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Abstract Osteoarticular allograft is one possible

treatment in wide surgical resections with large

defects. Performing best osteoarticular allograft selec-

tion is of great relevance for optimal exploitation of

the bone databank, good surgery outcome and

patient’s recovery. Current approaches are, however,

very time consuming hindering these points in

practice. We present a validation study of a software

able to perform automatic bone measurements used to

automatically assess the distal femur sizes across a

databank. 170 distal femur surfaces were recon-

structed from CT data and measured manually using

a size measure protocol taking into account the

transepicondyler distance (A), anterior-posterior dis-

tance in medial condyle (B) and anterior-posterior

distance in lateral condyle (C). Intra- and inter-

observer studies were conducted and regarded as

ground truth measurements. Manual and automatic

measures were compared. For the automatic measure-

ments, the correlation coefficients between observer

one and automatic method, were of 0.99 for A measure

and 0.96 for B and C measures. The average time

needed to perform the measurements was of 16 h for

both manual measurements, and of 3 min for the

automatic method. Results demonstrate the high

reliability and, most importantly, high repeatability

of the proposed approach, and considerable speed-up

on the planning.

Keywords Bone bank system � Lograft selection �
3D surgical planning

Introduction

For locally aggressive or recurrent benign bone tumors

and bone sarcomas, primary tumoral resection with

wide margins is considered as a first treatment. This

requires a wide surgical resection that entails a

residual bone defect, which can be reconstructed with

a fresh frozen bone allotransplantation.

The improvements in diagnostic and therapeutic

techniques have produced an increase of the patient

survival as well as decreased complications and side

effects, and an improved quality of life (Enneking

et al. 1993; Enneking and Campanacci 2001). Indeed,

it has been emphasized on the better performance of

more biologically oriented bone reconstructions,
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especially in young and physically active patients, due

to the normal biomechanics of the limb in question

when using a bone allotransplantation. For instance, it

has been shown that a poor selection of the bone to be

transplanted with respect to its shape and size may

derive in changes in the joint mobility and load

distribution, resulting in joint fractures and early joint

degeneration (Muscolo et al. 1992; Muscolo et al.

2000).

Determining the size and shape of the allograft is a

critical issue in the correct selection of it. However,

current approaches are very time-consuming, mostly

based on manual measurements performed directly on

the bones present in the bone databank or on their

corresponding three-dimensional virtual models,

reconstructed from computerized tomography (CT)

images (Ritacco 2010).

Ideally, an automatic allograft selection system

could be based on shape-matching, retrieved from CT

images, between the patient anatomy and the complete

bone databank. Recently, such approach was demon-

strated for pelvic allograft selection (Paul et al. 2010).

Nevertheless, the practicality of this method is condi-

tioned by the exhaustive computations performed on a

large bank of donors. More importantly, for each

patient it would be necessary to allocate extra time to

the clinical workflow, in order to segment the anatomy

and have a workable model.

A more straightforward approach using simpler

shape descriptors was proposed to determine possible

donor bones for a given patient. The method consists of

defining geometrical features characterizing the distal

femur size (Ritacco 2010). These features include the

transepicondyle distance (A), the anterior-posterior

distance in the medial condyle (B), and the anterior-

posterior distance in the lateral condyle (C). The so-

called ABC protocol can then be regarded as a screening

of the bone databank, therefore speeding further

computations and most importantly, not requiring the

pre-processing mentioned previously, since such mea-

sures can be extracted either directly from the image or

if tools available, from a rough bone segmentation

characterizing the location of the points used by the

ABC protocol. The method provides a small subset of

possible candidates for allograft selection, on which

further analysis is required to select the best donor

match. The advantage of such approach relies on not

requiring segmentation of the bone, considerably

reducing pre-operative planning time.

An automatic bone morphology measurement

software, it allows fast computations of bone mor-

phology based on a non-rigid image registration

technique tailored for orthopedic research (Seiler

et al. 2009). This approach seems ideal for retrospec-

tive scenarios to automatize the use of the ABC

protocol on existing bone databank, as well as to

providing with a flexible tool allowing extension of

this and other population-based bone morphology

studies. For instance, this technique was employed for

the purpose of quantifying changes in the spatial

distribution of bone after mechanical unloading (Li

et al. 2007).

The objective of this work is to introduce and

validate an automatic bone morphology measuring

tool as a key element towards fast and accurate, yet

clinically oriented, bone allograft selection.

Methods

A total of 170 complete left femora were selected from

our database (age range: 23–83, 62.57 ± 15; (67

males and 93 females) were scanned on a Toshiba

Aquilion CT scanner, with a resolution of 0.877 mm

and slice increments of 1 mm. Three-dimensional

reconstructions of all specimens were created from CT

images. Two operators referred here as ‘‘Observer 1’’

and ‘‘Observer 2’’ were requested to measure the

following distal femur morphometric parameters

using a specialized 3D software (Mimics, Materialise,

Leuven, Belgium) on a plane perpendicular to

the long axis of the bone: (1) Transepicondylar axis

(A): the distance between the most medial point

in the medial epicondyle and the most lateral point in

the lateral epicondyle. (2) Medial condyle distance

(B), determined as the distance between the most

anterior and most posterior points, respectively, in the

anterior-posterior direction. (3) Lastly, the length of

the lateral condyle (C) determined with the same

method used for the medial condyle. The resulting

distances were exported for statistical analysis. To

assess intra-observer repeatability, Observer 1 was

requested to perform a second run of measurements

1 week after.

For the automatic measurements, Observer 1 was

requested to select pairs of points corresponding to A,

B and C parameters on the reference bone. In this

study manual measurements were used as a control.
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Intra- and inter-observer reliability of this protocol

was assessed by manually measuring 170 femora, and

was evaluated using an intra-class correlation coeffi-

cient (ICC). Figure 1 illustrates the ABC-protocol.

Image pre-processing

The set of CT scans were initially pre-processed by

semi-automatic segmentation using Amira software,

and cropping of each image to separate left and right

femur bones. Image segmentation refers to the task of

assigning a label to each pixel in an image in order to

identify different structure or structures. In the case of

segmenting the bone structure as a whole (i.e. no

differentiation of different bone tissue types), only two

labels are necessary for background and foreground.

The resulting binary images (see Fig. 2c) were

consequently used as image masks on the original

CT images. This resulted on images only containing

bone tissue intensities, while being zero-valued out-

side (see Fig. 2b). Finally, three-dimensional models

were created from this image through iso-contouring

(Lorensen and Cline 1987) in order to produce a three-

dimensional representation of the bone surface

describing the bone morphology. The open-source

library insight toolkit (Ibanez et al. 2003) was used to

perform all post-segmentation tasks. Figure 2 shows

the entire pre-processing pipeline.

After image pre-processing, the key task of this

work, called image registration, was performed. The

next section explains in more details this task.

Automatic morphology assessment through image

registration

Image registration refers to the task of finding a spatial

transformation that aligns a so-called moving image

(also called target image) into an image fixed (also

Fig. 1 The ABC protocol. A set of three distances is measured

corresponding to 1. Transepicondylar axis (a). Medial condyle

distance (b), and length of the lateral condyle (c). Graphical user

interface for the automatic bone morphology tool. A observer

was requested to set the corresponding ABC landmarks (shown

in example as yellow spheres)
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called source image). The transformation is found

through optimizing a given numerical criteria, called

similarity measure, which can be based on image

intensity information, geometrical features, etc. Some

common similarity measures include the square of

image intensity sum differences (SSD), correlation

coefficient (CC), and mutual information between

image intensity patterns, amongst others. In addition,

the type of transformation also has to be considered

depending on the structure of interest and the problem

at hand. For instance, some common types of trans-

formation include rigid transformation, which consid-

ers rotation and translation of the structure; affine

transformation, which is a geometrical transformation

considering rotation, translation and anisotropic (i.e.

different in each direction) scaling. The ability of the

transformation to cover more complex type of image

deformations defines the degree of freedom of the

transformation. At the end of the spectrum of degrees

of freedom, one finds non-rigid image registration,

providing the maximum level of complexity and

details achievable in medical image registration.

Indeed, in non-rigid image registration, the goal is to

find for each voxel in the source image, its anatom-

ically correspondent in the target image.

Image registration has been extensively studied and

used in many medical applications due to its ability to

provide a way of comparing different image datasets

on a common spatial reference system. Some exam-

ples include image fusion of pre- and post-operative

images, multimodality image registration (e.g. PET/

CT), computer-assisted surgery, atlas construction,

etc. For a comprehensive review of medical image

registration the reader is referred to Hill et al. (2001)

and Fischer and Modersitzki (2008).

In this study, image registration was used to provide

with an automatic and efficient way to realize high-

throughput bone morphology assessment. The image

registration pipeline is as follows. First, a common

reference image is chosen from the selected cohort.

Based on this selection, affine-based image registra-

tion is performed between the reference image and the

remaining datasets (Ourselin et al. 2000). The aim of

the affine-based image registration is to provide the

non-rigid registration with an initialization for the final

image warping. The algorithm parameters were cho-

sen empirically as three multi-resolution levels, 10

maximum number of iterations per level, normalized

correlation coefficient metric, and tri-linear interpola-

tion. The non-rigid registration we adopted is based on

the pioneer work of (Thirion 1998), which was later on

improved to account for higher robustness and speed

(Vercauteren et al.). We adopted this algorithm based

on its high accuracy as well as the low computation

Fig. 2 Pre-processing pipeline. The original CT image (a), is

cropped to separate left and right femur bones, which are

segmented semi-automatically (b). The resulted segmentation is

used to mask the original CT image (c). A surface reconstruction

is additionally performed (d)
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times compared to other developed techniques (Klein

et al. 2009; Ourselin et al. 2000), which makes it

appealing for use in clinical routine. Similarly to the

affine-based image registration, the selection of

parameters for non-rigid registration algorithm was

chosen empirically as three multi-resolution levels, ten

iterations per level, Gaussian regularization standard

deviation of 1 pixel, sum of square intensity differ-

ences as metric, and tri-linear interpolation. After non-

rigid registration, the output of the algorithm consists

of displacement vector fields. This means that the

algorithm assigns for each voxel in the source image a

three-dimensional vector, describing the position of its

corresponding point in the target image. In this way a

complete mapping of anatomical corresponding points

can be established. Such information represents the

core of the proposed methodology. Figure 3 exempli-

fies the steps involved in the image registration

pipeline. Figure 3d shows the resulting deformed

image being morphed to match the reference image.

In this way by repeating this process for each image in

the database, anatomical point correspondences are

established for every pixel in each 3D volume. This

rich map of anatomical correspondences can then be

exploited to perform automatic morphology assess-

ment over a population. To illustrate the quality of the

image morphing, Fig. 3e shows a checkerboard visu-

alization of the reference and the resulting deformed

image. In this type of visualization the images are

jointly displayed in alternated blocks. This visualiza-

tion allows the user to qualitatively evaluate the

accuracy of the image registration process, specifically

for non-rigid transformations.

Similarly to the pre-processing tasks, all develop-

ments regarding image registration were conducted

using the open-source library, insight toolkit (ITK).

Clinical processing workflow

The processing pipeline previously discussed

describes the relevant technical details and methods

required to establish point correspondences between

Fig. 3 Image registration pipeline. Original reference (a) and

target pre-processed images (b). Target image after affine

transformation (c). Target image after non-rigid transformation

(d). Zoomed axial, coronal and sagittal checkerboard views

between reference and final deformed images (e). Note:

reference and original target plane ((a) and (b), respectively),

are not anatomically corresponding due to position of the bone

in the scanner
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images. This pipeline needs to be encapsulated into a

user-friendly software in order to make it clinically

relevant. In this direction, a complete graphical user

interface was developed to assist on this task.

Depending on the stage of processing, two clearly

scenarios can be distinguished. Namely, bone data

bank preparation and storage, and automatic bone

morphology assessment and outputs retrieval.

For the former, the user needs to perform the

following steps:

1. Add cohort group to softwares’ database. This

involves selecting a folder on disk, where pre-

process images are stored.

2. Select reference image. This involves selection of

one image dataset as reference.

3. Proceed with image registration pipeline. The

entire registration pipeline, described in the

previous section, is performed on the selected

cohort and reference image. The resulting dis-

placement vector fields are stored, and the data-

base is updated with this information.

For the latter, a typical scenario considers:

1. Select cohort. The software interface allows the

user to define a subset cohort based on matching

criteria such as age range, gender, ethnic group,

etc. This information is collected from the original

dicom stacks or from manually added input.

2. Define 3D landmarks on the reference model. A

three-dimensional model of the reference bone is

displayed and the user can set landmarks by

clicking on the surface of the model. These

landmarks can be optionally stored. Based on

selected landmarks, the software can compute

automatically distances on the entire selected

cohort. The results can be exported into a text file

for later analysis.

Results

Manual and automatic measurements

Intraobserver (Observer 1 vs Observer 1). Manual

measures

A single operator was considered for testing intraob-

server repeatability while using the ABC protocol

twice on one hundred and seventy one-hundred and

seventy (170) distal femoral. For A measurements the

maximal, mean and standard deviation (SD) were:

maximal difference 1.67 mm, mean of 0.34 mm, and

standard deviation (SD) 0.30 mm. Similarly for B

measurements the results were: maximal difference

was 2.04 mm, mean of 0.40 mm, and SD of 0.37 mm.

Finally, for C measurements the results were: maximal

difference of 1.57 mm, mean of 0.35 mm, and SD of

0.28 mm. The obtained intraclass correlation coeffi-

cient for all measurements was of 0.99 in the range of

0.993–0.997 (95 % CI).

Interobserver (Observer 1 vs Observer 2). Manual

measures

Interobserver variability between two separate observ-

ers was quantified when they measured the ABC

parameters of 170 distal femoral allografts leading to a

maximal difference of 1.82 mm for A measure and a

mean of 0.41 mm (SD 0.36 mm), for B measures

maximal difference was 5.27 mm, a mean of 0.46 mm

(SD 0.51 mm). For C measures, maximal difference

was 4.58 mm, a mean of 0.43 mm (SD 0.56 mm).

Intraclass correlation coefficient was of 0.99 in A

measure, in the range 0.99–0.99 (95 % CI), 0.98 for B

in a range of 0.98–0.99 (95 % CI) and 0.98 for C

measures in a range of 0.97–0.98 (95 % CI).

Interobserver (automatic vs Observer 1). Automatic vs

manual

Finally, for 145 bones the automatic and manual

measurements were compared. For A measure the

maximal difference was of 3.29 mm, a mean of

0.68 mm (SD 0.55 mm), for B measure the maximal

difference was of 3.31 mm, a mean of 0.96 mm (SD

0.73). For C measure the maximal difference was of

5.56 mm, a mean of 1.04 mm (SD 0.82). The intra-

class correlation coefficient for measure A was of 0.99

in a range of 0.98–0.99 (95 % CI), 0.96 for measure B

in a range of 0.95–0.97 (95 % CI) and 0.96 for

measure C in a range of 0.94–0.97 (95 % CI).

A whisker plot describing the accuracy of the intra-

and inter-observer as well as the automatic measure-

ments is presented in Fig. 4. In addition, considering

that all intra-observer differences were below 2.0 mm,

an analysis of percentage of number of measurements

below this value was performed.
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Discussion

The evaluation of the automatic ABC measurements

showed a good agreement with the manual measure-

ments. Indeed, all intra-observer differences were

below 2.0 mm, such value could then be regarded as

the possible maximum error produced by a human

operator. Under this consideration the automatic

method presented a robustness of 97.9 % for measure

A, 91 % for B and 90.3 % for C. In terms of

computation speed, the average time needed to

perform the measurements was of 16 h for both

observers, and of 3 min for the automatic method.

This clearly highlights the potential of the proposed

automatic bone morphology tool for large databases.

With respect to the construction of the database, the

average time involved for pre-processing of the data

was of 5 min per bone. This does not include the time

required for image segmentation, since it is dependent

on the user’s experience and employed segmentation

method. However, for our segmentation setup using

commercially available software, a typical segmenta-

tion required approximately 30 min per bone. Such

task is commonly performed offline from the surgical

planning workflow and it is necessary for both manual

and automatic approaches. The major advantage of the

automatic method relies on the capacity of redefining

the measurement protocol (e.g. different from the

ABC protocol, herein presented) by simply selecting

points on the reference bone model, and having the

complete map of measurements for the database at no

additional cost.

Up to our knowledge, this is the first work dealing

with automatic measurements in a virtual bone bank

system.

These kind of tools show to be promising for large

datasets due to the automatic and fast features (high-

throughput) as well as exhaustive statistical studies on

bone morphology.

One limitation of this work is that such measures

were applied on virtual models rather than the real

ones, which implies a possible bias introduced by the

3D reconstruction step. However, automatic and

manual method measurements were applied on same

data and with same ABC protocol. Other important

point is that the ABC protocol do not take into account

biomechanical factors (Brin et al. 2010; Eckhoff et al.

2005; Eckhoff 2001; (Eckhoff et al. 2003). However,

the same algorithm can be used to recognize other

patterns including the ones presented on that work.

The ABC protocol used in this work serves as

screening in order to speed-up and ease the process

of allograft selection, through, for instance, visual

inspections in the same virtual environment, of the

possible candidates and the patient anatomy. The main

advantage of the proposed automatic method on

Fig. 4 Whisker plots for differences between manual vs

manual measurements (Intra A/B/C, Inter A/B/C) and differ-

ences between automatic vs manual (Auto A/B/C) measure-

ments. N = 145 for automatic and N = 170 for manual

measurements. This diagram is a convenient way of graphically

depicting groups of numerical data through their five-number

summaries: the bottom and top of the box are always the 25th

and 75th percentile (the lower and upper quartiles, respectively),

and the band near the middle of the box is always the 50th

percentile (the median)
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existing bone databanks, is the minimal work needed

to perform accurate and robust quantification bone

morphology compared to manual measurements,

which are time consuming and error prone. In

conclusion this work demonstrates the usefulness of

three-dimensional models when searching and select-

ing the best similar host-donor allograft match. The

results suggest that a robust technique which provides,

reliability, and most importantly, repeatability, has

been established. This tool is suitable for such bone

banks with huge amount of long bones (more than 50).

This method can then be used to match a candidate

from the bone bank as a screening search to the

patient’s femur. On the other hand, the results

stemming from the use of this measurement protocol

enable accurate selection of allografts achieving the

best possible match size considering the geometry of

available allograft candidate femur specimens in an

automatic manner.
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