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Abstract. Locally affine (polyaffine) image registration methods cap-
ture intersubject non-linear deformations with a low number of param-
eters, while providing an intuitive interpretation for clinicians. Consid-
ering the mandible bone, anatomical shape differences can be found at
different scales, e.g. left or right side, teeth, etc. Classically, sequential
coarse to fine registration are used to handle multiscale deformations,
instead we propose a simultaneous optimization of all scales. To avoid
local minima we incorporate a prior on the polyaffine transformations.
This kind of groupwise registration approach is natural in a polyaffine
context, if we assume one configuration of regions that describes an en-
tire group of images, with varying transformations for each region. In this
paper, we reformulate polyaffine deformations in a generative statistical
model, which enables us to incorporate deformation statistics as a prior
in a Bayesian setting. We find optimal transformations by optimizing the
maximum a posteriori probability. We assume that the polyaffine trans-
formations follow a normal distribution with mean and concentration
matrix. Parameters of the prior are estimated from an initial coarse to
fine registration. Knowing the region structure, we develop a blockwise
pseudoinverse to obtain the concentration matrix. To our knowledge, we
are the first to introduce simultaneous multiscale optimization through
groupwise polyaffine registration. We show results on 42 mandible CT
images.

1 Introduction

Mandibular fractures most commonly result from facial trauma, with close to
half of the patients requiring surgical repair [6]. A majority of 75% of fractures
occur in males aged between 20 and 30 [6], and are often caused by physical
assault. For these cases surgical repair proofs most effective, with the goal of re-
covering the anatomical structure prior to the injury and thus restoring normal
function. To reach this goal the surgeon places wires or implants at the frac-
ture site, so that the natural fusion of separated bone pieces restores the prior
structure as closely as possible. A correct repair aligns teeth for food intake,
and restores the patient’s aesthetics. In [12], the authors propose a classifica-
tion scheme for mandibles based on regions according to anatomical, functional
and aesthetic considerations. The online register www.aofoundation.org uses the
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Fig. 1: Left: Subdivision of mandible into anatomical regions proposed by the AO
foundation to classify fractures for reconstructive surgery. Implants at four differ-
ent anatomical sites are shown. Images source: www.aofoundation.org. Right:
Tree of Gaussian weights. Each Gaussian weight represents one region and is
visualized as one ellipsoids at σ. The contours extracted from CT data in red
and one slice of the original CT image (to indicate that we work in the image
domain and not only on the contour) are shown.

same classification (Fig. 1) to guide surgeons through the major steps of mandible
reconstructive surgery ranging from diagnosis, selection of the optimal surgical
approach, to aftercare treatment. In addition to this classification scheme, the
mandible can be subdivided even further into smaller regions, e.g. one region for
each tooth. In the image space, this subdivision can theoretically be performed
up to the voxel level, where coarser levels enclose finer ones, representing a hi-
erarchy of regions that can be organized in a tree-like fashion. As the regions
become more fine, it is harder to find a consensus among clinicians on the size,
shape and location of the region.

Recent work on biomechanical analysis of implants indicates that geome-
try and topology of implants are crucial to fracture stability [7]. Due to the
high economical cost of patient specific implants current approaches focus on
population-based implant design. Common key steps to population-based de-
sign, e.g. [3], are registration to capture shape variability as encountered in a
population and statistical analysis of the registration results, performed subse-
quently and independently.

Due to region-based description of the mandible shape and the need for
volumetric information we focus on locally affine transformations, also called
polyaffine transformations. Polyaffine transformations fuse locally rigid and affine
transformations into a diffeomorphism [1]. An efficient registration algorithm
using approximations of polyaffine transformations was presented in [5]. To con-
sider more complex shapes and foster reusability, [4] presented a multiscale ap-
proach with affine regions defined using a data-driven approach. The method
splits rectangular shaped regions, which are aligned along the image directions,
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only if certain conditions are met. The authors in [11] iteratively optimize be-
tween affine parameters and anchor positions (center of regions) estimation,
through an expectation maximization approach. Even though these methods
are very promising, the link between the clinical regions (Fig. 1) and the regions
found by these algorithms, is either constrained by aligned rectangular shaped
regions [4] or produce an intractable number (around 500) of regions [11]. In [10],
the authors introduced a hierarchical multiscale tree structure (called polyaffine
transformation trees, or PolyTree in short) that is motivated by the nature of
the mandible anatomy, where regions are ordered and interact with each other
in a way tractable for human understanding. Aforementioned polyaffine meth-
ods are pairwise registrations, and to our knowledge, no groupwise registration
(e.g. [9,8]) has been proposed in this context. We believe that transformations
on a groupwise level are crucial. This is motivated by the assumption that there
should be one configuration of regions that describes an entire group of images,
with varying transformations for each region. Furthermore, the multiscale prop-
erty of mandibles and other anatomical structures should be incorporated.

In [2], the authors presented a Bayesian approach for affine registration, in
this paper, we propose a Bayesian formulation of polyaffine registration across
scales. We reformulate PolyTrees in a probabilistic way. We introduce a genera-
tive statistical model, which enables us to incorporate deformation statistics as
a prior in a Bayesian setting. We find optimal transformations by optimizing the
maximum a posteriori probability (MAP). In Section 2, we describe PolyTrees,
which were recently introduced in [10], to describe intersubject deformations.
In Section 3, we reformulate PolyTrees in a probabilistic way and show how to
find optimal transformations using MAP estimates with groupwise deformation
statistics as a prior. In Section 4, we show results on 42 mandible CT images.

2 Multiscale Description of Intersubject Deformations

In this section we reinterpret polyaffine transformation trees (PolyTree) recently
introduced in [10]. PolyTrees are parametric transformation that describe non-
rigid deformations with a low number of parameters and captures the shape
variability of multiscale structures. First, we introduce the tree structure, second
we define data-driven regions, and lastly, we show the estimation of transforma-
tions using the log-demons. The difference with [10] is that we reformulate the
equations in vectorized form: Vect is the column-wise vectorization of a matrix
m = Vect(M), where m is a vector and M a matrix. The motivation for this will
become evident in Section 3.

Structuring of Locally Affine Transformations in Trees. For N regions

let M =
[
M1 . . . MN

]T
be the 3 × 4N non null components of the matrix

logarithm of affine transformations and vM (x) be the parametrized polyaffine
stationary velocity field:

vM (x) = M(w(x)⊗ x̃), log

([
Ai ti
0 1

])
=

[
Mi

0

]
, (1)
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where x̃ =
[
x 1
]T

, x is the spatial position, w(x) =
[
w1(x) . . . wN (x)

]T
, ⊗

is the Kronecker product, Ai is the affine transformation matrix and ti is the
translation vector. The weights are normalized, ∀x ∈ Ω :

∑n
i=1 wi(x) = 1, and

structured in a tree-like fashion as depicted in Fig. 1, this enables to describe
multiscale deformations.

Data-Driven Definition of Regions. The spatial weight functions wi(x)
are defined as multivariate Gaussian distributions, wi(x) = N (x̄i, Ξi). The pa-
rameters of the distributions are found by applying the oriented bounding box
algorithm (OBBTree) to the feature image, ψ(x) = log(1 + ||∇It||2), where
∇It is the gradient of template image. We take the logarithm of the gradi-
ent to be more robust against small changes in intensities due to noise. The
feature-weighted barycenter of region Ωi (discretized at voxel indices j), x̄i =
(
∑
j∈Ωi

ψ(xj))
−1∑

j∈Ωl
i
ψ(xj)xj , and the feature-weighted covariance matrix of

the region, Ξi = (
∑
j∈Ωl

i
ψ(xj))

−1∑
j∈Ωl

i
ψ(xj)(xj − x̄li)(xj − x̄li)

T . Following

the same strategy as in the original OBBTree algorithm, the region is split at
the feature-weighted mean point orthogonal to the first principle component and
the splitting procedure is recursively repeated in the two new created subregions.
This step is identical to the method proposed in [10].

Estimation of Transformations with the Log-Demons Algorithm. The
general form of the log-demons algorithm for stationary velocity fields (SVF)
was formulated in [13]. The goal is to find vM that warps the fixed image It into
the moving image Is (or resamples Is in It), by minimizing the cost functional,

C (It, Is, v, vM ) = σ−2i Sim (It, Is, vM ) + σ−2x dist (v, vM )
2

+ σ−2T Reg (v), where
Sim, dist and Reg, are the similarity, the hidden and the regularization term,
respectively. Each term has a weighting parameter σi, σx and σT . As shown in
[13], C (It, Is, v, vM ) can be optimized alternatively over the variables v and vM .
Given v, the correspondence velocity field computed by the first optimization
part of the log-demons algorithm, we solve for M using linear least squares,
i.e. minimizing C(M) =

∫
Ω
λ(x)||v(x)−M(w(x)⊗ x̃)||2dx, where λ is a binary

mask indicating background voxels (if no mask is available ∀x ∈ Ω : λ(x) = 1).
In contrast to the original formulation in [10] the transformations parameters
M are vectorized, and the Kronecker product is used. This reformulation is
necessary for the next section, where we present a generative statistical model,
which enables us to incorporate deformation statistics as a prior in a Bayesian
setting. We find optimal transformations by optimizing the MAP.

3 Incorporating Deformation Statistics

In this section we present the MAP to find optimal transformations with and
without prior for K patients. We denote m̂k as the kth transformation found
with registration without prior, and m̌k with prior. We denote [k] to consider all
patients.
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Generative Statistical Model of Polyaffine Transformation Trees. Here
we make two assumptions: First, we assume that the velocities are independent
at all voxel positions within the mask Ω. This is an approximation in the case
of the log-demons algorithm, where the voxels of correspondence field v are not
entirely independent due to the natural smoothness of the images used. Second,
we assume the independence of the velocities across subjects. This is only the
case if the template with which the patients are registered is unbiased. With these
assumption we end up with the log likelihood (modulo unnecessary constants),

L(v[k]|m[k]) = −
∑
k

log(P (vk|mk)) =
1

2σ2
v

K∑
k

∫
Ω

λ(x)||vk(x)− vMk(x)||2dx,

(2)
with the underlying Gaussian noise model vk(x) = vMk(x) +N (0, σ2

vI3), where
I3 is the 3× 3 identity matrix, and K subjects. For one patient, the probability
to observe vk given mk is,

P (vk|mk) ∝ exp

(
−1

2
(mk − m̂k)TΣ(mk − m̂k)

)
, (3)

where m̂k denotes the optimal transformation parameters without a prior on mk.
To find the optimal solution we take the derivative of L(vk|mk) with respect to
mk and set it to zero,

m̂k = Σ−1bk, (4)

Σ =
1

2σv2

∫
Ω

λ(x)
(
w(x)w(x)T

)
⊗ (x̃x̃T )dx⊗ I3,

bk =
1

2σv2

∫
Ω

λ(x) (w(x)⊗ x̃)⊗ vk(x)dx,

where dx is a scalar.

Maximum Likelihood Estimation with Prior on the Transformations.
Now we show how to find m̌k transformations with a prior. Assume that mk ∼
N (m̄, Γ ), where m̄ is the mean and Γ the concentration matrix. The probability
of observing a transformation given the prior distribution of mk is,

P (mk|θ) =
det(Γ )1/2

(2π)d/2
exp

(
−1

2
(mk − m̄)TΓ (mk − m̄)

)
, (5)

where d = 12N . Assume that we know θ = (m̄, Γ ) and that we want to register
with this prior, for this we optimize the MAP estimate,

P (mk|vk, θ) =
P (vk|mk, θ)P (mk|θ)

P (vk|θ)
, (6)

the optimal solution of L(mk|θ) (modulo the constant P (vk|θ)) is,

m̌k = (Σ + Γ )−1(Σm̂k + Γm̄). (7)

For our experiments on mandible CT images, we estimate Γ using a blockwise
pseudoinverse described in the next paragraph.
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Blockwise Pseudoinverse of Sample Covariance Matrix for Prior. To es-
timate Γ we take advantage of the region structure, which reflects as a blockwise
structure in the covariance matrix, Cov = 1

K

∑K
k (m̂k − m̄)(m̂k − m̄)T , where m̄

is the sample mean. We develop a blockwise pseudoinverse, Γ = diag(λ+i ⊗C−1),
where .+ is the pseudoinverse, λi is the variance of block i (i.e. region i), and C
is a 12× 12 matrix, representing the metric of the log affine parameters. We op-
timize, {Ĉ, λ̂i} = argminC,λi

=
∑N
i ||Covii−λiC||2, in two sequentially steps.

In step one, for C with fixed ∀i : λi = 1, and in step two for λi with fixed C
obtained from the previous step:

Step one: Ĉ =

∑N
i=1 λi Covii∑N

i=1 λ
2
i

, Step two: λ̂i =
Trace(Covii C)

Trace(C2)
. (8)

4 Experiments on Mandible CT Image Data
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Fig. 2: In top row statistics on transformations obtained with registration with-
out prior and bottom row with prior for level 4 (i.e. 16 regions).

In this section, we register 42 mandible CT images to a randomly chosen
template and evaluate the resulting transformations. The noise parameter is set
to σv = 1.85 mm, and the number of affine components is N = 31 across 5
levels. To evaluate the influence of the prior, we run five different experiments:
no prior, λi scaled by 1,0.1,0.01 and 0.001. For the evaluation of the robustness
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we decompose the log affine transformations into three parts: rotation, expansion
and translation. The decomposition of the affine part into skew symmetric and
symmetric matrices (representing rotation and expansion, respectively) is, Mi =
1
2 (Mi−MT

i )+ 1
2 (Mi+MT

i ), and the Jordan or Schur decomposition to compute
the determinant of an affine part, is given by, det(Ai) = exp(Trace(Mi)).
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Fig. 3: Comparison of registration accuracy in terms of Dice coefficient, contour
mean distance and Hausdorff distance (both in mm) at level 4. The parameter
λi was scaled with five different factors to evaluate the influence of the prior.

The robustness results are shown for level 4 (i.e. 16 regions) in Fig. 2. The
registrations without prior show outliers and very high expansion of regions up
to a determinant of 10. In the registration with prior (the prior was scaled by
0.01), we observe robust expansion and shrinkage factors between 0.5 and 2. The
accuracy of the registration is measured in terms of Dice coefficient of the mask
images (semi-manual segmented mask are available for all 42 images), mean
contour distance, and Hausdorff distance on the mask contour. In Fig. 3, by
scaling the prior with 0.01 all accuracy measure show a favorable median value
compared to the without prior registration.

5 Conclusion

In this work, we presented a multiscale polyaffine registration method that simul-
taneously registers all scales. To avoid local solutions we incorporated deforma-
tions statistics. The results showed that the registration with prior improves the
accuracy while reducing the variability of estimated transformation parameters.

We believe that our approach is more than just an extension of [2]. By con-
sidering not only one affine component, but a mixture of components acting at
different scales, we are moving the discussion into structured learning, which
to our knowledge is a novelty in the medical registration community. In future
work, we plan to introduce a sparse representation of anatomical substructures
and their connection at different scales, which might uncover structures equiva-
lent to rigid articulated bodies.
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