registration method

[m
m

]

Intra Inter Scale LogDemons Tree Tree relaxed

0
2

4
6

8
10

12

Landmark Distance Measurement Error for C

Registration method

[m
m

]

Figure 2.8: Boxplots of measurement errors (circles represent outliers) computed for
each registration method and compared to Intra and Inter rater error conducted by
medical experts. Scale represents a global scale transform; LogDemons a standard
log-demons with scale initialization; Tree a 2-level tree with manual regions; Tree
relaxed a standard log-demons with Tree initialization.
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Figure 2.9: The red mandible is the surface extracted from the template image.
Column 1: Oriented bounding boxes computed using the algorithm presented in
Section 2.4. The Gaussian weights are driven by the gradient in the CT image.
Column 2: Ellipsoids representing Gaussian weights at σ for levels 0 to 5. The pa-
rameters of the Gaussian weights are derived from the OBB. Column 3: Structure
imposed by the weights. The color of the edges encode correlations between regions,
ranging from low (blue=0.4) to high (red=1). Column 4: First PCA mode at each
level, showing the main residual variation at that level.
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2.7.1 Weights Derived from Oriented Bounding Boxes

The multiscale and hierarchical regions are computed using the weighted OBBTree
algorithm on feature images (as described in Section 2.4.2). The resulting boxes
are visualized in Fig. 2.9 (first column). Starting at level 1, we observe the divi-
sion of the mandible into left and right side, followed by subdivisions into clinical
regions as described in Fig. 2.1, to tooth-sized regions, and finally even finer scales
(not visualized here), which are harder to interpret clinically. From the boxes, we
computed the Gaussian weights with a scaling parameter of α = 1. The Gaussian
weights visualized as ellipsoids are shown in Fig. 2.9 (second column). In the third
column, the correlation of weights are depicted according to,

Corrij = Σ
−1/2
ii ΣijΣ

−1/2
jj , (2.15)

where Σij is defined in Equation (2.11), and Corrij is decomposed using singular
value decomposition to extract the major axis of correlation. The correlation of
the major axis is colored coded from cool (blue=0.4) to warm (red=1). The graph
structure clearly reveals the intrinsic underlying dimensionality of the object at each
scale, going from a curve to a ribbon and finally in some areas locally to a 3D volume.
It would be interesting to study if this could be a robust alternative to the medial
axis or surface representation.

2.7.2 Estimation of the Transformation Tree

Rigid registration is considered as a pre-processing step to the work presented here.
Indeed, intensity-based rigid registration procedures failed due to the angle between
left and right side of the mandible, causing the registration to either fit the left or
the right side. Instead, we extract surfaces from segmented images and align them
according to the principal directions of their vertices. For the population-based
analysis of mandible CT images, we register all 43 CT images to a template and
analyze the deformations obtained. The template (35 year old male) was selected
through visual examination. For the implant design study presented in Section 2.8,
we need registrations up to level 4. In this section, we analyze all levels and compare
them to two other types of registration.

In Fig. 2.10, the mean squared error (MSE) of intensity difference (fiducial
localization error), computed over the union of template mask and subject mask,
for three different types of registrations are shown.

• Type 1 (S0 and S0R): Standard log-demons S0R with a global affine initial-
ization computed using a tree with one level containing the root node S0.

• Type 2 (M0, M1 and M1R): A manually defined tree of regions as depicted
in Fig. 2.11. At level 0, one region to capture the global affine variability M0,
and at level 1, 9 regions defined according to the AO foundation classification
scheme M1. The transformation parameters are estimated using Section 2.5.
Standard log-demons M1R initialized with M1.



36 Chapter 2. Capturing the Multiscale Anatomical Shape Variability

S0 S0R M0 M1 M1R L0 L1 L2 L3 L4 L5 L5R

2e
+

05
4e

+
05

6e
+

05
8e

+
05

Distribution of MSE Per Level

Level of the tree

M
ea

n 
sq

ua
re

d 
er

ro
r 

(M
S

E
)

Figure 2.10: Performance of the multiscale polyaffine registration. Mean squared er-
ror (MSE) of intensity difference (fiducial localization error) calculated on the union
of template and subject mask image for each of the 43 registrations (without the
template to itself registration). Explanation of boxplots (circles represent outliers)
starting from the left hand side: S0: Level 0 of manual tree defined through mask
image. S0R: Standard log-demons initialized with S0. M0: Level 0 of manual tree
defined through mask image. The results differ from S0 because the normalization
of weights is computed over all levels. M1: Level 1 of manual tree defined through
label image. M1R: Standard log-demons initialized with M1. L0 to L5: Level 0
to level 5 of the data-driven multiscale and hierarchy of regions. L5R: Standard
log-demons initialized with L5.
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Figure 2.11: Manual regions defined on the reference image according to the AO
foundation classification scheme.

• Type 3 (L1–L5 and L5R): Data-driven multiscale and hierarchical weight tree
derived with the algorithm presented in Section 2.4 L1–L5. The estimation
of transformation parameters uses Section 2.5. Standard log-demons L5R
initialized with L5.

Figure 2.10 shows two main results:

• Decrease of MSE with increasing amount of regions (levels). The MSE con-
verges, which provides evidence of the consistency of our method (although
the finer levels are not statistically analyzed in this work).

• All three relaxed registrations S0R, M1R and L5R are in the same range, with
L5R having less outliers. This suggest a more robust registration due to the
stepwise initialization across levels.

Unfortunately, we cannot evaluate the accuracy here as we do not have manual
measurements provided by medical experts for mandibles. In the future, we plan
to validate the accuracy in a similar fashion as described in the previous section for
femurs.
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2.7.3 Analysis of Obtained Tree Transformations

One important aspect of our tree structure lies in its power of decomposing fea-
tures into different scales, this can be shown by performing a hierarchical PCA for
mandibles. The per level PCA (Fig. 2.9, column 4) can be interpreted as follows:
(Level 0) global scaling; (Level 1) thickness; (Level 2) reorientation in the region
of the masseter; (Level 3) relative displacement of condyles and coronoid processes;
(Level 4) change in teeth region. This gives a visual validation of the usefulness of
per level hierarchical statistical analysis, clearly distributing features across different
scales.

We encountered instability starting at level 5, where the PCA modes become
anatomically unrealistic. We are currently working on a Bayesian framework to
make the registration more robust for higher levels.

2.8 Implant Design Based on Statistical Analysis of
Transformations

In this section, we show how our registration method can be used for implant design.
In order to analyze the groupwise deformations modeling the different anatomies in
our population, we first draw the connection between the methodology and the
clinical problem of population-based implant design in Section 2.8.1 (depicted in
the first and second row of Fig. 2.12). Then, we perform (Section 2.8.2) a k-means
clustering of transformations for selected regions (results depicted in the last row
of Fig. 2.12). Each mean of each cluster represents a specific mandible geometry
(surface and voxel intensities), which can be used to drive the design of an implant.

Our dataset consists of 43 mandible CT images of healthy patients aged between
23 to 88, with a median age of 65.5 and four patients with unknown age; 16 patients
were female and 26 male. The images are resampled during rigid registration from
an original spacing of 0.4 mm (uniform) to a more computational tractable spacing
of 1.25 mm.

2.8.1 Link Between Clinical and Data-Driven Regions

Given the regions that were found on the template image in Fig. 2.9, we identify the
corresponding clinically motivated regions from Fig. 2.1. This allows us to identity
a subset of clinically important parameters. We can perform a statistical analysis
for each implant design study on 12 (one region) or 24 (two regions) parameters. At
this point we do not enforce a perfect overlap between the data-driven regions and
the clinical regions. Work in progress focuses on an approach to incorporated prior
knowledge into the tree to enforce a perfect overlap for certain regions, while allowing
for data-driven regions in areas where there is no anatomical information available
(i.e. very fine structures at fine levels). The link between automatic OBBTree and
anatomical regions is shown in Fig. 2.12. For “symphyseal and parasymphyseal”,
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Figure 2.12: Overview of the entire work flow. Starting with the fracture classes
given by the AO foundation, we identify 6 regions that are close to fracture sites. We
then identify corresponding regions that were retrieved during our new registration
method. The three columns on the left are regions identified on level 3, the one on
the right is one region at level 4. K-means clustering for each column is performed.
The last row, shows the computed clusters: One slice extracted form the two mean
images of each cluster, surface of the mean image of each cluster and overlay of the
two mean surfaces for comparison.
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Figure 2.13: K-means clustering results for all four regions. Region 3 shows a
decrease by approximately half of the WSS at two clusters.

“body”, and “angle and ramus” we select regions at level 3; for “condylar process and
head” one region at level 4 is identified.

2.8.2 Clustering of Polyaffine Parameters for Selected Regions

The link between clinical and data-driven regions, presented in the previous section,
allows us to focus on each part of the bone independently. For each part the goal is
to find clusters representing distinguishable surface and intensity features. We apply
k-means for the clustering of each part. The selection of the number of clusters, is a
crucial decision in k-means, and in our application it is up to the implant designer
to select how many different implants to build as each additional implant causes
additional costs. In Fig. 2.13, the reduction of Within groups Sum of Squares
(WSS) as a function of the number of clusters indicates a gradual decrease. In our
experiments we use two clusters. In Fig. 2.12 on the last row, the different surface
shape and intensity features are shown. To illustrate the difficulty of finding these
feature differences by visual inspection, Fig. 2.14 shows one slice of each mandible
in the transversal plane. Each slice represents the transformed template slice at
level 3. As one can see it is hard to distinguish the shape and intensity feature by
pure inspection of individual images.

2.9 Discussion and Conclusion

In this work, we proposed a new approach to population-based implant design for
mandibles. We presented a new method that is able to link the registration directly
to the clinical relevant anatomical regions. Experiments on 146 CT images of femur
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Figure 2.14: K-means clustering results for “symphyseal and parasymphyseal” (re-
gion 1+2). Red triangles represents the V-shaped mandibles; green circles represent
the U-shaped mandibles. The slices are generated by warping the template slice with
transformations at level 3. The 24-dimensional data points (two affine transforma-
tions) are projected onto the two largest principle components for visualization. The
clustering is done in the 24-dimensional space.
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bones showed that our approach (with manual regions) is more accurate than the
standard log-demons. The ground truth was provided by two medical experts, who
manually identified three landmark distances. Furthermore, we illustrated the use-
fulness of the link between registration and clinical regions (data-driven hierarchical
regions) through a clustering of 43 mandibles CT images, considering not only the
surface but also the volumetric information.

In contrast to current population-based implant design methods we could show a
direct connection between clinically relevant regions and our methodological frame-
work. Our findings are in accordance with the clinical literature. The authors in
[Watanabe 2010] presented a morphological study on manual measurements per-
formed on 79 Japanese patients on “symphyseal and parasymphyseal”, “body” and
“angle” regions. A large variability in terms of standard deviation ranging from 3.5
mm to 3.8 mm in height and 1.3 mm to 3.2 mm in width was reported, supporting
the evidence of high variability in these regions that were reflected in our results. In
addition to these surface morphological findings, the volumetric shape informations
could now be used for biomechanical simulations on optimal screw placement by tak-
ing advantage of the correlation between image intensities and material properties,
along the line of [McBroom 1985]. This implies an additional statistical analysis
of the intensities in the template space. Preliminary results in this direction were
shown in [Bonaretti 2011].

Our method depends on three major parameters: First, the selection of the tem-
plate image It, which serves as the basis of the weight definition, and thus influences
not only the way transformations are estimated but also which regions are selected
for clinical analysis. Hence, by changing the template we expect to obtain slightly
different results. Due to the fact that weights can be easily visualized, an assessment
of the quality of the selected template can be done by clinicians quite reliably. To
further improve the robustness of this procedure, we plan to introducing a group-
wise weight definition framework, in which we search for the optimal configuration
of weights considering all images available. Second, the scaling parameter α of the
covariance matrix, which controls the smoothness of the final deformation. In the
current work, this parameter was set heuristically. An alternative approach would
be to find the optimal scaling parameter by evolving the regions (and thus weights)
during the transformation estimation phase. Third, the total number of levels k to
consider for registration. In the presented clinical application this parameter is set
to level 3 and 4 given the clinical regions that are of interest. For other applications,
it might be useful to define a stop criterion based on the residual variability. One
step further, would be to enforce a stop criterion per node instead of the entire level.
This would further reduce the number of parameters used to describe a deformation
and improve the direct analysis of the registration results by clinicians.

Our methods can be decomposed into three major building blocks: First, the
structure of the polyaffine trees. At the moment this is a binary tree with a fixed
number of levels and fixed number of nodes. The tree structure with its number of
levels and number of nodes could be relaxed and adapted by learning an optimal
structure from a population of images. This optimization could be accomplished in a
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groupwise fashion by imposing an additional penalty favoring certain structure over
others. Second, the definition of regions. By reformulating the OBBTree subdivision
process in a more probabilistic framework, e.g. Gaussian Mixture Models, we could
introduce priors, e.g. independence between regions on the polyaffine transformation
trees, leading to an even lower dimensional representation. We can see at this point
that the first two building blocks are very strongly linked. Third, the estimation
of transformations. In the current implementation, we use the sum of squared
differences as our similarity measures in the log-demons algorithm. This could be
extended to consider other similarity measures. Furthermore, other methods than
the log-demons algorithm could be used to drive the estimation. All methods that
are parametrized with SVFs are potential candidates. Additionally, by changing
the coarse to fine transformation estimation to a joint estimation over all levels, we
believe we can further improve the results in terms of robustness toward outliers (by
taking care of artifacts at finer levels) and improving interpretability (by skipping
levels). At the core of our new method lays the introduction of a new basis for
SVFs. As we showed in our experiments, this basis has very close links to anatomical
substructures. In the future, this method has the potential to discover the hidden
and possibly sparse structure of the anatomy. We currently work on a method that
imposes sparseness on the basis on a groupwise level by formulating our method in
a Bayesian framework.





Chapter 3

A Generative Statistical Model for
Multiscale Diffeomorphic

Deformations

This chapter has been submitted as a journal article in [Seiler 2012b]. The journal
article builds upon the published conference paper [Seiler 2012d]. Part of the intro-
duction overlaps with the general introduction of this thesis and the introduction
of Chapter 2. In contrast to the ontology of the lumbar vertebrae presented in the
general introduction, here we work on the ontology of mandibles.

Abstract

Locally affine (polyaffine) image registration methods capture intersubject non-
linear deformations with a low number of parameters, while providing an intuitive
interpretation for clinicians. Considering the mandible bone, anatomical shape dif-
ferences can be found at different scales, e.g. on a coarse scale between the entire
left or right side, and on a fine scale between teeth. Classically, sequential coarse
to fine registration are used to handle multiscale deformations, instead we propose
a simultaneous optimization of all scales. To avoid local minima we incorporate
a prior on the polyaffine parameter. This kind of group level prior is natural in
a polyaffine context, if we assume one configuration of regions that describes an
entire group of images, with varying transformations for each region. In this pa-
per, we reformulate polyaffine deformations as a generative statistical model, which
enables us to incorporate deformation statistics as a prior in a Bayesian setting.
We find optimal deformations by optimizing the maximum a posteriori probability.
We assume that the polyaffine parameter follow a normal distribution with given
mean and concentration matrix. Parameters of the prior are derived from an initial
coarse to fine registration. Knowing the region structure, we develop two blockwise
inverse of the covariance matrix to obtain the concentration matrix. We conduct
experiments on 42 mandible CT images. The results show that polyaffine parameter
estimated with a prior are more accurate in terms of Dice coefficient and contour
mean distance on manually segmented images, and are more robust in terms of the
determinants, rotational and translational part for all regions. To our knowledge,
we are the first to introduce simultaneous multiscale optimization through a prior
at the group level in polyaffine registration.
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3.1 Introduction

A multiscale description of anatomical intersubject variability is important in many
clinical applications. In this section, we first introduce a more general view of the
anatomy, which promotes tree-like descriptions. Second, we move to the specific
field of implant design for mandible bones to illustrate how the methods developed
in this paper can be used in the clinics.

3.1.1 Ontology of the Human Anatomy

The term anatomy originates from the two Greek words ana and temnein, which
translate in English to apart and to cut, respectively. The origin of this word leads
us directly to the essence of this paper, which is to deepen our understanding of
parts of our human body and how they interact. The Foundational Model Anatomy
(FMA) ontology, as presented in [Rosse 2008], is a formal description of classical
human anatomy textbooks. In classical textbooks the anatomy is divided according
to function or regions. The FMA provides a more formal definition of the divi-
sion process. At the core of the FMA is a tree data structure that represent the
hierarchical and multiscale anatomical shape at different levels of granularity.

3.1.1.1 Anatomical Structure, Granularity and Relations

The FMA definition of anatomical structures is given by the following three points:

1. Anatomical structures are three-dimensional shapes

2. Anatomical structures are products of our genes

3. The parts of an anatomical structure are arrangements through our genes

Therefore, a mathematical description of anatomical structures needs to be able
to describe three-dimensional shapes that are divided into parts and interact with
other parts of the same or other anatomical structures. One of the central point
is the tree-based description of the anatomy where entities at finer levels of gran-
ularity inherent properties form coarser levels. This kind of reasoning is implicitly
considered in many medical image analysis algorithms through a (multiscale) coarse
to fine analysis. In this work, we make it explicit by modeling the granularity with
trees of geometrical deformations.

In the context of anatomy, the term granularity refers to the level of detail at
which we observe or describe the anatomical structure. It defines the extent to which
the anatomy is broken down into small parts. In Figure 3.1, the mandible bone is
shown at different levels of granularity. On the top, we see a small extract of the
FMA ontology form the University of Washington [Rosse 2008]. On the bottom, an
illustration of the data-driven approach that we present in this manuscript is given.

According to FMA, anatomical relations are associations between anatomical
entities. Relations are visualized with edges between nodes in the ontology tree
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Figure 3.1: Top: Ontology of mandible anatomy. Subdivision of mandible into
anatomical regions proposed by Foundational Model Explorer, University of Wash-
ington [Rosse 2008]. Bottom: Tree of Gaussian weights. Weights divide the
anatomy into continuous parts. The tree can be directly interpreted by clinicians.
Each Gaussian weight represents one region and is visualized as one ellipsoid thresh-
olded at σ. The red contours are extracted from CT data and one slice of the original
CT image is shown (to indicate that we work in the image domain and not only on
the contour).

http://sig.biostr.washington.edu/projects/fm/index.html
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ferent anatomical sites are shown. Image source: www.aofoundation.org. Right:
Tree of Gaussian weights. Each Gaussian weight represents one region and is visu-
alized as one ellipsoids at σ. The contours extracted from CT data in red and one
slice of the original CT image (to indicate that we work in the image domain and
not only on the contour) are shown.

(Fig. 3.1). This means that anatomical structures can not only be described by their
spatial location but also indirectly through their related structures. In the realm of
medical image analysis, researchers have been exploring these connections through
statistical analysis of cohorts of functional and structural images. Particularly in-
teresting are relations that are not obvious, e.g. relations between non-neighboring
structures [Allassonnière 2011]. By investigating these relations we might find new
anatomical knowledge that improves diagnostics for patients.

In this paper, we propose to move the FMA from a description of the average
anatomical structure, granularity and relations towards a description of the vari-
ability of these terms in a population of subjects.

3.1.2 Population-Based Implant Design

Mandibular fractures most commonly result from facial trauma, with close to half
of the patients requiring surgical repair [Ellis 1985]. A majority of 75% of fractures
occur in males aged between 20 and 30 [Ellis 1985], and are often caused by phys-
ical assault. For these cases surgical repair proofs most effective, with the goal of
recovering the anatomical structure prior to the injury and thus restoring normal
function. To reach this goal the surgeon places wires or implants at the fracture
site, so that the natural fusion of separated bone pieces restores the prior structure
as closely as possible. A correct repair aligns teeth for food intake, and restores the
patient’s aesthetics. In [Urken 1991], the authors propose a classification scheme for

http://www.aofoundation.org
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mandibles based on regions according to anatomical, functional and aesthetic con-
siderations. The online register www.aofoundation.org uses the same classification
(Fig. 3.2) to guide surgeons through the major steps of mandible reconstructive
surgery ranging from diagnosis, selection of the optimal surgical approach, to af-
tercare treatment. In addition to this classification scheme, the mandible can be
subdivided even further into smaller regions, e.g. one region for each tooth. In the
image space, this subdivision can theoretically be performed up to the voxel level,
where coarser levels enclose finer ones, representing a hierarchy of regions that can
be organized in a tree-like fashion. As the regions become more fine, it is harder to
find a consensus among clinicians on the size, shape and location of the region.

Recent work on biomechanical analysis of implants, indicates that geometry
and topology of implants are crucial to fracture stability. In [Lovald 2010], it was
shown that implants optimized for “body” and “symphyseal and parasymphyseal”
region, have smaller fracture strain, while minimizing patient intrusion with respect
to larger implants. The economical cost of patient specific implants makes this ap-
proach impracticable at the moment, hence current focus is set on an intermediate
goal: population-based implant design. Common key steps to population-based de-
sign, e.g. [Bou-Sleiman 2011, Bou-Sleiman 2012], are registration to capture shape
variability as encountered in a population and statistical analysis of the registration
results, performed subsequently and independently.

Current methods look at surface shape only, but registration approaches for im-
plant design should consider not only bone surface information, but also volumetric
information describing the bone density distribution, which is needed to compute
best location and orientation of the placement of screws to fixate implants.

In this paper, we propose a region-based registration that can capture the mul-
tiscale shape variability for population-based implant design.

3.1.3 Trees on Geometrical Deformations

Due to region-based description of the mandible shape and the need for volumetric
information we focus on locally affine transformations, also called polyaffine transfor-
mations. Polyaffine transformations fuse locally rigid and affine transformations into
a diffeomorphism [Arsigny 2009]. An efficient registration algorithm using approx-
imations of polyaffine transformations was presented in [Commowick 2008]. Other
recent work includes [Zhuang 2010], where a locally affine registration method is
developed for cardiac MR images.

To consider more complex shapes and foster reusability, [Buerger 2011] presented
a multiscale approach with affine regions defined through a data-driven approach.
The method splits rectangular shaped regions, which are aligned along the image di-
rections, only if certain conditions are met. The authors in [Taquet 2011] iteratively
optimize between affine parameters and anchor positions (center of regions) through
an expectation maximization approach. In [Zhang 2011], Log-Euclidean Polyaffine
Transformations (LEPT) are employed to register multi-modal cardiac sequences in
an elaborate scheme. The algorithm iteratively adds new uniform Gaussian weighted

http://www.aofoundation.org
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regions with different spatial position (mean parameter) and influence (variance pa-
rameter) until a mutual information-based criterion is satisfied. Even though these
methods are very promising, the link between the clinical regions (Fig. 3.2) and
the regions found by these algorithms, is either constrained by aligned rectangu-
lar shaped regions or spherical weights [Buerger 2011, Zhang 2011], or produce an
intractable number (around 500) of regions [Taquet 2011].

In [Seiler 2012c], we introduced a hierarchical multiscale tree structure (called
polyaffine transformation trees) that is motivated by the nature of the mandible
anatomy, where regions are ordered and interact with each other in a way tractable
for human understanding.

Aforementioned polyaffine methods are pairwise registrations, and to our best
knowledge, no groupwise deformations statistics has yet been incorporated in this
context. In [Pennec 2005], the authors incorporated a prior on non-linear deforma-
tions with a statistical interpretation of the regularization. We believe that trans-
formations on a groupwise level are crucial in a polyaffine setting. This is motivated
by the assumption that there should be one configuration of regions that describes
an entire group of images, with varying transformations for each region. Further-
more, the multiscale property of mandibles and other anatomical structures should
be incorporated.

In [Ashburner 1997], the authors presented a Bayesian approach for affine regis-
tration, in this paper, we propose a Bayesian formulation of polyaffine registration
across scales. To accomplish this we contribute the following points:

1. A General Linear Model (GLM) formulation of intersubject polyaffine defor-
mations

2. A generative statistical model for polyaffine deformations

3. Incorporation of deformation statistics as a prior at the group level in a
Bayesian setting

4. Simultaneous estimation of multiscale deformations

5. Maximum a posteriori probability (MAP) of polyaffine deformation parameter

The structure of this paper is as follows. In Section 3.2, we formulate polyaffine
transformation trees as a GLM. In Section 3.3, we use the GLM to introduce a
generative statistical model enabling us to incorporate deformation statistics as a
prior in a Bayesian setting. We find optimal transformations by optimizing the MAP
with groupwise deformation statistics as a prior. In Section 3.4, we compare two
different ways of creating the deformation prior and show results on 42 mandible
CT images.

3.2 A GLM Formulation of Intersubject Deformations

In this section we reformulate polyaffine transformation trees recently introduced
in [Seiler 2012c] as a General Linear Model (GLM). We start by introducing Log-
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Euclidean Polyaffine Transfomations (LEPTs), Stationary Velocity Fields (SVFs),
the log-demons algorithm and their connections.

In [Arsigny 2005], the authors introduced polyrigid and polyaffine transforma-
tions in the context of medical image analysis. Their works showed how to ob-
tain diffeomorphic deformations by fusing transformations using ordinary differen-
tial equations (ODE). The estimation of the transformation parameters by numer-
ically solving the ODEs was computationally expensive and therefore hard to use
in practice. To tackle the computational burden the same authors introduced the
fast Log-Euclidean polyaffine framework [Arsigny 2009] and LEPTs. The authors
redefined the problem by relying on the logarithms of the transformations. These
logarithms are defined in the theory of Lie groups. In practice, this results in com-
putations of these logarithms via matrix logarithms. The practical relevance of this
theoretical reformulation of the problem was exploited in [Commowick 2008].

In [Arsigny 2006], the authors define the exponential exp(v) of a (smooth) vector
field v(x) as the flow at time 1 of the stationary ODE ẋ = v(x). This generalizes the
equivalence between one-parameter subgroups and exponential to SVFs v and dif-
feomorphisms ψ. This equivalence exists in the finite-dimensional case as described
in the previous section. However, a proof for the existence and uniqueness of the
logarithm log(ψ) = v is still an open research question. In this work we do not
rely on it, since we only generate diffeomorphisms parameterized with SVFs using
exp(v) = ψ.

The general form of the log-demons algorithm for stationary velocity fields (SVF)
was formulated in [Vercauteren 2009]. The goal is to find vM that warps the fixed
image It into the moving image Is (or resamples Is in It), by minimizing the cost
functional,

C (It, Is, v, vM ) = σ−2
i Sim (It, Is, vM ) + σ−2

x dist (v, vM )2 + σ−2
T Reg (v) ,

where Sim, dist and Reg, are the similarity, the hidden and the regularization term,
respectively. Each term has a weighting parameter σi, σx and σT . As shown in
[Vercauteren 2009], C (It, Is, v, vM ) can be optimized alternatively over the vari-
ables v and vM . Given v, the correspondence velocity field computed by the first
optimization part of the log-demons algorithm, in [Seiler 2012c], we solve for M
using linear least squares, i.e. minimizing

C(M) =

∫
Ω
λ(x)||v(x)−

N∑
i=1

wi(x)Mix̃||2dx with x̃ =

[
x

1

]
, (3.1)

where λ is a binary mask indicating background voxels (if no mask is available
∀x ∈ Ω : λ(x) = 1). Throughout this paper we assume that all N region weights
wi(x) are given, here x are spatial position within the image and i the index of one
region. The extension of the OBBTree algorithm [Gottschalk 1996] to images as
introduced in [Seiler 2012c] presents one way to create the weights. We refer the
reader to [Seiler 2012c] for more details. For the reminder of this paper, we assume
that the weights can have any non-parametric form and are smooth to ensure global
diffeomorphisms.
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3.2.1 Linear Model for Deformations

In this section, we formulate a linear model for SVFs that can be obtained from the
polyaffine log-demons,

vM (x) =
N∑
i=1

wi(x)Mix̃, (3.2)

where wi(x) are normalized weights for region i, i.e. ∀x ∈ Ω :
∑n

i=1wi(x) = 1. As
introduced in the previous section, this kind of deformations are called LEPTs. The
matrix,

M̃i = log

(
Ai ti
0 1

)
=

[
Mi

0

]
,

is the matrix logarithm of the affine transformation of region i in homogeneous
coordinates. The matrix exponential can efficiently be computed using scaling and
squaring,

exp(M̃i) =

[
Ai ti
0 1

]
.

For N regions let M = [M1, . . . ,MN ]T be a 3× 4N matrix. The vectorized version
of this matrix is denoted by,

m = Vect(M),

with dimensions 12N×1. We refer to m as the vector of polyaffine parameters. The
weights can be represented as a N × 1 vector,

w(x) = [w1(x), . . . , wN (x)]T

Now let’s rewrite,

vM (x) = M(w(x)⊗ x̃) =
[
w(x)⊗ x̃T ⊗ I3

]
m,

where ⊗ is the Kronecker product of matrices. Using this notation we can write the
following linear model,

vM (x) = φ(x)m, (3.3)

where φ(x) is a 3 × 12N matrix, m is a 12N × 1 vector, vM (x) is a 3 × 1 velocity
vector at spatial position x, and,

φ(x) = w(x)⊗ x̃T ⊗ I3. (3.4)

3.2.2 Observing Noisy Stationary Velocity Fields

Now in the polyaffine log-demons, we want to best explain the SVF v using the
LEPT vM according to Equation (3.1) from the previous section. In a probabilistic
setting, the correspondence SVF is only observed at the voxel values x1, . . . , x|Ω|
belonging to some mask region Ω, which means that the vector of observations is,

v =
[
v(x1)T, . . . , v(x|Ω|)

T
]T
, (3.5)
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with dimensions 3|Ω| × 1. As for the observations, let us stack the matrices φ(x) at
all voxels into,

Φ =
[
φ(x1)T, . . . , φ(x|Ω|)

T
]T
, (3.6)

with dimensions 3|Ω|×12N . The value of the predicted SVF at all voxel positions is
now simply the linear model v = Φm. Assuming an i.i.d. Gaussian noise of variance
σ2
v in each spatial direction at all voxels, we end up with the GLM:

v = Φm+ ε with ε ∼ N (0,
1

σ2
v

I3|Ω|), (3.7)

where N represents the multivariate normal distribution with mean and concentra-
tion matrix (inverse of covariance matrix). Rigorously, the log-demons computes
velocity vectors from the gradient of the fixed and/or moving images, therefore, the
velocities are not independent at adjacent voxel locations. Here we assume that this
is a legitimate approximation.

3.3 A Generative Statistical Model for Deformations

In this section, we present the MAP to find optimal transformations with a prior
for K patients. We denote mk as the polyaffine parameter found for patient k. We
denote [k] to consider all patients.

3.3.1 Posterior Inference of Polyaffine Parameter

By assuming that the error term ε is i.i.d. normal distributed, the probability
distribution of the SVFs for a given patient k is,

vk|Φmk, σ2
vI3|Ω| ∼ N (Φmk,

1

σ2
v

I3|Ω|). (3.8)

We further assume that the polyaffine parameter mk follow a normal probability
distribution,

mk ∼ N (µ,Γ), (3.9)

where µ is the population mean and Γ is the 12N×12N concentration matrix (inverse
of the covariance matrix). The posterior distribution of mk is normal distributed,
since both the prior on mk and the distribution on vk are normal distributions.
In Bayesian statistics, if the prior and the posterior are from the same family (in
our case the exponential family) then the prior and posterior are called conjugate
distributions, and the prior is called conjugate prior. This allows us to analytically
derive the posterior probability for polyaffine parameters for patient k,

mk|vk, µ,Γ ∼ N (µ̌, Γ̌), (3.10)

where µ̌ and Γ̌ are posterior mean and concentration matrix, respectively. Let us
now write this posterior probability (using Bayes’ theorem) ofmk given the observed
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velocity field vk, and the parameter of the prior µ, Γ for one patient k (modulo
constants),

P (mk|vk, µ,Γ) ∝ exp

(
−1

2
[(vk − Φmk)T

1

σ2
v

I3|Ω|(v
k − Φmk) + (mk − µ)TΓ(mk − µ)]

)
(3.11)

Since both distributions are normal distributions, we obtain a normal posterior in
the form of,

P (mk|vk, µ,Γ) ∝ exp

(
−1

2
(mk − µ̌)TΓ̌(mk − µ̌)

)
. (3.12)

To find the parameter of the posterior normal distribution we use the “completing
the squares” method (as for instance used in [Gelman 2003]). We rearrange Equation
(3.11) with respect to mk into the form of Equation (3.12), and after pulling out
the constant factors, we obtain,

µ̌ = Γ̌−1

(
1

σ2
v

ΦTvk + Γµ

)
with Γ̌ =

1

σ2
v

ΦTΦ + Γ. (3.13)

As we can see the posterior mean is a weighted average of the SVF and the prior
mean, with weights given by the Γ̌−1 1

σ2
v
ΦT and Γ̌−1Γ, respectively. The posterior

concentration matrix is the sum of 1
σ2
v
ΦTΦ and the prior concentration. Now we can

easily identify the MAP estimate of mk as,

mk
MAP = µ̌, (3.14)

in the absence of noise it is,

mk
MAP = (ΦTΦ)−1ΦTvk (if σ2

v = 0), (3.15)

and with σ2
v =∞, we obtain,

mk
MAP = µ (if σ2

v =∞). (3.16)

We propose to estimate each mk
MAP separately for each patient k, thus assuming

the independence of SVFs across subjects,

P (m[k]|v[k], µ,Γ) =

K∏
k=1

P (mk|vk, µ,Γ). (3.17)

This assumption is only valid if the template with which the patients are registered
is unbiased. In this work, we chose the template according to visual inspection.

3.3.2 Sample Covariance Matrix Inverse

In the previous section, we assumed the parameter µ and Γ for the prior distribution
were known. Here we propose to use the coarse to fine registration approach intro-
duced in [Seiler 2012c] to compute these parameters. The first step is to compute
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the covariance matrix of polyaffine parameter obtained from [Seiler 2012c]. The
sample covariance matrix of polyaffine parameter is given by,

Cov =
1

K

K∑
k

(m̂k − m̄)(m̂k − m̄)T with m̄ =
1

K

K∑
k

m̂k, (3.18)

where m̄ is the sample mean, and we denote the polyaffine parameter obtained
through the method described in [Seiler 2012c] as m̂k. In a second step we need to
invert the covariance matrix to obtain the concentration matrix Γ that is used in
Equation (3.13). The problem is that the inverse of the covariance is not robust,
since we have only few samples (in our case 42) and a high number of variables (in
our case 372). In addition to the number of samples problem we have elements in
the covariance matrix with very different scales. The linear parts of the polyaffine
parameters are much smaller than the one for the translational part. This causes
numerical problems when taking the Cholesky inverse of the covariance matrix. To
remedy this we use information about the structure of the covariance matrix and
assume conditional independence between regions.

The inverse of the sample covariance of polyaffine parameter has an inherent
block structure due to the regions,

Γ = Cov−1 =

Γ11 . . . Γ1N
...

. . .
...

ΓN1 . . . ΓNN

 , (3.19)

where each block Γij is a 12× 12 matrix, and the number of blocks are equal to N2.
Off-diagonal blocks represent connections between regions, whereas blocks along
the diagonal are connections within each polyaffine parameter region. The inverse
of the covariance matrix and these connections have a statistical meaning. If an
off-diagonal block Γij is zero, then region i and j are conditionally independent.
Two variables are conditionally independent if there is no direct or indirect relation
between them. Conditional independence is stronger than independence, since it
also considers indirect relations. Methods such as Graphical Lasso [Friedman 2008,
Banerjee 2008] are examples where covariance matrices are inverted to find these
conditional independencies among variables. The objective of Graphical Lasso is to
find a sparse graph describing conditional independences of variables.

In this paper, we focus on the block diagonal elements only and thus assume
conditional independence of polyaffine parameters between all regions. It will be
interesting to relax this assumption in future work to explore structural relations
between regions. In the next two sections, we propose two methods to take the
inverse of covariance matrices in our context.

3.3.2.1 Blockwise Diagonal Inverse

To ensure numerical stability for the covariance matrix inverse, we propose to take
advantage of the region structure by inverting the block diagonal of the covariance
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matrix,

Γ = diag(Cov−1
i ) =

Cov−1
1 . . . 0
...

. . .
...

0 . . . Cov−1
N

 . (3.20)

This implicitly assumes conditional independence of all regions.

3.3.2.2 Kronecker Product Blockwise Diagonal Inverse

As in the first method described in the previous section, we propose to take advan-
tage of the region structure, which reflects as a blockwise structure in the covariance
matrix. In addition, we use the Kronecker product to decompose the covariance ma-
trix into two parts, the polyaffine parameter per regions and a scaling factor. We
develop a blockwise pseudoinverse,

Γ = diag(α+
i ⊗ C

−1) =

α
+
1 C
−1 . . . 0

...
. . .

...
0 . . . α+

NC
−1

 , (3.21)

where .+ is the pseudoinverse, αi is a scalar of the block i (i.e. region i), and C

is a 12 × 12 matrix, representing the metric of the polyaffine parameter, e.g. how
translation and linear parameters interact with each other. We optimize,

{α̂i, Ĉ} = argmin
C,αi

N∑
i

||Covii−αiC||2, (3.22)

in two sequentially steps. In step one, for C with fixed ∀i : αi = 1, and in step two
for αi with fixed C obtained from the previous step. We derive the cost function
with respect to αi and C and set it to zero, to obtain optimal estimates Ĉ and α̂i,

Step one: Ĉ =

∑N
i=1 αi Covii∑N

i=1 α
2
i

, Step two: α̂i =
Trace(CoviiC)

Trace(C2)
. (3.23)

By constraining the matrix C to be fixed for all diagonal blocks of Γ we intend to
lower the risk of overfitting.

3.4 Experiments on Real CT Data

In this section, we register 42 mandible CT images to a template and evaluate the
resulting transformations. The template is chosen through visual inspection of all
images. We register five levels and generate 31 regions using the weighted OBBTree
algorithm presented in [Seiler 2012c]. The resulting weights are shown in Fig. 3.3,
where each ellipsoid represents a Gaussian weight thresholded at σ. The algorithm
splits the mandible bone into front and back part at level 1, followed by a split into
left and right side at level 2. After further refinement at level 3, the algorithm splits
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Figure 3.3: Three different views of 31 regions across 5 levels considered for the
registration. Each Gaussian weight represents one region and is visualized as one
ellipsoids thresholded at σ.
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the mandible into upper and lower part at level 4 (finest level). The regions are
computed prior to the registration and can vary for different templates.

To study the characteristics of polyaffine parameter, we first decompose each
log affine transformation into three parts: expansion, rotation and translation. The
theorem of Helmholtz states that the most general motion of a sufficiently small
non-rigid body can be represented by,

Expansion:
1

2
(M̃i + M̃T

i ), Rotation:
1

2
(M̃i − M̃T

i ), Translation: log(ti),

where the expansion is measured along the three orthogonal directions, and the
decomposition of the linear part into skew symmetric and symmetric matrices (rep-
resenting expansion and rotation, respectively) is given by,

M̃i =
1

2
(M̃i + M̃T

i ) +
1

2
(M̃i − M̃T

i ).

Second, it can be shown, for example using the Jordan (or Schur) decomposition
of matrix M̃i, that the following equality provides us with the determinant of linear
transformations (for any square matrix with a principal logarithm),

det(Ai) = exp(Trace(M̃i)).

In the next section we use the volume change, rotation and translation charac-
teristics to evaluate the polyaffine parameter for a wide range of noise parameter σ2

v

and the two covariance matrix inversion methods. Since each M̃i is weighted with
its corresponding weight function wi(x) at spatial position x, we evaluate only the
transformation at the center of each region,

M̃i,max = wi(x̂i)M̃i with x̂i = argmax
xi
{wi(xi)}. (3.24)

In Figs. 3.5 and 3.6, we compared the following characteristics at the center
point of each region i,

Volume change: exp(Trace(M̃i,max)), (3.25)

Measure of rotation: ||1
2

(M̃i,max − M̃T
i,max)||F , (3.26)

Measure of translation: || log(ti,max)||, (3.27)

where we use the Frobenius norm of the rotation part and the L2-norm of the
translation part.

3.4.1 Comparison of Sample Covariance Inverse Methods

In Sections 3.3.2.1 and 3.3.2.2, we presented two methods to compute the inverse
of covariance matrices. In this section we compare the results that we obtained
for the two methods in terms of three transformation characteristics: determinant
(volume change), rotation and translation. We performed 42 manual segmentation
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on all images. The segmentation classifies bone and non-bone voxels. From this we
compute the following scores between all 41 images to the template: Dice coefficient
of the segmented images and contour mean distance between segmented images.
More refined segmentations subdividing the bone into different regions, as suggested
for instance in [Rohlfing 2012], are planed for future validation experiments.

In the following we refer to the block diagonal inverse as Block-Inv, and to the
Kronecker Product Blockwise Diagonal Inverse as Kron-Inv. With the experiments
we address the following questions:

• What is the optimal noise parameter σ2
v?

• According to Equation (3.16), we expect a shrinkage towards the prior mean
with increasing noise. Is this observable in the experiments?

• What are the differences between Block-Inv and Kron-Inv?

• Are there regions with high variability? What caused this high variability?

Figures 3.4 compares a wide range, σ2
v = {0, 0.52, 12, 22, . . . , 322} mm, of noise

parameter. The best accuracy in terms of Dice coefficient and contour mean dis-
tance are obtained with 42 for Block-Inv. In method Kron-Inv, the optimal Dice
coefficient is at 12 and even lower at 0.52 for the contour mean distance. To recall,
the parameter σ2

v describes the independent noise level at each voxel in all three
directions. Thus the optimal noise assumptions according to the Dice coefficients
for Block-Inv and Kron-Inv are 4 and 1 mm, respectively. We conjecture that the
lower σ2

v for Kron-Inv is caused by the averaging of block diagonal matrices, which
regularizes the inverse covariance matrix.

According to Equation (3.16) from Section 3.3.1, we expect that a higher noise
parameter shrinks the estimates towards the prior mean. This effect is observed in
both inversion methods. Figure 3.5 shows the shrinkage for both inverse methods
in terms of the volume change of regions, as can be seen, the higher the noise the
lower the variability of the transformations. The axis labels in the plots correspond
to the region labels in Fig. 3.3.

Figure 3.6 shows the three different deformation characteristics that we previ-
ously introduced: determinant (volume change), rotation and translation. The left
column shows the results obtained with Block-Inv. For region 0 to 14 (level 0 to 3),
we observe only a small variation from the identity transform, almost 1 for deter-
minants and close to 0 for rotation and translation part. In contrast, in regions 15
to 30 (level 4), we observe determinants between 0.5 to 2 (with two outliers around
3), and higher median and variability for rotation and translation part. Figure 3.7
shows how this reflects in the two performance scores across levels. For the Dice
coefficient and contour mean distance, the levels 0 to 3 provide almost nothing to
the improvement of the score, all the work is done at level 4.

The right column of Fig. 3.6 shows results obtained with Kron-Inv. We can
observe two interesting points. First, region 2 shows a high variability. This makes
sense, in Fig. 3.3, region 2 is the back part of the mandible containing two distant
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Figure 3.4: Comparison of registration accuracy in terms of Dice coefficient and
contour mean distance. Scores over a wide range of noise parameter σ2

v . Top
row: Blockwise Diagonal Inverse (Block-Inv). Bottom row: Kronecker Product
Blockwise Diagonal Inverse (Kron-Inv).
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Figure 3.5: Statistics of the determinant of regions with noise parameter set to
σ2
v = 22 and σ2

v = 82. The axis labels correspond to the region labels in Fig. 3.3. Top
row: Blockwise Diagonal Inverse (Block-Inv). Bottom row: Kronecker Product
Blockwise Diagonal Inverse (Kron-Inv). As expected from Equation (3.16), the
shrinkage towards the prior mean increases with increasing amount of noise.
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Figure 3.6: Statistics of the determinant, rotation and translation. Left column:
Block-Inv with σ2

v = 42. Right column: Kron-Inv with σ2
v = 12. Region 2 in the

top plot reaches up to 5 with 2 outliers.
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Figure 3.7: Comparison of registration accuracy in terms of Dice coefficient and
contour mean distance. Scores on registrations with optimal noise parameter σ2

v =

324. Top row: Blockwise Diagonal Inverse (Block-Inv). Bottom row: Kronecker
Product Blockwise Diagonal Inverse (Kron-Inv).
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sides (coronoid, condylar process and head, and part of angle and ramus regions).
We expect this registration to be difficult and thus to yield a high uncertainty
of the resulting deformation parameter. The second interesting point is the high
variability of determinants and rotations for levels 0 to 3, with low variability in
level 4, and the low variability of the translation part in levels 0 to 3, with high
variability for level 4. This indicates that regions at the coarser levels are rotated
and expanded (or shrunk), and the finer regions are translated. Figure 3.7, shows a
gradual improvement of the scores with increasing levels (expect the difficult region
2 at level 1), reflecting the more uniform distribution of polyaffine parameter over
all regions and levels.

3.5 Discussion and Conclusion

In this work, we presented a multiscale polyaffine registration method that simul-
taneously registers all scales. We showed a GLM for polyaffine deformations, which
we used to create a generative statistical model. This allowed us to incorporate
a prior in a Bayesian framework. The results with prior increased registration ac-
curracy in terms of Dice coefficient and contour mean distance, and controls the
robustness of polyaffine parameter estimates in terms of determinants, rotation and
translation measured for each region. This suggest that we avoid a local solutions
by incorporated deformations statistics.

The proposed multiscale registration depends on the selection of the noise pa-
rameter σ2

v . We showed that it can be found by computing a range of values and
evaluating it with respect to a performance measure. This parameter represents
the variance of stationary velocity vectors. Its optimal values for the two inverse
methods on our mandible dataset were found to be σ2

v = 42 and σ2
v = 1 mm for

Block-Inv and Kron-Inv, respectively. Several interesting conclusion from the results
could be made. First, as expected with higher noise parameter the variability of the
deformation parameter was reduced. Second, the variability was high in regions
where we expect the log-demons to have difficulty to find a good correspondence.
Particularly interesting was one observation for Kron-Inv, where we could see that
the variability of volume change and rotation is high for level 0 to 3, whereas the
translation is high in level 4. This suggests that for Kron-Inv, coarser regions mainly
differ in terms of the linear part and finer regions in terms of the translation part of
the polyaffine parameter. This is consistent with other medical image registration
algorithms, if we consider the special case of one region per voxel, where one tries
to find a translation of each voxel.

The block structure of the covariance matrix has an interpretation in terms of
the anatomy. Each 12×12 block represent one region, the off-diagonal blocks repre-
sent the covariance between two regions. Furthermore, the inverse of the covariance
matrix gives us conditional independences between regions, which indicates anatom-
ical relations between parts of the anatomy. In the presented paper, we limited our
concentration matrix to be block diagonal, removing all relations between regions.
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We plan to work on an extension to include the off-diagonal blocks in the concen-
tration matrix as well. The long term objective is to consider the prior mean µ

and the prior concentration Γ not as fixed parameters but as hyperpriors with their
own distributions. In Bayesian statistics, hyperpriors represent prior distributions
on hyperparameters, which are the parameter of the prior distribution. A possible
choice of hyperpriors can be found in [Wang 2009, Wang 2012]. With the inclusion
of hyperpriors we will need to move from the analytical closed form solutions to
posterior computations using Markov Chain Monte Carlo methods.

An intermediate step before moving to Monte Carlo simulations could be to
assume sparsity of the region relations and invert the sample covariance matrix with
the Graphical Lasso [Friedman 2008, Banerjee 2008], or its extensions to structured
matrices using the Kronecker product [Werner 2008, Tsiligkaridis 2012]. In the case
of mandibles, this kind of sparse relations between regions are largely unexplored in
the clinical setting and thus provide no way to validate new results. Therefore, we
first plan to investigate articulated structures, where the relations are better known.

We believe that our approach is more than just an extension of [Ashburner 1997].
By considering not only one affine component, but a mixture of components acting
at different scales, we are moving the discussion into structured learning, which to
our knowledge is a novelty in the medical registration community. In future work,
we plan to introduce a sparse representation of anatomical substructures and their
connection at different scales, which might uncover structures equivalent to rigid
articulated bodies.



Chapter 4

Clinical Applications

The methods we developed in previous chapters were found to be helpful in a wide
range of clinical applications that we summarize in this chapter. The first section
in this chapter shows an abstract on symmetry assessment of bones, which we pre-
sented at Computer Assisted Orthopaedic Surgery (CAOS), a well respected clinical
conference in the field of orthopaedic surgery [Seiler 2009b]. The second section, is a
conference paper [Seiler 2010b] on regression of geometrical deformations. It relates
the femur shaft length and caput collum diaphysis angle to SVFs computed using
the standard log-demons.

The remainder of this chapter describes collaborative work conducted at four
different research institutions in five different fields of application. The work on or-
thopaedic fracture risk and implant design for femurs was performed at the Univer-
sity of Bern in collaboration with Serena Bonaretti [Bonaretti 2011, Bonaretti 2010].
The interesting clinical task of allograft selection was approached with Lucas Ri-
tacco, Italian Hospital of Buenos Aires, Argentina, and led to a publication in a
clinical journal [Ritacco 2012]. In collaboration with Habib Bou-Sleiman, Univer-
sity of Bern, we published work on implant design for mandibles [Bou-Sleiman 2012].
In collaboration with Rémi Blanc from the ETH in Zurich, we worked on conditional
shape models and regression models for orthopaedic research, which resulted in two
publications [Blanc 2009, Blanc 2012]. Together with Kristin McLeod form Ascle-
pios at INRIA Sophia Antipolis, we extended our method to consider additional con-
strains important for heart modeling, the results were published in [McLeod 2012].
In all projects our ITK implementation (Appendix C) built the basis for the collab-
oration.
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4.1 Left-Right Symmetry in Femur and Tibia Bones

This abstract was presented at the international conference on Computer Assisted
Orthopaedic Surgery (CAOS) [Seiler 2009b].

Abstract

Optimal reproduction of normal femur and tibia anatomy is one of the prerequisites
for successful designing implants. Usually implant design is based upon an average
anatomy. However, little is known, apart from size, on the shape variability of tibia
and femur anatomy in different populations. Although there is limited evidence
to suggest that there are differences in symmetry between left and right, to our
knowledge it has not been yet qualitatively proven. Hence, in order to highlight
potential important factors of symmetry in implant design, more detailed knowl-
edge is necessary. This work presents, based upon information from a large virtual
bone database, a systematic analysis for left and right variations in femur and tibia
anatomy.

Methods

Recent advances in quantitative computed tomography (CT) image post processing
have enabled researchers to quantify variations in bone morphology between indi-
vidual patients and population groups [Kozic 2008]. In this study, shape analysis
techniques are utilized to extract femur and tibia anatomical landmarks between
left and right for male and female Caucasian population groups. Equipped with
this data, statistical comparisons between these groups are made to establish their
statistical significance.

The proposed methodology was applied to a dataset of 72/71 male and 94/91
female left/right femur CT bone scans and patient age range of 21 to 93 years. For
tibia bones the datasets consists of 68/66 male and 88/87 female and patient age
range of 17 to 90 years. All patient were Caucasians.

Image segmentation was performed in a semi-automatic fashion in order to ex-
tract the outer shell of the femur and tibia bones. After image segmentation, ref-
erence images are selected for femur and tibia and a combined affine and non-rigid
image registration [Vercauteren 2007] approach is employed to establish correspond-
ing anatomical points across the images. Given a point x in the reference image we
aim at finding the corresponding point x′ such as x′ = A−1(φ−1(x)), where A and
φ are respectively the affine and non-rigid transformations needed to morph every
image into the reference one. The affine transformation allows us to deal with coarse
deformations, whereas the non-rigid transformation captures the local shape varia-
tions. Landmarks are selected interactively through a Graphical User Interface on
which the reference bone is displayed in a 3-D space. Consequently, distances can be
propagated automatically across all the images. In addition, the landmark selection
process was extended to generate cutting planes on which new measurements are
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Table 4.1: Results of t-tests for left and right on femur male Caucasian.
Measurement Left µ± σ Right µ± σ P-value
Bone length [mm] 437.66± 20.22 433.99± 18.59 0.26

Antetorsion angle [◦] 15.29± 2.38 19.72± 2.97 < 0.05

CCD angle [◦] 114.94± 3.83 132.05± 5.23 < 0.05

IC distance [mm] 61.47± 4.01 52.86± 3.34 < 0.05

Table 4.2: Results of t-tests for left and right on femur female Caucasian.
Measurement Left µ± σ Right µ± σ P-value
Bone length [mm] 415.42± 17.96 413.36± 18.11 0.44

Antetorsion angle [◦] 14.42± 2.44 19.98± 3.04 < 0.05

CCD angle [◦] 116.82± 5.38 133.74± 5.19 < 0.05

IC distance [mm] 53.49± 4.14 46.43± 3.32 < 0.05

defined. The following anatomical measurements were extracted from femur and
tibia bones:

• Femur: Bone length, antetorsion angle, Caput Collum Diaphysis (CCD) angle
and Inter-Condyles (IC) distance.

• Tibia: Bone length, plateau height, plateau slope and plateau width.

These measurements are extracted automatically and stored for statistical analysis.

Results

To test the similarity between left and right datasets we chose the unpaired t-test,
thus we assume a normal distribution and a similar variance. We perform unpaired
tests, since the amount of bones for each side is not the same. We reject the null
hypothesis when the p-values are below 0.05. The statistics for femurs, Tabs. 4.1
and 4.2, shows asymmetry in all measurements except the bone length. For tibias,
Tabs. 4.3 and 4.4, plateau height and slope are asymmetric.

Table 4.3: Results of t-tests for left and right on tibia male Caucasian.
Measurement Left µ± σ Right µ± σ P-value
Bone length [mm] 363.51± 18.31 369.43± 19.50 0.07

Plateau height [mm] 63.65± 3.82 66.47± 3.91 < 0.05

Plateau slope [◦] 14.96± 1.68 13.35± 1.39 < 0.05

Plateau width [mm] 82.21± 3.97 81.64± 4.85 0.46
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Table 4.4: Results of t-tests for left and right on tibia female Caucasian.
Measurement Left µ± σ Right µ± σ P-value
Bone length [mm] 345.88± 18.26 350.94± 18.55 0.07

Plateau height [mm] 55.83± 3.43 57.54± 4.40 < 0.05

Plateau slope [◦] 15.29± 2.63 14.48± 2.26 < 0.05

Plateau width [mm] 73.85± 3.39 73.97± 3.33 0.80

Discussion

A significant difference between left and right femur and tibia measurements was
found in male and female Caucasian groups. The results showed that the symmetry
is independent of the gender; in all statistical tests we obtained the same results
for female and male bones. The length shows in both bones a significant symmetry.
Interestingly, all plateau landmarks are symmetric but the width.

The automatic propagation of anatomical landmarks provides us with a powerful
tool able to analyze large datasets in a fast and accurate way, avoiding error prone
manual measurements.

In the future it will be interesting to look at symmetry differences between ethnic
groups.
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4.2 Regression of Geometrical Deformations in Femur
Bones

This section was published as a conference paper in [Seiler 2010b].

Abstract

Currently there is an increase usage of CT-based bone diagnosis because low-
radiation and cost-effective 2D imaging modalities do not provide the necessary 3D
information for bone diagnosis. The fundamental objective of our work is to build a
model connecting 2D X-ray information to 3D CT information through regression.
As a first step we propose an univariate non-parametric regression on individual
predictor variables to explore the non-linearity of the data. To later combine these
univariate models we then replace them with parametric models. We examine two
predictors, shaft length and caput collum diaphysis angle on a database of 182 CT
images of femurs. We show that for each predictor it is possible to describe 99% of
the variance through a simple up to second order parametric model. These findings
will allow us to extend to the multivariate case in the future.

Introduction

Up to now, 3D bone anatomy has been generated from X-ray images using computa-
tional tools. However these tools have focused only on 3D bone shape reconstruction
while little attention has been given to 3D reconstruction of bone mineral density,
which is important in analysis of bone fragility, orthopaedic surgery, orthopaedic
implant design, etc. We hypothesize that full 3D bone anatomy (i.e. bone shape
and bone mineral density) for X-ray based diagnosis can be achieved through devel-
opment of computational and statistical tools, making use of vast amount of femur
CT images.

The fundamental objective is to perform multivariate regression on the anatomy
of bones. As predictors, the regression model uses patient-specific metadata (e.g.
age, weight, body mass index, etc.), and image features extracted from patient ra-
diographs. The variables to predict are patient-specific 3D CT images of bones. As
a first step, in this paper we propose univariate parametric regression models based
on the exploration of non-parametric regression results for femur bones on a selected
subset of clinically meaningful morphological parameters: Femoral shaft length de-
picted in Fig. 4.1 (a,b) and caput collum diaphysis (CCD) angle in Fig. 4.1 (c).

Currently in medical image regression, parametric (e.g. [Yang 2008, Rao 2008,
Liu 2004]) and non-parametric (e.g. [Davis 2007]) approaches have been employed.

• On one hand, parametric-based approaches can be utilized for multivariate
regression without encountering the curse of dimensionality problem, but its
use pre-imposes a statistical structure on the data.
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(a) (b) (c)

Figure 4.1: (a) Starting point of shaft length morphological parameter at the greater
trochanter. (b) End point between condyles. (c) CCD angle.

• On the other hand, non-parametric approaches do not impose a certain struc-
ture, but they suffer from the curse of dimensionality when trying to op-
timize for hyper-parameters in high-dimensional spaces. However, provided
low-dimension subspaces can be found, efficient optimization could be per-
formed. Nevertheless, this is still an open research question [Gerber 2009,
Steinke 2009].

Therefore, we selectively combine these two approaches to solve the problem in a
low-dimensional space, without pre-imposing a statistical data structure. For this
goal we propose a two-step approach. First, we explore the data structure through
univariate non-parametric regression. This step enforces no assumptions on the
data structure while avoiding the curse of dimensionality problem. Second, we
parametrize the explored structures.

In [Davis 2007] the authors showed kernel regression formulated with Fréchet
weighted means to take into account the non-Euclidean nature of diffeomorphisms
endowed with a right invariant metric (LDDMM) and applied it to images of the
brain. In contrast, in this work we formulate kernel regression in an Euclidean way
in a Log-Euclidean framework. This simplifies and speeds-up the process signifi-
cantly while still taking into account a large part of the non-Euclidean nature of
the manifold-valued data. Furthermore, this simplification allows for other compu-
tations that are out of reach to LDDMM, such as determining the optimal kernel
bandwidth through cross-validation. The Log-Euclidean framework uses stationary
velocity fields to parametrize a diffeomorphic deformation, whereas in [Davis 2007]
non-stationary velocity fields are used. Although the theory shows that not all dif-
feomorphic deformation can be reached with stationary velocity fields; there is no
indication so far that this affects the anatomical shape analysis in any way.

In the following, we develop the methodology and show results obtained on femur
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CT images.

Methods

The methods description will be divided in five parts: Log-domain registration,
Log-Euclidean statistics, non-parametric kernel regression, cross-validation and
parametrization of principal component (PC) scores.

Log-Domain Registration

To setup correspondences between anatomical images, a set of images are regis-
tered to a reference. We use the novel symmetric diffeomorphic registration ap-
proach described in [Vercauteren 2008]. What is new in this registration framework
is the efficient optimization in the log-domain. As a consequence, the results of
the registration are so-called stationary velocity fields. These velocity fields can
be looked at as generators for diffeomorphic deformations through the group expo-
nential map that can be very efficiently computed using the scaling and squaring
method [Arsigny 2006].

Log-Euclidean Statistics

Applying the Log-Euclidean framework [Arsigny 2006] on these fields allows us to
compute statistics, e.g. averages, and still preserve diffeomorphism. In the Log-
Euclidean framework, velocity fields are regular elements in a vector space; this
allows us to use simple Euclidean statistics instead of more complex non-linear
techniques, which we needed when working in the LDDMM space of diffeomorphic
transformations. To map resulting velocity fields into diffeomorphic transforma-
tions the exponential is calculated. To go from diffeomorphic transformation back
to velocity fields, a logarithmic mapping is performed. However, in many cases the
intrinsic parametrization of the transformation by its log in the log-domain regis-
tration allows to avoid this numerically unstable step. For a detailed survey of the
methodology we refer to [Pennec 2008].

Non-Parametric Kernel Regression

We use a kernel regression method to compute the deformation of the template that
best predicts the images based on prediction variables x, in our case shaft length
and CCD angle. Our kernel regression function is

m̂σ(x) = exp

(∑N
i=1Kσ(x− xi)vi∑N
i=1Kσ(x− xi)

)
, (4.1)

where N , xi, Kσ, exp and vi are the total number of images, shaft length or CCD
angle for image i, a Gaussian kernel function with σ bandwidth, the mapping from
velocity fields to diffeomorphic deformations and the ith velocity field, respectively.
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Cross-Validation

The quality of kernel regression methods strongly depends on the selection of band-
width parameters. To select a bandwidth parameter we apply cross-validation with
penalty functions. The penalty and corresponding weighting functions penalize very
small bandwidth values. Bandwidth values equal to zero are not interesting because
they are just a nearest neighbor interpolation of the data. In our case we solve the
following minimization problem:

σ̂ = argmin
σ∈R

N∑
i=1

|| log(m̂σ(xi))− vi||2Ξ(Wσ,i(xi)), (4.2)

where N , log, σ, Ξ are total number of images, mapping from diffeomorphic de-
formations to velocity fields, bandwidth and penalty function, respectively, and
Wσ,i(xi) = K1(0)/

∑N
j=1K1(σ−1(xi − xj)) is the weighting function. For details

we refer to [Härdle 1992]. By solving this optimization problem we obtain a kernel
bandwidth greater than zero which minimizes the regression function’s prediction
error for all images N .

Parametrization of Univariate Kernel Regression

To parametrize the non-linear regression function that we have established via kernel
regression, the regressed velocity fields are reduced in dimension using principle com-
ponent analysis (PCA). The data points are then projected onto a low-dimensional
space covering 99% of the variance and evaluated for possible parametrization. In
all cases that we have observed so far it is possible to fit a polynomial to each PC.
The procedure can be summarized as follows:

1. Regress velocity fields

2. PCA on regressed velocity fields

3. Plot scores for each PC

4. Fit parametric function to each score plot

The new parameterized regression model is then:

m̂(x) = exp

(
µ+

M∑
i=1

pi(x)zi

)
, (4.3)

where µ is the mean regressed velocity field, pi(·) is the ith polynomial function
representing ith PC scores, z are PCs and M the number of PCs describing 99% of
the variance.

Regression is done on 50 predictor values drawn from a normal distribution we
obtained on the original data. This way we avoid conducting PCA on the original
data and still get a reasonable representation of the original data structure.
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Figure 4.2: Left: Score values for the first three PCs. Right: Comparison of
parametric and non-parametric regression results for shaft length.
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Figure 4.3: Left: Score values for the first two PCs. Right: Comparison of para-
metric and non-parametric regression results for CCD angle.

Results

Considering generalized cross-validation (GCV), Ξ(u) = (1 − u)−2, as the penalty
function in (4.2) we obtain 2.1 for shaft length and 1.6 for CCD angle. With these
bandwidth values, prediction is performed on a dataset of 182 left femur CT images.

To validate the results, 50 velocity fields were predicted with prediction values
drawn from the normal distribution of the original data. Then the exponential was
taken of these fields and the shaft length and CCD angle were measured in the
exponentiated fields.

Shaft Length Regression

To find the best parametric model, different polynomials were evaluated. Our eval-
uation showed that the best fit is linear for all PCs. In Fig. 4.2 the score plots
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PC1 PC2 PC3 RMS [mm]

Parametric 1 1 2 5 1.37
Parametric 2 1 2 3 2.26
Parametric 3 2 2 5 0.97
Parametric 4 1 1 1 0.83
Non-parametric - - - 0.84

Table 4.5: Shaft length parametrization comparison. PCn columns show the order
of the polynomial fit used for the corresponding PC.

PC1 PC2 RMS [degrees]

Parametric 1 2 3 1.14
Parametric 2 1 2 0.88
Parametric 3 1 1 0.98
Non-parametric - - 1.00

Table 4.6: CCD parametrization comparison. PCn columns show the order of the
polynomial fit used for the corresponding PC.

are depicted and in Tab. 4.5 four different parametrization and the root mean
square (RMS) prediction error are listed. Parametric model 4 performs similar to
the non-parametric model. In Fig. 4.2 the prediction values are compared in a more
qualitative manner.

Caput Collum Diaphysis Angle Regression

Similar to the shaft length low order polynomial give better prediction results. The
best prediction results are reached using a linear parametrization for the first PC
and quadratic for the second (Tab. 4.6). This parametric model even outperforms
the non-parametric model. See Fig. 4.3 for score and prediction error plot.

Discussion and Conclusions

Only three PCs for shaft length and two for CCD angle are needed to describe
99% of the variance in the velocity fields. This fact enables us to evaluate each
predictor individually. Surprisingly, in both experiments low order polynomial pa-
rameterizations provided the best results. One possible reason for this could be the
behavior of polynomials at the boundary data points. In both cases the parametric
slightly outperforms the non-parametric model. It seems that the non-parametric
model overfits on the training data. Therefore, we gain in three ways from para-
metric models: Simplicity of the model, computational efficiency and reduction of
overfitting.

We plan to evaluate other parametric functions to avoid possible problems at
boundary data points. The shown validation can only test the consistency of the
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method, therefore we will further validate our method by comparing the prediction
to manual segmentation results. In future work, simplicity and efficiency, will allow
us to use univariate exploration methods to build multivariate regression models
with two and more predictors.
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4.3 Biomechanics of Femur Bones

Implant design manufacturers rely on limited amount of anatomical information to
design femur implants. Furthermore, differences among subpopulations (stratum)
within the overall population in terms of ethnicity, height, gender, etc. are usually
not considered. This could partially be caused by the lack of large scale studies to
understand the biomechanics of bones. Most studies have been conducted on low
sample sizes [Keyak 1990, Schileo 2007] with some exceptions [Bryan 2009]. This
might be due to the inaccessibility of large and public CT image datasets. Even
with large datasets available, the manual effort that is required to conduct Finite
Element (FE) analysis from CT images makes large scale analysis difficult. Two of
the main problems are:

1. Creation of valid meshes without manual interventions

2. Automatic assignment of boundary conditions to anatomically corresponding
areas

To tackle these problems, we proposed in [Bonaretti 2010] to use Statistical Ap-
pearence Models (SAMs) to conduct large-scale FE simulations. We analyzed biome-
chanical differences between 80 female and 57 male Caucasian subjects. Our pro-
posed method is described in Fig. 4.4. The registration step that is needed to setup
the SAM is preformed with the standard log-demons algorithm [Vercauteren 2009]
after initializing with our method, as described in Section 2.6, with 2 levels and 4
regions. This femur specific polyaffine model is necessary to capture torsion and ro-
tation in head and condyle regions of the femur bone. The SAM allows us to sample
plausible bone instances from the PCA model and run FE analysis. To evaluate
the stiffness of the femur bones, we applied a vertical load on the femoral head in
the direction of the condyles while the condyles were fixed in all directions. The
magnitude of the applied load was adjusted according to the weight of each subject.

In a second paper [Bonaretti 2011], we compared our volumetric registration-
based SAM to a mesh registration pipeline on a dataset of 157 femur CT images.
The evaluation of the FE mesh quality resulting from both approaches favored our
method. The element quality was measured in terms of Jacobian, edge ratio and
minimum angle on the mesh tetrahedrons.

In the future, it will be interesting to investigate if the element quality is linked
to the number of modes used in the SAM. A long term goal consists of incorpo-
rating uncertainties in the FE method as discussed for instance in [Stefanou 2009].
In our case, these probabilistic FE methods could be extended by incorporating
deformation statistics obtained from a cohort of images.
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Figure 4.4: Dorsal view of the left femur bone. Shown is the pipeline that allows
us to run FE simulations on a large cohort of images. In step 2, our registration
method is used to initialize the log-demons. Boundary conditions are in red. On
the right, the von Mises stresses computed with the FE simulation for one example
bone are visualized.
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4.4 Allograft Selection for Femur Bones

Figure 4.5: A+C: Three-dimensional preoperative planning. B+D: A multiplanar
osteotomy. Image source: Lucas Ritacco, Department of Medical Informatics, Vir-
tual Planning and Navigation Unit, Italian Hospital of Buenos Aires, Buenos Aires,
Argentina.

Tumor excision is the primary treatment of aggressive or recurrent benign bone
tumors and malignant bone sarcomas. This requires an invasive surgical intervention
(Fig. 4.5) resulting in a residual bone defect that can be reconstructed with a fresh
frozen bone allotransplantation. In orthopaedics, recent improvements in diagnostic
and therapeutic techniques have produced an increase of patient survival as well as
a reduction of the complication rate [Muscolo 2005]. It has been shown that the
selection of bone allograft in terms of shape and size is crucial to prevent changes
in joint mobility and load distribution, which can lead to joint fractures and early
joint degeneration [Enneking 2001]. However, current selection approaches are very
time-consuming, mostly based on manual measurements performed directly on the
bones or on three-dimensional models reconstructed from images.

Ideally, an automatic allograft selection system could perform shape comparisons
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between the patient’s anatomy and the complete bone bank. In this case, it would
be necessary to allocate extra time to the clinical work flow in order to segment the
patient’s anatomy and register it to the existing bone bank.

Practically, to avoid preprocessing, hence reducing preoperative planning time,
the authors in [Ritacco 2010] proposed a simplified protocol for bone size character-
ization. The so-called ABC protocol is based on well-known anatomical landmarks,
which can be extracted from the CT image and used in a selection criteria. The
protocol defines 6 landmarks on the distal femur: Transepicondyle distance (A),
anterior-posterior distance in the medial condyle (B) and in the lateral condyle (C).
One possible automation of this protocol requires two steps. First, CT images of
all donor bones are segmented and registered to a preselected reference. The ABC
measurements can now be performed on the reference and correspondences in the
other images can be extracted and stored. Second, the surgeon identifies manually
the ABC landmarks on the patient CT image and uses the previously stored ABC
measures to select the best match. Thus, the time consuming segmentation and reg-
istration step is performed only once, whereas for new patients only ABC landmarks
are measured.

In order to automatize the procedure, we first tried to perform non-linear regis-
tration of the CT images using the log-demons approach [Vercauteren 2008]. How-
ever, we observed that the direct use of this method failed to capture torsion and
rotation in head and condyle regions of the femur bone. To address this issue, we
proposed in [Ritacco 2012] to model the expected deformations through a femur
specific polyaffine model. We initialized the demons with a polyaffine registration
of three regions (head, shaft and condyles) using block matching [Ourselin 2000]
and regularized the subsequent iterations with a polyaffine model integrated into
the log-demons algorithm as described in Section 2.6. As a last step, we relaxed the
polyaffine constraint to allow more general local deformations regularized using a
Gaussian smoothing.

The evaluation of the automatic ABC measurements showed a good agreement
with manual measurements performed by two medical experts. The major advan-
tage of the automatic method lies in its flexibility to extend the ABC protocol to
include more or different measurements. A new protocol can be defined by sim-
ply selecting a different set of landmarks on the reference bone, the corresponding
points are then available for the entire database at no additional costs. In terms
of computation speed, the average time needed by a medical expert to perform the
manual measurements was 16 hours, and 3 minutes for the automatic method. This
clearly highlights the potential of the proposed automatic bone morphology tool for
large databases.
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4.5 Implant Shape Design for Mandible Bones

Condylar process and head
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Figure 4.6: Left: Mandible with anatomical regions. Top right: The four red
circles define the angle. Bottom right: The distance is measured between adjacent
screw holes. Image source: www.aofoundation.org.

In [Bou-Sleiman 2012], we optimized the shape of implants considering inten-
sity information in a cohort of 43 CT images. This population-based implant de-
sign approach extends recent works [Kozic 2010, Bou-Sleiman 2011] that focused on
the surface of the bone. The interested reader can find a detailed motivation of
population-based mandibular implant design in Chapter 2.

We optimized the distance between adjacent screws and the angle of the im-
plant (as illustrated in 4.6) as a function of the thickness of the bone at the screw
site and the maximum intensity values along the screws. The optimization in the
two dimensional parameter space was done using an extensive search. To obtain
correspondences between all 43 mandible CT images, we used the polyaffine trans-
formation tree registration described in Section 2.7 with four levels.

Our optimal plate design was significantly different from a standard plate man-
ufactured at Medartis AG, Basel, Switzerland. To test whether this change in the
shape of the implant affects the biomechanical stability, we plan to preform FE
analysis in the future.

http://www.aofoundation.org
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4.6 Prediction of Bone Surface for Orthopaedic Research

Figure 4.7: Distance and angle based predictors for femur and tibia. Top left:
Femoral head. Bottom left: Tibial plateau. Right: Dorsal view of femur and
frontal view of tibia.

In [Blanc 2012], we investigated the benefits of considering patient metadata and
morphometric measures to enhance bone surface shape prediction. Our investigation
compared four regression methods: partial least square regression, principal com-
ponent regression, canonical correlation analysis, and non-parametric kernel-based
regression. These methods are compared for different anatomical sites of interest in
orthopaedic research including femur and tibia. Clinically relevant covariates were
selected, and the effect of different combinations of covariates on the prediction
accuracy was investigated on a database of 142 femurs and 154 tibias.

Along with CT images we collected anthropometric, demographic and morpho-
logical covariates for each subject. The covariates that we included in the study are
the following:

• Anthropometric: Height and weight

• Demographic: Age

• Morphological: Bone angles and distances, measured on the reference bone
surface, as shown in Fig. 4.7

• Point clouds: To simulate predictors from ultrasound imaging used in
computer-assisted surgery tasks we selected patches of vertices on the surface
of the reference bone. The coordinates of all vertices are used as predictors.
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The response variables of the regression problem were three-dimensional bone sur-
faces. The correspondences between surfaces was established by using a preliminary
version of the registration method presented in Section 2.6.

We found that additional height and weight information of the patient improves
prediction accuracy. Therefore, we recommended that researchers constructing and
utilizing statistical shape models, systematically collect such meta-information in
addition to the image. Furthermore, such additional patient information could be
incorporated at the group level in the prior presented in Chapter 3.
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4.7 Heart Modeling with Incompressibility Constraints

Figure 4.8: The heart divided into 17 anatomical regions defined by the American
Heart Association.

In [Cerqueira 2002], the American Heart Association (AHA) introduced a stan-
dardized myocardial segmentation of the heart into 17 regions. Each region has
different tissue properties and anatomical functionality. An example geometry of
the heart with labeled regions is shown in Fig. 4.8.

To help clinicians study heart defects and improve diagnostic and therapeutical
procedures, the motion of the heart is tracked over time using 3D cine MRI se-
quences. The analysis is performed on the change per regions over time on a cohort
of images. The tracking is done using registration algorithms. In [McLeod 2012],
we propose a new kind of registration to tackle this task. The registration builds on
the polyaffine transformation tree approach presented in this thesis. Additionally,
we introduce new constraints that are in accordance with clinical evidence.

It was reported in [Glass 1991] that during the cardiac cycle the heart muscle
changes its volume approximately 5%. We incorporated this clinical prior knowledge
as a penalty term on the determinants of the log affine transformation parameter.
To further regularize the results we assume that neighboring regions have similar
transformation parameter and we introduce a second constraint penalizing a Log-
Euclidean distance between adjacent regions.

We obtained results on a dataset of 10 healthy volunteers on the left ventricle.
The volume change on average is within an approximate 20% range. To achieve the
ideal 5% of volume change during a cycle we plan to increase the number of regions
by further subdividing the anatomical regions. This subdivision could be guided
by the data-driven approach that we employed for femur and mandible bones as
presented in Chapter 2.





Chapter 5

Conclusion and Perspectives

In this chapter, we make an overall conclusion of this Ph.D. thesis and give our
perspective on interesting open questions. We believe the work on statistics of trees
in the context of Phylogenetic Trees has the potential to provide interesting insights
in polyaffine transformation trees. We give a short introduction to this topic in
Appendix A.
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5.1 Conclusion

In medical image analysis, geometrical deformations are used to model intersub-
ject variability. In orthopaedic applications, the geometrical variability is usually
observable across anatomical scales. For instance, anatomical differences between
mandible bones of different patients can be found on a coarse scale, between the
entire left or right side, or on a fine scale, between teeth. Each level of granularity
has specific regions of interest in clinical applications. The challenge is to connect
the geometrical deformations to clinical regions across scales. In this manuscript,
we introduced a tree-based structuring of geometrical deformations that is able to
capture shape variability across scales and is intelligible for clinicians. We then
formulated a statistical estimation of the transformation parameter which allowed
us to incorporate deformation statistics as a prior. The improved intelligibility for
clinicians and accuracy makes our method a good candidate for clinical use.

In Chapter 2, we introduced a novel way to capture anatomical variability with
polyaffine transformation trees in a mathematical rigorous framework and computa-
tional efficient optimization. We showed two applications where this new description
of the anatomy is helpful. In allograft selection for tumoral femur bone replacement,
on a dataset of 146 CT images, the results showed an improved accuracy of the
registration with a much smaller set of parameters with respect to standard meth-
ods. In the implant design application, we illustrated, on a dataset of 42 mandible
CT images, that our method is able to capture the anatomical differences across
scales. Furthermore, we illustrated how the new registration can be linked to known
anatomical regions. Finally, the clustering of selected regions highlighted the intel-
ligibility of our new approach in medical applications.

In Chapter 3, we formulated the estimation of polyaffine transformation trees
in a Bayesian framework. The Bayesian interoperation of our registration method
allowed us to optimize all scales simultaneously as opposed to the traditional coarse
to fine optimization scheme. We introduced a General Linear Model (GLM) for mul-
tiscale intersubject deformations and we gave an interpretation of our assumption
to neglect the off-block diagonal elements of the concentration matrix in terms of
conditional independence of regions. To our best knowledge, this is the first attempt
towards the incorporation of deformation statistics at the group level for polyaffine
registration. The results indicate that incorporating deformation statistics increases
registration accuracy (in terms of Dice coefficient and contour mean distance on the
manually segmented bone mask) and robustness (in terms of determinant, rotation
and translation part of the polyaffine parameter).

In Chapter 4, we presented seven different clinical applications of our work car-
ried out in the context of five collaborations. In addition to applications in or-
thopedics (symmetric assessment of tibias and femurs, regression of deformations
from landmarks distances and angles for femur bones, biomechanics of femurs, al-
lograft selection for femurs, implant design for mandibles, prediction models for
orthopaedic research), we pointed out that our methods can be translated to other
fields (heart modeling). Even though, the presented clinical applications have yet
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to fully take advantage of the intelligibility of our method, they benefit from the
improved registration accuracy (as shown in Chapter 2).

Overall, we conclude that the next steps towards an intelligible description of
the anatomy is to fully take advantage of the tree structure. As of now, we consider
the multiscale structure by optimizing the entire tree simultaneously, considering
implicitly the connection of parent nodes (i.e. regions) and child nodes through the
weight of each node.

In this manuscript, we made two main assumptions:

1. Topology of the weight tree is the same for all patients (with varying trans-
formation parameters)

2. The estimated polyaffine parameter do not influence the weight tree topology

To relax the two assumptions we consider works on statistics of trees (e.g. Phylo-
genetic Trees) or applied topology. A short introduction in Phylogenetic Trees is
given in Appendix A. Some ideas on how to combine Phylogenetic Trees and our
trees are given in the long term perspectives (Section 5.3.6).

5.2 Short Term Perspectives

During the course of writing this Ph.D. thesis many questions have been raised and
not all of them have been addressed. Here is a list of short term perspectives of
same of these questions.

5.2.1 Validation on 100’000 Landmarks in 400 Spine CT’s

In Chapter 2, the validation of our method was performed on 146 femur bones using
manual measurements from two medical experts (one medical expert performed the
measurements twice to yield intra-rater errors). This validation was task specific for
allograft selection based on the same measurements. For the mandible bones, we did
not have such a task-oriented validation available. According to [Rohlfing 2012], a
reliable accuracy test would involve segmenting all 42 images into anatomical regions
and testing of the overlap of each region. As a first step, the accuracy test was done
on one region representing the entire bone. The segmentations were performed
manually and the accuracy was tested in terms of overlap score and mean contour
distance.

For the next step of evaluation, we plant to use a unique dataset from the
anatomist Nicolas Bronsard at the Centre Hospitalier Universitaire de Nice, France.
In [Bronsard 2012], Nicolas Bronsard measured 100’000 landmarks in 400 spine CT
images. The measurements include 27 landmarks on L1, 50 landmarks on L2-L5 and
23 landmarks on S1 (illustrations of a subset of landmarks are shown in Fig. 5.1).
We plan to validate our method and explore anatomical questions in collaboration
with Nicolas Bronsard and his impressive dataset.
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Figure 5.1: Landmarks measurements (green circles) on lumbar spine L1 and L2.
Left: Coronal plane. Middle: Sagittal plane. Right: Transverse plane. Image
source: Nicolas Bronsard, Centre Hospitalier Universitaire de Nice, France.

5.2.2 More Structures: Spine, Whole Body Scans, Brain

The methods described in this manuscript are not specific to any anatomical struc-
ture. We conducted preliminary experiments on spine CT images and brain MRI.
As a first step, we propose to create weights enclosing all five vertebra for an initial
affine alignment with a subdivision into vertebrae L1-L5 (Fig. 5.2). Further subdi-
vision per vertebra are possible either via our data-driven approach or by including
anatomical prior knowledge from the anatomist.

In the brain dataset LPBA40 from LONI, we explored data-driven regions as
depicted in Fig. 5.3. As anticipated, we obtained a splitting (at level 2) into the
two hemispheres. The data-driven definition of weights was computed from struc-
ture tensors [Clatz 2005, Taquet 2011] instead of the gradient image as presented
in Chapter 2. Despite the fact that the weights can be anatomical justified, the
obtained transformations were not conclusive. At this point, we conjecture that the
regions are not homogenous enough to provide a consistent estimation of transfor-
mations. We plan to investigate other ways to obtain more homogenous regions, for
instance, a good candidate could be the recently introduced regional flux analysis
of longitudinal atrophy in Alzheimer’s disease [Lorenzi 2012].

Another interesting field application are whole body scans. Whole body scans
clearly need a global initialization of major structures prior to any kind of analy-
sis. Since our approach is based on polyaffine transformations, which were initially
designed to handle articulated structures, we believe that our method could be a
good candidate. Another important requirement for whole body scans is the need
for efficient algorithms to handle the large datasets. Our method is driven by the
log-demons algorithm, which is known for its efficiency, indicating that it could be
helpful for large images.
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Figure 5.2: An example surface with weight regions superimposed. The weights were
computed using the data-driven approach presented in Chapter 2. Each Gaussian
weight represents one region and is visualized as one ellipsoids thresholded at σ.
The surfaces were extract from one of the spine CT images from Nicolas Bronsard
at the Centre Hospitalier Universitaire de Nice, France.
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Front

Side

Figure 5.3: Four levels of regions derived from structure tensors using the data-
driven approach introduced in Chapter 2. Each Gaussian weight represents one
region and is visualized as one ellipsoid at σ. Brain MRI from the LONI LPBA40
dataset.
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5.2.3 Regions Derived from Atlases

The current ITK implementation (Appendix C) can handle manually defined and
data-driven regions. In case of manually defined regions, the user needs to add an
additional argument specifying a label image. Each integer label is read as one region
and converted to a Gaussian weight. This allows us to run further experiments using
atlases.

5.2.4 Multivariate Regression on Geometrical Deformations

In [Blanc 2009], we presented conditional shape models for bone surfaces extracted
from 170 femur CT images. We conditioned the surface shape distribution with
patient metadata (age, height, and weight) and morphometric information (femur
length, inter-condyle distance, neck length, vertical head diameter, collo-diaphysal
angle, and anteversion angle). The results highlighted the more compact model
that can be attained by conditioning the space of plausible shapes, making the pro-
posed method suitable to create personalized shape models. The extension of this
approach to shape models of bone mineral density is not straightforward due to
the large number of variables (voxels) present in medical images. We stated that
the regression problem becomes computationally challenging unless dimensionality
reduction techniques are employed or a low-dimensional parameterization of the
geometrical deformation is used. A solution was presented in [Rohlfing 2009] intro-
ducing a generalized multi-linear regression for appearance atlases and illustrated
on brain MR images of 36 subjects. The authors solve one regression model for each
voxel independently.

The introduction of our new parameterization of diffeomorphisms with polyaffine
transformation trees opens an alternative way. In the light of our registration with
groupwise deformation statistics as a prior (Chapter 3), we are now able to adapt
[Blanc 2009] for appearance regression. The main idea is to use the estimated co-
variance matrix (inverse of the concentration matrix) and the sample mean as the
parameters of a normal distribution. This normal distribution can now be condi-
tioned along the lines of [Blanc 2009]. Synergies with the developments on Bayesian
estimation of transformation parameters described in Section 5.3.2 and 5.3.4 are
anticipated, since these approaches also try to estimate the mean and concentration
matrix of transformations.

5.3 Long Term Perspectives

Long term perspectives on questions that have been raised during the course of this
Ph.D. are addressed here.
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5.3.1 Probabilistic FEM Parameterized with Polyaffine Transfor-
mation Trees

Building on our work in biomechanics with Statistical Appearance Models (Section
4.3), a long term goal consists of incorporating uncertainties in the Finite Element
Method (FEM) as discussed for instance in [Stefanou 2009]. In our case, these prob-
abilistic FEM approaches could be extended by incorporating deformation statistics
obtained from a cohort of images. The mesh geometry could be modeled not as one
instance but as a distribution.

To enable this kind of computationally intense analysis, the polyaffine basis
could be a possible candidate to replace meshes. Efforts in isogeometric analysis
[Hughes 2005, Vuong 2010], where the meshes are parametrized with spline func-
tions, could be considered to use polyaffine transformation trees as the basis instead
of splines.

5.3.2 Empirical Bayes Method to Optimize Hyperparamter

Building on the Bayesian formulation of our registration method from Chapter 3, we
could optimize the hyperparameter Γ of the normal prior with the Empirical Bayes
Method. The method was introduced in [MacKay 1992] and recently extended to fa-
vor sparse hyperparameter [Tipping 2001, Wipf 2011]. In [Zhang 2011], the authors
introduced extensions for hyperparameter in the form of block diagonal matrices.
However, it is unclear how off-block diagonal elements of the hyperparemeter can
be included in the optimization.

In [Sabuncu 2011], the authors used the Empirical Bayes Method to predict the
age of brain MR images by learning a sparse set of spatial predictors. The predictors
are voxel-wise measurements of gray matter density values obtained through the
Jacobian of the non-linear deformations.

5.3.3 Sparse Anatomical Relations at the Group Level

If we made an additional assumption that regions are only sparsely related to each
other, we could replace the block diagonal sample covariance matrix inversion from
Chapter 3 with the Graphical Lasso [Friedman 2008, Banerjee 2008]. Extensions to
structured matrices using the Kronecker product [Werner 2008, Tsiligkaridis 2012]
might be worth to explore.

In the case of mandibles, this kind of sparse relations between regions are largely
unexplored in the clinical setting and thus do not provide any way to validate new
results. Therefore, articulated structures, where the structural relations are known,
would be a better starting point.

5.3.4 Hyperpriors for Polyaffine Parameter

As shown in Chapter 3, the block structure of the covariance matrix has an in-
terpretation in terms of the anatomy. Each 12 × 12 diagonal block represents one
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region, the off-diagonal blocks represent the covariance between two regions. Fur-
thermore, the inverse of the covariance matrix gives us conditional independences
between regions, which indicates anatomical relations between parts of the anatomy.
In Chapter 3, we limited our concentration matrix to be blockdiagonal, removing
all relations between regions. We plan to work on an extension to include the off-
diagonal blocks in the concentration matrix as well. The long term objective is to
consider the prior mean µ and the prior concentration Γ not as fixed parameters
but as hyperpriors following their own distributions.

In Bayesian statistics, hyperpriors represent prior distributions on hyperparam-
eters, which are the parameters of the prior distribution. A possible choice of hyper-
priors can be found in [Wang 2009, Wang 2012]. With the inclusion of hyperpriors,
we will need to move from the analytical closed form solutions to the posterior
computation using Markov Chain Monte Carlo methods.

5.3.5 Applied Topology to Analyze Tree Deformations

One of the ideas of applied topology is to use topology to understand the geometry
of the underlying space of a dataset qualitatively, e.g. connectedness or the num-
ber of holes of that space, before doing computer-intense quantitative analysis. In
the context of Big Data, applied topology already found its application to detect
the structure of the data with possible subsequent geometrical statistical analysis
(for instance [Bubenik 2010]). In the field of network engineering, one application of
topology is to take a collection of local data and try to patch it together to obtain an
understanding of the global landscape. On the theoretical side, the Mayer-Vietoris
principle provides a deep idea from homology to describe the transition from local
to global data. In the field of biology, during the workshop on “Statistics, Geom-
etry, and Combinatorics on Stratified Spaces Arising from Biological Problems” at
MBI1, presentations were given covering the current state in this field. Topics of
the presentations ranged from general surveys of stratified spaces, the geometry and
statistics of geometric trees, and statistical topology.

The connection to polyaffine transformations lays in the fact that we describe
deformations in a local region and combine everything to a global diffeomorphims.
Future research could address questions on how applied topology could be used to
learn the structural relations between parts of the anatomy.

5.3.6 A Prior Distribution of Weight Trees

In this manuscript, we considered the weights of the image regions to be fixed during
the registration. We estimated the weights from image features before the estimation
of polyaffine parameter through a generalization of the Oriented Bounding Boxes
Tree algorithm [Gottschalk 1996]. We believe that this is a good starting point for
the registration, but not the optimal configuration of weights. Another limitation of

1Mathematical Biosciences Institute at the Ohio State University, OH, USA
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Figure 5.4: Labeled weight trees and corresponding image regions.

the current work is the weight definition on the template rather than the entire co-
hort of images. Furthermore, the Gaussian weights could be adopted to other types
of functions as long as they are smooth so that all requirements for diffeomorphic
deformations from SVFs are satisfied.

Instead of computing a deterministic configuration of weights prior to the regis-
tration, we could create a distribution of possible weight configurations and include
it in our Bayesian formulation (Chapter 3) as an additional prior. The distribution
of weight trees could be inspired by statistics for Phylogenetic Trees. However, this
will lead to non-analytic solutions, and force us to use Monte Carlo methods to
compute the posterior distribution of polyaffine parameter.

An introduction to Phylogenetic Trees and trees space can be found in Ap-
pendix A. Figure 5.4, shows a possible connection between labeled tree combinatorics
as used in phylogenetic analysis and our image regions. Each column represents a
different tree topology. The question here is, what is the best combination of regions
across different levels with four fixed leaf node regions.
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5.3.7 Image Registration by MCMC Simulations

In the very long term, we envision an image registration that does not rely on regis-
tration algorithms like the log-demons but is formulated entirely within a statistical
framework. We plan a generative model with prior distributions on the weight tree
and the polyaffine parameter. For the polyaffine parameter distribution, we can
make reasonable assumptions, for instance we expect a volume change of 0.5 to 2

with respect to the template for all regions. On the other hand, the distribution of
the weight tree is an even more challenging problem.

The new statistical registration algorithm will be based on MCMC simulations.
We could sample form the posterior distribution of polyaffine parameter, generate
SVFs and compute performance scores to guide the random walk of the simula-
tion. These performance scores could be manually measured landmarks or Dice
coefficients from segmentations.

We think this kind of simulation is now possible because we introduced a gen-
erative linear model of geometrical deformations. This could open up many new
avenues, where image registration is not concerned with finding the best possible
image metric to be optimized but with finding the smartest way of sampling from
the posterior distribution.

Interesting works on finite element based Bayesian image registration was re-
cently introduced in [Risholm 2011, Janoos 2012a, Janoos 2012b]. The authors sam-
ple from the posterior distribution of deformation parameter and provide uncertainty
quantifications for parameter, which is important in many clinical applications.

5.3.8 Angiogenesis of Heart Muscle Fibers

Angiogenesis is the physiological process of formation and splitting of blood-vessels.
In the context of cancer and cardiovascular research, angiogenesis is studied both
as a diagnostic and therapeutical tool. As seen in Fig. 5.5, a scanning electron
microscopy image of heart muscle fibers reveals a tree-like branching structure
of the fibers. In the clinical context, it is hypothesized that different branching
structure exist for patient with cardiovascular diseases with respect to the control
group. Therefore, there is a need to perform quantitative analysis on this kind of
images. One interesting question in this setting would be the classification of un-
healthy versus control patients based on the branching structure of the vessel tree
[Metzen 2009, Aydin 2009, Lo 2010, Owen 2011, Feragen 2011, Aydin 2012]. These
kind of questions could be addressed with more advanced polyaffine transformation
trees.
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Figure 5.5: Scanning electron microscopy image of heart muscle fibers. Image source:
Institute of Anatomy, University of Bern.





Appendix A

Appendix: Phylogenetic Trees

The work in statistics on Phylogenetic Trees is outlined here to highlight possible
synergies between polyaffine transformation trees and phylogenetics.

A.1 What are Phylogenetic Trees?

Phylogenetic Trees describe the evolutionary process of species. The tree has a
root node, the origin of the species, from which child nodes represent species that
descent form the origin. Each child node can then itself become the parent of
another subspecies. A recent example of a Phylogenetic Trees is shown in Figure
A.1. It is a very detailed tree of life estimated using DNA sequence data as of 2006
and published in [Ciccarelli 2006]. DNA sequences obtained from different genes
across species are aligned prior to the tree-based statistical analysis. The alignment
can be done with known orthologs, paralogs or xenologs genes. The estimation
of the tree can be done with many different methods, ranging from parametric to
non-parameteric.

A.2 Geometry of Phylogenetic Tree Space

Let’s define an n-tree as a asyclic graph with n leaf nodes and one root node. The
root node has index 0 and the leaf nodes are indexed from 1 to n. A metric n-tree
is an n-tree with all inner edges having length greater than 0. A binary 4-trees has
15 quadrants (or 2-dimensional orthant) according to (2n − 3)!! = (2n − 3) · (2n −
5) · · · 5 · 3 · 1, which are glued together along their common faces. For more details
of enumerating labeled trees we refer the reader to [Stanley 2001]. A subspace of
the 4-tree space with three quadrants is show in Figure A.2. An illustration of the
full tree space with all 15 quadrants is shown in [Billera 2001].

Tree rotations are one way to measure the distance between two trees. A tree
rotation shrinks an inner edge to 0, then expands the resulting vertex of degree 4

into a new inner edge and two new vertices of degree 3. The degree of a vertex
is measured by counting the number of edges connected to it. In Figure A.3, an
example rotation is shown for a 4-tree.

The metric of this space of trees is a sum of Euclidean distances for each quadrant
between two points. A geodesic in this space is the path that describes the minimum
sum of Euclidean distances between two points. As shown in [Billera 2001], the tree
space has non-positive curvature. This property of the space provides uniqueness
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Figure A.1: Shown is a phylogenetic tree of relationships between species whose
genomes had been sequenced until 2006. The last universal ancestor of all life on
earth is represented as the root node. The color code visualizes the three domains of
life: pink represents eukaryota (animals, plants and fungi), blue represents bacteria,
and green represents archaea. The Homo sapiens can be found second from the
rightmost edge of the pink segment. Image source: [Ciccarelli 2006]
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Figure A.2: A subspace of the 4-tree space showing the origin, where all trees come
together, and an edge representing the common boundary ray shared between three
different 4-trees. The three quadrants are an idealization, in theory they would go
to infinity in two directions. Every point on the quadrants represents one 4-tree. To
change the inner edges of the tree we move to a different quadrant. The common
boundary ray is a 4-tree with only one edge. At the origin we have no inner edges.
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Figure A.3: A rotation from one tree configuration of inner edges to another through
an intermediate change of the number of inner edges.
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of geodesic paths, and existence and uniqueness of various type of centroids. This
allows us to do statistics in the space of trees.



Appendix B

Appendix: Directional Derivative
of Matrices

We use the method of directional derivatives to derive C w.r.t. M in the direction
of W in Section 2.2.3. When the directional derivative is zero we have the minimal
solution (in a least square sense) for M .

We present three definitions and properties that we later use for the method.
First, we use the following definitions for directional derivative:

∂WC(M) =
limε→0(C(M + εW )− C(M))

ε
⇐⇒

C(M + εW ) = C(M) + ε∂WC(M) +O(ε2).

Second, we use the Frobenius inner product to write,

∂WC(M) =

〈
W,

∂C(M)

∂M

〉
= Trace

(
W T ∂C(M)

∂M

)
.

Third, we use the following properties of the trace,

Trace(W (∇C)) = Trace((∇C)W ) = Trace(W T (∇C)T ),

Trace(W + (∇C)) = Trace(W ) + Trace(∇C).

Now, the method is to compute the Taylor expansion of C(M + εW ), then we take
the non-W part of the first order term and by using the properties of the trace, we
rewrite it as,

∂WC(M) = Trace(W T (∇C)), (B.1)

now by identification, we have,

∂C(M)

∂M
= ∇C.
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Appendix: Implementation in ITK

The majority of the code is written with ITK filters. For the visualization the VTK
framework is used. An open source copy of the code can be found on github:

• git://github.com/ChristofSeiler/PolyaffineTransformationTrees.git

To build binaries from the source it is required to install the latest ITK version1.
After successful installation of ITK the following commands need to be execute on
the terminal:

> git clone
git://github.com/ChristofSeiler/PolyaffineTransformationTrees.git
MyPolyaffineTransformationTrees

> cd MyPolyaffineTransformationTrees
> ccmake .
> make

In the “ccmake .” step it might be necessary to define the path to the ITK build
folder.

C.1 Extending the Log-Demons Code

The code is based on the log-demons described in [Vercauteren 2009]. This code is
freely available on the insight journal website2. The main changes that we made are
isolated to one method in one class,

itk::PolyaffineLogDomainDeformableRegistrationFilter::
SmoothGivenField(VelocityFieldType * field,

const double StandardDeviations[ImageDimension])

This function is called to regularize the estimated SVF after every iteration of the
log-demons algorithm. We overwrite this method to estimate the polyaffine trans-
formation tree. The first argument is the unregularized SVF. The second argument
is the amount of smoothing applied in the standard Gaussian smoothing step. In
our implementation the second arguments is not used.

1At the time of writing ITK 4.1.0
2http://www.insight-journal.org/

git://github.com/ChristofSeiler/PolyaffineTransformationTrees.git
http://www.insight-journal.org/
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itk:Transform

itk:PolyaffineStationaryVelocityFieldTransform itk:ManualPolyaffineStationaryVelocityFieldTransform

Figure C.1: UML of the new data-driven and manual polyaffine transformation tree
extending from itk::Transform.

C.2 Trees in ITK

To implement the tree structure we use the class itk::TreeNode, which allows to add
nodes and set values to nodes.

C.3 New Transformation Class for Polyaffine Trees

In Fig. C.1, the UML of the newly introduced data-driven and manual polyaffine
transformation tree classes is depicted. The two classes extend from itk::Transform
and thus inherit all the basic functionality, e.g. read and write to an external file.

C.4 Input Parameters

• Fixed image

• Fixed mask image

• Moving image

• Moving mask image

• Number of tree levels

• Label image to define manual regions (optional)

• Initial velocity field, e.g. initialization from coarser level (optional)

• Weight scaling factor to describe the amount of overlap between regions, a
higher value represents a higher overlap (optional)

• Dilation radius added to the union of fixed and moving mask images (optional)

• Variance σ2
v of the velocity field vectors in mm (optional)

• Mean and concentration matrix for the normal prior distribution on the de-
formation parameter (optional)
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C.5 Output Parameters

• Polyaffine tree transform

C.6 Example

The following example command registers a template image to a subject with five
levels, 4 mm variance of the velocity vectors and 2 voxel dilation of the union of the
mask images,

> PolyaffineLogDomainDemonsRegistration -f TemplateImage.mhd
-F TemplateMaskImage.mhd -m SubjectImage.mhd -M SubjectMaskImage.mhd
-s 5 -w 4 -r 2

Registration with prior,

> PolyaffineLogDomainDemonsRegistration -f TemplateImage.mhd
-F TemplateMaskImage.mhd -m SubjectImage.mhd -M SubjectMaskImage.mhd
-s 5 -w 4 -r 2 --prior-Mean PriorMean.txt
--prior-Concentration PriorConcentration.txt

Registration with manual regions (the labels are expected to be numbered with
integers ranging from one to the total number of regions),

> PolyaffineLogDomainDemonsRegistration -f TemplateImage.mhd
-F TemplateMaskImage.mhd -m SubjectImage.mhd -M SubjectMaskImage.mhd
-s 5 -w 4 -r 2 -R LabelImageManualRegions.mhd
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