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Abstract. Interpreting endomicroscopic images is still a signi�cant cha l-
lenge, especially since one single still image may not always contain
enough information to make a robust diagnosis. To aid the phy sicians,
we investigated some local feature-based retrieval methodsthat provide,
given a query image, similar annotated images from a database of en-
domicroscopic images combined with high-level diagnosis represented as
textual information. Local feature-based methods may be lim ited by the
small �eld of view (FOV) of endomicroscopy and the fact that they do not
take into account the spatial relationship between the local fe atures, and
the time relationship between successive images of the video sequences.
To extract discriminative information over the entire image � eld, our pro-
posed method collects local features in a dense manner instead of using
a standard salient region detector. After the retrieval proce ss, we intro-
duce a veri�cation step driven by the textual information in th e database
and in which spatial relationship between the local features is used. A
spatial criterion is built from the co-occurence matrix of local fe atures
and used to remove outliers by thresholding on this criterion . To over-
come the small-FOV problem and take advantage of the video sequence,
we propose to combine image retrieval and mosaicing. Mosaicingessen-
tially projects the temporal dimension onto a large �eld of vi ew image. In
this framework, videos, represented by mosaics, and single images can be
retrieved with the same tools. With a leave-n-out cross-valid ation, our
results show that taking into account the spatial relationshi p between
local features and the temporal information of endomicroscopi c videos
by image mosaicing improves the retrieval accuracy.

1 Introduction

With the recent technology of probe-based confocal laser endomicroscpy (pCLE)
[1], endoscopists are able to image tissues at microscopic level with a miniprobe,
and in real time during ongoing procedure. However, as the acquired pCLE im-
ages are relatively new for them, the physicians are still inthe process of de�ning
a taxonomy of the pathologies in the images, for instance to di�erentiate benign
tissues and neoplastic, i.e. pathological, tissues of colonic polyps, see Fig. 1 and
2 for an illustrative example of such images. To face this clinical challenge, a
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valuable aid to the physician in establishing a diagnosis would be to provide
endomicroscopic images that have a similar appearance to the image of interest
and that have been previously diagnosed by expert physicians. Knowing that
pathological tissue is characterized by some irregularities in the cellular and vas-
cular architecture, we aim at retrieving texture informati on coupled with shape
information by using local operators on pCLE images. To serve that purpose,
we decided to investigate a modern method for content-basedimage retrieval
(CBIR), the bag-of-visual words (BVW) method [2]. BVW has been successfully
used in many applications of computer vision. For example, on a well-de�ned
non medical application, by using this method on a large variety of images of
natural or arti�cial textures, the authors of [2] obtained e xcellent recognition
results that are close to98%.

The standard BVW method detects salient regions in the imagesand ex-
tracts information only on these speci�c regions. However inpCLE images, the
discriminative information is distributed over the entire image �eld. Contrary to
classical methods that apply sparse detectors, we use a dense detector to collect
densely the local features in the images. This overcomes theinformation sparse-
ness problem. Moreover, pCLE images contain characteristic pattern at several
scales, in particular the microscopic scale of individual cells and the mesoscopic
scale of groups of cells. For this reason, we perform a bi-scale description of
the collected image regions. Another problem is that the spatial relationship
between the local features is lost in the standard BVW representation of an im-
age, whereas the spatial organization of cells is highly discriminative in pCLE
images. So we looked at measuring a statistical representation of this spatial
geometry. This was achieved by exploiting the co-occurencematrix of the vi-
sual words labeling the local features in the image. After theretrieval process,
we introduce the measured spatial criterion in a veri�cation step that allows to
remove outliers from the retrieved pCLE images, which are given by the most
similar to queried images. Taking into account the spatial relationship between
local features is the main contribution of our study, it can be used as a generic
tool for many applications of CBIR. Besides, we noticed thatthe FOV of single
still pCLE images may not be large enough for the physicians to see a charac-
teristic global pattern and make a robust diagnosis. As this limitation cannot
be solved by the standard methods, we decided to take into account the time
information of pCLE video sequences by considering them as objects of interest
instead of still images. More precisely, we use image mosaicing [3] to project the
temporal dimension of video sequences onto a large FOV image, cf. some result-
ing mosaics in Fig. 4 and 5. With a leave-n-out cross-validation, classi�cation
experiments on the pCLE database serve the validation of themethodology: our
method outperforms other methods taken as references, by improving the clas-
si�cation accuracy and by providing more relevant training images among the
�rst retrieved images.
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B. Query B. , k=1 B. , k=2 B. , k=3 B. , k=4

B. Query Correct Correct Correct Correct

B. Query B. , k=1 B. , k=2 B. , k=3 N. , k=4

B. Query Correct Correct Correct Outlier

Fig. 1: Typical image retrieval results provided by our method from t wo benign queries.
B. indicates Benign and N. Neoplastic. From left to right on each row: the queried
image, and its k-NNs on the top layer, and their respective colo red visual words on the
bottom layer. An outlier is indicated by Outlier if it has been rejected by the spatial
veri�cation process, and by Error otherwise. FOV of the images: 240 µm.
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N. Query N. , k=1 N. , k=2 N. , k=3 N. , k=4

N. Query Correct Correct Correct Correct

N. Query B. , k=1 N. , k=2 N. , k=3 N. , k=4

N. Query Outlier Correct Correct Correct

Fig. 2: Typical image retrieval results provided by our method from t wo neoplastic
queries. B. indicates Benign and N. Neoplastic. From left to right on each row: the
queried image, and its k-NNs on the top layer, and their respective colored visual words
on the bottom layer. An outlier is indicated by Outlier if it has been rejected by the
spatial veri�cation process, and by Error otherwise. FOV of the images: 240 µm.
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2 The bag-of-visual words method

As one of the most popular method for image retrieval, the BVW [2] method aims
at extracting a local image description that is both e�cient to use and invariant
with respect to viewpoint changes, e.g., translations, rotations and scaling, and
illumination changes, e.g., a�ne transformation of intens ity. Its methodology
consists in �rst �nding and describing local features, then in quantizing them
into clusters named visual words, and in representing the image by the histogram
of these visual words. The BVW retrieval process can thus be decomposed into
four steps: detection, description, clustering and similarity measuring, possibly
followed by a classi�cation step for image categorization.

The detection step extracts salient regions in the image, i.e. regions contain-
ing some local discriminative information. In particular, corners and blobs in the
image can be detected by the sparse Harris-Hessian (H-H) operator around key-
points with high responses of intensity derivatives. Other sparse detectors like
the Intensity-Based Regions (IBR) and the Maximally Stable Extremal Regions
(MSER) are also specialized for the extraction of blob features in the images.
We refer the interested reader [4] for a survey of these detectors.

Then, each local region can be typically described by the Scale Invariant
Feature Transform (SIFT) [5] descriptor. We refer the reader [2] for a survey of
this and other powerful descriptors. At the description step, the SIFT descriptor
computes, for each salient region, a description vector which is its gradient his-
togram at the optimal scale provided by the detector, the gradient orientations
being normalized with respect to the principal orientation of the salient region.
As a result, the image is represented in a high dimensional space by a set of
SIFT description vectors that are invariant by translation , rotation and scale.

To reduce the dimension of the description space, the clustering step, for
example based on a standard K-Means, buildsK clusters, i.e. K visual words,
from the union of the description vector sets gathered from all the N images of
the training database. Since each description vector counts for one visual word,
an image is represented by a signature of sizeK which is its histogram of visual
words, normalized by the number of its salient regions.

Given these image signatures, it is possible to de�ne a distance between two
images as the� 2 distance [4] between their signature and to retrieve the closest
training images as the most similar to the image of interest.The relevance of the
similarity results can be quanti�ed by a further classi�cat ion step, for instance
based on a standard nearest neighbors procedure that weights the votes of the
k-nearest neighbors by the inverse of their� 2 distance to the signature of the
queried image, so that the closest images are the most determinant. Besides,
performing image classi�cation is a way to validate a new retrieval method by
comparing it with other methods.
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B. Query N. , k=1 N. , k=2 N. , k=3 N. , k=4

B. Query Error Error Error Error

N. Query B. , k=1 N. , k=2 B. , k=3 B. , k=4

N. Query Error Correct Error Error

Fig. 3: Worst image retrieval results provided by our method. The be nign query on the
top is a rare benign variety which is not represented in the tr aining dataset. The neo-
plastic query on the bottom contains on its top left corner a par tially visible elongated
crypt which could not be totally described. B. indicates Benign and N. Neoplastic.
From left to right on each row: the queried image, and its k-NN s on the top layer,
and their respective colored visual words on the bottom layer. An outlier is indicated
by Outlier if it has been rejected by the spatial veri�cation process, and b y Error
otherwise. FOV of the images: 240 µm.

3 Including spatial and temporal information

When we applied the standard BVW method on pCLE images [6], we obtained
rather poor classi�cation results and the presence of many retrieval outliers. To
improve the accuracy of endomicroscopic image retrieval, we decided to include
both spatial and temporal information contained in the pCLE images. While
testing on pCLE images the numerous sparse detectors listedby [4], we �rst
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observed that a large number of salient regions sparsely extracted by these stan-
dard detectors do not persist between two highly correlatedsuccessive images
taken from the same video. This is consistent with the rather poor results of
the standard sparse detector shown in Section 4. To overcomethe persistence
problem and take into account all the information in the images, we use a dense
detector contrarily to the standard method. Furthermore, a dense detector is
relevant because local information appears to be densely distributed over the
entire �eld of the pCLE image. The dense detector is made of overlapping disks
localized on a dense regular grid, such that each disk coversa possible image
pattern at microscopic level.

We also noticed that the endoscopists establish their diagnosis on pCLE im-
ages from the regularity of the cellular architecture in thecolonic tissue [7], where
goblet cells and crypts are both round-shaped characteristic patterns, but where
a crypt has larger size than its surrounding goblet cells so it must not be recog-
nized as the same object. In order to be sensitive to scale changes, our method
looked at describing local disk regions at various scales that are not automati-
cally computed, for example by choosing a microscopic scalefor individual cell
patterns and a mesoscopic scale for larger groups of cells. This leads us to rep-
resent an image by several sets of description vectors that are scale-dependent,
resulting in several signatures for the image that are then concatenated into one
larger signature.

This previous observation also suggests that the spatial organization of the
goblet cells must be included in the retrieval process because it is substantial
to di�erentiate benign tissues from neoplastic tissues. The authors of [8] previ-
ously proposed adding a geometrical veri�cation to take spatial information into
account, however their method is based on the assumption that they want to
retrieve images of the exact same scene, which is not the casefor our applica-
tion. In like manner, our idea is to introduce a geometrical veri�cation process
after the retrieval process, but based on the assumption that the spatial rela-
tionships between the local features are only statistically the same in the images
with similar appearance. To introduce spatial information, we took advantage
of the dense property to de�ne the adjacency between two visual words as the
8-adjacency between the two disk regions that are labeled by them on the detec-
tion grid. Thus, we are able to store in a co-occurence matrixM of sizeK � K
the probability for each pair of visual words of being adjacent to each other.
In order to best di�erentiate the images of the benign class from the images of
the pathological class, we looked at the most discriminative linear combination
W of some elementsm of M . This is achieved by a linear discriminant analysis
(LDA) which uses the textual diagnostic information in the da tabase. The LDA
weights are given byW = � � 1 (� 1 � � 2), where � is the covariance matrix of
the elementsm of M in all training images and � i is the mean of the elementsm
of M in the training image belonging to the classi . From these weightsW , we
computed the spatial criterion � = Wm for each retrieved image and compared
it with the � value of the image of interest. By thresholding the� value during a
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veri�cation process, outliers are rejected and the �rst retrieved training images
are more relevant.

Expert physicians pointed out that some characteristic global patterns are
too partially visible on single still pCLE images to make a robust diagnosis: two
still images may have a very similar appearance but be attached to contradictory
diagnoses [9]. Fig. 3 shows some bad retrieval results caused by the small-FOV
problem. To address this problem, the time dimension of pCLEvideos needs
to be exploited, by including in the retrieval process the temporal relationship
between successive images from the same video sequence. Thestudy reported
by [10] proposes a method for video retrieval using the spatial layout of the
image regions, but this method has been designed for object matching, which
is not our objective. Since successive frames from pCLE videos are only related
by viewpoint changes, our approach uses the image mosaicingof [3] to project
the temporal dimension of a video sequence onto one image with a larger FOV
and of higher resolution. Thus, mosaics can be queried and retrieved in the same
way as still images.

4 Experiments and discussion

At the Mayo Clinic in Jacksonville, the Cellvizio ® system, MKT, Paris, was
used to image colonic polyps during surveillance colonoscopies in 54 patients. On
each acquired video sequence, expert physicians established a pCLE diagnosis [7]
that di�erentiates pathological sequences from benign ones. The video sequences
contain from 5 to over a thousand frames and each frame is an image of diameter
500 pixels corresponding to a FOV of240 µm. To build our pCLE database, we
considered a subset of these sequences by discarding those whose quality was
insu�cient to perform a reliable diagnosis. In each of the remaining 52 video
sequences, we selected groups of successive frames according to the length of the
sequence. The resulting database is composed ofN = 1036 still pCLE images
and N 0 = 66 pCLE mosaics, half of the data coming from benign sequences and
half from pathological ones.

In pCLE images, the disk regions containing information at mesoscopic scale
have a radius value� 1 = 40, while the radius value of those containing infor-
mation at microscopic scale is� 2 = 15. For the dense detector, we then chose
� = 20 pixels of grid spacing in order to get a reasonable overlap between ad-
jacent regions. Among the values from30 to 1500 found in the literature for
the number K of visual words provided by the K-Means clustering, the value
K = 100 yielded satisfying classi�cation results. To prevent over�tting, as the
size of our pCLE database is still rather small, especially concerning the num-
ber of mosaics, the number of LDA weights in the computation of the spatial
criterion � had to be restricted. For the elementsm of the co-occurence matrix
M , we only considered theK diagonal elements of the matrixM build from the
visual words of large radius40, observing that the overlapping regions of radius
40 have a su�cient spatial correlation, better than those of ra dius 15. The good
values of the threshold� � were chosen by analysing the distribution of� across
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B. Query B. , k=1 B. , k=2 B. , k=3

B. , k=4

B. Query Correct Correct Correct

Correct

Fig. 4: Typical mosaic retrieval results provided by our method from one benign query.
B. indicates Benign and N. Neoplastic. From left to right on each row: the queried
mosaic, and its k-NNs on the top layer, and their respective colored visual words on
the bottom layer. FOV of the mosaics: from 260 µm to 1300 µm.
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N.
Query

N. , k=1 N. , k=2 N. , k=3 N. , k=4

N.
Query

Correct Correct Correct Correct
Fig. 5: Typical mosaic retrieval results provided by our method from one neoplastic
query. B. indicates Benign and N. Neoplastic. From left to right on each row: the
queried mosaic, and its k-NNs on the top layer, and their respective colored visual
words on the bottom layer. FOV of the mosaics: from 260 µm to 1300 µm.
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the benign and pathological images:2 when retrieving still images from a queried
still image and 0:5 when retrieving still images from a queried mosaic.

The classi�cation results of our method are presented in Fig. 6 on the left and
compared with the following methods taken as references: the standard sparse
scale invariant SIFT method, the statistical approach of Haralick features [11,12]
and the texture retrieval method of Textons [13]. To ensure anon-biased classi�-
cation, our validation scheme retrievesk nearest images in the training set with
training images not belonging to the video sequence of the image being queried,
i.e. a leave-n-out cross-validation wheren is the number of frames in the video
of the queried image. According to the accuracy, sensitivity and speci�city rates
yielded by each method on the still images of the pCLE database, our retrieval
method including spatial information is the most e�cient, w ith an accuracy rate
of 78:2% for k = 22 neighbors, which is 11:5 points better than the standard
SIFT method. The gain of accuracy can be decomposed in10:2 points for the
choice of a dense detector and a bi-scale SIFT description, and 1:3 points for
the veri�cation process on the spatial criterion. It is also worth mentioning that
with the spatial veri�cation, fewer nearest neighbors are necessary to classify the
query at a given accuracy. Fork = 4 neighbors, some illustrative examples of
the image retrieval results are shown in Fig. 1, 2 and 3.

Moreover, when including both spatial and temporal information by query-
ing mosaics, our classi�cation results are much better, seeFig. 6 on the right.
Since mosaics contain more information than single images,their content-based
neighborhood is more representative of their pathologicalneighborhood, so they
can be better classi�ed by a smaller numberk0 of nearest neighbors. Indeed, if we
retrieve still images for queried mosaics, the classi�cation accuracy is83:3% for
k0 = 10 neighbors, which demonstrates the robustness of our retrieval method
applied on heterogeneous data with di�erent resolution. For the retrieval of still
images from queried mosaics, the poor speci�city can be explained by the fact
that a mosaic annotated as neoplastic may contain some benign patterns which
induce the retrieval of single benign images and classify itas benign. However
the expert physicians diagnose a pCLE video sequence as neoplastic as soon as it
contains neoplastic patterns, even when some benign tissueis imaged. Besides, if
we retrieve mosaics for queried mosaics, the classi�cationaccuracy is89%. Thus,
even though we only have a small number of mosaics, includingtime dimension
in mosaics provides us proof of concept results for endomiscroscopic video re-
trieval. The relevance of mosaic retrieval can also be qualitatively appreciated
in Fig. 4 and 5. For the retrieval of mosaics from queried mosaics, including
the spatial information does not improve the classi�cation results because of the
over�tting phenomenon: indeed, the number of LDA weights, 100, is bigger than
the total number of mosaics,N 0 = 66.
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Method / kNN k=1 k=4 k=10

(I, I) DBV
Acc. 71.7 74.0 76.5
Sens. 71.8 74.9 77.7
Spec. 71.6 73.1 75.3

(I, I) DB
Acc. 70.2 72.1 75.0
Sens. 69.8 71.1 73.8
Spec. 70.6 73.3 76.3

(I, I) HH SIFT
Acc. 65.3 65.1 66.4
Sens. 76.6 75.8 76.6
Spec. 52.7 53.1 55.1

(M, M) DB
Acc. 86 89 82
Sens. 88 88 78
Spec. 85 91 85

(M, I) DBV
Acc. 71.2 81.8 83.3
Sens. 96.9 100.0 100.0
Spec. 47.1 64.7 67.7

(M, I) DB
Acc. 71.2 80.0 78.8
Sens. 90.6 93.8 90.6
Spec. 52.9 67.7 67.7

Fig. 6: Left: Classi�cation accuracies yielded by several methods on th e still images
of the pCLE database, with leave-n-out cross-validation. Ri ght: Results for k nearest
neighbors, whereM meansMosaic and I meansImage in the con�guration (Queried ,
Retrieved ) . Our proposed method is referred to as Dense Bi-Scale Verif (DBV ) if it
includes spatial veri�cation and Dense Bi-Scale ( DB ) otherwise.

5 Conclusion

Using visual similarity between a given image and medically interpreted images
allowed us to provide the physicians with semantic similarity, and thus could
potentially support their diagnostic decision. Although our experiments are fo-
cused on a relatively small training dataset, the classi�cation results constitute
a validation of our generic methodology. By taking into account the spatio-
temporal relationship between the local feature descriptors, the �rst retrieved
endomicroscopic images are much more relevant.

For future work, a larger training database would not only improve the clas-
si�cation results if all the characteristics of the image classes are better rep-
resented, but also enable the exploitation of the whole co-occurence matrix of
visual words at several scales. Besides, the learning step of the retrieval pro-
cess could leverage the textual information of the databaseand incorporate the
spatial information of multi-scale co-occurence matricesinto descriptors. The
co-occurence matrix could also be better analyzed by other tools more generic
than linear discriminant analysis. For example, a more complete spatial geom-
etry between local features could be learned by estimating the parameters of
Markov Random Fields [14]. We also plan to perform a leave-one-patient-out



Introducing space and time in local feature-based endomicroscopy retrieval 13

cross-validation to ensure fully unbiased retrieval and classi�cation results. As
for introducing the temporal information, a more robust approach would not
only consider the fused image of a mosaic but the2D + t volume of the regis-
tered frames composing the mosaic to work on more accurate visual words and
better combine spatial and temporal information.
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