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a b s t r a c t

To support the challenging task of early epithelial cancer diagnosis from in vivo endomicroscopy, we pro-
pose a content-based video retrieval method that uses an expert-annotated database. Motivated by the
recent successes of non-medical content-based image retrieval, we first adjust the standard Bag-
of-Visual-Words method to handle single endomicroscopic images. A local dense multi-scale description
is proposed to keep the proper level of invariance, in our case to translations, in-plane rotations and affine
transformations of the intensities. Since single images may have an insufficient field-of-view to make a
robust diagnosis, we introduce a video-mosaicing technique that provides large field-of-view mosaic
images. To remove outliers, retrieval is followed by a geometrical approach that captures a statistical
description of the spatial relationships between the local features. Building on image retrieval, we then
focus on efficient video retrieval. Our approach avoids the time-consuming parts of the video-mosaicing
by relying on coarse registration results only to account for spatial overlap between images taken at dif-
ferent times. To evaluate the retrieval, we perform a simple nearest neighbors classification with leave-
one-patient-out cross-validation. From the results of binary and multi-class classification, we show that
our approach outperforms, with statistical significance, several state-of-the art methods. We obtain a bin-
ary classification accuracy of 94.2%, which is quite close to clinical expectations.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

With the recent technology of probe-based confocal laser endo-
microscpy (pCLE), physicians are able to image the epithelium at
microscopic level with a miniprobe and in real-time during an
ongoing endoscopy procedure. As mentioned by Wallace and
Fockens (2009), the main task for the endoscopists is to establish
a diagnosis from the acquired pCLE videos, by relating a given
appearance of the epithelium to a specific pathology. They detect
tissue areas that are suspicious for disease and either perform con-
firmatory biopsy, or if high certainty exists, perform immediate
therapy such as resection or ablation of diseased tissue. Because
standard endoscopic imaging can only diagnose disease states with
moderate levels of certainty, biopsy is frequently performed, some
of which are ultimately found to be normal tissue. Furthermore,
the need for confirmatory biopsy delays a diagnosis and often
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requires a separate endoscopic procedure to be performed for
treatment.

Currently, pCLE is relatively new to many physicians, who are
still in the process of defining a taxonomy of the pathologies seen
in the image sequences. To support the endoscopist in establishing
a diagnosis, we aim to extract, from a training database, endomi-
croscopic videos that have a similar appearance to a video of inter-
est but have been previously annotated by expert physicians with a
textual diagnosis confirmed by histology. Our main objective is
Content-Based Image Retrieval (CBIR) applied to pCLE videos.
However, it is difficult to have a ground-truth for CBIR, because
of the subjective appreciation of visual similarities. An objective
method to evaluate retrieval performance is classification. In our
approach, we make a clear distinction between retrieval, which is
the target in this study, and classification, which is the indirect
means that we choose to evaluate it. For didactic purposes, we ex-
plore the image retrieval approach as a first step and we then move
progressively to video retrieval which is our final goal.

In the clinical field, the important need for medical image re-
trieval has been clearly expressed by Müller et al. (2004). Particu-
larly, the medical image retrieval task of ImageCLEF, presented in
Müller et al. (2008), proposes a publicly-available benchmark for
the evaluation of several multimodal retrieval systems. However
the application of retrieval for endomicroscopy has not yet been
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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investigated. Histological images are the closest in appearance to
pCLE images. In histology analysis, many efforts have been made
to automate pathological differentiation, for example by Kong
et al. (2009), or by Doyle et al. (2006). Nevertheless, many standard
computer-aided diagnosis criteria that are commonly employed in
histology cannot be used in our retrieval application because they
are simply not visible. For example, the nuclear-cytoplasmic ratio
cannot be computed because nuclei and membranes are hardly
visible in pCLE images.

Observing that epithelial tissues are characterized by the regu-
larity of the cellular and vascular architectures, our objective is to
retrieve discriminative texture information coupled with shape
information by applying local operators on pCLE images. To serve
that purpose, we revisit in Section 3 the Bag-of-Visual-Words
(BoW) method, proposed by Sivic and Zisserman (2006), which
has been successfully used in many applications of computer
vision. To apprehend the large intra-class variability of our pCLE
database, we refer the reader to Fig. 1, where single images of co-
lonic polyps belong to either neoplastic epithelium, i.e. the patho-
logical class, or non-neoplastic epithelium, i.e. the benign class. We
can also observe small inter-class differences: Two pCLE images
may have a quite similar appearance but with an opposite diagno-
sis. We looked at describing discriminative information in pCLE
images, by taking into account the physics of the acquisition pro-
cess explained in Section 2.1, as well as the type of invariance nec-
essary for their retrieval. By adjusting the image description to
these invariants in Section 3, we were able to considerably improve
the retrieval and provide more relevant similar images. Our other
main adjustments consist of choosing a dense detector that cap-
tures the densely distributed information in the image field, as pro-
posed by Leung and Malik (2001) with texture patches, and
performing a local multi-scale image description that extracts
microscopic as well as mesoscopic features.

Because the field-of-view (FoV) of single images may not be
large enough to perform a robust diagnosis, expert physicians focus
in practice on several images for the interpretation. To solve the FoV
problem but still be able to work on images rather than videos, we
Fig. 1. pCLE image samples from our database of colonic polyps. The images have a diam
polyps diagnosed as benign are on the top, whereas those diagnosed as neoplastic are o
diagnosis according to their visual appearance. In particular, the two framed images migh
illustrates the large intra-class variability, within the benign class as well as within the
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consider in Section 4 larger mosaic images that are built from the
image sequences using the video-mosaicing technique of
Vercauteren et al. (2006). The high degree of variability in appear-
ance also holds for the resulting mosaic images, as shown in
Fig. 12. To improve the state-of-the-art in CBIR, we define an
efficient similarity metric based on the visual words, taking into ac-
count their discriminative power with respect to the different path-
ological classes. One intrinsic limitation of the standard BoW
representation of an image is that spatial relationships between lo-
cal features are lost. However, as the spatial organization of cells is
highly discriminative in pCLE images, we aim at measuring a
statistical representation of this geometry. By exploiting the co-
occurrence matrix of visual words, we extract a geometrical mea-
sure that is applied after the retrieval to remove possible outliers.

Building mosaic images using non-rigid registration tools re-
quires a substantial amount of time, which is undesirable for sup-
porting diagnosis in near real-time. To reach this objective, in
Section 5, we took advantage of the coarse registration results of
real-time mosaicing to include, in the retrieval process, the possi-
ble spatial overlap between the images from the same video se-
quence. A histogram summation technique also reduces retrieval
runtime.

The binary classification results show that our retrieval method
achieves substantially better accuracies than several state-of-the
art methods, and that using video data provides a statistically
significant improvement when compared to using single images
independently. A finer retrieval evaluation based on multi-class
classification is proposed in Section 6, with encouraging results.

2. Context of the study

2.1. Probe-based confocal laser endomicroscopy

The principle of pCLE consists of inserting, through the standard
endoscope, a miniprobe made of tens of thousands of optical fibers.
As illustrated in Fig. 2, a laser scanning uses two mirrors to emit,
along each fiber, an excitation light that is locally absorbed by
eter of approximately 500 pixels that corresponds to a FoV of 240 lm. Images of the
n the bottom. The closer to the boundary the images are, the less obvious is their
t look similar although they belong to different pathological classes. This panel also
neoplastic class.

py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 2. Principle of pCLE imaging.
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fluorophores in the tissue; the light which is then emitted by the
fluorophores at a longer wavelength is transferred back along the
same fiber to a mono-pixel photodetector. As a result, endomicro-
scopic images are acquired at a rate of 12 frames per second, com-
posing video sequences. From the irregularly-sampled images that
are acquired, an interpolation technique presented by Le Goualher
et al. (2004) produces single images of diameter 500 pixels, which
corresponds to a FoV of 240 lm, as illustrated in Fig. 5. All the pCLE
video sequences that are used for this study have been acquired by
the Cellvizio system of Mauna Kea Technologies. In stable video se-
quences the probe is in constant contact with the tissue, so the dis-
tance of the probe’s optical center to the tissue is fixed.

Considering a video database of colonic polyps, our study will
focus on supporting the early diagnosis of colorectal cancers, more
precisely for the differentiation of neoplastic and non-neoplastic
polyps.

2.2. Endomicroscopic database

At the Mayo Clinic in Jacksonville, Florida, USA, 68 patients
underwent a surveillance colonoscopy with pCLE for fluorescein-
aided imaging of suspicious colonic polyps before their removal.
For each patient, pCLE was performed of each detected polyp with
one video corresponding to each particular polyp. All polyps were
removed and evaluated by a pathologist to establish the ‘‘gold
standard’’ diagnosis. In each of the acquired videos, stable sub-
sequences were identified by clinical experts to establish a diagno-
sis. They differentiate pathological patterns from benign ones,
according to the presence or not of neoplastic tissue which con-
tains some irregularities in the cellular and vascular architectures.
The resulting database is composed of 121 videos (36 benign, 85
neoplastic) split into 499 video sub-sequences (231 benign, 268
neoplastic), leading to 4449 endomicroscopic images (2292 benign,
2157 neoplastic). For all the training videos, the pCLE diagnosis,
either benign or neoplastic, is the same as the ‘‘gold standard’’
established by a pathologist after the histological review of biop-
sies acquired on the imaging spots.

More details about the acquisition protocol of the pCLE data-
base can be found in the studies of Buchner et al. (2008), Buchner
et al. (2010), which included a video database of colonic polyps
comparable to ours, and demonstrated the effectiveness of pCLE
classification of polyps by experts endoscopists.

2.3. Framework for retrieval evaluation

Assessing the quality of content-based data retrieval is a diffi-
cult problem. In this paper, we focus on a simple means to quantify
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
j.media.2011.02.003
the relevance of retrieval: we perform classification. We chose one
of the most straightforward classification method, the k-nearest
neighbors (k-NN) method, even though any other method could
be easily plugged in our framework. We first consider two classes,
benign and neoplastic, then we propose a multi-class evaluation of
the retrieval in Section 6. As an objective indicator of the retrieval
relevance, we take the classification accuracy (number of correctly
classified samples/total number of samples).

It is worth mentioning that, in the framework of medical infor-
mation retrieval, some scenarios require predefined sensitivity or
specificity goals, depending on the application. For our application,
physicians prefer to have a false positive caused by the misdiagno-
sis of a benign polyp, which could lead for example to unnecessary
but well supported polypectomy, than to have a false negative
caused by the misdiagnosis of a neoplastic polyp, which may have
serious consequences for the patient. Thus, our goal is to reach the
predefined high sensitivity, while keeping the highest possible
specificity. For this reason, we propose a Bayesian cost model for
nearest-neighbors classification by introducing a weighting
parameter h to trade-off the cost of false positives and false nega-
tives. This allows us to generate ROC curves as follows: when con-
sidering k nearest neighbors for a query, we compute the value of
the weighted sum of their votes (�1 for benign class, +1 for neo-
plastic class) according to their similarity distance to the query,
and we compare this value with the absolute threshold h to classify
the query as benign or neoplastic. The closer h is to �1 (resp. +1),
the more weight we give on the neoplastic votes (resp. the benign
votes) and the larger the sensitivity (resp. the specificity) is. An-
other characteristic of our application is that pCLE videos diag-
nosed as neoplastic may contain some benign patterns whereas
benign epithelium never contains neoplastic patterns. Therefore,
it seems logical to put more weight on the neoplastic votes, being
more discriminative than benign votes. The weighting parameter h
may also be useful to reduce the bias implied by our unbalanced
dataset, which contains more benign images than pathological
ones.

Given the small size of our database, we need to learn from as
much data as possible. We thus use the same database both for
training and testing but take great care into not biasing the results.
If we only perform a leave-one-out cross-validation, the indepen-
dence assumption is not respected because several videos are ac-
quired on the same patient. Since this may cause bias, we chose
to perform a leave-one-patient-out (LOPO) cross-validation, as
introduced by Dundar et al. (2004): All videos from a given patient
are excluded from the training set before being tested as queries of
our retrieval and classification methods. Even though we tried to
ensure unbiased processes for learning, retrieval and classification,
it might be argued that some bias is remaining because splitting
and selection of video sub-sequences were done by one single ex-
pert. For our study we can consider this bias as negligible.

2.4. State-of-the-art methods in CBIR

In the field of computer vision, Smeulders et al. (2000) pre-
sented a large review of the state-of-the-art in CBIR. In a closely re-
lated study, using an image database of colonic polyps but from a
macroscopic point of view, Häfner et al. (2009) worked on endo-
scopic images and obtained rather good classification results by
considering six pathological classes. However, their goal is classifi-
cation for computer-aided diagnosis, whereas our main objective is
retrieval. Petrou et al. (2006) proposed a solution for the descrip-
tion of irregularly-sampled images, which could be defined by
the optical fiber positions in our case. Nevertheless, we will not
work on irregularly-sampled images, but rather on the interpo-
lated images. The following paragraphs present several state-
of-the-art methods that can be easily applied to endomicroscopic
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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images and that will be used as baselines in this study to assess the
performance of our proposed solutions.

In addition to the BoW method presented by Zhang et al. (2007)
which is referred to as the HH-SIFT method combining sparse fea-
ture extraction with the BoW model, we will take as references
the following methods for CBIR method comparison: the standard
approach of Haralick features (Haralick, 1979) based on global
statistical features and experimented by Srivastava et al. (2008) in
a closely related setup, the texture retrieval Textons method of
Leung and Malik (2001) based on dense local features, but also an
interesting image classification method presented by Boiman
et al. (2008), the Naive-Bayes Nearest-Neighbor (NBNN) method.
A brief description of these methods is provided in the Supplemen-
tal material. One may argue that our methodology uses an ad-hoc
number of visual words and is thus dependent on the clustering
results. This is the reason why we decided to compare it with the
NBNN method, that uses no clustering and that was proven to
outperform BoW-based classifiers in Boiman et al. (2008).

In order to determine if the improvement from one method to
another is statistically significant, we will perform the McNemar’s
test (Sheskin, 2004) based on the classification results obtained by
the two methods at a fixed number of nearest neighbors. The prin-
ciple of the McNemar’s test is explained in the Supplemental
material.

3. Adjusting Bag-of-Visual-Words for endomicroscopic images

3.1. Standard Bag-of-Visual-Words method

As one of the most popular recent methods for image retrieval,
the standard BoW method consists of detecting salient image re-
gions from which continuous features are extracted and discret-
ized. All features are clustered into a finite number of labels
called ‘‘visual words’’, whose frequencies constitute the image sig-
nature. As illustrated in Fig. 3, the BoW retrieval process can thus
be decomposed into four main steps: salient region detection, re-
gion description, description vectors clustering, and similarity
measurement based on the signatures. After the description step,
the image is typically represented in a high-dimensional space
by a set of description vectors. To reduce the dimension of the
description space, a standard K-Means clustering step builds K
clusters, from the union of the description vector sets gathered
across all the images of the training database. K visual words are
then defined, each one being the mean of a cluster in the descrip-
tion space. Each description vector counts for one visual word, and
one image is represented by a signature of size K which is its his-
togram of visual words, normalized by the number of local regions.
Given the image signatures, the similarity distance between two
Fig. 3. Overview of the retrieval pipeline, potentially f
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images can be defined as an appropriate distance between their
signatures.

The advantage of the simple metric provided by the v2distance
is that it is only based on the comparison between the values with-
in the same histogram bin: if H1 = (v1, . . . ,vK) and H2 = (w1, . . . ,wK)
are the histograms of the two images, then v2ðH1;H2Þ ¼
1
2

PK
i¼1ðv i �wiÞ2=ðv i þwiÞ. In these conditions, as explained by Sivic

and Zisserman (2006), similarity measurement is quite efficient
and can be approximated by the term frequency – inverse
document frequency (TF-IDF) technique for a fast retrieval
runtime. Nister and Stewenius (2006) showed that, combined with
a hierarchical clustering, the inverted file indexing enables large-
scale data retrieval. More sophisticated metrics, like the Earth
Mover’s Distance (EMD) proposed by Rubner et al. (2000), are less
computationally efficient as they need to compute in the high-
dimensional space the distances between the description vectors.
Nevertheless, it would be interesting to test the fast implementa-
tion of EMD that has been recently presented by Pele and Werman
(2009). For the classification step that quantifies the similarity re-
sults, the votes of the k-nearest neighbors are weighted by the in-
verse of their v2distance to the tested image signature, so that the
closest images are the most discriminant.

Recognized as a powerful feature extraction method in com-
puter vision, the HH-SIFT method uses the Harris–Hessian (H–H)
detector coupled with the Scale Invariant Feature Transform (SIFT)
descriptor proposed by Lowe (2004). When applied to the non-
medical UIUCTex database of textures, which is admittedly a rather
easy database, the HH-SIFT method of Zhang et al. (2007) achieves
excellent retrieval results and yields a classification accuracy close
to 98% for 25 texture classes. However, when we applied this
method, as well as other state-of-the-art methods, on our pCLE
database, we obtained rather poor retrieval results and we ob-
served the presence of many outliers in the retrieval. This was con-
firmed by the associated low classification results presented in
Fig. 6: when considering only two classes, the accuracy is below
67%, which is not compatible with clinical use. We will show that
even though the standard BoW method is not adapted for the re-
trieval of endomicroscopic images, the adjustments that we pro-
pose can turn it into a powerful tool for our needs. For instance
by taking into account the pCLE imaging system, we can leverage
the constraints that characterize our retrieval application. Our first
contributions are presented in Sections 3 and 4. We explored them
in a preliminary study (André et al., 2009a).

3.2. Moving to dense detection of local regions

It is worth noticing that the endoscopists examine, in the colo-
nic epithelium, goblet cells and crypts which are round-shaped or
ollowed by a the geometrical verification process.

py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 5. Small and large disk regions on a dense regular grid, applied on a benign
image (left), and on a neoplastic image (right). Small disks of radius 30 pixels cover
microscopic information like individual cells, whereas large disks of radius 60 pixels
cover mesoscopic information like groups of cells. The images have a diameter of
approximately 500 pixels that corresponds to a FoV of 240 lm.
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tubular-shaped, as illustrated in Fig. 5. For this reason, we first
looked at extracting blob features in the images by applying sparse
detectors. Sparse detectors extract salient regions in the image, i.e.
regions containing some local discriminative information. In par-
ticular, the H–H operator detects corners and blobs around key-
points with high responses of intensity derivatives for at least
two distinct gradient directions. Other sparse detectors like the
Intensity-Based Regions (IBR) of Tuytelaars and Van Gool (2000)
and the Maximally Stable Extremal Regions (MSER) of Matas
et al. (2002) are also specialized for the extraction of blob features.

However, while testing on pCLE videos the numerous sparse
detectors listed in Mikolajczyk et al. (2005), we observed that a
large number of salient regions do not persist between two highly
correlated successive images taken from the same video, as shown
in Fig. 4. In fact, these detectors have been designed for computer
vision applications and seem to be inadequate for our medical
application because of their sparse nature: they fail to capture all
the discriminative information which is densely distributed in pCLE
images. This may explain the poor retrieval results on pCLE images
of the HH-SIFT method, which uses the sparse H–H detector.

To capture all the interesting information, we decided to apply a
dense detector made of overlapping disks of constant radius. These
disk regions are localized on a regular grid, such that each disk cov-
ers a possible image pattern at a microscopic level, as illustrated in
Fig. 5. With the regular dense operator, we will show already prom-
ising results in the following section. The benefits of a dense oper-
ator for image retrieval have also been demonstrated with the
pixel-wise approach of ’’TextonBoost‘‘ by Shotton et al. (2006),
who were mainly interested in object categorization and segmenta-
tion problems.
3.3. Multi-scale description of local regions

Let us now look at what kinds of invariants are necessary for the
description of pCLE images. The distance of the probe’s optical cen-
ter to the tissue does not change while imaging, so the only possi-
ble motions of the probe along the tissue surface are translations
and in-plane rotations. For this reason, we aim at describing pCLE
images in an invariant manner with respect to translation and in-
plane rotation. Besides, as the rate of fluorescein injected before
imaging procedure is decreasing through time, we want this
description to be also reasonably invariant to intensity changes.
For this purpose, the standard SIFT description appeared to be
the most appropriate since it extracts a local image description
which, when coupled with an invariant detector, is invariant to
affine transformations of the intensity and some viewpoint
changes, e.g., translations, rotations and scaling. Indeed, the SIFT
descriptor computes, for each salient region, a 128-bin description
vector which is its gradient histogram at the optimal scale pro-
vided by the detector, the gradient orientations being normalized
Fig. 4. Salient regions (ellipses) extracted by the sparse MSER detector on three successiv
correctly followed by the detector, but many others, like those framed in bright, are lo
images.

Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
j.media.2011.02.003
with respect to the principal orientation of the salient region. We
refer the reader to the study of Zhang et al. (2007) for a survey
of the SIFT descriptor or other powerful ones. In particular, the
Speeded Up Robust Features (SURF) descriptor of Bay et al.
(2006) is more efficient than SIFT in terms of runtime, but was
not considered in this study.

There is no scale change in the pCLE imaging system because
the distance from the probe to the tissue is fixed: a given clinical
pattern should have the same scale in all the images in which it
is present. In colonic polyps, however, mesoscopic crypts and
microscopic goblet cells both have a rounded shape, but are differ-
ent objects characterized by their different sizes. This is the reason
why we need a scale-dependent description, instead of the stan-
dard scale invariant description. In order to capture information
at different scales, we define local disk regions at various scales
using fixed values, for example by choosing a microscopic scale
for individual cell patterns and a mesoscopic scale for larger groups
of cells. This leads us to represent an image by several sets of
description vectors that are scale-dependent, resulting in several
signatures for the image that are then concatenated into one larger
signature.
e frames of a benign video sequences. Some regions, like the one framed in dark, are
st. This shows the inconsistency of the sparse detector for the description of pCLE

py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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For our experiments on the dense description, we considered
disk regions of radius 60 pixels to cover groups of cells. We then
chose 20 pixels of grid spacing to get a reasonable overlap between
adjacent regions and thus be nearly invariant with respect to trans-
lation. Besides, among the values from 10 to 30,000 that we found
in the literature for the number K of visual words provided by the
K-Means clustering, the value K = 100 yielded satisfying classifica-
tion results on our relatively small database. The classification re-
sults that quantify the retrieval of single images are presented in
Fig. 6 where we observe that, compared to the standard HH-SIFT
method, the dense detector brings a gain of accuracy of 17.1 per-
centage points (p.p.) at k = 10 neighbors, with a resulting accuracy
of 81.7% (78.0% sensitivity, 85.1% specificity). The McNemar’s tests
show that, with statistical significance, our dense method is better
than the other methods (p-value < 10�6 for k 2 [1,10]), Texton is
better than Haralick (p-value < 0.0040 for k 2 [1,10]), and Haralick
is better than HH-SIFT (p-value < 10�6 for k 2 [1,10]).

For our experiments on the bi-scale description, a large disk ra-
dius of q1 = 60 pixels is suitable to cover groups of cells, while a
smaller disk of radius q2 = 30 pixels allows to cover at least one cell
in the images, as shown in Fig. 5. For the classification of single
images, we observe in Fig. 6 that, when compared to the one-scale
description of the Dense-Scale-60 (D-S-60) method, the bi-scale
description of the Dense-Bi-Scale-30-60 (D-BS-30-60) method
brings an additional gain of accuracy of 2.5 p.p. at k = 10 neighbors,
with a resulting accuracy of 84.2% (80.8% sensitivity, 87.4% specific-
ity). Besides, McNemar’s tests show that this classification improve-
ment is statistically significant (p-value < 10�6 for k 2 [1,10]),
thanks to the complementarity of our two scale-dependent
descriptors.

4. Contributions to the state-of-the-art

4.1. Solving the field-of-view issues using mosaic images

In the retrieved single images, we often observed single images
with a similar appearance to the query but attached to the opposite
diagnosis. One important reason is that, on a single pCLE image,
some discriminative patterns, e.g. an elongated crypt, may only
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be partially visible and so unable to characterize the pathology.
To address this FoV issue, we aimed at performing the retrieval be-
yond single images. In our pCLE video database, the dynamic mo-
tion within the tissue can be neglected when compared to the
global motion of the probe sliding along the tissue surface. As suc-
cessive images from the same video are mostly related by view-
point changes, we can use the video-mosaicing technique of
Vercauteren et al. (2006), to project the temporal dimension of a
video sequence onto one mosaic image with a larger FoV and of
higher resolution. Even if time information is lost after the mosaic-
ing, Becker et al. (2007) showed that the mosaic image produced
by this video-mosaicing technique has a clinical interest in
endomicroscopy.

Thus, instead of single images, we considered mosaic images as
objects of interest for the retrieval. All videos of the database were
first split into stable video sub-sequences identified by expert phy-
sicians. These stable sub-sequences remain after the removal of
unreliable parts of the videos that correspond either to fast mo-
tions of the probe leading to motion artifacts, or to the moments
when the probe has lost contact with the tissue. Then we built
mosaics on these video sub-sequences and we applied the dense
BoW method directly on the produced mosaic images. As the dis-
criminative information that we extracted in the single images is
kept in the mosaic images, we chose the same values of parameters
for the radii of 30 and 60 pixels of the disk regions and for the num-
ber K = 100 of visual words. However, as larger discriminative pat-
terns may be present in mosaic images, we thought that larger
scale features should capture them. For this purpose, we evaluated,
without cross-validation as a first step, mosaic retrieval using suc-
cessively the D-S-80 method (dense regions of radius 80 pixels),
the D-S-100 method (dense regions of radius 100 pixels), and the
D-BS-60-80 method that concatenates the mosaic signatures of
D-S-60 and D-S-80. The classification results without cross-
validation showed that D-S-80 and D-BS-60-80 are comparable
to D-S-60, and that D-S-100 performs worse than D-S-60. For this
reason, we decided to evaluate only D-S-30, D-S-60 and D-BS-
30-60 with LOPO cross-validation. We think that a reason why lar-
ger scale features fail to capture larger discriminative patterns in
mosaic images may be the trade-off between smoothing and
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region size in the SIFT description. Besides, the larger the size of the
regions is, the more discriminative the shape of the regions is in
the image description, and our circular-shaped regions may not
be adequate anymore. Indeed, at scales larger than 60 pixels of ra-
dius, ellipsoidal regions should better capture elongated patterns
such as abnormal crypts.

The accuracy results for the classification of mosaic images are
presented in Fig. 7. They show that the compared retrieval meth-
ods follow the same order of performance as the one we observed
on single images. Besides, our dense retrieval methods achieve
more satisfying classification results for the retrieval of mosaic
images than for the retrieval of single images. With statistical sig-
nificance, D-S-60 is better than Texton (p-value < 10�6 for
k 2 [1,10]), and Texton is better than Haralick (p-value < 0.0057
for k 2 [1,2]). For k 2 [1,10] the performances of Haralick and
HH-SIFT are comparable; for more neighbors, Haralick outperforms
HH-SIFT with statistical significance (p-value < 0.032 for k 2
[15,20]). However, for the comparison between D-S-60 and D-BS-
30-60 (p-value P 0.11 for k 2 [1,10]), the performance differences
are not statistically significant. More investigation is needed to
understand the causes of this observation. The best result for the
classification of mosaic images is reached by the dense bi-scale
description method denoted by D-BS-30-60, at k = 6 neighbors,
with an accuracy of 88.2% (sensitivity 91.0%, specificity 84.9%).
These results are close to the clinical expectations. Nevertheless,
we will show that we can still improve them for our clinical
application.
4.2. Similarity metric based on visual words

The similarity metric defined by the v2 distance is efficient but
highly sensitive to the frequency of each visual word in an individ-
ual image with respect to its frequency in the whole set of images.
More importantly, the ability of the retrieved images to represent
the pathological class of the query is thus sensitive to the discrim-
inative power of the visual words with respect to the pathological
classes.

To address this problem, we propose to weight, according to
their discriminative power, the contributions of the visual word
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
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frequencies to the metric. For each class C of images, we considered
the distribution p(wjC) of the number of occurrences of a visual
word w in the images belonging to the class C. The discriminative
power f(w) of the visual word w is chosen by using the Fisher
criterion which can be expressed as the Mahalanobis distance be-
tween the two distributions p(wjC1)and p(wjC2):f ðwÞ ¼ ðl1�
l2Þ

2
=ð0:5ðr2

1 þ r2
2ÞÞ, where li and r2

i are respectively the mean
and the variance of the distribution of w in the images belonging
to class i. Our approach, that combines L1-normalization applied
to the visual word histograms, and Fisher weighting applied to
the visual words, could be composed with other similarity metrics
than v2, some of which are presented in Sivic et al. (2009). Besides,
it is close to other approaches exploiting discriminative context
information, such as the TF-IDF technique, or the Fisher kernels
method which is used by Perronnin and Dance (2007) as an
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 9. Example of a co-occurrence matrix M associated to a benign image. M is a
symmetric matrix of size K � K where K is the number of visual words. Considering
two visual words, respectively associated to the colors blue and red, black edges
link the blue-labeled regions and the red-labeled regions that are adjacent to each
other in the image. The number of these edges, after normalization, gives the
probability that these two visual words are adjacent to each other in the image.
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extension of the BoW method for image categorization. In particu-
lar, a binary weighting leads to the selection of the most discrimi-
native visual words, i.e. those minimizing the intra-class distances
while maximizing the inter-class distances. Furthermore, by reduc-
ing the number of visual words, the size of image signatures is de-
creased, so the image retrieval and classification processes run
faster. For our experiments, the K0 most discriminative visual
words are selected from the K = 100 original ones by applying on
their discriminative power a threshold k. Changing the value of k
may have an influence on the classification accuracy based on
these signatures. After testing the whole training set without
cross-validation we chose k = 0.7, so that 20–25% of the visual
words are selected, which ensures both significantly shorter signa-
tures and better classification accuracy. This threshold k is applied
inside each cross-validation sub-set for which it selects a certain
Fig. 11. From left to right: Neoplastic pCLE mosaic obtained with non-rigid registration;
image (see the Supplemental material for details on the coloring scheme). Overlap sc
mosaicing.
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number of discriminative visual words. The mean value of K0 for
all cross-validation sub-sets is 23.2.

The classification of mosaic images presented in Fig. 8 shows
that, coupled with the dense detector and the bi-scale description,
the visual word binary selection brings an additional gain of accu-
racy of 2.0 p.p. at k = 5 neighbors, with a resulting accuracy of
88.8% (91.0% sensitivity, 86.2% specificity). Although we estab-
lished that this classification improvement is not statistically sig-
nificant (p-value P 0.15 for k 2 [1,10]), the binary selection
reduces retrieval runtime while reaching comparable performance
with less than one-fourth of the original visual words. On the other
hand, compared to the dense bi-scale description, weighting the
power of visual words improves the classification in a statistically
significant manner (p-value < 0.032 for k = 3): it brings an addi-
tional gain of accuracy of 3.4 p.p. at k = 5 neighbors, with a result-
ing accuracy of 90.2% (93.7% sensitivity, 86.2% specificity).
Colored visual words mapped to the disk regions of radius 60 pixels in the mosaic
ores of the local regions in the mosaic space, according the translation results of

py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 12. pCLE mosaic samples from our database of colonic polyps. These mosaics have been built from image sequences using a video-mosaicing technique with non-rigid
registration (Vercauteren et al., 2006). For visualization purposes, the size of the mosaics are not normalized. Mosaics of the polyps diagnosed as benign are on the top,
indicated by B, whereas mosaics of the polyps diagnosed as neoplastic are on the bottom, indicated by N. The closer to the boundary the mosaics are, the less obvious is their
diagnosis according to their visual appearance. In particular, the two framed mosaics might look similar although they belong to different pathological classes. This panel also
illustrates the large intra-class variability, within the benign class as well as within the neoplastic class.
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4.3. Statistics on spatial relationship between local features

Endoscopists establish their diagnosis on pCLE images from the
examination of microscopic texture and shapes, but also of more
macroscopic patterns. This suggests that the spatial organization
of the goblet cells must be included in the retrieval process because
it is essential to differentiate benign from neoplastic tissues. Jegou
et al. (2008) previously proposed to add a geometrical verification
that takes spatial information into account. However their method
is based on the assumption that they want to retrieve images of the
exact same scene, which is not the case for our application.

Our objective in this section is to introduce a geometrical verifi-
cation process after the retrieval process to remove possible retrie-
val outliers. A retrieval outlier should be defined as an image which
is not visually similar to the query image. However, we do not have
any quantitative measure of perceived similarity. For this reason,
we estimate outliers based on criteria that are complementary to
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
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the visual word signatures. In this study, outlier estimation is based
on a supervised criterion that uses the most discriminative spatial
relationships between visual features.

In order to introduce spatial information, we took advantage of
the dense distribution of visual words to define their adjacency
using the 8-adjacency graph between the corresponding disk
regions that compose the detection grid. Thus, we are able to store
in a co-occurrence matrix M of size K � K the probability for each
pair of visual words of being adjacent to each other, as illustrated
in Fig. 9. We investigated this idea in a prior study (André et al.,
2009). Due to the symmetric property of M, its dimensionality is
equal to K(K + 1)/2 = 5050. By construction, the normalized co-
occurrence matrix is a histogram, so the vector of its lower triangu-
lar elements defines a spatial signature. Then, one could use this
spatial signature for a mosaic image, or its concatenation with
the standard visual word signature. However, given the relatively
small number of mosaic images, 499 exactly in our database, the
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 13. The 10 most similar pCLE video sub-sequences (right) for a benign query (left), retrieved by the LOPO Weighted-ImOfMos method. The pCLE video sub-sequences are
represented by their corresponding fused mosaic image built with non-rigid registration. B indicates Benign and N Neoplastic (not present here). For visualization purposes,
the displayed visual words have been computed on the mosaic image on disks of radius 60 pixels. The details on the coloring scheme for the visual words are explained in
Supplemental material. As a result, these colors are highlighting the geometrical structures in the mosaic images.
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5050 elements of the spatial signature are too numerous to param-
eterize a mosaic image: using them for the retrieval would lead to
over-fitting.

To focus on the discriminative information in the co-occurrence
matrix but reduce its dimensionality, we chose to apply a linear
discriminant analysis (LDA). Using the textual diagnostic informa-
tion in the database, we aim at differentiating, in a supervised
manner, the images of the benign class from the images of the path-
ological class. The lower triangular elements of the co-occurrence
matrix are stored in a l � 1 dimensional vector denoted by m, where
l is equal to the number of the lower triangular elements. The LDA
weights, represented as a l � 1 dimensional vector denoted by L,
satisfy: L = R�1(l1 � l2), where the l � l dimensional matrix R is
the covariance matrix of the vector m associated with all training
images, and where the l � 1 dimensional vector li is the mean of
the vector m associated with all the training images belonging to
the class i. Then, the most discriminative linear combination of
the elements of m is the scalar value a which is given by the dot
product: a = L.m.

After the retrieval, outliers can be rejected during the verifica-
tion process by thresholding on the absolute difference between
the a value of the query and the a value of each retrieved image.
Given a query image, every training image is a candidate neighbor
of the query. Any training image which is estimated as an outlier
with respect to the query is removed from the set of candidate
neighbors. Then, the k nearest neighbors to the query are com-
puted from the set of the remaining candidate neighbors, as shown
in Fig. 3.
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
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In practice, to prevent from over-fitting on our database, the
number of LDA weights in the computation of the spatial criterion
a had to be restricted. For this reason, we only performed a one-scale
description and stored the K = 100 diagonal elements of the matrix
M in the vector m for the LDA. The values of the threshold ka were
chosen by analyzing the distribution ofa across the benign and path-
ological images: ka = 2.6 when considering only the disks of radius
60 pixels, and ka = 2.4 when considering only the disks of radius
30 pixels. For the classification of mosaic images, Fig. 10 shows that,
when added to the one-scale description with disks of radius 30
pixels, the outlier removal improves the classification accuracy, with
statistical significance (p-value < 0.045 for k 2 [1,4]). At k = 3
neighbors, the corresponding gain of accuracy is 2.6 p.p., with a
resulting accuracy of 83.2% (82.8% sensitivity, 83.6% specificity).
Besides, when added to the one-scale description with disks of ra-
dius 60 pixels, the outlier removal brings an additional gain of accu-
racy, even though we established that this gain is not statistically
significant (p-value P 0.30 for k 2 [1,10]). This might be due to the
size of our database: more information is captured at scale 60, so
more data is needed to represent the variability of spatial
relationships.

In fact, the efficiency of our geometrical outlier removal method
highly depends on the size and the representativity of the training
database, which is still not large enough with respect to the high
dimensionality of the co-occurrence matrix of visual words. More
work is thus needed to better exploit the co-occurrence statistics.
Potential ways of doing so include their incorporation into the
description as proposed by Zhang et al. (2009), or their extraction
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 14. The 10 most similar pCLE video sub-sequences (right) for a neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method. B indicates Benign (not present
here) and N Neoplastic.
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at hierarchical scales in the image as described in the Hyperfea-
tures of Agarwal and Triggs (2008).

5. Endomicroscopic videos retrieval using implicit mosaics

5.1. From mosaics to videos

Although the retrieval of mosaic images instead of single
images provided quite satisfying retrieval results, the non-rigid
registration of the mosaicing process requires a long runtime. On
average, the whole video-mosaicing process takes approximately
2 seconds per frame, which is incompatible with a routine clinical
practice. Besides, the temporal information of videos, which is lost
in the mosaic image representation, may be used by the endosco-
pists, who consider the videos as useful for real-time diagnosis. It
would therefore be of interest to keep this information in our re-
trieval system.

For this reason, we investigated Content-Based Video Retrieval
(CBVR) methods to retrieve similar videos instead of similar
images. Our idea, which we previously explored in a preliminary
study (André et al., 2010), consists of including in the retrieval pro-
cess the possible spatial overlap between the images from the
same video sequence. For an efficient video retrieval, our objective
is to build one short signature per video, which not only enables a
reasonable memory space to store training data, but also consider-
ably reduces the retrieval runtime. We looked at a more effective
method which could only use the coarse registration results of
mosaicing, i.e. the translation results between successive frames,
that are computed in real-time during the image acquisition time.

For this purpose, we first compute independently the signatures
of all the images belonging to the database of video sub-sequences.
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
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Then, for each sub-sequence, we use the translation results to build
a map of the overlap scores of all local regions belonging to the
images of the sequence, as illustrated Fig. 11 on the right. To define
the signature H of a video sub-sequence S, we propose to take, for
each image I of the sequence, the number s of overlapping images
in each densely detected region r of I, and to weight the contribu-
tion of r to the frequency of its visual word by 1/s. Let i be an index
of one of the K visual words. w(.) is a function that associates a re-
gion r to the index of the visual word to which the region r is
mapped. C(.) is a second function that associates a region r to
the number of overlapping images in this region. The visual word
histogram of the video sub-sequence is then defined by:
HSðiÞ ¼ 1

Z

P
I2S

P
r2IdðwðrÞ; iÞ=CðrÞ. In this formula, d is the Kronecker

notation and Z is a normalization factor. Introduced to normalize
the visual word histogram, Z corresponds to the total number of
physical regions in the overlapping area. More precisely:
Z ¼

P
i2½1;K�

P
I2S

P
r2IdðwðrÞ; iÞ=CðrÞ.

From the video sub-sequence signatures, we define a full vi-
deo signature by considering the normalized sum of the signa-
tures of the constitutive sub-sequences of the video. Thanks to
this histogram summation technique, the size of a video signa-
ture remains equal to the number of visual words, which re-
duces both retrieval runtime and training memory. We call
our method the ‘‘Bag of Overlap-Weighted Visual Words’’
(BoWW) method.

For our experiments, we perform a one-scale dense SIFT
description with a grid spacing of 20 pixels, a disk radius of 60 pix-
els and K = 100 visual words. Retrieval results of our BoWW meth-
od applied on pCLE sub-sequences can be qualitatively
appreciated, for benign and neoplastic queries, in Figs. 13–17 and
with more examples in the Supplemental material.
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 15. The 10 most similar pCLE video sub-sequences (right) for a neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method. B indicates Benign and N
Neoplastic.

Fig. 16. The 10 most similar pCLE video sub-sequences (right) for a neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method. B indicates Benign and N
Neoplastic.
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Fig. 17. The 10 most similar pCLE video sub-sequences (right) for a neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method. B indicates Benign and N
Neoplastic. This query is a rare variety of the neoplastic class. This is one of the worst retrieval results, that are due to the relatively small size and weak representativity of the
training database.
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Fig. 18. Left: LOPO classification of pCLE video sub-sequences, with h = 0. Right: Corresponding ROC curves at k = 5 neighbors with h 2 [�1,1] and hBoi 2 [1.0,1.1]. h trades off
the cost of false positives and false negatives.
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5.2. Method comparison for video retrieval

Our methodological improvements, from image retrieval to vi-
deo retrieval, depend on several conditions: the used techniques,
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
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i.e. overlap weighting and histogram summation, but also the ob-
jects of interest for the retrieval, i.e. single images, fused mosaic
images, video sub-sequences or full videos. In order to evaluate
these improvements, we define several methods that we will
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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compare to each other. To establish statistical significance, the
number of objects of interest that we classify needs to be sufficient
to perform the McNemar’s test. This is always the case excepted for
the 121 full videos for which statistical significance cannot be
tested (Sheskin, 2004). A full video will either be considered as
set of independent video sub-sequences or a set of independent
single images. Then, each video sub-sequence will either be consid-
ered as a set of independent single images, a fused mosaic image, or
an implicit mosaic made of the overlap-weighted single images.

For the classification of video sub-sequences, we call:
‘‘Weighted-ImOfMos’’ the method using the BoWW technique;
‘‘ImOfMos’’ the same method without overlap weighting (s = 1);
‘‘Mos’’ the method of Section 4.1 describing the single fused mosaic
image obtained with non-rigid registration; and ‘‘AverageVote-Im’’
the method describing all the images independently and averaging
their individual votes. For the classification of the full videos, the
prefix ‘‘Sum-’’ means that we extended the methods with the sig-
nature summation technique to retrieve full videos as entities;
‘‘Sum-Im’’ is the method summing all the individual image signa-
tures of the full video.

When comparing the methods for the classification of video sub-
sequences, Fig. 18 shows that the accuracy of ‘‘Weighted-ImOfMos’’
is better than the one of ‘‘AverageVote-Im’’, with statistical signifi-
cance (p-value < 0.021 for k 2 [3,10]). For the classification of full
videos, Fig. 19 shows that, from k = 3 neighbors, ‘‘Sum-Weighted-
ImOfMos’’ has an accuracy which is better than the one of ‘‘Sum-
Im’’, and equal or better than the one of ‘Sum-ImOfMos’’ and
‘‘Sum-Mos’’. The best full video classification result observed before
10 neighbors is achieved by ‘‘Sum-Weighted-ImOfMos’’ at k = 9,
with an accuracy of 94.2% (sensitivity 97.7%, specificity 86.1%). At
less neighbors, ‘‘Sum-Weighted-ImOfMos’’ already achieves a quite
satisfying accuracy, e.g. 93.4% for 3 neighbors. Besides, for each
method and for a fixed number of neighbors, a peak of classification
accuracy is reached at a h value which is more likely negative, as
illustrated in the Supplemental material for the ‘‘Weighted-
ImOfMos’’ method with a slight accuracy peak at h = �0.17. This
reflects the fact that neoplastic features are more discriminative
than the benign ones.

For method comparison, we also tested an efficient classifica-
tion method, the NBNN classifier of Boiman et al. (2008), which
was mentioned in the Introduction. Although NBNN classifies
images, we can easily extend it to a ‘‘Weighted-NBNN’’ method
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
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for the classification of video sub-sequences or full videos, by
weighting the closest distance computed for each region by the in-
verse of its overlap score. Besides, a ROC curve for the ‘‘Weighted-
NBNN’’ method can be obtained by introducing a multiplicative
threshold hBoi, and by classifying the query as neoplastic if and only
if DB < hBoiDN, where DB (resp. DN) is the sum of the benign (resp.
neoplastic distances) in the NBNN classifier. In comparison to the
other methods, these ROC curves show worse results in Figs. 18
and 19, with statistical significance for the classification of video
sub-sequences (p-values 6 0.05). Besides, the best classification
accuracies of video sub-sequences by ‘‘Weighted-NBNN’’ are
reached for hBoi = 0.98 < 1, which is also confirming that local neo-
plastic features are more discriminative than the benign ones. In
fact, putting more weight on neoplastic patterns leads to increase
the classification sensitivity, which is clinically important since it
reduces the rate of false negatives.
6. Finer evaluation of the retrieval

6.1. Diagnosis ground-truth at a finer scale

In the previous sections, we used only two classes for retrieval
evaluation because binary classification has a clinical meaning
based on the distinction between neoplastic and non-neoplastic
lesions, and thus delivers numbers that are easily interpretable
by physicians. Nevertheless, in order to refine the quantitative
evaluation of the retrieval, we decided to exploit diagnosis annota-
tions available at a finer scale, and to perform a multi-class
classification.

From the 121 videos of our database, 116 have been annotated
at a finer scale by expert endoscopists, who define five subclasses
to better characterize the colonic polyps. The benign class is subdi-
vided into two classes: ‘‘purely benign lesion’’ (14 videos) and
‘‘hyperplastic lesion’’ (21 videos). The neoplastic class is subdivided
into three classes: ‘‘tubular adenoma’’ (62 videos), ‘‘tubulovillous
adenoma’’ (15 videos) and ‘‘adenocarcinoma’’ (4 videos).
6.2. Multi-class classification and comparison with state-of-the-art

Based on the finer diagnosis ground-truth, we perform a 5-class
k-NN classification using LOPO cross-validation, and consider the
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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Fig. 20. 5-class LOPO classification of pCLE mosaic images by the methods. The NBNN classification accuracy is represented at k = 1, as it does not depend on k. The mosaic
images have been built with non-rigid registration.

Fig. 21. 5-class LOPO classification of pCLE mosaic images by the methods at k nearest neighbors. The statistical significance of the gain of the Dense-Scale-60 method is
measured with the McNemar’s test.
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overall classification accuracy (number of all correctly classified
samples/total number of samples) as the evaluation criterion. For
comparison with the state-of-the-art methods, the video sample
size (116 annotated videos) is not sufficiently large to generate en-
ough differences in the McNemar’s test. To be able to measure a
statistical significance, we take as objects of interest mosaic images
instead of videos, and we consider the 491 mosaics built from the
116 videos and we apply our Dense-Scale-60 method. The resulting
evaluation of the methods for mosaic image retrieval using 5-class
classification is shown in Figs. 20 and 21. Our annotated database
is quite unbalanced with respect to the five subclasses, the most
represented class (‘‘tubular adenoma’’) being the pathology of
highest prevalence. However, we checked that the naive classifica-
tion method which classifies all the queries in class 3 reaches an
overall accuracy of 41.3%, but is outperformed by the Dense-
Scale-60 method from k = 1, and with statistical significance from
k = 3. Although the overall accuracy of 56.8% reached by our meth-
od may appear low in terms of classification, it is a closer indicator
of our retrieval performance. Moreover, we demonstrate that our
mosaic retrieval method outperforms the state-of-the-art meth-
ods, with statistical significance from 3 nearest neighbors.

7. Conclusion

To our knowledge this study is the first approach to retrieve
endomicroscopic image sequences by adapting a recent and pow-
Please cite this article in press as: André, B., et al. A smart atlas for endomicrosco
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erful local image retrieval method, the Bag-of-Visual-Words meth-
od, introduced for recognition problems in computer vision.

By first designing a local image description at several scales and
with the proper level of density and invariance, then by taking into
account the spatio-temporal relationship between the local feature
descriptors, the first retrieved endomicroscopic images are much
more relevant. When compared to learning and retrieving images
independently, our ‘‘Bag of Overlap-Weighted Visual Words’’
method using a video-mosaicing technique improves the results
of video retrieval and classification in a statistically significant
manner. With the vote of the k = 9 most similar videos, it reaches
more than 94% of accuracy (sensitivity 97.7%, specificity 86.1%),
which is clinically pertinent for our application. Moreover, fewer
neighbors are necessary to classify the query at a given accuracy.
This is relevant for the endoscopist, who will examine only a rea-
sonably small number of videos, i.e. typically 3 to 5 similar videos.
Besides, the video retrieval method is based on histogram summa-
tions that considerably reduce both retrieval runtime and training
memory. This will allow us to provide physicians during ongoing
endoscopy with whole annotated videos, similar to the video of
interest, which potentially supports diagnostic decision and avoids
unnecessary polypectomies of non-neoplastic lesions.

Despite the lack of a direct objective ground-truth for video re-
trieval, we evaluated our content-based retrieval method indi-
rectly on a valuable database. By taking the k-NN classification
accuracy as a surrogate indicator of the retrieval performance,
py using automated video retrieval. Med. Image Anal. (2011), doi:10.1016/
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we demonstrated that our retrieval method outperforms the state-
of-the-art methods with statistical significance, on both binary and
multi-class classification. Beyond classification-based evaluation,
our long-term goal is to generate a perceptual similarity ground-
truth and directly evaluate the retrieval.

Besides, our generic framework could be reasonably applied to
other organs or pathologies, and also extended to other image or
video retrieval applications. Another clinical application would be
the detection of neoplasia in patients with Barrett’s esophagus,
for which Pohl et al. (2008) already demonstrated the interest of
endomicroscopy.

For future work, a larger training database would not only
improve the classification results if all the characteristics of the
image classes are better represented, but also enable the exploita-
tion of the whole co-occurrence matrix of visual words at several
scales. We also plan, for the testing process, to either use all the
images of the tested video or to automate the splitting and the selec-
tion of video sub-sequences of interest. Besides, the learning process
could leverage the textual information of the database; it could
incorporate as well the spatial information of multi-scale co-occur-
rence matrices into descriptors. On the other hand, the co-occur-
rence matrix could be better analyzed by more generic tools than
Linear Discriminant Analysis. For example, a more complete spatial
geometry between local features could be learned by considering
the visual words as a Markov Random Fields model, whose parame-
ters could be estimated using a method such as the one presented in
Descombes et al. (1999). As for incorporating the temporal informa-
tion, a more robust approach would not only consider the fused im-
age of a mosaic but the 2D + t volume of the registered frames
composing the mosaic. We could for example introduce spatio-
temporal features, as it has been done by Wang et al. (2009). This
would allow us to work on more accurate visual words and better
combine spatial and temporal information.

To conclude, the binary classification results that we obtained
on our colonic polyp database compare favorably with the accu-
racy of pCLE diagnosis established on the same videos, among
non-expert and expert endoscopists, for the differentiation be-
tween neoplastic and non-neoplastic lesions. Considering 11 non-
expert endoscopists, the study of Buchner et al. (2009a) showed
an interobserver agreement with an average accuracy of 72% (sen-
sitivity 82%, specificity 53%). Considering 3 expert endoscopists,
Gomez et al. (2009) obtained an average accuracy of 75% (sensitiv-
ity 76%, specificity 72%). The learning curve pattern of pCLE in
predicting neoplastic lesions was demonstrated with improved
accuracies in time as observers’ experience increased. Thus, pro-
spectively, our endomicroscopic video retrieval approach could
be valuable not only for diagnosis support, but also for training
support to improve the learning curve of the new endoscopists,
and for knowledge discovery to better understand the biological
evolution of epithelial cancers.
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