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Abstract. Functional neurosurgery for Parkinson’s disease is based on
the stereotactic introduction of electrodes in a small; deeply located,
nucleus of the brain. This nucleus is targeted on pre-operative stereotac-
tic MR acquisitions. The procedure is time-consuming and can lead to
the development of a pneumocephalus (presence of air in the intracanial
cavity) because of CSF leak. This pneumocephalus leads to a brain shift
which can yield a significative deformation of the entire brain and thus
cause potential errors in the pre-operatively determined position of the
stereotactic targets. In this paper, we conduct an a posteriori validation
of the pre-operative planning, by quantifying brain pneumocephalus from
the registration of pre and immediate post-operative MR acquisitions.

1 Introduction

MR image guided brain surgery is an actively developping field. In most of
the cases, the techniques are based on the use of volumetric pre-operative MR
acquisitions. These techniques implicitely assume that a pre-operative acquisi-
tion gives a faithful and precise representation of the brain anatomy during the
intervention. A major limit of these techniques is the development of brain defor-
mation during the surgical intervention, thus leading to anatomical differences,
which can be significative, with the pre-operative MR images. To overcome this
limit, there has been recent interest in quatifying brain deformation during neu-
rosurgery [4,11,6,12].

One interesting example of this type of procedures is functional neurosurgery
for Parkinson’s disease. This intervention is based on the stereotactic introduc-
tion of electrodes in a small, deeply located, nucleus of the brain, called the
subthalamic nucleus. This nucleus is targeted on pre-operative stereotactic MR
acquisitions. During the intervention, which is performed in the operating room,
outside the MR unit, an electrophysiological and clinical study is performed with
the electrodes to check the pre-operatively determined target position.

This exploration is time-consuming and can lead to the development of a
pneumocephalus (presence of air in the intracanial cavity) because of CSF leak.
This pneumocephalus leads to a brain shift which can yield a significative defor-
mation of the entire brain and thus cause potential errors in the pre-operatively
determined position of the stereotactic targets. Therefore, computing accurately
the deformation induced by the pneumocephalus over the entire brain appears
to be a key issue, as it will allow to quantify the deformation occurred around



the stereotactic targets and lead to a posteriori validation of the pre-operative
planning.

We have developped a method to quantify brain deformation from pre and
immediate post-operative MR acquisitions, based on rigid and non rigid registra-
tions. Our method is related to the approach developped in [12] for estimating
tissue deformation induced by intracranial electrode implantation in patients
with epilepsy. Nevertheless, if [12] also used a registration based method, tech-
nical solutions provided here are different. The novel non rigid registration algo-
rithm used in this paper is based on a true free form deformation modelisation
coupled with a mixed regularization, unlike [12] who used cubic B-splines, thus
implicitly limiting the search of the deformations to a specific and reduced trans-
formation space. Therefore, the method presented below allows a finer analysis
of the deformation.

2 Material and methods
One patient with bilateral subthalamic lateral implantation was studied. The
subthalamic targets were determined one day before the intervention using 3D
stereotactic IR-FSPGR MR acquistion. Then, the patient had bilateral implan-
tation of depth electrodes at the level of the subthalamic nuclei. MR control
using the same acquistion as pre-operative was performed the day after the im-
plantation. Voxel size of both acquisitions was 0.9375 x 0.9375 x 1.3 mm, and
image dimension was 256 x 256 x 124. On the control acquisition, presence of air
collection was clearly observed at the anterior part of the cranial cavity.

The methodology to quantify brain deformation from these pre and immedi-
ate post-operative MR acquisitions consisted in three steps:

1. Robust rigid registration of pre and post-operative MR acquisitions
2. Segmentation of the cortex on the registered images
3. Non-rigid registration of the resulting images

2.1 Rigid registration

We first performed a rigid registration between the pre and post-operative MR
acquisitions to correct differences in patient positioning. Notice that in the post-
operative acquisition, some parts of the head have been deformed, namely an
unknwon but limited part of brain tissue has deformed due to pneumocephalus,
and skin and fat presented large deformations, mostly due to swelling. All these
deformations could bias the rigid registration.

Therefore a robust variant of the correlation ratio based on the Geman-
McClure scale estimator was used as the similarity measure [10]. The assump-
tion underlying the correlation ratio is that there exists an unknown mapping
between the MR intensities of the pre and post-operative images. This assump-
tion actually did not hold in the whole image because of the deformed parts of
the post-operative image. The use of a robust correlation measure prevented the
registration from being biased by such outliers.

2.2 Cortex segmentation

Brain deformation is caused by the pneumocephalus, but changes at the scalp
level are not. Thus searching for a non rigid deformation accounting for these



changes, that is searching for a deformation including discontinuities along the
brain-scalp frontier, would be rather complex. Moreover, it could induce errors
in the deformation estimate inside the brain. Therefore, before computing the
non rigid residual deformation, brain was segmented from the rigidly registered
MR images. This was done automatically: thresholding with the CSF grey value,
morphological opening, erosion, maximal connected component extraction and
dilation.

2.3 Non rigid registration

From the segmented and rigidly registered images, a non rigid registration was
performed, using the PASHA algorithm, an iconic feature based algorithm.

Preliminaries Most of the numerous non rigid registration techniques can be
classified according to various criteria [1,8,7]. We focus here on one major axis:
the motion model expressing the prior knowledge we have on the shape of the
transformation, which is used to regularize the registration problem.

It is necessary to impose a motion model to a non rigid registration algo-
rithm, otherwise the motion of a point would be estimated independently of the
motion of neighboring points, and we would thus obtain a very discontinuous and
unrealistic displacement field. In the field of image registration, we distinguish
three kind of motion models: parametric, competitive, and fluid models.

The parametric approach constrains the estimate 7' of the transformation
to belong to some low dimensional transformation space 7. Mathematically,
if D(I,J,T) is some registration distance between the images I and J regis-
tered by T, a parametric approach solves the following minimization problem:
minrer D(I, J,T) Among the most popular choices of transformation space, we
find rigid and affine groups, and kernels such as thin plate splines or B-splines.

Competitive models rely on the use of a regularization energy R (also called
stabilizer) carrying on T'. Whereas parametric regularization is a binary penal-
ization — no transformation outside the transformation space is allowed, all the
transformations inside are equiprobable — the competitive approach penalizes a
transformation proportionally to its irregularity measured by the regularization
energy R [13]. Competitive algorithms puts in competition (hence the name) D
and R by solving the following problem: minyr D(I, J,T) + R(T).

Fluid models also rely on the use of a regularization energy R. This time,
however, this energy does not carry on the transformation itself, but on its evo-
lution. In a discrete, or iterative, view of the process, the regularization energy
carries on the difference between the current and the last estimate of the trans-
formation: at iteration n > 0, the estimate T}, of the transformation is found by
minimizing minyr, D(I, J,T,) + R(T,, — T,,—1). The typical example of a fluid
approach is the viscoelastic algorithm of Christensen [3].

The PASHA algorithm .

We minimize the following energy: E(C,T) = S(I,J,C) + ||C — T||> + R(T),
where E depends on two variables, C' and T, that are both vector fields (with
one vector per pixel). C is a set of pairings between points: for each point of I,
it gives a corresponding point in J that attracts this point. 7' is the estimate of



the transformation: it is a smooth vector field (constrained by the regularization
energy R) that is attracted by the set of correspondences C. In the energy, S is
an intensity similarity measure, used to find the correspondences C, and R is a
regularization energy, used to regularize T'.

This algorithm is an iconic feature based algorithm, i.e. it is really interme-
diate between geometric feature based and standard intensity based algorithms.
Indeed, on one hand, we search for correspondences C' between iconic features
in the images, and use a geometric distance to fit the transformation 7" to C.
On the other hand, there is no segmentation of the images, as we use an in-
tensity similarity measure to pair features. Note that other iconic feature based
algorithms (e.g. the ”demons” [14], adaptation of optical flow to registration [5],
block matching [8,9]) generally do not minimize a global energy. Consequently,
the analysis of the behavior of those algorithms is difficult.

We also propose a mixed competitive/fluid regularization for PASHA. Fluid
algorithms are able to recover large displacements, but they often do not pre-
serve image topology for real applications. We therefore use in PASHA a mix of
fluid and competitive models in order to recover larger displacements, while still
constraining the transformation, and thus avoiding dramatic topology changes.
The energy minimized by PASHA at iteration n now becomes:

S(I,J,Cn) + 0||Cr = Tol|? + oA [WR(Tn — Trer) + (1 —w)R(TS)] (1)

where w € [0, 1] fixes the relative importance of competitive and fluid regular-
ization (w = 0 being a pure competitive regularization and w = 1 a pure fluid
regularization). The A parameter influences the smoothness of the deformation,
and o is related to the noise level in the images.

One could minimize the energy E with respect to C' and T simultaneously.
However, when the regularization energy R is quadratic, the alternate minimiza-
tion w.r.t. C' and T is appealing, because both partial minimizations are very
fast: the minimization w.r.t. C' can be done for each pixel separately most of
the time, and the second step is easily solved by linear convolution. PASHA is
designed on that principle. It minimizes the energy (1) alternatively w.r.t. C
and T. We start from Tg = Id at iteration O; then, at iteration n, the alternated
minimization scheme gives the following steps:

— Find C,, by minimizing S(I, J,Cy) + o||Cr, — T,—1||*. This is done in PASHA
using gradient descent.

— Find T,, by minimizing ||C,, — T,||? + AN [wR(Ty — Trm1) + (1 — w)R(T3)].
This minimization step has a closed-form solution, using convolution.

Let us illustrate the advantage of this mixed regularization with an example:
in Fig. 1, we have two noisy images presenting some large motion. Both the
recovered deformation field and the intensity differences between the deformed
and the original images show that: 1) fluid regularization is able to register the
images, but being sensitive to noise, the recovered deformation field is aber-
rant; 2) competitive regularization is much more robust to noise, but it is more
difficult to recover large deformations, as can be seen on the difference image;



3) mixed regularization combines the advantages of both approaches, i.e. good
image match while having a regular deformation field.

Fluid reg. Competitive reg. Mixed reg.
Fig. 1. Left most column: two noisy images to be registered. Remaining right
columns: registration results using PASHA and different regularization techniques. Up-

per row: Recovered deformation field. Lower row: Intensity differences between the
deformed and the original images.

Finally, the whole minimization process is embeded into a pyramidal frame-
work. This classical technique has two advantages. First, the registration algo-
rithm is much less sensitive to initial alignment and can go beyond local min-
ima. Second, the cost of the pyramidal approach is relatively small, since the
extra processed images are much smaller than the original one. The similarity
measure used in PASHA relies on the computation of local statistics (namely the
Gaussian-weighted local correlation coefficient). Local measures assume that the
link between I and J is valid only locally. For local statistics, there exists a fast
computation method based on convolution that makes it applicable for non rigid
registration. For more details, we refer the reader to [2].

3 Results and discussion

Robust rigid registration between the pre and post-operative MR acquisitions
was performed first. Fig. 2 shows three independant slices (sagittal, coronal and
axial) through both volumes after registration.

As can be seen with the cursor superimposed on the images, correspondences
at the bone level are correct, as required because the bone is the only structure
which didn’t suffer deformation during surgery. Notice that these three slices are
not related, as they were independantly selected to illustrate the quality of bone
correspondence. Therefore, the cursor location is also independant in each slice.
Starting from this rigid registration, the non rigid registration will only search
for residual deformations due to pneumocephalus.

To avoid discontinuities along the brain-scalp frontier, brain was extracted
from both volumes. Results of this segmentation can be seen in Figs. 3 and 4.



Fig. 2. Robust rigid registration of pre-operative (top row) and post-operative (bottom
row) MR images of the same patient. Cursor location illustrates the accurate correspon-
dences found at the bone level. From left to right: independant sagittal, coronal and
axial views. Note that the three slices are not related . Therefore, the cursor location
is also independant in each slice.

Then, non rigid registration was performed (8 minutes on a 450 Mhz Pentium
IIT), with the PASHA algorithm, including the mixed fluid/competitive regulariza-
tion, with w = 0.6, which enabled a total recovery of motion by a smooth trans-
formation. Fig. 3 shows slices of the post-operative and pre-operative (after rigid
and non rigid registration) volumes, with post-operative contours superimposed
in order to visually assess the quality of the registration. Notice in particular
the consistent matching, both geometrical and textural, obtained around the
pre-frontal lobe, where deformation caused by the pneumocephalus was largest.

Once the deformation was computed (the maximal value of the deformation
norm was 5.79 mm), it was possible to examine its spatial distribution, and
especially to look at regions of brain that suffered deformations higher than a
given value. Fig. 4 shows, on the first row, axial slices through the deformation
field itself, the displacement of each voxel being represented by an arrow. Then,
on the next two rows, isolines of the deformation norm are superimposed on the
same axial slices of the pre-operative volume (after rigid registration and brain
extraction) and of the post-operative volume (after brain extraction). The iso-
values were set to 3, 2 and 1 mm (3 mm corresponding to the smallest region).
As expected, the deformation maximal values coincided with the prefrontal lobe
where the pneumocephalus was observed. Then, as can be seen, the deformation
smoothly decreased, reaching values under 1 mm at the basal ganglia level. Also,
deformation around the targets (identified by the dark holes located between the
putamen and the thalamus on the post-operative images) was significantly lower
than 1 mm (around 0.7 mm for the anterior part of the targets, and around 0.4



Fig. 3. Non rigid registration of pre-operative and post-operative MR images of the
same patient. First row: axial slices; second row: sagittal slices. Left column: pre-
operative volume after rigid registration; middle column: post-operative volume; right
column: pre-operative volume after non rigid registration. Contours of the post-
operative volume are superimposed on all the images.

mm for the posterior part). Note that the localised deformation area (greater
than 1 mm) at the level of the target on slice 134 was due to the electrode MR
signal.

4 Conclusion

We addressed the problem of validating a posteriori pre-operative planning in
functional neurosurgery. Quantifying per-operative brain deformation around
functional targets was done by registration of pre and immediate post-operative
MR acquisitions. The non rigid registration algorithm used in this paper was
based on a true free form deformation modelisation coupled with a mixed reg-
ularization, yielding a faithful deformation field. Analysis of the spatial distri-
bution of brain deformation was then performed. On the patient under study,
results confirmed surgeon intuition, i.e. pneumocephalus doesn’t affect target
pre-operative localisation. Indeed, the deformation was significantly inferior than
1 mm around the functional targets, knowing that the voxel size of the MR im-
ages was around 1 mm?. To confirm the result obtained on this patient, a clinical
study will now be conducted on a large series of Parkinsonian patients.
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