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Learning Semantic and Visual Similarity

for Endomicroscopy Video Retrieval
Barbara André, Tom Vercauteren, Anna M. Buchner, Michael B. Wallace, and Nicholas Ayache

Abstract—Content-Based Image Retrieval (CBIR) is a valuable
computer vision technique which is increasingly being applied
in the medical community for diagnosis support. However,
traditional CBIR systems only deliver visual outputs, i.e. images
having a similar appearance to the query, which is not directly
interpretable by the physicians. Our objective is to provide a
system for endomicroscopy video retrieval which delivers both
visual and semantic outputs that are consistent with each other.
In a previous study, we developed an adapted bag-of-visual-
words method for endomicroscopy retrieval, called “Dense-Sift”,
that computes a visual signature for each video. In this study,
we present a novel approach to complement visual similarity
learning with semantic knowledge extraction, in the field of in vivo

endomicroscopy. We first leverage a semantic ground truth based
on 8 binary concepts, in order to transform these visual signatures
into semantic signatures that reflect how much the presence
of each semantic concept is expressed by the visual words
describing the videos. Using cross-validation, we demonstrate
that, in terms of semantic detection, our intuitive Fisher-based
method transforming visual-word histograms into semantic esti-
mations outperforms Support Vector Machine (SVM) methods
with statistical significance. In a second step, we propose to
improve retrieval relevance by learning an adjusted similarity
distance from a perceived similarity ground truth. As a result,
our distance learning method allows to statistically improve the
correlation with the perceived similarity. We also demonstrate
that, in terms of perceived similarity, the recall performance of
the semantic signatures is close to that of visual signatures and
significantly better than those of several state-of-the-art CBIR
methods. The semantic signatures are thus able to communicate
high-level medical knowledge while being consistent with the
low-level visual signatures and much shorter than them. In our
resulting retrieval system, we decide to use visual signatures
for perceived similarity learning and retrieval, and semantic

signatures for the output of an additional information, expressed
in the endoscopist own language, which provides a relevant
semantic translation of the visual retrieval outputs.

Index Terms—Content-Based Image Retrieval, Bag-of-Visual-
Words, Semantic and Visual Similarity, Similarity Learning,
Semantic Gap, Endomicroscopy

I. INTRODUCTION

The Content-Based Image Retrieval (CBIR) techniques,

inherited from the computer vision field, have various medical
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Fig. 1: Illustration of the semantic gap: content-based retrieval of
visually similar pCLE videos having dissimilar semantic annotations.
The 5 most similar pCLE videos are retrieved by the “Dense-Sift”
method that only relies on visual features. The semantic concepts
annotated as present in a given video are underlined and set to 1,
those annotated as absent are set to 0. For each video, the pathological
diagnosis, either malignant or non-malignant, is indicated below the
semantic concepts. For illustration purposes, videos are represented
by mosaic images.

applications. Müller et al. [1] presented a benchmark for the

evaluation of multimodal CBIR methods on medical databases

according to the “ImageCLEF” medical image retrieval task

that includes heterogeneous medical images, from radiogra-

phy and electrocardiograms to histopathology. More recently,

a dense CBIR approach was proposed by Avni et al. [2]
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Fig. 2: Examples of training pCLE videos represented by mosaic
images and annotated with the 8 semantic concepts. The two mosaics
on the top show neoplastic (i.e. malignant) colonic polyps, while the
two mosaics on the bottom show non-neoplastic (i.e. non-malignant)
colonic polyps. On the left, the mosaics from top to bottom were
respectively built using 12, 6 and 10 frames. On the right, the mosaic
was built using 27 frames. The size of a mosaic does not only depend
on the number of frames used to build it, but also on the motion
velocity of the probe during pCLE imaging.

for organ-level and pathology-level categorization of x-ray

images. The expanding application of CBIR methods in the

medical diagnosis field faces the semantic gap, which was

pointed out by Smeulders et al. in [3] and by Akgül et

al. in [4], as a critical issue. The semantic gap in CBIR

is the disconnection between the reproducible computational

representation of low-level visual features in images and the

context-dependent formulation of high-level knowledge, or

semantics, to interpret these images. Two medical images

being highly similar in appearance may have contradictory

semantic annotations. So a CBIR system, which would be

only based on visual content, might lead the physician toward

a false diagnosis. Conversely, two medical images having

exactly the same semantic annotations may look visually

dissimilar. So a CBIR system, for which the semantics of the

query is unknown, might not retrieve all clinically relevant

images. In fact, when interpreting a new image for diagnostic

purposes, the physician uses similarity-based reasoning, where

similarity includes both visual features and semantic concepts.

To mimic this process, we aim at capturing the visual content

of images using the Bag-of-Visual-Words (BoW) method, and

at estimating the expressive power of visual words with respect

to multiple semantic concepts. This leads us to compute

semantic estimations which have the potential to provide the

physician with a relevant semantic translation of the retrieval

results.

Our medical application is the retrieval of probe-based

Confocal Laser Endomicroscopy (pCLE) videos to support the

early diagnosis of colonic cancers. pCLE is a recent imaging

technology that enables the endoscopist to acquire in vivo

microscopic video sequences of the epithelium, at a rate of

9 to 18 frames per second, and thus to establish a diagnosis in

real time. In particular, the in vivo diagnosis of colonic polyps

using pCLE is still challenging for many endoscopists, because

of the high variability in the appearance of pCLE videos and

the presence of atypical cases such as serrated adenoma [5].

Examples of mosaic images extracted from pCLE videos are

shown in Fig. 1 which also provides an illustration of the

semantic gap in endomicroscopy retrieval. In [6] we have

developed a dense BoW method, called “Dense-Sift”, for

the content-based retrieval of pCLE videos. We showed that,

when evaluated in terms of pathological classification of pCLE

videos, “Dense-Sift” significantly outperforms several state-

of-the-art CBIR methods. Parts of this paper are extensions

of a preliminary study [7] where we explored pCLE retrieval

evaluation and distance learning in terms of perceived visual

similarity. In this study, we present a novel approach to bridge

the gap between visual pCLE features and semantic pCLE

knowledge. Our objective is to extract semantic information as

an additional information that complements the visual outputs

of our CBIR method, in order to provide the endoscopists with

semantic insight into the retrieval results. A primary version

of this paper can be found in our research report [8].

To this purpose, we consider two types of ground truth pre-

sented in Section II: the first type contains visual similarities

perceived by endoscopists between pCLE videos, evaluated

on a four-point Likert scale, and the second type contains

eight binary semantic concepts which are commonly used

by expert endoscopists to diagnose pCLE videos of colonic

polyps. These semantic concepts are illustrated in Fig. 2. In

Section III we briefly described our “Dense-Sift” retrieval

method. From the visual signatures computed by “Dense-

Sift” and from the semantic ground truth, we build visual-

word-based semantic signatures using a Fisher-based approach

detailed in Section IV. We evaluate the relevance of the

resulting semantic signatures, first from the semantic point of

view, with ROC curves showing detection performances for

each semantic concept, and then from the perceptual point

of view, with sparse recall curves showing the ability of the

induced semantic distance to capture video pairs perceived

as very similar. In order to improve retrieval relevance, we

propose in Section V a method to learn an adjusted simi-

larity distance from the perceived similarity ground truth. A

linear transformation of video signatures is optimized, that

minimizes a margin-based cost function differentiating very

similar video pairs from the others. The results shown in Sec-

tion VI show that the visual-word-based semantic signatures

yield a recall performance which is slightly lower than that

of the original visual signatures computed by “Dense-Sift”,

but significantly higher than those of several state-of-the-art

methods in CBIR. In terms of correlation with the perceived

similarity, the retrieval performance of semantic signatures is
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Fig. 3: Schematic outline of the online “Visual Similarity Scoring” tool showing the example of a scoring process, where 3 video couples
(I0, I1), (I0, I2) and (I0, I3) are proposed. Each video is summarized by a set of mosaic images, two of which are shown here as an
example.

better, with statistical significance, than those of the state-of-

the-art methods, and comparable to that of the original visual

signatures. For both semantic signatures and visual signatures,

the distance learning method allows to improve, with statistical

significance, the correlation with the perceived similarity. Our

resulting pCLE retrieval system, of which visual and semantic

outputs are consistent with each other, should better assist the

endoscopist in establishing a pCLE diagnosis.

II. GROUND TRUTH FOR PERCEIVED VISUAL SIMILARITY

AND FOR SEMANTICS

A. pCLE database

Our video database contains 118 pCLE videos of colonic

polyps that were acquired from 66 patients for the study of

Buchner et al. [9]. The lengths of the acquired pCLE videos

range from 1 second to 4 minutes, depending on the time

spent to image the lesion of interest. All the patients underwent

a surveillance colonoscopy with pCLE for fluorescein-aided

imaging of suspicious colonic polyps before their removal. For

each patient, pCLE was performed of each detected polyp with

one video corresponding to each particular polyp. All polyps

were removed and evaluated by a pathologist to establish the

“gold standard” diagnosis.

During the colonoscopy procedures the pCLE miniprobe

was in constant contact with the epithelium, so the viewpoint

changes between the images of stable pCLE video sequences

are mostly in-plane rotations and translations. For this reason,

we can represent any pCLE video as a set of mosaic images

built with the video-mosaicing technique of Vercauteren et al.

[10], each mosaic image corresponding to a stable subsequence

of the video. pCLE mosaic images will not only be used as

input for our retrieval system, but also as retrieval output

attached to the extracted similar videos. Indeed, Dabizzi et

al. [11] recently showed that pCLE mosaics have the potential

to replace pCLE videos for a comparable diagnosis accuracy

and a significantly shorter interpretation time.

B. Ground Truth for Perceived Visual Similarity

To generate a pairwise similarity ground truth between

pCLE videos, we designed an online survey tool, called

VSS [12], that allows multiple observers, who are fully

blinded to the video metadata such as the pCLE diagnosis,

to qualitatively estimate the perceived visual similarity degree

between videos. The VSS tool proposes, for each video

couple, the following four-point Likert scale: very dissimilar,

rather dissimilar, rather similar and very similar. Because

interpreting whole video sequences is time consuming, the

VSS supports this task by making available both the whole

video content and for each video, its set of static mosaic

images providing a visual summary. Each scoring process, as

illustrated in Fig. 3, is characterized by the random drawing

of 3 video couples (I0, I1), (I0, I2) and (I0, I3), where the

candidate videos I1, I2 and I3 belong to patients that are

different from the patient of the reference video I0, in order to

exclude any patient-related biases. 17 observers, ranging from

middle expert to expert in pCLE diagnosis, performed as many

scoring processes as they could. Our generated ground truth

can be represented as a weighted oriented graph G = (V,E)
where the nodes in V are the videos and where each couple

of videos may be connected by zero, one or several edges in

E weighted by the similarity scores. As less than 2% of these

video couples were scored by more than 2 distinct observers, it

was not relevant to measure inter-observer variability. In total,

4, 836 similarity scores were given for 2, 178 distinct video

couples. Thus 16.2% of all 13, 434 distinct video couples

were scored. Compared to our preliminary study [7] where

14.5% of all possible video couples were scored, the perceived

similarity ground truth was enriched for this study in order to

better differentiate potentially very similar video pairs from
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the others, a goal which is closer to our retrieval purpose.

If the video couples were randomly drawn with a uniform

non-informative prior by the VSS tool, we would have drawn

many more video pairs perceived as dissimilar than video pairs

perceived as very similar. The resulting perceived similarity

ground truth would have been too far from our clinical

application which aims at extracting highly visually similar

videos. For this reason, we use the a priori similarity distance

dVis computed by the “Dense-Sift” method to enable two

modes for the drawing of video pairs: in the first mode, video

pairs with different perceived similarities are equally likely

to be drawn; in the second mode, video pairs perceived as

very similar are more likely to be drawn. Using this a priori

distance can deliver a slight bias in the VSS process, however

it is an efficient solution to increase the number of very similar

video pairs.

More precisely, in the first mode, the probability of drawing

a video couple (Ii, Ij) is proportional to the inverse of the

density of dprior(Ii, Ij). In the second mode, the video Ij is

one of the 5 nearest neighbors of the video Ii according to

the retrieval distance dVis. A total of 3, 801 similarity scores

was recorded with the first mode, and 1, 035 with the second

mode.

Although the resulting similarity graph remains very sparse,

we will show in Section VI that it constitutes a valuable

ground-truth database for retrieval evaluation and for perceived

similarity learning.

C. Ground Truth for Semantic Concepts

All the acquired pCLE videos were manually annotated with

M = 8 binary semantic concepts that are illustrated on pCLE

mosaic images in Fig. 2. The eight semantic concepts were

defined by the endoscopists, who use them as main criteria

to diagnose the colonic polyps from pCLE videos. These se-

mantic concepts express a mid-level clinical knowledge, which

we consider as “high-level” clinical knowledge in contrast to

the low-level visual features. As pCLE images are rather new

for many endoscopists, the taxonomy of pCLE semantics is

still under construction. Although eight semantic concepts is

a relatively small number, it is a first necessary step for the

full understanding of the pathologies observed in pCLE videos.

In a given pCLE video, each semantic concept is defined as

either visible, potentially several times, or not visible at all in

the video. The first two concepts, abnormal nuclei (c1) and

abnormal nuclei density (c2), which are the most difficult to

identify, were annotated by two expert endoscopists. With the

support of the modified Mainz criteria identified by Kiesslich

et al. [13] six other concepts were annotated: blood vessel (c3),

normal goblet cell (c4), round crypt (c5), elongated crypt (c6),

lumen (c7) and star-shaped opening (c8). If the semantic jth

concept is visible in the video then cj = 1 else cj = 0. Table I

shows, for each semantic concept, the percentage of the videos

in the database where the concept is annotated as visible.

III. FROM PCLE VIDEOS TO VISUAL WORDS

Among the state-of-the-art methods in CBIR, the BoW

method of Zhang et al. [14], referred to as “HH-Sift”, is

Semantic Frequency
concept

c1. abnormal nuclei 46.6 %

c2. abnormal nuclei density 63.6 %

c3. blood vessel 47.5 %

c4. normal goblet cell 72.0 %

c5. round crypt 47.5 %

c6. elongated crypt 64.4 %

c7. lumen 27.1 %

c8. star-shaped opening 18.6 %

TABLE I: Frequency of each semantic concept. The frequency of
each semantic concept is measured by the percentage of the videos
in the database where the concept is annotated as visible.

particularly successful for the retrieval of texture images in

computer vision. Whereas “HH-Sift” combines the sparse

“Harris-Hessian” detector with the SIFT descriptor, the “Tex-

tons” method proposed by Leung and Malik [15] is based on

a dense description of local texture features. Adjusting these

approaches for pCLE retrieval, we proposed in [6] the “Dense-

Sift” method with the following parameters: disk regions of

radius 60 pixels, a total of K = 100 visual words and dense

SIFT description of explicit mosaic images. In the field of

computer vision, the superiority of the dense SIFT descrip-

tor, compared to the standard sparse SIFT descriptor, was

demonstrated by Li and Perona for natural scene classification

in [16]. The image description performed by our “Dense-

Sift” method is invariant to in-plane rotations and in-plane

translations changes that are due to the motion of the pCLE

miniprobe, and to the affine illumination changes that are

due to the leakage of fluorescein used in pCLE. “Dense-Sift”

also enables the extension from pCLE image description to

pCLE video description by leveraging video mosaicing results.

As a result, “Dense-Sift” computes a visual word signature

SVis(I) = (wI
1 , ..., w

I
K) for each pCLE video I , where wI

k is

the frequency of the kth visual word in the video I . We define

the visual similarity distance dVis(I, J) between two videos I
and J as the χ2 pseudo-distance between their visual word

signatures computed by “Dense-Sift”:

dVis(I, J) = χ2(SVis(I),SVis(J))

=
1

2

∑
k∈{1,..,K},wI

k
wJ

k
>0

(wI
k − wJ

k )
2

wI
k + wJ

k

(1)

The last CBIR method which we consider as a reference

is the “Haralick” [17] method based on global statistical

features. We use an extended Haralick method, provided by

Avinash Uppuluri in Matlab Central [18], that extracts 23
texture features computed from the Gray Level Co-occurrence

Matrices (GLCM). The seminal method of Haralick consists of

extracting 13 global statistical features from the co-occurrence

matrix which is computed on the whole image at the first level

of adjacency. Other global descriptors have been proposed

more recently in the literature, such as the gist descriptor of

Oliva and Torralba [19].

Among the four state-of-the-art CBIR methods, “HH-Sift”,

“Textons”, “Dense-Sift” and “Haralick”, our “Dense-Sift”

method was proven in [6] to be the best method in terms of
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pathological classification of pCLE videos. “Dense-Sift” will

also be proven to be the best method in terms of correlation

with the perceived visual similarity, as shown in Section VI.

For these reasons, we decided to build the semantic signatures

of pCLE videos from the visual signatures computed by

“Dense-Sift”.

IV. FROM VISUAL WORDS TO SEMANTIC SIGNATURES

Among the approaches in bridging the semantic gap, recent

methods based on random-walk processes on visual-semantic

graphs were proposed by Poblete et al. [20] and by Ma et

al. [21]. Latent semantic indexing approaches have also been

investigated, for example by Caicedo et al. [22] to improve

medical image retrieval. Rasiwasia et al. [23], [24] proposed

a probabilistic method which we consider as a reference

method for performing a semantic retrieval which is based on

visual features. In particular, their approach estimates for each

semantic concept the probability that, given a visual feature

vector in an image, the semantic concept is present in the

image. In [25], Kwitt et al. recently applied this method for

learning pit pattern concepts in endoscopic images of colonic

polyps. These pit pattern concepts at the macroscopic level

can be seen as corresponding to our semantic concepts at the

microscopic level. In order to learn semantic concepts from

visual words in endomicroscopic videos, we propose a rather

simple method providing satisfactory results. The application

of a probabilistic method such as the one in [23] on our

data was not successful, certainly because of our relatively

small sample size, but we plan to further investigate it. Our

proposed method is a Fisher-based approach that estimates the

expressive power of each of the K visual words with respect

to each of the M semantic concepts.

Let Dtrain be the set of training videos. Given the kth

visual word and the jth semantic concept, we estimate the

discriminative power of the kth visual word with respect to

the jth semantic concept using the signed Fisher criterion:

Fk,j =
µ1(k, j)− µ0(k, j)

σ2
1(k, j) + σ2

0(k, j)
(2)

where µp(k, j) (resp. σ2
p(k, j)) is the mean (resp. the variance)

of {wI
k, c

I
j = p, I ∈ Dtrain} with p = 0 or p = 1. We call F

the resulting matrix of Fisher’s weights. Given a video I with

the visual signature SVis(I) = (wI
1 , ..., w

I
K), we define the se-

mantic weight of I with respect to the jth semantic concept as

the following linear combination: sIj =
∑K

k=1 Fk,jw
I
k. Thus,

the transformation from the visual signature SVis(I) into its

visual-word-based semantic signature SSem(I) = (sI1, ..., s
I
M )

is given by the equation:

SSem(I) = FT
SVis(I) (3)

The signed value sIj reflects how much the presence of the jth

semantic concept is expressed by the visual words describing

the video I . Finally, a visual-word-based semantic similarity

distance between two videos I and J can be defined for

example using the L2 norm:

dSem(I, J) = ||SSem(I)− SSem(J)||L2 (4)

Fig. 4: An example of a star plot based on the 8 semantic concepts.
The coordinate value along the j th radius corresponds to the normal-
ized value of the semantic signature at the j th concept.

It thus becomes possible to use our short semantic signature

of size M = 8 in order to retrieve pCLE videos that

are the closest to a video query according to the semantic

distance dSem. In Section VI we demonstrate that, in terms of

correlation with the perceived visual similarity, the retrieval

performance of the semantic distance dSem is comparable to

that of the visual distance dVis.

In order to provide the endoscopists with a qualitative

visualization of semantic signatures, we provide an intuitive

and generic representation of any semantic signature using

a star plot of M radii, as shown in Fig. 4. Given a video

I and the jth semantic concept, we normalize the semantic

weight sIj into (sIj − min{sJj , J ∈ Dtrain})/(max{sJj , J ∈
Dtrain} − min{sJj , J ∈ Dtrain}) in order to obtain the

coordinate value of I along the jth radius of the star plot.

For example, in Fig. 5 the star plots represent, from some

tested videos, the visual-word-based semantic signatures that

have been learned from annotated training videos, such as the

ones shown in Fig. 2.

V. DISTANCE LEARNING FROM PERCEIVED SIMILARITY

Similarity distance learning has been investigated by recent

studies to improve classification or recognition methods. Yang

et al. [26] proposed a boosted distance metric learning method

that projects images into a Hamming space where each dimen-

sion corresponds to the output of a weak classifier. Weinberger

and Saul [27] explored convex optimizations to learn a Ma-

halanobis transformation such that distances between nearby

images are shrunk if the images belong to the same class

and expanded otherwise. At the level of image descriptors,

Philbin et al. [28] have a similar approach that transforms

the description vectors into a space where the clustering step

more likely assigns matching descriptors to the same visual

word and non-matching descriptors to different visual words.

In order to improve the relevance of pCLE retrieval, our

objective is to shorten the distances between very similar

videos and to enlarge the distances between non-very similar

videos. As the approach of Philbin et al. [28] is closer to our

pairwise visual similarity ground truth, we propose a generic

distance learning technique inspired from their method. We

aim at finding a linear transformation matrix W which maps

given video signatures to new signatures that better discrimi-

nate very similar video pairs from the other video pairs. We

thus consider two groups: D+ is the set of N+ training video
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Fig. 5: Examples of tested pCLE videos, represented by mosaic im-
ages, and visualization of their learned semantic signatures using the
star plot, as explained in Fig. 4. The font size of each written semantic
concept is proportional to the value of the concept coordinate in
the star plot. Underlined concepts are those which were annotated
as present in the semantic ground truth. From top to bottom, the
first three mosaics show non-neoplastic (i.e. non-malignant) colonic
polyps and the fourth mosaic shows a neoplastic (i.e. malignant)
colonic polyp.

couples that have been scored with +2 and D− is the set of

N− training video couples that have been scored with +1, −1
or −2. We optimize the transformation W by minimizing the

following margin-based cost function f :

f(W,β, γ) =
1

N+

∑

(I,J)∈D+

g(β − d(W S (I),W S (J)))

+γ
1

N−

∑

(I,J)∈D
−

g(d(W S (I),W S (J))− β) (5)

where S (I) is the signature of the video I , d(., .) is the

chosen distance between the video signatures, e.g. L2 or

χ2, and g(z) = log(1 + e−z) is the logistic-loss function.

The cost function f has the three following parameters: the

transformation matrix W , the margin β and the constant

parameter γ that potentially penalizes either non-very simi-

lar nearby videos or very similar remote videos. We could

optimize f with respect to all 3 parameters, but this would

make the search for the optimum more sensitive to local

minima. We therefore decide to fix the value of the margin

β using an intuitive heuristic: we take as a relevant value for

β the threshold on the distances between video signatures that

maximizes the classification accuracy between D+ and D−.

All possible values of the parameter γ are then discretized

into a finite number of values, at which the cost function f
is optimized according to W . As long as the distance d(., .)
is differentiable, f can be differentiated with respect to W .

Given a pCLE video I , its signature S (I) of size X is mapped

to the transformed signature W opt S (I), where W opt is the

optimized transformation matrix of size X ×X . The learned

similarity distance between two pCLE videos I and J is then

defined as:

dlearn(I, J) = d(W opt
S (I),W opt

S (J))) (6)

The application of this generic distance learning scheme to

the semantic signatures of size X = 8 is straightforward: the

transformation matrix W is of size X ×X = 64, S = SSem,

the intuitive distance is d(x, y) = ||x−y||L2 . Our experiments

with cross-validation led to γ = 10.

However, for the application on the visual signatures of size

X = 100: S = SVis and the X × X = 10, 000 coefficients

of the transformation matrix W should be positive in order to

maintain the positiveness of visual word frequencies. Besides,

as our sample size is relatively small, there is a risk of

overfitting if all the 10, 000 coefficients of W are involved

in the optimization process. For this reason, we only consider

the optimization of diagonal matrices W , which amounts to

optimize K = 100 visual word weights. Finally, the χ2

pseudo-distance, initially used between visual word signatures,

is an intuitive distance d(., .) between the transformed visual

word signatures which should be L1-normalized before χ2

measures are performed:

d(W SVis(I),W SVis(J)) =

χ2(
W SVis(I)

||W SVis(I)||L1

,
W SVis(J)

||W SVis(J)||L1

) (7)

Due to the choice of the χ2 pseudo-distance, the differentiation

of the cost function f with respect to W was less straightfor-

ward but feasible. We also tried the L2 distance for the distance
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Fig. 6: Sparse recall curves associated with the retrieval methods in L-scored domains where L = +2 (left) or L >= 1 (right). For retrieval
methods using distance learning, each sparse recall curve is the median of the sparse recall curves computed with 30× 3 cross-validation.
The recall curves associated with “Semantic” and “Semantic + Learn” are indirect indicators of the relevance of the semantic signature. As
explained in in Section VI-D, the small performance loss observed with the semantic signature must not be interpreted as a rejection of the
method.

d(., .) but we did not retain it because the results were not as

good as with the χ2 pseudo-distance. Our experiments with

cross-validation for the visual signatures also led to γ = 10.

VI. EVALUATION AND RESULTS

A. Cross-validation

In order to exclude any learning bias, we used m× q-fold

cross-validation, i.e. m random partitions of the database into

q subsets. Each of these subsets is successively the testing

set and the union of the q − 1 others is the training set. To

exclude patient-related bias, all videos from the same patient

are in the same subset. Given our sparse ground truth for

perceived similarity, q must be not too large in order to have

enough similarity scores in each testing set, and not too small

to ensure enough similarity scores in the training set. For our

experiments, we performed m = 30 random partitions of our

pCLE video database into q = 3 subsets. When computing any

performance indicator, we will consider as a robust indicator

value the median of all the indicator values computed with

cross-validation.

B. Retrieval Evaluation Tools

Standard recall curves are a common means of evaluating

retrieval performance. However, because of the sparsity of

our perceived similarity ground truth, it is not possible to

compute them in our case. As an alternative, we define sparse

recall curves. At a fixed number n of nearest neighbors in the

complete video database, we define the sparse recall value

SR(n) of a retrieval method as the percentage of L-scored

video couples, with L = +2 or L >= 1, for which one of
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the two videos has been retrieved by the method among the

n nearest neighbors of the other video:

SR(n) =

Card{(x, y) ∈ E | e(x, y) = L, x ∈ Vn
y or y ∈ Vn

x }

Card{(x, y) ∈ E | e(x, y) = L}
(8)

where E are the edges of the sparse similarity graph G =
(V,E), e(x, y) is the similarity score of the edge (x, y) and

Vn
x is the n-neighborhood of the video x. The resulting sparse

recall curve, for example with L = +2, shows the ability

of the retrieval method to extract, among the first nearest

neighbors, videos that are perceived as very similar to the

video query.

The evaluation of a retrieval method against perceived

similarity ground truth can be qualitatively illustrated by four

superimposed histograms HL, L ∈ {−2,−1,+1,+2}. HL is

defined as the histogram of the similarity distances which were

computed by the retrieval method in the restricted domain of

all L-scored video couples, where L is one of the four Likert

points: very dissimilar (−2), rather dissimilar (−1), rather

similar (+1) and very similar (+2). The more separated these

four histograms are, the more likely the distance computed

by the retrieval method will be correlated with perceived

similarity ground truth. As a separability measure between

each pair of histograms, we use the Bhattacharyya distance

which is closely related to the Bayes error [29] and thus more

indicative of a probability of similarity between histograms

than the simple histogram intersection.

C. Evaluation of Semantic Concept Extraction

In order to evaluate, from the semantic point of view, our

visual-word-based semantic extraction method, we propose to

measure the detection performance of each of the M = 8
semantic weights contained in the semantic signature. For the

jth semantic concept, we compute a ROC curve that shows the

matching performance of the learned semantic weight sj with

respect to the semantic ground truth cj . The obtained ROC

curves reflect how well the presence of semantic concepts can

be learned from the visual words.

Possible indicators of the correlation between the distance

computed by a retrieval method and the perceived simi-

larity ground truth are Pearson correlation π, Spearman ρ
and Kendall τ . Compared to Pearson π which measures

linear dependence based on the data values, Spearman ρ
and Kendall τ are better adapted to the psychometric Likert

scale because they measure monotone dependence based on

the data ranks [30]. Kendall τ is less commonly used than

Spearman ρ but its interpretation in terms of probabilities

is more intuitive. To assess statistical significance for the

comparison between two correlation coefficients associated

with two retrieval methods, we have to perform the adequate

statistical test. First, ground-truth data on the four-point Likert

scale are characterized by a non-normal distribution, so data

ranks should be used instead of data values. Second, the

rank correlation coefficients measured for two methods are

themselves correlated because they both depend on the same

ground-truth data. For these reasons, we decide to perform

Steiger’s Z-tests, as recommended by Meng et al. [31], and

we apply it to Kendall τ .

D. Results and Discussions

For our experiments, we compared the retrieval perfor-

mances of “Dense-Sift” with those of “HH-Sift”, “Haralick”

and “Textons” presented in Section III which are considered

as state-of-the-art in CBIR. We call “Semantic” the visual-

word-based semantic retrieval method, “30x3-Semantic” the

same method with 30 × 3 cross-validation and “30x3-

Dense-Sift” the “Dense-Sift” with 30 × 3 cross-validation.

“30x3-Semantic+Learn” (resp. “30x3-Semantic+Learn”) is

the “30x3-Semantic” method (resp. “30x3-Dense-Sift+Learn”

method) improved with distance learning.

In terms of sparse recall performances, we observe in

Fig. 6 that the retrieval methods from best to worst are:

“Dense-Sift+Learn”, “Dense-Sift”, “Semantic+Learn”, “Se-

mantic”, “Textons”, “HH-Sift” and “Haralick”. According to

the recall associated with L = +2, our “Dense-Sift” method

based on the visual signatures is able to capture, within the 10
first neighbors, more than 70% of the video couples perceived

as “very similar”, which is quite encouraging for our retrieval

application. We also observe that perceived similarity distance

learning allows to slightly improve recall performance. The

fact that “Dense-Sift” outperforms “Semantic” in terms of

recall performance, before and after distance learning, is due to

the drastic dimensionality reduction which was performed by

our Fisher-based transformation, from K = 100 visual words

to M = 8 semantic concepts. Indeed, semantic signatures

seem to be too short to discriminate very similar video pairs as

well as visual signatures. Although the recall results based on

semantic signatures are not as good as those based on visual

signatures, the curve of semantic signatures is much closer

to the curve of visual signatures than the curves of state-

of-the-art methods. We can therefore be rather confident in

the fact that the semantic signatures are informative. Sparse

recall is only a means to evaluate the relevance of the semantic

signatures. Ultimately, we want to base the retrieval of pCLE

videos on visual content and not on semantic annotations,

otherwise the retrieval system might retrieve videos that are

semantically related but not similar in appearance, in which

case the physician might lose trust in the retrieval system.

On the superimposed histograms shown in Figs. 7 and 8, we

qualitatively observe that “Dense-Sift” and “Semantic” glob-

ally better separate the four histograms than “HH-Sift”, “Har-

alick” and “Textons”, and that perceived similarity distance

learning allows to better separate the histogram H+2 from

the other histograms. These observations are quantitatively

confirmed by the Bhattacharyya distances shown in Table II.

The correlation results shown in Table III also confirm these

findings and demonstrate that, with statistical significance, the

similarity distances computed by “Dense-Sift” and “Semantic”

are better correlated with the perceived similarity than the

similarity distances computed by “HH-Sift”, “Haralick” and

“Textons”. Besides this, the learned similarity distances are

with statistical significance better correlated with the perceived

similarity than the original distances. These results also show
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Fig. 7: Superimposed histograms HL of the similarity distances in each L-scored domain. On the top from left to right: “HH-Sift” method,
“Haralick” method, “Textons” method. On the bottom from left to right: “Dense-Sift” method, “Semantic” method.
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Fig. 8: Superimposed histograms HL of the similarity distances in each L-scored domain. On the top: “30x3-Dense-Sift” method (left) and
“30x3-Dense-Sift+Learn” method (right). On the bottom: “30x3-Semantic” method (left) and “30x3-Semantic+Learn” method (right). Each
histogram is the median of the histograms computed with 30× 3 cross-validation.

Bhattacharyya distance L = +2 L = +2 L = +2 L = +1 L = +1 L = −1
between Hist(L) and Hist(L′) L′ = +1 L′ = −1 L′ = −2 L′ = −1 L′ = −2 L′ = −2

10x3-Sem+Learn 0.024 0.175 0.468 0.078 0.294 0.072

10x3-Sem 0.018 0.145 0.441 0.071 0.299 0.075

10x3-DS+Learn 0.036 0.236 0.500 0.087 0.254 0.047

10x3-DS 0.030 0.205 0.412 0.084 0.219 0.036

Semantic (Sem) 0.046 0.200 0.571 0.090 0.352 0.102

Dense-Sift (DS) 0.051 0.257 0.519 0.096 0.251 0.051

Textons 0.030 0.152 0.193 0.067 0.095 0.023

Haralick 0.042 0.089 0.206 0.038 0.125 0.048

HH-Sift 0.037 0.098 0.102 0.047 0.042 0.027

TABLE II: Measures of separability, using Bhattacharyya distance, between the four L-scored histograms HL shown in Figs 7 and 8 for
each retrieval method. For the retrieval methods using 30× 3 cross-validation, we computed the median of the Bhattacharyya distances.
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Retrieval M1” M1’ M2” M2’ M1 M2 M3 M4 M5
method M 10x3-Sem+Learn 10x3-Sem 10x3-DS+Learn 10x3-DS Sem DS Textons Haralick HH-Sift

Pearson π 55.7 % 53.3 % 53.4 % 51.4 % 54.6 % 51.6 % 35.3 % 35.4 % 15.8 %
σ 0.3 % 0.2 % 0.2 % 0.2 %

Spearman ρ 56.6 % 53.8 % 58.2 % 55.5 % 55.3 % 55.7 % 38.2 % 34.5 % 22.8 %
σ 0.3 % 0.2 % 0.2 % 0.3 %

Kendall τ 50.9 % 48.1 % 52.4 % 49.8 % 49.4 % 50.0 % 34.1 % 30.4 % 20.0 %
σ 0.3 % 0.2 % 0.2 % 0.2 %

> M1’ > M1’ > M3,M4 > M3,M4 > M4 > M5
Steiger’s Z-test > M2’ > M5 > M5 > M5

on τ ; p-value p = 0.022 p < 0.003 p < 10−45 p < 10−60 p < 10−4 p < 10−15

∼ M2”,M2’ ∼ M2’ ∼ M1” ∼ M2
p > 0.05 p = 0.163 p > 0.05 p = 0.486

TABLE III: Indicators of correlation between the similarity distance computed by the retrieval methods and the ground truth. For the
retrieval methods using 30×3 cross-validation, we show the median of correlation coefficients. The standard deviation σ of each correlation
estimator can be computed from the standard deviation of the n samples σsamples =

√
n− 1σ. We also show the median of p-values

when comparing two retrieval methods using 30 × 3 cross-validation. > M indicates that the improvement from method M is statistically
significant, ∼ M indicates that it is not.

that the correlation performance of “30x3-Semantic+Learn”

(resp. “30x3-Semantic”) is comparable to that of “30x3-Dense-

Sift+Learn” (resp. 30x3-Dense-Sift”), as their difference is not

statistically significant.

From the semantic point of view, the performance of the

semantic signature can be appreciated in the ROC curves

shown in Fig. 9. Each ROC curve associated with a concept

cj is the median of the ROC curves computed with 30 × 3
cross-validation by thresholding on the semantic weight sj .

According to the areas under the ROC curves (AUC) shown

in Table IV, the semantic concepts, from the best classified

to the worst classified, are: elongated crypt, round crypt,

abnormal nuclei density, abnormal nuclei, normal goblet cell,

lumen, blood vessel and star-shaped opening. The fact that the

concept elongated crypt is very well classified shows that the

visual words clearly express whether this concept is present

or not in pCLE videos. As the presence of elongated crypts

in a pCLE video is a typical criterion of malignancy for the

endoscopists, we deduce that semantic signatures could be

successfully used for pCLE classification between malignant

and non-malignant colonic polyps. Although the concepts

blood vessel and star-shaped opening are poorly classified,

they contribute, as “weak classifiers”, to the clinical relevance

of the whole semantic signature because their ROC curves are

above the diagonal. As the semantic detection deriving from

semantic signatures is based on a rather intuitive Fisher-based

linear method, it is worth to be compared with more sophisti-

cated classification method, such as Support Vector Machines

(SVM). We thus test the detection performance of a linear

SVM and a non-linear SVM based on radial basis functions,

which we feed with the visual word signatures. The resulting

ROC curves are shown in Figs. 10 and 11. Each ROC curve

associated with a concept cj is the median of the ROC curves

computed with 30× 3 cross-validation. In order to assess the

statistical significance of AUC differences, we used the non-

parametric method of DeLong et al. [32] based on the Mann-

Whitney U-statistic. From the AUC values in Table IV we

deduce that most of the ROC curves obtained with the linear

SVM and with the non-linear SVM are statistically worse than

those obtained with our intuitive method, and none of them

are statistically better. More precisely, our method outperforms

the linear SVM method with statistical significance for all

semantic concepts except the concept c4. Compared to the

non-linear SVM method, our method performs also better for

all semantic concepts except c4, and statistical significance is

demonstrated for the concepts c1, c2, c3 and c5. These AUC

comparison results demonstrate the relevance of our intuitive

Fisher-based method in terms of semantic detection, and thus

the relevance of the semantic signatures.

In order to ensure both the high recall of the visual-word-

based retrieval including perceived similarity learning, and the

clinical relevance of the semantic information contained in

the semantic signature, we propose a pCLE retrieval system

where the most similar videos are extracted using the “Dense-

Sift+Learn” method, and where the star plots representing

semantic signatures are displayed as additional information.

Fig. 12 shows some typical results of our pCLE retrieval

system with 5 nearest neighbors, with the added semantic

ground truth represented by underlined concepts. In clinical

practice, the semantic ground truth is not known for the

video query, but in these retrieval examples it is disclosed for

illustration purposes. The extracted pCLE videos, represented

as mosaic images, look quite similar in appearance to the

query, the first neighbor being more visually similar than

the 5th one. On each star plot, the font size of each written

semantic concept is proportional to the normalized value of its

semantic weight. Semantic concepts written in large characters

may or may not be in agreement with the underlined concepts

present in the ground truth. Most importantly, if for a given

pCLE video, the semantic ground truth is very different from

the estimated semantic signature, then the difficulty to interpret

the video for diagnosis purpose might be high, because visual

content is not correlated with semantic annotations. Our visual-

word-based semantic signature would thus have the potential

to distinguish ambiguous from non-ambiguous pCLE videos.

The remaining disagreements between the learned semantic

information and the semantic ground truth show that, even

though we have achieved encouraging results in extracting
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Fig. 9: ROC curves showing the semantic detection performance
obtained from our intuitive Fisher-based method, by thresholding on
the semantic signatures.

Fig. 10: ROC curves showing the semantic detection performed by
non-linear SVM (based on radial basis functions) fed with the visual
word signatures.

Fig. 11: ROC curves showing the semantic detection performed by
a linear SVM fed with the visual word signatures.

Semantic AUC AUC AUC
concept Linear SVM Non-Linear SVM Our method

c1. abnormal nuclei 51.4 % 62.9 % 75.6 %

c2. abnormal nuclei
density

65.8 % 75.7 % 81.8 %

c3. blood vessel 53.6 % 55.0 % 66.2 %

c4. normal goblet cell 69.8 % 73.6 % 71.6 %

c5. round crypt 58.9 % 62.0 % 86.3 %

c6. elongated crypt 89.6 % 94.2 % 96.7 %

c7. lumen 64.7 % 65.5 % 68.6 %

c8. star-shaped open-
ing

57.0 % 59.4 % 62.8 %

TABLE IV: Area under the ROC curves (AUC) for each detection
method according to each semantic concept.

semantics from visual words, further investigations are still

needed to bridge the semantic gap between low-level visual

features and high-level clinical knowledge.

VII. CONCLUSION

The pCLE retrieval system proposed in this study provides

the endoscopists with clinically relevant information, both

visual and semantic, that should be easily interpretable to

make an informed pCLE diagnosis. While visual signatures are

employed to extract visually similar pCLE videos, semantic

signatures are used to complement the retrieval results with

pCLE semantic estimations. Our main contributions are: (1)

a Fisher-based method that builds short visual-word-based

semantic signatures, (2) an intuitive representation of these se-

mantic signatures using star plots, (3) the creation of an on-line

tool to generate a relevant ground truth for visual similarity

perceived by multiple endoscopists between pCLE videos, (4)

a method for distance learning from perceived visual similarity

to improve retrieval relevance, and (5) the implementation of

several tools to evaluate retrieval methods, such as correlation
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Fig. 12: Examples of pCLE retrieval results from a non-neoplastic video query (top) or a neoplastic video query (bottom). The 5 most
similar videos are retrieved by “30x3-Dense-Sift+Learn” method. For each video, the star plot representation of its semantic signature is
provided. The font size of each written semantic concept is proportional to the value of the concept coordinate in the star plot. Underlined
concepts are those which were annotated as present in the semantic ground truth. In practice, the semantic ground truth is not known for
the video query, but it is disclosed here for illustration purposes. For illustration purposes, videos are represented by mosaic images.
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measures and sparse recall curves. Moreover, this proposed

methodology could be applied to other medical or non-medical

databases, as long as ground-truth data are available.

Despite our relatively small pCLE database and despite the

sparsity of the perceived similarity ground truth, our evalu-

ation experiments show that the visual-word-based semantic

signatures extract, from low-level visual features, a higher-

level clinical knowledge which is consistent with respect

to perceived similarity. Possible disagreements between the

semantic estimation, based on visual features, and the semantic

ground truth could be investigated in order to estimate the

interpretation difficulty of pCLE videos, which we explored

in a previous study [33] only based on visual words. Future

work will focus on more sophisticated methods to learn jointly

visual and semantic similarity. Our long-term objective is the

clinical evaluation of our visual-semantic retrieval system to

see whether it could help the endoscopists in making more

accurate pCLE diagnosis.
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