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Abstract

Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expres-
sion, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic
precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects,
such as morphology and possibly also behaviour; however, such a correlation has not yet been
exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and
pelleted to form high-density cultures and were then randomly divided into four groups to differen-
tiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were
expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using
phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipe-
line. Seven morphological features were extracted for each of the segmented cells. Statistical analysis
was performed on the seven-dimensional feature vectors, using a tree-like classification method.
Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation
media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic,
osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse
microscopy data were obtained and contained new evidence that two cell shape features, eccen-
tricity and filopodia (= ’fingers’) are highly informative to classify myogenic differentiation from
all others. However, no robust classifiers could be identified for the other cell differentiation
paths. The results suggest that non-invasive automated time-lapse microscopy could potentially
be used to predict the stem cell fate of hMSCs for clinical application, based on morphology
for earlier time-points. The classification is challenged by cell density, proliferation and possible
unknown donor-specific factors, which affect the performance of morphology-based approaches.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Autologous human mesenchymal stem cells (hMSCs) have
been proposed as a major source for regenerative therapy
for the musculoskeletal system (Giordano et al., 2007;
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Caplan, 1991; Pittenger, 2008; Chamberlain, 2006;
Prockop, 1997, 2001). The reason for this is three-fold: first,
these cells can be isolated from the human body (bone-
marrow, adipose tissue); second, these cells can be
expanded rapidly in vitro (Caplan, 1991, 2005; Pittenger
et al., 1999); third, there is no ethical controversy regarding
their use. The natural stem-cell ’niche’ of these cells,
however, has not been described in detail and current
laboratory practice is to expand the cells as a mixed and
heterogeneous cell population, starting from a few founder
cells (Chamberlain, 2006; da Silva Meirelles et al., 2008).
The International Society for Cellular Therapy defined the
minimal standards for a stromal cell population to be called
’hMSCs’: first, the MSCs must be plastic-adherent when
maintained in standard culture conditions; second, the
MSCs must express CD105, CD73 and CD90 and lack
expression of CD45, CD34, CD14 or CD11b, CD79a or
CD19 and HLA-DR surface molecules; third, the MSCs
must differentiate to osteoblasts, adipocytes and chondro-
blasts in vitro (Dominici et al., 2006). However, this defini-
tion still does not define the source pool of these cell
populations, neither does it tell about the heterogeneity
of these cells and also its outcome.

hMSCs have attracted immense research interest in the
field of regenerative medicine, due to their ability to be
cultured for successive passages and multi-lineage differ-
entiation. However, the molecular mechanisms governing
MSCs self-renewal and differentiation remain largely
unknown. The self-renewal capability of MSCs was only
recently proven with ’true single cell clonal tracing’ of
lineages (Sarugaser et al., 2009). However, the hetero-
genic nature of these stem cell populations has been
noted to be a major source of variance (Sengers et al.,
2009; Solchaga et al., 1999; Roeder and Radtke, 2009).
The development of sophisticated techniques, in particu-
lar clinical proteomics, has enabled researchers in various
fields to identify and characterize cell-specific biomarkers
for therapeutic purposes. For instance, a recent study
tried to understand the cellular and subcellular processes
responsible for the existence of stem cell populations in
bone marrow samples, by revealing the whole cell pro-
teome of the clonal cultures of bone marrow-derived
MSCs (Mareddy et al., 2009). However, all of these
methods require invasive manipulation of these cells and
the use of some sort of labelling or real-time reverse tran-
scription (RT)–PCR technique to confirm the phenotype
of these cells for downstream analyses or direct clinical
application. Clinical application to inject these expanded
cells into any tissue, such as the intervertebral disc, would
require prior knowledge about the differentiation state of
these cells (Dainiak et al., 2007). Here, we propose the
characterization of hMSCs without direct invasive manip-
ulation of these cells, using an approach herewith termed
’statistical stem cell’ modelling, involving microscopic
imaging and advanced image-processing algorithms. The
primary aim of this study was to observe the shape of
primary hMSCs cells undergoing differentiation on stan-
dard culture plastic under in vitro controlled conditions
and to evaluate any correlations between the shapes of

stem cells, cell type and differentiation pathways. Hence,
here we evaluate any correlations between the shapes
of stem cells and their fates during the differentiation
process of primary human MSCs in two-dimensional
(2D) cell culture.

2. Materials and methods

2.1. Cell source and expansion

Human bone marrow was harvested from a patient
undergoing spine surgery, with written consent. The
procedure was approved by the local Ethics Office (KEK
No. 187/10). hMSCs were amplified from ’buffy coat’
after density gradient centrifugation by selection for
plastic adherence. Passage 3 cells were seeded onto
standard plastic culture plates (Falcon, VWR, Switzerland)
in inductive media for osteogenic, adipogenic, myogenic,
three-dimensional (3D) alginate chondrogenic (not live-
tracked) and control and kept in culture for 21 days.
Time-lapse imaging was conducted using IncuCyte PlusW

(Essen BioScience, Bucher, Switzerland) for 6 days. At
the end of the experiments, cell phenotype during differ-
entiation was monitored by real-time RT–PCR analysis
of key genes, such as transcription factors, which are
characteristic for the osteogenic, adipogenic, myogenic
and chondrogenic pathways (Table 1).

2.2. CD marker characterization

Cells were trypsinized and resuspended in phosphate-
buffered saline (PBS) containing 0.5% bovine serum
albumin (BSA) and were stained with antibodies as given
in Table 1. 2 ml antibody reaction solution, as provided
from the manufacturer (Becton–Dickinson, Allschwil,
Switzerland) was added to 2.5�105 cells and incubated
for 30 min with the cells. The antibodies were then
removed and the cells were washed with PBS containing
0.5% BSA and kept therein until measured. The cells were
characterized on a BD™ LSR II (BD Pharmagen, Brussels,
Belgium), using forward- and side-scatter and lasers for
the specific dyes FITC, PE, AlexaFluor 488, PE-Cy5 and
PE-Cy7 (Table 2).

Table 1. Tableof analysedparameters to identifymultipotentiality
of isolated plastic-adherent hMSCs

Pathway Gene expression Histology

Osteogenesis col1, OPN von Kossa, fast red
Adipogenesis Adiponectin Oil red O/Meyer’s

haematoxylin
Chondrogenesis ACAN, col2 Safranin O/fast

green/alcian blue
Myogenesis MyoD, Desmin a-sm actin, MyoD
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2.3. Stem cell differentiation

Primary hMSCs cells were passaged and ~104 cells were
seeded into six-well plates and allowed to grow and
differentiate for up to 21 days. For chondrogenic differ-
entiation, the cells were seeded in 1.2% alginate (Fluka,
Sigma-Aldrich, Buchs, Switzerland) with 4 million cells/ml
(Mehlhorn et al., 2006; Gantenbein-Ritter et al., 2011).
Beads were produced by steadily pressing the cell sus-
pension through a syringe equipped with a 22G needle
into 102 mM CaCl2 0.9% NaCl solution, as previously
described (Gantenbein-Ritter et al., 2011).

The stem cells were differentiated in the following
media (treatments):

• Adipogenic induction medium (AIM), consisting of
a-modified Eagle’s medium (aMEM) containing 10%
fetal bovine serum (FBS), antibiotics, 0.5 mM methyl
isobutylxanthine, 1 mM dexamethasone, 10 mg/ml insulin
and 100 mM indomethacin.

• Chondrogenic differentiation medium (CHDM), consist-
ing of high-glucose (4.5 g/l) Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 6.25 mg/ml
insulin, 6.25 mg/ml transferrin, 6.25 mg/ml selenous
acid, 5.33 mg/ml g-linoleic acid and 1.25 mg/ml BSA
(ITS+, Sigma-Aldrich), 0.1 mM dexamethasone, 10 ng/ml
transforming growth factor-b1 (TGFb1; Peprotech,
London, UK), 50 mg/ml ascorbate 2-phosphate, 2 mM

pyruvate and antibiotics.
• HMSCs were seeded in 1.2% alginate (Fluka, Sigma-

Aldrich) at a density of 4�106 cells/ml.
• Osteogenic supplemented medium (OSM), consisting of

DMEM with 10% fetal calf serum (FCS) with osteogenic
supplements 50 mM ascorbate 2-phosphate, 10 mM

glycerol phosphate and 100 nM dexamethasone.
• Myogenic medium (MYM): induced cells were placed in

myogenic supplemented (MS) medium comprising
88% a-MEM, 10% antibiotics, 10% FBS, 1 nM dexa-
methasone (Sigma-Aldrich) and 2 mM hydrocortisone
(Sigma-Aldrich). The culture medium was replaced
every 3 days until multinucleated myotubes could be
observed (28 days).

2.4. Time-lapse microscopy settings

The cells of the heterogeneous hMSCs population were
monitored using an Incucyte PlusW time-lapse microscope,
which was put into a standard incubator at 5% CO2, 95%
humidity. The software of the microscope was configured
to take an image of each well every 2 h from the start of
the differentiation experiment, i.e. the imaging started
~20 min after seeding the cells and was then continued
for 6 days, with a 20 min break for media refreshment
after 3 days. This covered the exponential growing phase
until confluence. The data were collected as Tiff images
and processed using a customized image pipeline, as
described below.

2.5. Analysis of time-lapse microscopy data and
segmentation algorithms

Differentiation of cells was monitored with key marker
genes and histology. Cells were segmented using a custom-
made image processing pipeline. The segmentation pipeline
was implemented in order to distinguish cells from the back-
ground. The segmentation pipeline is composed of standard
image-processing operations in the following order: 1,
original image (Figure 1.1); 2, Sobel edge detection
(Figure 1.2); 3, image dilation (Figure 1.3); 4, removal of
objects close to image borders (Figure 1.4); 5, image erosion
(Figure 1.5); 6, removal of small objects (Figure 1.6); 7,
filling of gaps inside the cell (Figure 1.7); and 8, overlay of
the final result on the original image (Figure 1.8). Seven
morphological features were extracted from each of the
segmented cells. The feature space in which we performed
statistical classification was therefore seven-dimensional
(7D; one vector for each cell), with the following features:
area, major and minor axis lengths, perimeter, eccentricity,
extent, and number of fingers. Statistical analysis was
performed on the 7D feature vectors, using a tree-like classi-
fication method called the ’node harvest’ method, which
was introduced by Meinshausen (2010). The developed
MatlabTM and R routines are available at: http://www.math-
works.ch/matlabcentral/fileexchange/ on the webpage of
Mathworks Inc. under the project name ’cell shape classifier’.

2.6. Feature vector

Once the cells were segmented, we extracted the following
7D feature vectors (Figure 2):

1. Area: the number of pixels to a cell.
2. Major axis length: scalar specifying the length (in pixels)

of the major axis of a cell.
3. Minor axis length: the length (in pixels) of the minor

axis of a cell
4. Perimeter: the distance around the boundary of a cell.
5. Eccentricity: scalar that specifies the eccentricity of the

cell. The eccentricity is the ratio of the distance between
the foci of the cell and its major axis length. The value
ranges from 0 to 1, where 0 represents circular cells
and 1 cells that are stretched out to a line.

6. Extent: scalar that specifies the ratio of pixels inside
the cell to pixels in the enclosing box.

7. Finger: thresholded result of the Poisson equation with
boundary condition set to 0 at the contour of the cell.

In Gorelick et al. (2006), the authors used the same
algorithm to identify human fingers. Here, we took advan-
tage of the analogy between human fingers and cell ’fingers’.

2.7. Statistical Analysis using the node harvest
method

We applied the node harvest method (Meinshausen, 2010)
to classify feature vectors. Node harvest is a statistical
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classification technique that combines interpretability
and prediction accuracy and is especially suited for
low signal:noise ratio data, due to its robust estima-
tion process.

Node harvest starts by randomly generating a few
thousands nodes. Each node represents a set of obser-
vations, in our case the cells, and a set of conditions, in
our case elements of the feature vector. For instance, in
Figure 6B, the node at the bottom right contains 720
cells (y axis) with the property 0.96≤ eccentricity. The
size of the node indicates the importance, which is found
through a new type of optimization algorithm favouring
sparse solutions. The sparseness reduces the number of
nodes in the final plot and enables better interpretability.
The connection between nodes represents subsets.
Finally, on the x axis the likelihood of one cell belonging
to one cell type is shown; as can be seen, there is no
discrete classification but a continuous classification,
indicating the likelihood of assignment to either one of
the cell types.

The only parameter to define is the number of nodes
that are randomly generated at the beginning. We obtained
stable results by using 1000 nodes. Further, it is possible to
constrain the maximum number of conditions/node;
we chose one condition/node to maximize interpretability
(Meinshausen, 2010).

2.8. Real time RT–PCR

The differentiation process was monitored using ’key
genes’ for mesenchymal differentiation, i.e. adipogenic,
osteogenic, chondrogenic and myogenic. The primers were
designed using Beacon designer software (Premier Biosoft,
Palo Alto, CA, USA), synthesized at Microsynth (Balgach,
Switzerland) and tested for efficiency (around 100%)
before using in the experiment (Table 3). Real-time gene
expression was monitored and ribosomal 18Swas used as a
reference gene (Livak and Schmittgen, 2001; Schmittgen
and Zakrajsek, 2000). Around 500 ng total RNA was

Figure 1. (A–H) Illustration of the segmentation pipeline that was used to extract cells from phase-contrast images (�10 magnification).
The time-lapse microscope (Incucyte, Essen Bioscience) series was used
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reverse-transcribed using the iScript kit (Bio-Rad, Basel,
Switzerland). Real-time PCR was then carried out,
mixing 5 ml 5� (in 1� Tris–EDTA buffer) diluted cDNA
and the IQ SYBR Green Supermix (Bio-Rad) on an IQ5
cycler from Bio-Rad. The two-step amplification profile
was 45 cycles of (95�C for 15 s and 61�C for 30 s). All

amplicons were analysed using melting curve analysis
for the presence of pseudo-genes. Relative gene expres-
sion was first calculated relative to the reference gene
as ΔCT values. The relative gene expression was analysed
using the 2–ΔΔCT method (Livak and Schmittgen, 2001)
and relative to the undifferentiated cells of day 0.

Figure 2. (A–H) The seven shape features that were extracted from each cell for morphological analysis

Table 2. Labelled antibodies for characterization of primary hMSCs

Antigen Synonym Supplier Cat. no. Fluorophore Isotype

CD44 Hyaluronan receptor BD Pharmingen 555478 FITC Mouse IgG2b, k
CD90 Thy-1 glycophosphatidylinositol (GPI) anchored

conserved cell surface protein
BD Pharmingen 555595 FITC Mouse IgG1, k

CD34 Important adhesion molecule for T-lymphocytes BD Pharmingen 555823 PE-Cy5 Mouse IgG1, k
CD45 Leukocyte common antigen BD Pharmingen 557748 PE-Cy7 Mouse IgG1, k
CD105 Endoglin Invitrogen MHCD10520 AlexaFluor 488 Mouse IgG1, k
CD14 Monocyte differentiation antigen BD Pharmingen 557742 PE-Cy7 Mouse IgG2a, k

Table 3. Primers used for real-time RT–PCR

Gene abbreviation Name Forward Reverse

Hs18S Reference gene CGA TGC GGC GGC GTT ATT C TCT GTC AAT CCT GTC CGT GTC C
Chondrogenic differentiation
ACAN Aggrecan core protein CAT CAC TGC AGC TGT CAC AGC AGC ACT ACC TCC TTC
col1A2 Collagen 1A2 GTG GCA GTG ATG GAA GTG CAC CAG TAA GGC CGT TTG
col2A1 Collagen 2A1 AGC AAG AGC AAG GAG AAG GGG AGC CAG ATT GTC ATC
Osteogenic differentiation
OSC Osteocalcin GCA GAG TCC AGC AAA GGTG CCA GCC ATT GATA CAG GTA GC
OPN Osteopontin ACG CCG ACC AAG GAA AAC TC GTC CATA AAC CAC ACT ATC ACC TCG
Adipogenic differentiation
APN Adiponectin CCG TGA TGG CAG AGA TGG TATA CATA GGC ACC TTC TCC AG
Myogenic differentiation
MyoD Myosin heavy chain ACA ACG GAC GAC TTC TAT GTG CTC TTC GGG TTT CAG
DES Desmin (BD) GCA GCC AAC AAG AAC AAC CAA TCT CGC AGG TGT AGG

All primers were run at 61�C annealing temperature (Ta), using a two-step protocol.
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2.9. Histology

The cells were initially fixed in 4% paraformaldehyde
(PFA) directly on the six-well plate and stored at 4�C prior
to staining. The cells were rinsed in PBS and then stained
with Oil red O and Meyer’s haematoxylin or with nuclear
fast red and von Kossa silver stain (osteogenic pathway)
(Zuk et al., 2001). For myogenic differentiation, cells were
transferred after 14 days onto glass cover slips in six-well
plates, allowed to grow for 72 h and then fixed in 3.7%
formalin for immunostaining staining, along with the
uninduced negative controls. For immunohistochemistry,
fixed cells were first permeabilized with 100% methanol
for 2 min and blocked with 10% FBS/PBS for 1 h. The
cells were then incubated with mouse-anti-human MyoD
primary antibody (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) or rabbit anti-human a-smooth muscle actin
(a-SMA; A2066, Sigma-Aldrich). After washing, the cells
were incubated for 1 h with goat anti-mouse AlexaFluor
555 IgG1 secondary antibody (Molecular Probes, Invitrogen,
Basel, Switzerland) or with goat anti-rabbit FITC (ab6717,
Abcam, USA) for a-SMA and then incubated for 1 h in
0.5% BSA PBS and washed thoroughly. Cover slips were
mounted in slow-fade gold embedding medium with
DAPI (Molecular Probes). The cells were then imaged
using a confocal laser scanning microscope (cLSM 510,
Carl Zeiss, Jena, Germany).

3. Results

3.1. CD marker characterization

The primary cells at passage 3were homogeneously positive
for CD44, CD105 and CD90 and negative for CD14, CD34
and CD45 (data not shown).

3.2. Stem cell differentiation

Primary hMSCs could be differentiated into osteogenetic,
adipogenetic and chondrogenic progenitor cells (Figures 3–5).
The cells were differentiating into the four lineages, as
detected by relative gene expression of key marker genes
(Figure 3), and could also be stained for osteogenic (black
calcium deposition) and adipogenic (presence of red oil
droplets) activity, starting from day 9 (Figure 4). The
adipogenic pathway could be confirmed by the onset of
adiponectin (APN) expression (upregulation by a factor of
2000 times; Figure 3). Osteogenic differentiationwas found
by an increase of osteopontin (OPN). The relative gene
expression levels of collagen type I and osteocalcin (OSC),
however, were not considerably different from the levels
of the undifferentiated stem cells. Nevertheless, the
complete absence of calcium deposits in negative controls
(expansion medium and with adipogenic medium, data
not shown) could be confirmed using a histological staining
for von Kossa calcium deposition. Chondrogenic differentia-
tion could be demonstrated by the significant upregulation
of aggrecan (by a factor of 1000) and by the upregulation
of collagen type 2 (by a factor of 106; Figure 3), as well as
an increase in alcian blue staining (Figure 4). Finally,
myogenic differentiation was checked by the expression of
myosin heavy chain (MyoD), which is a transcription factor
for myogenesis and of the gene desmin (DES), which
encodes a muscle-specific class III intermediate filament.
MyoD and a-sm actin were also found positively stained
by immunohistochemistry, which further confirmed the
myogenic differentiation (Figure 5).

3.3. Node harvest

The node harvest algorithm clustered the cells into two
branches (Figure 6A–D). Eccentricity (Figure 6A–C) was

Figure 3. Relative gene expression profiles for marker genes grouped for osteogenic, adipogenic, chondrogenic and myogenic
differentiation of hMSCs
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identified to be the main classifier for myogenic differen-
tiation as well as ’fingers’, i.e. filopodia (Figure 6D).
Fingers were important to distinguish myogenic from
all other cell differentiations, i.e. control, adipogenic
and osteogenic. No clusters were identified for the other
three differentiation groups compared to all others (data
not shown).

4. Discussion

4.1. Differentiation of stem cells and correlation
with cell shape

It seems evident that expansion of primary cells is a
crucial step for the application of stem cell therapy

Figure 4. Histological stainings for each of the four differentiation lines of primary hMSCs after 12,15 and 21 days. Column 1: osteogenic
differentiation, von Kossa/fast red stain; column 2, adipogenic differentiation, oil red O/Meyer’s haematoxylin; columns 3 and 4,
chondrogenic differentiation, alcian blue and safranin O/fast green

Figure 5. Confocal laser scanning microscope images of MyoD stain (Alexa555) and for a-smooth muscle actin stain (FITC) for
myogenic differentiation and negative controls; nuclei were counterstained with DAPI. (A, B) Myotube formation after 14 days of
culture, expressing MyoD; (C) negative control; (D) positive stain for undifferentiated control; (E) positive staining for a-smooth
muscle (sm) actin of myogenic differentiation; (F) negative control
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(Majd et al., 2008; Sarugaser et al., 2009; da Silva Meirelles
et al., 2008). Here we demonstrate that modern time-lapse
microscopy could be a potential tool to predict stem cell fate
(Lutolf et al., 2009). We could successfully sort out the
myogenic differentiation pattern from the, adipogenic,
osteogenic and undifferentiated control cells, based solely
on morphological feature vector. We could demonstrate
that with the onset of myogenic differentiation (during
the first 48 h of cell expansion), primary hMSCs undergo
changes in eccentricity and cells undergoing myogenic
fusion have an increased number of ’filopodia’. The two
features ’eccentricity’ and ’finger’ ( = filopodia) were sig-
nificantly higher in early myogenic differentiation than in
all other groups, as picked up by the Meinshausen (2010)
classification algorithm. Of course, cell shape can change
for many reasons; change in pH, limited nutrition,
changes in osmolality, cell density and possibly others.
However, over a large set of cells and in a controlled envi-
ronment, such as laboratory standard plastics, it should

be feasible to predict an average cell type using the pro-
posed statistical stem cell methodology. Furthermore, it
is known that primary hMSCs are always a heterogeneous
cell population. Although our cells possessed the typical
CD markers on their cell surfaces, as expected for stromal
cells at the third passage, it is of course obvious that vari-
ous phenotypes of stem cells might still be present in the
populations and causing high variance of cell shapes. Also
the ratio between differentiated and undifferentiated
cells might run at different speeds among the four differ-
entiation groups. The application of reporter systems is a
very useful tool to visualize the reorganization of the cells.
However, transfection of cells with a cytomegalovirus
(CMV) promoter-based expression systemmight of course
influence the behaviour and thus the shape of primary
cells (Raimondo et al., 2006). Here, the development of
a negative reporter system for nanog could be very helpful
tool to distinguish undifferentiated cell from those under-
going differentiation (Pierantozzi et al., 2010).

Figure 6. Output of node harvest classificationmethod. The response axis represents: (A)myogenic=0 and control=1; (B)myogenic=0
and adipogenic=1; (C) myogenic=0 and osteogenic=1; (D) myogenic=0 and adipogenic/osteogenic/control=1; where values
between 0 and 1 represent a weighted combination of both types. The sample axis indicates the number of cells. Each node contains cells
that fulfil one condition of one element of the seven-feature vector; the node size shows the relevance of that condition and lines between
nodes symbolize subsets
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4.2. Cell classification pipeline

There are three parts to the classification pipeline: seg-
mentation, feature selection and classification. The perfor-
mance of each part depends on the performance of the
previous one.

In the segmentation step, we did not consider the time of
acquisition associated with each image. By tracking cells
over time we could potentially improve the robustness of
our cell segmentation algorithm (Gilbert et al., 2010).
However, we noticed that taking a picture every 2 h is not
enough to trace individual hMSCs over time, as has been
recently proposed (Gilbert et al., 2010). This was not
possible with the chosen time-lapse microscope set-up. Cell
density certainly affected cell shape, a factor that was
considered by our segmentation routine by excluding cells,
which were connected to the edges of the images.

In the feature selection step, we could consider more
morphological parameters or even intensity patterns. Fur-
thermore, we believe that stem cell fate prediction can be
enhanced by taking into account different scales of model-
ling, considering not only local characteristics of cell shape
but also their interaction with and within a group of neigh-
bouring cells (i.e. from individual to group modelling).

In the classification step, we chose a robust technique
that is easy to interpret, which, given the nature of our data,
is a reasonable choice. To get a relative performance mea-
sure it would be interesting to compare it to other methods,
such as tree-clustering methods (Morris et al., 2011).

4.3. Cell shape predictors

Other approaches to characterize change in cell shape
were followed in other studies. For instance, Glauche
et al. (2009) attempted to quantify changes in tree topol-
ogies using mother–daughter cell phylogenies or (Cohen
et al., 2010; Ravin et al., 2008) by application of a
relatively well-defined differentiation process of neuro-
nal precursor cells. Klauschen et al. (2009) recently
attempted to reconstruct cell surface modifications to
predict cell shape in three dimensions. Two-dimensional
(2D) cell tracking seems a relatively easy approach to
undertake (Gilbert et al., 2010). Our study is limited in
the sense that we did not extensively clone bone-marrow
cells by limiting dilution to exclude further variance of
cell shape caused by a cell population mixture (Mareddy
et al., 2007). In contrast, our primary aim was to test the
feasibility of predicting differentiation solely by means of

non-invasive image processing of cell shape. The limita-
tion is the high cell density culture as it is obtained for
confluence> 70%. Future experiments should involve
cell cycle synchronization during differentiation by
hydroxyurea or colchicine in order to sort out cell shape
changes from cell division (Lee et al., 2011; Banfalvi,
2011). Another approach to predicting stem cell fate
non-invasively might be to use membrane polarity.
Recently, it has been noticed that undifferentiated and
differentiated cells differ in their polarity (Sundelacruz
et al., 2009; Flanagan et al., 2008; Levin, 2007). Undif-
ferentiated cells have different ’fate potentials’ than
differentiated cells (Flanagan et al., 2008). It remains
to be shown whether hMSCs can be discriminated by dif-
ferent dielectric properties and whether the change in
potential is a unique feature of each of the mesenchymal
differentiation pathways (Sundelacruz et al., 2008).
Possibly a combination of image-processing techniques
together with recording of membrane potential could be
the most promising step towards non-invasive prediction
of stem cell fate.

5. Conclusions

In this study we demonstrated the potential to distin-
guish hMSCs differentiation from others through a
classification of 7D feature vectors extracted from cells
obtained from non-invasive time-lapse microscopy. In
particular, the proposed segmentation pipeline and the
node harvest classification algorithm picked up myo-
genic from all other cell differentiation pathways, which
is prominent in pairwise comparisons (Figure 6). It
remains to be shown whether this classification approach
works out for large datasets, including donor variation
and different cell sources (i.e. adipose, bone marrow).
Other features have not been successfully identified to
discriminate osteo-progenitor cells from adipose cells.
With new time-lapse technologies emerging and more
high-throughput data collection, new options to follow
cells are possible. In addition, tracking cells in 3D opens
new future challenges and possibilities.
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