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Chapter 1

Introduction

Humans use computers for a variety of reasons. One of the most obvious applications
of computers are tasks which involve multiplying and dividing numbers or remembering
huge amounts of data very precisely. Computers are very good at performing such tasks,
which is quite fortunate, as humans are usually very bad at doing these things. His-
torically, these tasks were the reasons why computers were used. This is obvious when
one thinks of the origins of the word computer. Interestingly enough though, there are
other tasks which pose significant problems to computers, yet humans perform them
in a routine manner. A large part of the research in computer science is now devoted
to making computers labouriously solve problems that humans continually solve, usu-
ally without even thinking about the task. These include, for example, understanding
natural language, recognising faces in a crowd, and playing the game of Go. Detecting
texture in scenes is another example of such as task, which to humans is a natural daily
procedure but which challenges computers. This last problem is the topic of this thesis.
This chapter will present the problem in more detail, introduce previous approaches to
solving it, present our approach, and give a brief outline of the rest of the thesis.

1.1 Texture: An Important Visual Feature

Texture is as much a part of our visual environment as other features such as shape
and colour. It is something which we process on a daily basis without ever giving
much thought to what it actually means. If pressed for a definition, most of us would
probably utter something about patterns that repeat themselves. The vagueness of such
a comment highlights the difficulty involved in providing a precise definition of texture.

Although it is tough to describe, texture is present in almost every scene we en-
counter. It can be a characteristic of a large expanse, such as a forest canopy seen from
the seat of an airplane, or it can be the minute detail painted around the rim of a cup.
Texture can also be highly complicated, such as in the patterns found in Islamic and
Celtic art, or it can as simple as a checkerboard. With so much variety in its appear-
ance, it is impressive, and indeed amazing at times, that humans have the ability to
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detect texture in a multitude of different scenes. However it is this variety that makes
the task of building a reliable texture analysis system so difficult.

The ability to describe and analyse texture is an integral part of many image process-
ing applications. In the medical domain, for example, texture based features extracted
from radiographic images provide specialists with an automatic aid for the diagnosis
of malignant tissue [40]. Texture is also used in industry for the purposes of quality
control [26] and can help in the automatic detection of defects, such as those found in
lumber wood [19]. In many remote sensing images, texture is a salient cue for applica-
tions including cartography and damage assessment following natural disasters such as
fires or floods.

1.2 Texture Detection

Before attempting to analyse a textured scene, however, one must first decide which
approach to adopt: unsupervised or supervised. In the former, no knowledge is known
about the textures present in the scene. The scene is divided into textured regions and
no comment is made about the real world entities that these resulting regions represent.
This approach is frequently used in remote sensing methods [69, 83], but can also be
used in general segmentation tasks [73]. The advantage of such methods is that they
reduce the amount of user interaction to a minimum and the segmentation can take
place without any need for a learning phase. In the latter approach, a knowledge of
the textures is required before segmentation can take place. Training is necessary in
order to learn the characteristic features for each texture in the scene. The resulting
segmentation assigns labels to each region corresponding to the real world entity it rep-
resents. Although these methods usually involve an intensive learning phase, they have
the added advantage of producing a classification of the scene which can be evaluated
via a comparison with the ground truth for the scene. Therefore they provide a means
by which the texture analysis method can be evaluated. It is for this reason that we
choose to adopt an supervised approach in this thesis.

1.3 Previous Approaches to Texture Analysis

Over the years numerous approaches have been proposed to tackle the problem of texture
description. For a full overview, see [42, 48, 65, 68, 77]. One research area which has been
extremely active in recent years is the application of wavelets to texture analysis [57,
60, 79]. Many textures, however, possess intermediate and high frequency content. By
repetitively decomposing only the low frequencies, the standard wavelet transform does
not further analyse these other areas of the frequency domain. To address this problem,
one can perform a wavelet packet analysis of the texture. In [52], packets were used in a
classification experiment on natural textures. The problem with this is that performing
a full wavelet packet decomposition results in a large number of subbands to be analysed
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and some of these will not contain much information. This was the motivation behind
many of the efforts made to adapt the wavelet packet decomposition to the underlying
structure of the texture. The pioneering work of [16] selected the best wavelet packet
basis for an image by using an entropy criterion to decide if a subband should be further
decomposed or not. Although this work was originally motivated by the need for an
efficient image compression technique, it has since then been applied specifically for the
purposes of texture classification [11]. Interesting though these methods are, none of
them were developed within a coherent probabilistic framework; they involve ad hoc
choices that fail to reveal the assumptions underlying the models.

1.4 Objectives of this Thesis

As will be discussed later in chapter 2, a multiresolution approach to image analysis
such as the one provided by wavelets is ideal for the analysis of textures which, by their
very nature, contain information at a variety of scales. We retain the advantages of
such an approach by using wavelet packets as our texture analysis tool.

However, unlike the other wavelet-based approaches described above, in this thesis
we will build our models within a probabilistic framework. Starting from a probability
measure on the infinite texture, which we assume here to be Gaussian, we derive the
measure for the texture on a finite region. This leads naturally to a class of adaptive
wavelet packet models that capture the structure of a given texture, for example its
principle periodicities, in a manner analogous to the 2-D Wold decomposition [32, 64].
The major strength of our approach is the coherent decision making process by which
the models are trained.

1.5 Outline of the Thesis

The thesis is structured as follows.

In chapter 2, we discuss the three major categories of textures: deterministic,
stochastic and observable. We then identify the two main properties of texture, namely
regionality and resolution, that should be taken into consideration when attempting to
develop a texture analysis system. An overview of some of the existing texture analy-
sis methods is provided. This includes such techniques as co-occurrence matrices and
Markov random fields. The processing of patterns is then discussed from a psychophysi-
cal viewpoint and observations are made regarding the suitability of wavelets as a model
for the human visual system. We then present a summary of some of the wavelet-based
approaches which have been proposed for the purpose of texture analysis. We end with
a brief comment on the method developed in this thesis and how it compares to other
existing wavelet-based techniques.

Chapter 3 details the theoretical framework proposed in this thesis. We start by
making the observation that texture is naturally described via a distribution on the
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space of infinite images. We choose this distribution to be Gaussian. As texture can
appear anywhere translated in a scene, we require the distribution to be translation
invariant. This causes the Gaussian distribution to be diagonal in the Fourier basis.
To process an image however, one needs a distribution on a finite region. We detail
the marginalisation steps involved in arriving at this distribution from the original
distribution on the space of infinite images. The form of the operator of the resulting
distribution on the finite region makes the calculation of probabilities a computationally
intensive task. So we require that the operator be diagonalised. One way to achieve this
is to place a restriction on the form of the inverse covariance of the distribution, namely
that it is piecewise constant on a dyadic partition of the frequency domain. Wavelet
packets, whose support is local in both the spatial and frequency domains, provide a
basis in which this diagonalisation procedure is possible. This results in wavelet packet
texture models.

The issue of training these models is addressed in chapter 4. A selection of dyadic
shaped patches are used as the training data set. We detail the choice of distributions
for the estimation of the parameter set for each model. A depth first search algorithm
is implemented which finds an adaptive wavelet packet decomposition for each texture.
Visualisations of these adaptive decompositions are presented. We carry out a statistical
analysis of the subbands of the resulting decompositions to examine the histograms. An
interesting discovery of a bimodal form is made.

Chapter 5 treats the topic of texture segmentation and classification. A collection
of different images are used, including mosaics created from the Brodatz album, high
resolution remote sensing images, and scenes of wildlife in their natural habitat. Two
simple classification rules are described, both of which enable pixelwise classification
of the image while retaining the advantages of more complicated prior models. We
consider supervised segmentation because it is methodologically well-defined. Results
are presented. A brief discussion on the choice of the mother wavelet follows.

In chapter 6 we conclude with a summary of the work and highlight the benefits of
using the texture models developed in this thesis. We discuss some of the drawbacks of
our method and suggest possible solutions which could be addressed in future work.



Chapter 2

Texture Analysis

Texture is all around us in our visual world. It glares up at us from the cobblestone
paved streets and from the brick wall of the school. It is also there, but less obviously
so0, in the floral print on a summer dress and in the ripples that form on the surface of
a lake. So what do these images, which are so different in appearance, have in common
that they can all be referred to as texture? It is in trying to answer this question
that one becomes aware of the complexity of texture. Many people have attempted to
describe it [14, 77]. Despite this effort, a single definition has not been agreed upon and
so texture remains an easily identifiable yet ultimately undefinable visual feature.

Although texture has proven to be an elusive concept, a given textured image can
be roughly categorised as belonging to one of three different groups [37]:

e Deterministic: In this case, the texture is made up of primitives which are
identical in nature and which always appear in the same order. Hence it can be
fully described via the characteristics of one single primitive along with the set of
rules which govern the spatial distribution of the primitives and hence determine
where they should be placed relative to one another. An example of this type of
texture is shown in figure 2.1(a).

e Stochastic: Texture of this kind obeys certain statistical laws. White noise is an
example of such a texture and can be seen in figure 2.1(b).

e Observable: This describes a texture which is not ideal. It does not adhere to
a fixed set of rules or laws. It is neither exactly deterministic nor stochastic, but
instead falls somewhere in between the two [67]. An example of such a texture is
given in figure 2.1(c). A texture of this type may at first seem to have a more or
less repetitive nature, but this may not be strict. Also if it consists of primitives,
they may seem to strongly resemble each other, but they might not be identical.
This type of texture has also been referred to elsewhere in the literature as wvisual
texture [77].
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a) b)

Figure 2.1: Three texture categories: a) deterministic; b) stochastic; ¢) observable.

The majority of textures we encounter in our visual environment fall into this third cat-
egory of observable texture. This is due to the fact that they are visual representations
of real world objects which contain natural variations in their physical structure. These
changes in the physical world entities appear as intensity variations in the textured
image and it is this that we must capture if we are to model texture accurately.

2.1 Important Texture Properties

Understanding the underlying characteristics of the texture which give rise to these vari-
ations in the image is a first step toward modelling the texture. In [37], the coarseness
and directionality of the pattern are considered to be the two major defining character-
istics of a texture. There have been many other terms used in the literature to describe
the characteristics of texture, including contrast, granulation, randomness, lineation,
and hummocky [42, 55].

Whatever adjectives one may use, there are a couple of properties which are common
to almost all textures and should therefore be taken into consideration in the modelling
process. These two properties are described below.

2.1.1 Regionality

Texture, by its very nature, is a property of a region or area. If one looks at a single
pixel such as that on the left hand side of figure 2.2, the notion of texture does not
exist. However as soon as neighbouring pixels are brought into the picture, texture
becomes a possible feature for that area. Depending on the size of the area, information
on the structure of the texture can change, as can be seen from the next two images
in the figure. This property makes texture a particularly difficult thing to analyse
because it creates problems at the boundary of textured regions. Pixels which lie on
or around the boundary are difficult to classify because, depending on the size of the
neighbourhood chosen to analyse the pixel, there may be equal amounts of information
being contributed from several different textures.
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H,

Figure 2.2: Regionality: increasing the size of the neighbourhood of a pixel allows us to

detect the presence of texture.

2.1.2 Resolution

Inherent to most textures is the notion of scale. Examining a texture at different reso-
lutions can help in understanding its underlying structure. The sequence of resolutions
in figure 2.3 demonstrate this idea. As we zoom out from the image we loose the infor-
mation on the small microtexture present inside each block and instead find ourselves
interpreting the larger checkerboard macrotexture. Viewing a texture at only one single
scale can therefore be potentially misleading and can give rise to the situation of not
being able to see the forest for the trees.

i A .
Zoom in > Zoom out

High Resolution » Low Resolution

Figure 2.3: Resolution: viewing the same texture at different scales.

2.2 A Brief Overview of Texture Analysis Methods

Over the years many different approaches have been proposed to extract textural infor-
mation from images. Review papers on this topic [37, 42, 65, 68, 74| easily lead one to
the conclusion that there is no one single all encompassing analysis method which works
for all types of texture and for every application [77]. This is an intuitive statement
and should be something to bear in mind when setting out to describe texture. In this
chapter we will give a brief outline of the main groups of methods used for texture
analysis. Further details will be given on the methods which are most relevant to this
thesis, namely those which adopt a multiresolution approach to texture analysis.
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2.2.1 Statistical Approaches

Traditional statistical approaches to texture analysis try to capture the spatial distri-
bution of pixel gray level values in the textured image. The simplest description of this
sort can be derived from the image histogram which plots, for each intensity value, the
number of pixels in the image which have that value. Once the histogram has been
computed one can calculate various first-order statistics including, but not restricted
to, the mean, variance, energy and entropy of the image. The histogram approach has
the advantage of being easy to compute as it is based on statistical information from
single pixels. However it suffers from the drawback that it assumes independence be-
tween pixels in the image. It is therefore not a very appropriate method for extracting
textural information from the image as it ignores inter-pixel relationships, which is one
of the most important characteristics of texture, as discussed earlier in section 2.1.1.
Improving on this single pixel approach involves calculating second-order statistics
of the image by considering interactions between pixels. Such an approach was proposed
several decades ago by Haralick [41] and since then it has become probably the most
popular statistical method for texture analysis. It is based on the idea of gray level
co-occurrence over a local area in the image. In this method pixel pairs are defined
according to their relative displacement and angular spatial relationship as shown in
figure 2.4. Some examples of pixel pairs from this figure are: (0,0) and (0, 2) which have
a displacement of d = 2 and direction § = 0°; (0, 3) and (1,2) which have a displacement
of d =1 and direction # = 225°; (3,3) and (0, 3) which have a displacement d = 3 and
direction 6 = 90°. Relative frequencies of pixel pairs which are a distance d apart

90°
(0,0) 0,1) 0,2 0,3) 4
135’ 45°
(1,0) 1,1) 1,2 1,3)
180° 0’
@0 | @1 | @2 | @93
225 315
(3,0) 3,1 3,2 (3,3) i
270°

Figure 2.4: Coordinates used to reference pixels in the image and eight directions com-
monly used in co-occurrence matrices.

and rest along direction # and have the same gray level values (i,7), are denoted by
Fyp(i, j) and are recorded in what is known as a co-occurrence matrix. This notion
can be formalised in the following expression

Fio(i, j) =1{(a, b): I(a, b) =i, I(a + 6z, b+ by) = j }| (2.1)

where (a, b) are the coordinates of a pixel in the image I, the cardinality of the set is
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denoted by |.|, and the overall displacement is given by éx = dcos# and éy = dsinf.
There is freedom to choose the displacement so as to obtain a symmetrical or a non-
symmetrical co-occurrence matrix. Examples of these kind of matrices can found in
figure 2.5.

N N
4 | 3 | o0 2 |1 | o
1] 3 | 6 | 4 1] 2 | 3 |1
210 | 4 | o 210 | 3 | o
a) b) c)

Figure 2.5: a) An example image with three gray levels; b) The symmetrical co-
occurrence matrix for d = 1 and # = 0°; ¢) The corresponding non-symmetrical co-
occurrence matrix.

A number of useful texture features can be extracted from a co-occurrence matrix,
some of which are described in table 2.1.

Uniformity of energy Z Fio(i, 7)
g
Entropy —> Fap(i, j) log Fap(i, j)
]
Maximum Probability max Fy (i, j)
i

Table 2.1: Features extracted from the co-occurrence matrix.

In a seminal texture classification study [43]|, Haralick et al. tested the usefulness
of several of these features on three image data sets: photomicrographs of sandstones,
aerial photographs, and satellite images. In the latter case, the addition of texture
features produced a significant increase (up to 10 percent) in terrain identification rate
as compared to the results obtained using just spectral features. Other classification
studies have proven the strength of these texture features for texture analysis in a wide
range of applications, including materials inspection [81].

Despite the success and popularity of this method, there is still a major issue sur-
rounding its use, namely the choice of neighbourhood over which the analysis is per-
formed. For a single (d,#) pair, the corresponding co-occurrence matrix contains G
elements, where G denotes the number of gray levels present in the image. From a
computational point of view, it is clearly not feasible to calculate the matrix for each
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possible (d,0) pair. Hence one needs to be able to select the correct range of spatial
interactions over which to analyse the texture. No such selection process has been for-
mally defined and the success of a particular (d, ) pair really depends on the texture in
question. If the range is small, which is usually the case, then variations in pixel inten-
sities across a relatively small neighbourhood will be captured. However macrotexture
structure in the image will not be detected by such a range.

2.2.2 Model-Based Methods

One model-based approach which is particularly popular for the task of texture analysis
is the Markov Random Field (MRF) model [12, 20, 44, 45, 54, 84|. It provides us with
a probabilistic model for the pixels in the image wherein the value of a given pixel
is dependent only on its predefined neighbourhood [4]. The range of this dependency
is captured by the order of the model which dictates the size and structure of the
neighbourhood being analysed. An example of a first-order neighbourhood is shown in
figure 2.6.

Figure 2.6: The first-order neighbourhood on the left hand side consists of the four
nearest-neighbours as defined along the x and y axes. The five possible cliques types
associated with this neighbourhood are shown to its right.

Also shown in this figure are the so-called cliques associated with this neighbourhood
structure. Potential functions, denoted by V. (+), can be computed for each clique ¢ and
used to generate an energy function

U(z) =3 Vilw) (2.2)
Ve

where x is the lattice of sites which represents the entire image. This energy function
forms the exponent of the Gibbs distribution

ple) = o { - LU} 23)

where 7' is a constant analogous to temperature and Z is the normalising constant
or partition function of the system. As the energy function has the form given in
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equation 2.2, this distribution provides a description of the whole image via conditional
probabilities which model the local interactions of neighbouring pixels.

In practice, computational constraints mean that the size of the neighbourhood must
be kept fairly small in order to avoid a combinatorial explosion of the number of states
in the process. This means that MRFs are most useful for analysing microtextures
whose characteristic dimension in a given direction is about the same size as that of the
corresponding clique. However, certain MRF based texture models have been developed
which are capable of capturing macrotexture [33, 35]. In particular, the MRF model
introduced in [85] shows potential for modelling a range of different types of texture. In
this method a set of filters are applied to samples of a given texture. The histograms of
the resulting filtered images are extracted as texture features as they provide estimates
of the marginal distributions of the underlying probability distribution which describes
the texture being analysed. By invoking a maximum entropy principle, a new distri-
bution is generated which has the same marginal distributions as those extracted via
the filtering procedure. This maximum entropy distribution is therefore an estimate of
the underlying texture distribution. This results in an MRF model which has a much
more diverse descriptive ability. Texture synthesis experiments have been carried out
by using a Gibbs sampler to draw samples from the derived distribution. The results
prove this model to be very successful for a wide variety of texture types.

Other methods of this type include fractal models, which are particularly suitable for
the description of textures which exhibit a degree of self-similarity at different scales [61].

2.2.3 Structural Methods

Techniques of this type try to learn the hierarchical structure present in a texture. In
order to describe texture using this approach, one needs to be able to identify the prim-
itives present in the texture and understand their geometrical structure. Placements
rules which govern the position of the primitives within the texture must be learnt. It
has been noted that for the case of observable or visual textures, it is usually quite
difficult to extract primitives and their placement information from the image [75].
Therefore these methods are most suited to highly regular deterministic textures.

2.2.4 Spatial and Spatial-Frequency Filtering Methods

This class of texture analysis methods is very large. As a general summary one can say
that they involve taking the original textured image, applying a filter to it, selecting
features from the resulting filtered output, and then using these features in texture
classification and/or segmentation schemes. These methods can be grouped into two
categories: those which detect spatial domain features and others which aim to derive
information on the frequency content of the image. Belonging to the former category are
edge detection techniques which use masks such as those derived from the Roberts and
Laplacian operators [77]. The second category involves techniques such as the windowed
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Fourier transform. These methods also consist in the use of filter banks such as those
generated by Gabor and wavelet functions.

2.3 A Multiresolution Approach to Texture Analysis

Some of the transform methods described above create a multiresolution representation
of the image being analysed. This approach is of particular interest to us as it addresses
the issue of scale in the image which, as was shown earlier in section 2.1.2, is central
to the notion of texture. In what follows, we discuss evidence which supports such a
modelling approach to images in general and to texture in particular.

2.3.1 Evidence Supporting Frequency Tuning

Understanding the human visual system’s sensitivity to spatial variations in luminance
has been a major focal point of psychophysical research over the last several decades |71,
8, 9, 10]. From Fourier theory we know that any signal or image can be decomposed
into a number of fundamental frequencies, examples of which are shown in figure 2.7

Figure 2.7: Sinusoidal gratings and their corresponding fundamental waveforms.

Visual sensitivity is measured via experiments on these basic waveforms. The notion
of sensitivity to the gratings associated with these waveforms can be thought of in terms
of contrast thresholds where a high level of sensitivity to a particular grating means
that not much contrast is required in order to see the pattern. Covering the entire
range of spatial frequencies, the minimum contrast threshold can be computed for each
individual grating and its reciprocal plotted against the corresponding target frequency.
This results in what is known as a contrast sensitivity function (CSF). In order to
demonstrate the essential idea behind making such measurements we have shown in
figure 2.8 an image that increases in spatial frequency in the horizontal direction and
decreases in contrast along the vertical direction. By looking at this image, one can get
an idea of one’s own CSF. The inverted "U’ shape apparent in the image shows how the
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human visual system is less sensitive to very low and very high frequencies (i.e. a very
high level of contrast is needed in order for such spatial frequencies to be visible).

Figure 2.8: The contrast sensitivity function [63].

The earliest measurements of this kind were carried out by Schade in 1956 [71] and
over the next decade or so others worked on the problem of determining the CSF of the
human visual system [1, 8, 9]. The general theory at this time was that the CSF graph
reflected the behaviour of a single detection mechanism in the visual system which is
broadly sensitive to the entire range of spatial frequencies but which responds better to
some frequencies than to others. A global linear filter was used to model this process.

A major change in this theory arose in 1968 when Campbell and Robson [10] carried
out similar psychophysical experiments wherein they tested the visual sensitivity to the
individual harmonic components of several different waveforms. Based on their findings
they proposed the idea that early stages of visual processing do not adhere to the single
detector model previously suggested, but instead decompose the retinal image into its
component spatial frequencies using multiple parallel independent detection mechanisms
each of which is tuned to a different spatial frequency range. This decomposition process
is modelled using independent band-pass linear filters. Since this discovery, there have
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been many attempts to measure the width of these bands and the general conclusion is
that each filter has a spatial frequency range of about one octave [34, 58].

Another main result from the psychophysical community is on the sensitivity of
the human visual system to the orientation of gratings. Experiments have shown a
maximum sensitivity to gratings which have a directionality of 0° and 90° [7].

These psychophysical results are supported by evidence resulting from physiological
experiments carried out on animals who are considered to have visual systems which
are close to that of humans. The brains of both cats and monkeys have been studied in
order to understand how they process gratings of different frequencies and orientations.
The results of these experiments indicate that the simple cells in the visual cortex of
these animals are tuned to both spatial frequency and orientation |25, 46, 76].

The experiments described above were carried out on either images of single gratings
or well known waveforms which are made up of several fundamental gratings. However,
it is interesting to note that for the particular case of textured images, additional tests
point toward the same conclusion. Through a series of psychophysical studies on tex-
tured images Beck et al. [3| showed that texture segmentation, as carried out by the
human visual system, was mainly a function of spatial frequency analysis rather than
grouping processes which was originally considered to be the case [50, 51].

As one would expect, these studies on image interpretation have motivated many
people in the computer vision community to develop systems which try to mimic this
tuning behaviour of the human visual system.

2.3.2 Gabor Filters

One of the first such attempts was made by Daugman in 1980 when he modelled the
selective behaviour of the cells in the visual cortex using Gabor filters [23]. In essence
these are Gaussians modulated by complex sinusoids. Each filter has a set of parameters
which determines the location and orientation of the area of the frequency domain which
it analyses. In texture applications, banks of these filters are chosen to analyse the
particular spatial frequencies and orientations present in the texture [6, 47, 80].

Although Gabor filters have been used extensively for the purpose of texture analy-
sis, several comments have been made regarding their drawbacks. The filter parameters,
for example, need to be selected by the analyst. This is an ability which undoubtedly
requires a combination of intuition about the textures being examined and a lot of
practice in order to master. Another issue is their computational inefficiency, especially
when analysing low frequency components [52, 78]. These difficulties created a gap in
the research for a more efficient and coherent multiscale approach, which was ultimately
to be filled by the application of wavelets to image analysis.
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2.3.3 Wavelets

The idea of wavelets has been around for a long time. These analysing functions, which
have the attractive property of local support in both space and frequency, were used by
Morlet in the late seventies to process geophysical data, the frequency content of which
had proved too variable to be captured by analysis tools such as the windowed Fourier
transform. Later, in the early eighties, the mathematics behind the wavelet transform
was established [39] and since then wavelets have become a research field in their own
right.

One of the most significant developments in wavelet theory was the introduction of a
multiresolution analysis framework based on the wavelet transform [59]. This approach
is particularly suited to the task of texture analysis as it allows the examination of
texture at a variety of scales and orientations in an efficient manner which avoids the
computational complexity often associated with the aforementioned Gabor filters. It
also provides a sound mathematical framework by which to characterise texture. In this
section we will intuitively describe the original wavelet transform and introduce some of
its extensions which have been used for texture classification and segmentation over the
last couple of decades. A theoretical overview of wavelet theory, complete with further
references, is provided in appendix A.

2.3.3.1 The Standard Wavelet Transform

The essential idea behind a wavelet analysis is most easily communicated using a 1-
dimensional example. Let us denote by f the signal to be analysed. The first level
of the wavelet analysis is realised by decomposing f into its high and low frequency
components through convolutions with the 1-dimensional conjugate mirror filters g and
h, respectively. In the standard wavelet transform, the outputs of these two filtering
operations are decimated, or downsampled, by a factor of two. This involves selecting
only alternative wavelet coefficients from the outputs and hence the stored results are
half the size of the original signal. The decimated output of the low-pass operation,
denoted by Aj, is a low resolution version of the original signal and so is considered
to be an approximation of it. The details which are missing from this approximation
are captured in the decimated output of the high-pass operation, which we denote here
by D;. The two outputs together form a complete representation of the signal and
therefore can be used to reconstruct it. The filter bank representation of this procedure
is shown in figure 2.9.

To perform the next level in the analysis, the low-pass output is further decomposed
using the filters h and ¢g and the results are decimated as before. This recursive be-
haviour has a natural termination point: when the maximum level has been reached, its
output will consist of a single pixel. However, as is often the case, an earlier cut-off level,
denoted here by J, can be chosen. Figure 2.10 shows a standard wavelet decomposition
down to level 3 of a signal of size 16. At each level in the decomposition the resolution
of the signal approximation is coarser than that of the level before, with the difference
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Figure 2.9: A filter bank representation of the operations carried out at level j of a
1-dimensional wavelet transform.

in information between the two being captured by the decimated high-pass operation
at that level. In this manner, wavelets perform a multiresolution analysis of the signal.
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Figure 2.10: A level 3 wavelet decomposition of a 1-dimensional signal.

For the case of an image, the 2-dimensional wavelet analysis is usually carried out
in a separable manner by convolving the 1-dimensional conjugate mirror filters first
with the rows and then with the columns of the image, with each convolution being
followed by a downsampling step. Figure 2.11 gives the filter bank representation of
this sequence of convolutions.

For the first level of the decomposition, this results in four sub-images, or subbands:
one low resolution approximation image, denoted by A;, and three detail images, de-
noted by D1, D? and D?. These subbands are obtained via the following combinations
of filters: a low-pass on rows, followed by a low-pass on columns; a low-pass on rows,
followed by a high-pass on columns; a high-pass on rows, followed by a low-pass on
columns; a high-pass on rows, followed by a high-pass on columns. At each level in the
decomposition, the analysis is carried out on the approximation image of the previous
level. The traditional layout of these subbands is shown in figure 2.12. The three detail
images at each level contain the vertical, horizontal, and diagonal details of the image
at that level. From this it is clear that the wavelet transform performs an analysis of
the image not only at different scales, but also at different orientations.

As the approximation subband, Aj, is derived via a recursive low-pass filtering
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Figure 2.11: A filter bank representation of the operations carried out at level j of a
2-dimensional wavelet transform.
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Figure 2.12: A level 3 standard wavelet analysis of an image.
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technique, many regard it as devoid of any important textural information and so it is
often not considered in the texture analysis process. For this reason, it is quite common
to see only the detail subbands used to generate texture features.

One of the most frequently used measures for wavelet texture analysis is the mean
energy which, for a fixed subband «, is given by

B, = (2.4)

th wavelet coefficient in subband « and N, is the total number of

where wq,; is the ¢
wavelet coefficients in subband «.

As a detail subband is derived via a sequence of convolutions which involve the high-
pass filter g, we can say that on average, if one is to consider this sequence applied to all
translated versions of the input signal, the mean wavelet coefficient of the detail subband
will be zero. In this case, the mean energy of the subband is an estimate of the variance
of the individual wavelet coefficients in the subband. From a modelling viewpoint, the
use of mean energy measures can therefore be compared with modelling the histogram
of the wavelet coefficients in each detail subband by a Gaussian distribution with zero
mean.

Although the mean energy can be a useful feature for texture classification [72], it
has been suggested that in certain cases a different approach to modelling the wavelet
coefficients may be more appropriate. Having carried out experiments on natural tex-
tures, Mallat [59] suggested that the wavelet coefficients in the detail subbands are best

modelled by a generalised Gaussian distribution (GGD):

o p e B e d (1Y
e = p{ (Q)} (25)

where I'(+) is the gamma function. Here « describes the width of the distribution peak
and [ controls its fall-off rate. This approach has been adopted in [24] wherein the two
parameters are calculated for each detail subband. These parameters are then used as
texture features in a classification experiment wherein each feature vector is assigned
to a class according to the k-nearest neighbour rule [28] with a variance-normalised
Euclidean distance. The results of this experiment show how these features outperform
the traditional mean energy features described above. Since then, others have tested
this GGD modelling approach. In a recent application to retrieval from databases
containing textured images this approach showed an improvement over the traditional
energy-based measures [27]. In this same work, the Kullback-Leibler distance proved to
be a more accurate similarity measurement than the normalised Euclidean distance.
In addition to using the parameters of a GGD as texture features, the idea of calcu-
lating the second order statistics of the detail subbands was also proposed in [24]. This
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was done by computing the co-occurrence matrix, previously described in section 2.2.1,
for each detail subband and extracting several features from it including those shown in
table 2.1. Although these second-order statistics performed better than the parameters
of the GGD model for the classification of certain types of textures, the final conclusion
of their analysis was that the lowest error rates can be achieved using a combination of
the two feature types.

2.3.4 Wavelet Frames

An important point to note about the type of analysis described above is its lack of
translation invariance. As each level in the decomposition consists of a downsampling
step, it is clear that even a slight shift in the original input signal can result in a modified
representation. This is particularly problematic for applications involving the segmen-
tation of images which contain multiple textures. As a texture can appear anywhere in
the scene, features which describe spatial frequencies and orientations generated from
a single standard wavelet decomposition of a training patch may or may not correlate
with the features derived from that texture in the scene. Such uncertainty in a pattern
recognition system is highly undesirable.

One way of trying to avoid this drawback of the standard wavelet transform is to
eliminate the downsampling step altogether and retain the full output of the filtering
operations at each level. This is the essential idea behind the technique known as wavelet
frames. It results in an undecimated version of the wavelet transform and so provides
an over-complete representation of the original image. This technique was first tested
in [78] and the results showed an improvement over the use of the regular decimated
wavelet transform coefficients as texture features. Similar observations have been made
by other researchers [65, 66].

Although wavelet frames provide a translation invariant description of texture, it
should be noted that they provide a highly redundant representation of the original
signal and hence a significant amount of information is duplicated. They are therefore
perhaps not the most ideal analysis tool for all applications, especially those in which
computational complexity is an issue.

2.3.5 Wavelet-Domain Tree Models

The texture analysis methods discussed above in section 2.3.3.1 can be considered as
independent wavelet models. They do not capture any form of interaction between
the wavelet coefficients. One possible way to introduce a dependency between coeffi-
cients is through the use of Hidden Markov Tree (HMT) models [21]. HMTs model
the dependencies between wavelet coefficients at different levels in the standard wavelet
decomposition. These models have been used for the purpose of texture segmentation
within both supervised [13| and unsupervised frameworks [73]. Although these methods
have produced good results in texture analysis applications, one must ask the question
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as to whether interscale dependency is really the correct thing to model in the case of
textures. The general nature of texture seems to suggest that capturing the intrascale
dependencies between coefficients would be a more appropriate thing to do. In the
next section we introduce wavelet packet models which are capable of describing such
intrascale relationships.

2.3.6 Wavelet Packets

The wavelet-based approaches discussed so far are all founded on the same recursive
technique: further decomposition of the low-pass output at each level. Looking at
the Fourier representation of many textures however indicates that this specific type
of recursion may not be appropriate. Figure 2.13 shows several textures along with a
log display of the magnitude of their Fourier coefficients. Some of these textures come
from the Brodatz album, while others have been cropped from high resolution satellite
images. It is clear that not all of these textures have their information concentrated in
the low frequencies. On the contrary, many of them possess significant contributions
from the intermediate and high frequency ranges. Performing a standard wavelet type
analysis of such textures does not focus on these areas of activity in the frequency
domain. In a response to this issue people have adopted the use of wavelet packets as
a means of describing texture more accurately.

Figure 2.13: Top row: Two natural textures (D34 and Herring) taken from the Brodatz

album and two texture patches cropped from a 1 metre resolution IKONOS satellite
image. Bottom row: The corresponding log display of the magnitude of their Fourier
coefficients.

Wavelet packets are a natural extension to the standard wavelet technique. They
permit a more in-depth analysis of the frequencies present in the image [82]. At each
level in a wavelet packet decomposition, the decimated output of both the high-pass and
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the low-pass operations are further decomposed. Representations of this decomposition
down to level 3 are shown in figure 2.14 for the case of a 1-dimensional signal.

Figure 2.14: A level 3 wavelet packet decomposition of a 1-dimensional signal.

In [52], wavelet packets were tested in a texture classification experiment on 25
natural textures. Measures of entropy and energy were computed for each subband in a
fixed level wavelet packet decomposition. Classification results were compared to those
obtained using the same features extracted from a standard wavelet decomposition. A
slight improvement in classification accuracy was reported.

An extension to a wavelet packet frame technique, analogous to that described in
section 2.3.4, was introduced in [53]. Features extracted from both wavelet frame and
wavelet packet frame decompositions were tested in a segmentation experiment on two-
texture mosaics using a simple K-means clustering algorithm. The packet version of the
decomposition was shown to outperform the regular wavelet frame technique.

2.3.7 Adaptive Wavelet Packets

Although wavelet packets provide a much more detailed analysis of the frequency con-
tent of a texture, it is often the case that areas which contain little or no frequency
information are recursively decomposed. Take for example the Bark texture from the
Brodatz album which is shown in figure 2.15. Due to the vertical directionality present
in this texture, its Fourier representation shows a high concentration of intensity along
the horizontal axis. Ideally we would like to be able to analyse this texture in and
around these high intensity areas and in doing so only decompose the frequency area
which is active. In order to be able to do this we need to, in some way, select which
subbands need further decomposition and which should be left untouched. This is
where the notion of adaptivity emerges. The first such adaptive selection technique was
proposed in [16]. The motivation behind this development was not that of accurate
texture description, but instead the efficient compression of music and images. In this
method an entropy criterion is used to determine the best basis to represent the original
signal from a collection of possible wavelet packet bases. For a given subband « in the
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Figure 2.15: The Bark texture from the Brodatz album, along with a log display of the
magnitude of its Fourier coefficients.

decomposition, the entropy is given by

Na

H,=-) ¢&loge (2.6)
=0

where e, ; is the normalised energy of the ith wavelet coefficient in subband « and N,
is the total number of wavelet coefficients in subband «.

A full wavelet packet analysis is performed down to a specified level and the entropy
of each subband in the decomposition is calculated. The sum of the entropies of the
subbands at the bottom level, i.e. the leaf nodes of the tree shown in figure 2.14, is the
quantity which the method attempts to minimise. This minimisation is carried out as
follows: starting at the bottom level, the entropy of the parent of each pair of subbands
is compared to the sum of the entropy of its children. If the parent subband has a lower
entropy value then its children are removed and the parent subband remains as the best
representation of the signal in that frequency range. Applying this to the whole tree
yields an adaptive packet decomposition such as the one shown in figure 2.16.

Figure 2.16: A 1D adaptive wavelet packet analysis of a signal.

The 2-dimensional version of this best basis representation is given in figure 2.17.
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Figure 2.17: A 2D adaptive wavelet packet analysis of an image.

This idea of adapting the wavelet packet basis according to a certain criterion was
readily adopted by the texture analysis community. The first results on texture classi-
fication using an adaptive wavelet packet decomposition were reported in [11]. In this
paper, the averaged [;-norm

1 Qe
o= 3o ; |wWari] (2.7)

was examined for its use as a criterion to decide whether or not a subband a should
be further decomposed. As before, wq; is the ith wavelet coefficient in subband « and
N, is the total number of wavelet coefficients in subband «. Unlike the bottom-up
approach presented in [16], in [11] the decomposition decision rule was carried out in a
top-down manner. Starting with the first level of the decomposition, the above measure
is computed for each subband on this level. If a subband has a relatively low value
compared to the others, then this subband is not decomposed any further. Making this
decision involves comparing the value of each subband to the maximum subband value
at that level, which is denoted by emax. The rule is given by:

if ea < Cemax

then do not decompose subband a.

The constant C' < 1 must be chosen by the user. In [11], a value of C' = 0.3 was
used. If the value of the subband is greater than Cemax, then it is decomposed and
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the same procedure is carried out on its child nodes. The decomposition is stopped
when the smallest subbands are of size 16 X 16. For each texture in the training set,
an average adaptive wavelet packet representation is generated in this manner using
sample patches of the texture. For a new texture patch, its best wavelet packet repre-
sentation is computed and the first J dominant subbands (i.e. those with the largest e,
values) are used as a feature set for that texture. For each texture in the database, this
feature set is compared to the same subbands in the trained representations. The new
texture patch is assigned to the class which has the shortest distance between values
of the dominant subbands. A variety of distance measures were tested, including the
Euclidean and Mahalanobis distance. This method was compared to several other filter-
ing methods including Gabor filters and the standard wavelet transform and it showed
improvements on these methods in many cases. This technique has been used for other
texture applications, including texture classification of SAR images [31].

The general concept of adapting the wavelet packet transform to the underlying
structure in the texture is an attractive one. A popular subtopic of this general re-
search area is the idea of choosing the subbands from a fixed level full wavelet packet
decomposition which provide maximum class separability between textures. Several
techniques have been proposed to do this [5, 29, 30, 70].

2.4 Our Model

In the previous section, we outlined the development of multiresolution wavelet-based
approaches to texture analysis. Extensions to the standard wavelet transform, which
are motivated by the need for accurate and efficient texture descriptors, have followed
a natural and obvious direction. These adaptive methods have ultimately evolved into
searches for the minimum number of subbands which provide a maximally descriptive
representation of the texture in question.

However intuitively appealing these methods may be, they appear to have an under-
lying weakness. This is highlighted by the lack of consistency in the choice of measure
extracted from subbands as a means to either represent texture or to decide if fur-
ther decomposition is needed. Numerous criteria have been proposed for these tasks:
entropy, energy, mean deviation, number of coefficients in a subband whose absolute
value exceeds a certain threshold, cooccurrence matrices, etc. The question of which
features are best for the purposes of texture description has already been raised [56],
yet it remains an open issue. There does not seem to be any real substantial evidence
supporting the use of one particular measure over another.

In an attempt to avoid this seemingly ad-hoc decision making process, we propose
to tackle the problem of texture analysis from a probabilistic viewpoint. Once a dis-
tribution has been fixed for a given type of texture, dynamically deriving an adaptive
wavelet packet basis which best describes this texture becomes a relatively straightfor-
ward procedure. There is no issue surrounding the most appropriate measure to use,
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because decisions which are made at each point in the decomposition are based on the
underlying texture distribution. Therefore the adaptive decomposition which results is
best in a probabilistic sense. The theory behind this approach is presented in the next
chapter.
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Texture Analysis



Chapter 3

Theoretical Framework

Before trying to model texture, it is necessary to first understand how it appears in the
images we process. An obvious starting point is to note that texture always appears in a
finite region of the image being analysed. Let us denote this finite textured region by R.
It can happen that the entire image being analysed consists of only one texture and so
R will be the size of the image and will, more than likely, have a very regular boundary
corresponding to that of the image itself. This is usually the case when texture patches
are selected for training and testing within a texture classification scheme. The other
possibility is that R only makes up part of the image being analysed and it may have
either a regular or irregular shaped boundary. This is the case in applications which
require a scene to be segmented into textured regions. Examples of textured regions
are shown in figure 3.1.

From this it is clear that modelling texture in a probabilistic manner means deriving
a probability measure for the texture on a finite region R. So for a given texture, which
we denote here by [, one needs to specify the following distribution

PI‘(gﬁR | )‘Rza ’Cl) (31)

where ¢r denotes the image ¢ restricted to the finite region R; the class map Ag,
represents the action of assigning to each pixel in ¢ a label which identifies the pixel
as belonging to texture [; and the set K; contains information regarding the texture [, i.e.
the parameters of the probability distribution. The usefulness of this quantity for image
segmentation, rather than texture description, depends on a number of assumptions
which we will discuss further in chapter 5.

Attempting to derive such a distribution immediately raises an important question:
should the description of a texture explicitly depend on the region of the image in which
it appears? As discussed above, the kind of textures we wish to analyse generally exhibit
great variability in both size and shape. Let us consider, for example, remote sensing
images of agricultural areas. The texture corresponding to a ploughed field can cover
the majority of the image and have an irregular border or it might be confined to a
small square shaped section of the image. In modelling such textures, we therefore do

27
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Figure 3.1: Examples of images cropped from high resolution aerial images provided by
the French Mapping Institute (IGN). For each image, the textured region of interest,
R, is outlined in red.
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not have any a priori information regarding how much of the texture will be present
in the image being analysed and what form it will have. The essential notion of what
makes a region textured is therefore not explicitly related to the size and shape of the
region.

Therefore, although equation 3.1 defines a probability measure for texture on a finite
region R, it is important to realise that this expression is not an explicit function of the
shape and size of R. By this we mean that the probability on the region is derived by
marginalising the probability distribution on an infinite image. We therefore start our
modelling procedure by treating images of these textures as functions on an infinite (or
at least very large) domain, which we denote by D,,. We use a probability distribution
on the space of such images which will describe the variations possible for images of the
texture. We denote such a distribution by

Pr(¢ | A=1,K). (3.2)

Here ¢: Do, — C represents the infinite image, which can be thought of as a map
from the infinite image domain D4, to the image co-domain C' = R or Z. The set of all
possible textures is denoted by £. The class map, A: Do, — L, in the above distribution
takes every pixel in the infinite image to texture [. The set K;, as before, represents the
knowledge we have on the texture [.

Deriving a distribution on a finite region R C D in a coherent manner requires
that we marginalise equation (3.2) over the values of the pixels outside this region. An
outline of the abstract details of this operation is given below.

Let ® be the space of infinite images. As introduced above, R defines a finite region.
The complement of this region is denoted by R. These two regions give rise to ® and
® 5, the space of images defined on R and R, respectively. Figure 3.2 provides a visual
representation of the maps that exist between ® and these two subspaces. The map mr

Figure 3.2: Four maps defined on the space of infinite images, ®.

restricts an infinite image in ® to the region R. This map is surjective (or onto) because
two infinite images which have the same value inside the region, but have different values
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outside the region will both be mapped to the same finite image defined on R. Similarly,
TR is a surjective map which restricts an infinite image in ® to R. The map ig takes an
image defined on the region and maps it back to ®, setting pixels in the infinite image
which lie outside the region to zero. This map is injective (or one-to-one) because for
each image defined on the finite region R there is one and only one corresponding infinite
image. Similarly, iy is an injective map which takes an image defined on R and maps
it back to @, setting the values of all the pixels inside the region to zero. These four
maps together allow us to define two projections Pr and Pf as follows:

PR = iRWR
Pp=iprg. (3.3)

Together these projections form an orthogonal decomposition of ® such that an infinite
image may be expressed as

¢ = Pr(¢) + Pr(¢). (3.4)

Marginalising the distribution in equation (3.2) over all pixels outside the region ( i.e.
over ¢ € &), will result in a probability measure for an image on the finite region R:

Pr(on | )= [ Pr(o] ) (35)

PR

which, in principle at least, solves the boundary problem for texture.

3.1 A Gaussian Distribution for Texture

The next step in our analysis is to choose a specific distribution to model texture. As
the main objective of this work is to develop and test a probabilistic framework for
adaptive texture description, we restrict ourselves, for the sake of simplicity, to the
choice of a Gaussian distribution on the space of images. In this section we will work
through the above procedure using a Gaussian as the specific distribution on ®. In
abstract notation, a Gaussian distribution can be expressed as

Pe(o )= |2 [ exp (~(o=uIFlo-u)) Do (55)

where (I |.J) is the inner product of the functions | 1) and |.J) in the space of images;
F| ¢) denotes the operator F' acting on ¢; p is the mean of the distribution; F' is the
inverse variance-covariance operator of the distribution (with a factor of 1/2 implicit in
its representation); |F'| denotes the determinant of this operator; D¢ is the underlying
measure on the space ® and represents the infinite product [[dé(z) over all points
x € Dy, the infinite image domain.
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This general expression of the distribution is independent of the coordinate system.
It can be rewritten in terms of a particular basis depending on the analysis being carried
out. In the position basis, for example, the distribution takes the form

exp = Y ((x) - p(x) Fla,a') (6(a') = u(a)) b Do (3.7)

(z,2")€Doo

where F(x,x') expresses the correlation between the values of ¢ evaluated at the point
x and 2’. The operator F is diagonal, i.e. F(x,2') = f(x)6(x,2'), in the position basis
only if the values of the pixels in the image are independent of each other.

Once a finite region of interest R is specified for analysis, the operator F' can be split
up into four parts according to the orthogonal decomposition of ® by the projections
in equation (3.3). The operators are defined as follows:

Frr=mrFip Fpp=mrFig
(3.9)
Fer=mpFir Fpp=7gFip

The intuitive meaning behind these operators can be seen in figure 3.3: Frp relates
pixels inside the region to each other, Fr5 relates pixels outside the region to pixels
inside the region, F'zp relates pixels inside the region to pixels outside the region, and
Fgp relates pixels outside the region to each other.

F}—& = ”RFjE
=
— T F _Fi,

R

I = ki

R

Fror=mpFiy
Figure 3.3: Splitting the operator F' up according to the projections Pr and Pj.

In performing the calculations needed to arrive at a probability measure for a texture
on a finite region R, we assume here, without loss of generality', that the Gaussian

!The assumption of a zero mean is made for the sake of clarity in the computations which follow.
If it were to be included, the mean pu of the infinite image would split up into a mean pr on the region
and a mean gz on the complement of the region.
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distribution on ® has zero mean and so the probability measure takes on the following
form:

Peo )= |2 | e (~(017 00} Do. (39)

3.1.1 Expressing the Energy in Terms of ¢z and ¢p

We define the energy of the distribution on the space ® to be

E(¢) = (o[ F|o). (3.10)

At the beginning of this chapter, we introduced two projections, Pr and P, which form
an orthogonal decomposition of ®. With these in mind we can rewrite the energy as

E(¢) = (Pro + Pro | F'| Pré + Pro) (3.11)
which when expanded yields
E(¢) = (Pro|F|Pro)+ (Pro|F|Pro) +
(Pro | F|Pro) + (Pro | F | Pro). (3.12)

Expressing these two projections in terms of their defining injective and surjective maps
on ®, as in equation (3.3), allows us to write the energy as

E(¢) = (irmr@|F |ipmred) + (irmro|F |ignpo) +
(ipmp | FligTRd) + (igmre | F |igmRo)

= (irmRro|FipmrO) + (irTRO | FigmRe) +
(ipmro| Firmre) + (igmpe | Figmpe)

= <7TR¢|i}L{FiR7TR¢> + (7TR¢|iLFiR7TR¢> +
(npd |1 Pintro) +(mgo|ihFigmpd) (3.13)
where z‘}; = 7r and z‘}; = 7 are the adjoints of ir and iy, respectively. The energy

thus becomes

E(¢) = (nro|mpFirmpe)+ (mro|mrFigmnae) +
(mpo|mgFirTRO) + (TR | TRFigTRd)

= (mr@|7RrFig|7rO) + (7RO |TRFig | TRO) +
(mpo|mgFir|TRO) + (Tpd | 7R Fig| TR0) . (3.14)
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Note here that npFig, TrRFip, TpFir and TFip in equation (3.14), are the four
operators of figure 3.3 obtained by splitting F' up according to the orthogonal decom-
position formed by the projections Pr and Pp. These operators therefore enter into the
energy as follows

E(¢) = (mro|Frr|mrO)+ (7RO |Frp|mRe) +
(TRo | Frr|mRO) + (TRO| FRrr|TRe) - (3.15)

Using the definition of the surjective maps, mp and 7p, we can further reduce the
expression for the energy to

E(¢) = (or|Frr|o¢r)+ (0r|Frilor) +
(0| Frrlor) + (0r | FrrloR)- (3.16)
As our goal is to obtain an expression for the energy in terms of ¢r and ¢p, we
must manipulate equation (3.16) to separate out completely the action on R from the

action on R. To do this we must complete the square in ¢5 which yields the following
expression for the energy

E(¢) = (bp+Frr "Frror|Frrldr+ (Frr) 'Frror)
~(¢r|Frp(Frr) 'Frrl¢r) + (6r | Frr|oR) . (3.17)
Details of this operation are provided in appendix B. Setting
(Frr) 'Frror =Cr

allows us to finally write our energy as desired, in terms of ¢r and ¢ separately:
E(¢) = (6p+Cr| Frrlor +Cr) + (0r| Frr — Frp(Frp) ' Frplor). (3.18)

3.1.2 Marginalising over Elements in ¢5

Now that we have an expression for the energy of our distribution in terms of ¢ and
¢ separately, we can write our distribution on the space of infinite images as:

¢ (¢ (R | Far|¢a+Cr)—(or| FRR—Frr(FrR)™ Frrl¢r) Dér Do .

(3.19)

To obtain a measure on the region R one must marginalise over all points in ¢p as
follows:

+0o0
Pr(én | -) =/ exp {—( 6+ Ca| Fp| og + Cp )} Do *

— 00

“exp {~(6r| Frr — Fra(Fra) ™ Far| o)} Dén. (3.20)

1
F
s
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Making the following change of variable ¢z = ¢ + (r we get that

+o00
Pr(o¢r |-) = / EXP{_<¢;§3|FRR|¢IR>}D¢;§*
‘% 2 exp {—<¢R|FRR - FRR(FRR)*IFRRWR)} Dop . (3.21)

Here we note that

+o0o
/ exp {—(¢z | Frr|¢R)} Doy (3.22)
— 00
is a non-normalized Gaussian distribution, the correct normalization constant of which
is given by
_1
Frr| 2
0

So the probability measure on the region becomes:

1
||
|Fre

Pr(or | )= exp {~(0n| Frr — Frp(Frp) ™' Farlor)} Dor.  (3.23)

D=

For notational simplicity we shall denote the operator on the region R by Gg:
Gr = Frr — Frp(Fpp)™ Frp (3.24)

and so the probability distribution for images defined on the finite region R is given by:

Pr(or | ) =27 "exp {~(dr|Gr|or)} Dor

Reintroducing the mean of the region gives us the following probability measure for
the image ¢ restricted to the finite region R:

Pr(¢p|-)=2"exp {—(or—ur|Gr|dr — nr)} (3.25)

where up = Pg i represents the mean of the infinite image ¢ restricted to the region,
and the underlying measure on the region is assumed implicit in this expression.
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3.1.3 Diagonalisation of the Operator Gy

In principle, we can evaluate the operator Gr and hence the exponent and probability
in equation (3.25). However, in practice, the computational complexity of such a cal-
culation requires that we diagonalise the operator Gg, i.e. find a set of functions |a)
on the region R such that

(a'|GRrla) =gr(a)d(a,a’).

One possible way to diagonalise the operator Gg is to find a set of functions on the
region

B={|a): a€ A an index set } (3.26)

that satisfies the following two conditions:

Condition 1: The set of functions {ir|a): a € A} on the infinite domain are eigen-
functions of the operator F with eigenvalues { f, : @« € A };

Condition 2: The set B forms an orthonormal basis for functions on the region R;

To outline the diagonalisation procedure we must start by expressing the distribution
on ®p in terms of the elements of the set B as follows:

Pr(gr | )=2"expd— > (¢r—prld)d|Grla)alor—pr)p. (327)
a,a' €A
Using equation (3.24), we can write the middle operation out in full:
(a'|Grla) = (d'| Frr — Fpp (Frp)™' Frrla). (3.28)

In applying the second term, Fp 5 (FRR)_I Fyp, to the function | a ), the operator Fgp, is
first applied to |a ). Expanding this operator in terms of the maps defined in figure 3.2,
we can see that this operation becomes

Frrla) =7mrFigr|a).

Condition 1 states that the function ir|a) is an eigenfunction of the operator F.
Hence we have that

mpFigla) =g fair|a).

By definition of the injective map ig, the function ig|a) is equal to |a) inside the
region R and to zero in R. From this it follows that the support of f,ig|a) lies in the
region R. Applying the surjective map 7 to this therefore yields zero

FRfaiR|a>:0
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which in turn annihilates the second term in the operator G completely.
We are left with the application of the operator Frr to the function |a). When
expanded, this becomes

FRR|a>:7rRFiR|a>.

Using the same arguments as above, the function Fig|a) = f,ir|a) has its support
within the region R. As wrigr = id, applying the surjective map g to f,ir results in
the first term of the operator G being reduced to f,|a).

So we have shown that condition 1 means that the set B are eigenfunctions of the
operator on the region, Gr, with eigenvalues f,, i.e.

(d'|Grla) =(d[fala)=fu(d |a). (3-29)

Condition 2, which states that the set B should form an orthonormal basis for
functions on the region R, i.e. (a’|a) = 6(a,a’), means that G is diagonalised by B:

> fabla,d)(dr —pnrlad )alor —pr) =Y fu(¢r—prla)(a|ér - pr)

a,a'€A a€A

which allows us to write our measure on the finite region R as

pe(on | =T (£) ex {— > fa<¢R—uR|a><a|¢R—uR>} B3

acA acA

To summarise, if we can find such a set BB that satisfies the above two conditions then
we can diagonalise our operator G and hence obtain an expression for the probability
of an image defined on a region R which is relatively quick to compute. The question
that remains is: how do we find such a set B?

3.2 Translation Invariance

Before investigating the existence of a set of functions which satisfy the above conditions,
there is an important property of the distribution which needs to be discussed. This
property arises from the fact that texture can appear in an image arbitrarily translated
and so, as part of our model development, we require that the distribution on ® for a
given texture be translation invariant. This means that images such as those in figure 3.4
will have equal probability of belonging to the same texture class. At this point we do
not impose rotation or scale invariance. Therefore the models describe texture with
a particular orientation at a particular resolution. Later, in chapter 6, we discuss a
possible extension of the model to include rotation invariance.

The requirement of translation invariance and our choice of a Gaussian distribution on
® simplifies the form of the operator F' of the distribution. This can be seen in what
follows.
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Figure 3.4: Four shifted versions of the D102 texture from the Brodatz album.

3.2.1 Translation Operator

We define a translation operator Ty on the spatial domain as:

[Ts 0] (x) = ¢(x + 6) (3.31)

for all points © € D,. The Fourier transform of this operator applied to the image ¢ is
given by

(0] ) — %2_7(/;00 e (1, 6] (2) da

+o0 .
= \/%/ e_lkr ¢($+6) dl’
T J—o00
T[T
— _2/ e—zk(:r —6) ¢($l) dx'
V4T J—o0o

= ei’“‘s\/%_ﬂ/_:o e p(a') da
= *G(k). (3.32)

3.2.2 Requiring Translation Invariance

Saying that we require the distribution to be translation invariant means that we need
Pr(¢|-)=Pr(Ts¢|-) (3.33)

for all possible shifts ¢ and for all possible realisations of the image ¢. Expressing these
two probabilities in the Fourier basis yields the requirement that, for all 6 and ¢ :

7V o= Ji i (k) F(k, k) $(K' ) dk dk' _ 7=1,~ [y, [ir [Ts @] (k) F(k, k') [T 6](K') dk b’ (3.34)
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where * denotes the complex conjugate. Using equation (3.32) we can further develop
the right hand side of this expression to give the requirement that for all 6 and ¢ :

Z1 o= S S SR P k) Sk dkdk! _ =1 = [i [ €% § (k) F(kk') '8 G(k") dk i’

— gl fJu e (k'—k) 8 G (k) F(k, k') p(k') dk di' ‘

The only way this can be true is if the exponents are equal, i.e if for all 6 and ¢ :

/ (k) F (k. k') (k') dk: dk' = / / e (VK8 Gk F(k, k') (k') dk dK'
kJEk' k !
This in turn implies that

F(k, k') =e 28 p(k, k)

for all 6. In order for this to hold, either F(k,k') = 0 or e!* k)0 =1 for all 5. We
examine the cases for the diagonal and the off-diagonal elements separately:

Case k' # k : For the off-diagonal elements, if ¢!(* ~¥)¢ = 1 is to hold for all shifts
6, then it must be that for each § there exists a constant m which satisfies the
following equality: (k' — k)6 = 27 m + . This is clearly impossible for all shifts
d. So, for the off-diagonal elements it must be that F(k, k") = 0.

Case k' = k : When dealing with the diagonal elements of the operator F', the con-
dition that e¢**~%)¢ = 1 must hold for all shifts §, reduces to the condition that

% = 1 must hold for all shifts &, which is always true. Hence for diagonal elements
F(k, k) = f(k).

From this it can be seen that the condition of translation invariance on the Gaussian
distribution causes the distribution to be diagonal in the Fourier basis. Another con-
sequence of translation invariance is that the mean of the distribution, p, must be
constant, so that its Fourier transform is a delta function: (k) o 6(k).

We can therefore express the probability of the infinite image ¢ as:

Pr(é | ) = Z te Sl 8700 ()] F(RK) [D(K) (k)] di i
_ gL S S 16U ()] F(R) 6k R [S(R)— (K] i dk”

— 7l [ ()= (k)] f(R) [S(k)—p(k)] dk
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So the requirement of translation invariance means that the Gaussian distribution is
characterised by a function, f, on the Fourier domain:

Fl2

Pe(o )= |2 e {= [ 1010w - a0 - awla} . 35

3.3 Using Wayvelet Packets

Requiring the Gaussian distribution on texture to be translation invariant has simplified
the form of its variance-covariance matrix. As shown above, if we express the distribu-
tion in the Fourier basis, then the operator F' is reduced to a diagonal matrix on the
Fourier basis elements. This has, without a doubt, made the task of finding the set 5
much easier because we no longer have to consider correlations between these fundamen-
tal frequencies. However, the function f, which now characterises our distribution, may
still be very complicated. For a completely arbitrary function f on the set of Fourier
frequencies, it is very difficult to find a set of functions, B, on the finite region that
satisfies the two conditions of section 3.1.3. Therefore the form of the function f must
be restricted in such a way that it is varied enough to capture the structure present in
the texture, but also limited enough that it will satisfy the conditions.

We propose the following restriction on the function f: Consider the set 7 of dyadic
partitions of a quarter of the Fourier domain. We allow a choice of three types of
partitions: a quad split, a binary split in the horizontal direction, and a binary split in
the vertical direction. These three different partitions can be seen in figure 3.5.

Figure 3.5: Possible partitions of the frequency domain: a quad split, a horizontal
binary split, and a vertical binary split.

By recursively applying these partitions we can focus on the area of the frequency
domain which has a significant amount of activity. The level of the partition refers to
the maximum number of recursive splits carried out in any one area of the partition.
Usually, in analyses which involve partitioning the Fourier domain, only quad splits are
considered. We have introduced the other two binary splits in order to add an extra
element of adaptivity to the partitioning operation. Having three possible splits allows
the partition to adapt slightly better to the structure present in the texture. Inherent
to this partitioning process is the notion of a decomposition tree where the root of the
tree corresponds to the quarter of the frequency domain being analysed. A quad split
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will therefore generate four leaves at level one of this tree and the binary splits will
each generate two leaves. The tree is defined recursively on these splits. Examples of
partitions and their corresponding trees are shown in figures 3.6, 3.7 and 3.8. From this
point onwards, we will use the terms partition and tree interchangeably.

Figure 3.6: A level-4 partition of the Fourier domain using only horizontal splits.

Figure 3.7: A level-4 partition of the Fourier domain using all three types of splits.

Based on the set 7 of all possible partitions, we limit our choice of f to functions
which are piecewise constant on a partition in this set. More formally, this is expressed
as follows. Define a set of functions F by:

F=J7r (3.36)
TeT

where the set Fr ={ f: Ya € T, f is constant on « }. Here a indexes the elements in
the partition.
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iw

Figure 3.8: A level-4 partition of the Fourier domain using only quad splits and decom-

posing only the low frequency section of the Fourier domain. This partition corresponds
to a standard wavelet decomposition of the frequency domain.

Given a partition T' € 7, and a mother wavelet, we can define a wavelet packet basis
Wr, with each element of the partition corresponding to a subband in the final wavelet
packet decomposition.

Due to the piecewise constancy of the functions in Fr, every Fourier basis function
k, which lies within the o!" element of the dyadic partition 7', is an eigenfunction of
the operator f with the same eigenvalue f,. Every linear combination of these Fourier
basis functions which lie within the a'® element of the partition is also an eigenfunction
of the operator f and has eigenvalue f,.

As discussed in appendix A each function in a wavelet (or wavelet packet) basis has
a local support in both space and frequency. Examples of the frequency support of
several of these basis functions are shown in figure 3.9. A wavelet basis function with
frequency support in the a'® element of the dyadic partition is, by definition, a linear
combination of Fourier basis elements in a and so it is an eigenfunction of the operator
f with eigenvalue f,.

More formally, this can be demonstrated by investigating the effect of applying the
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Figure 3.9: Left column: The decreasing frequency support of the lowpass wavelet basis
functions at levels 1-4 (a-d) in a standard wavelet decomposition. Right column: The
decreasing frequency support of the highpass wavelet packet basis functions at levels
1-4 (e—f) in a wavelet packet decomposition.
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operator F to the " wavelet packet basis function w, as follows:

Flwa) = > Y [k)E|F|K)(F|wa) ;where |k)(k|=id

kK

= Z Z | k) f(k)S(k, k") (K |wa) ; translation invariance
koK

= SR £ ()
k

= faZ|k><k|wa> i (klwa)=0unlesskeaeT
k€a

= fo ) |ENk|wa)
k

= fa|wa>-

Similarly, each element of the basis Wr has a frequency support that lies approx-
imately in the element of the partition 7' corresponding to its subband. Due to the
piecewise constancy of the functions in Fr, the basis elements are thus approximate
eigenfunctions of the operators defined by those functions. Those basis elements whose
support lies in the region R thereby satisfy condition 1 to a certain approximation. Our
next task is to complete the set of wavelets inside the region R in order to make a basis
for the region and in doing so satisfy condition 2. How we do this depends on the shape
of R. We consider two possibilities: dyadic and arbitrarily shaped regions.

3.3.1 Dyadic Shaped Regions

A region which is dyadic in shape has dimensions which are a power of two. If we have
such a region R, then we can use a decimated wavelet packet decomposition to obtain
a basis for R. Given a partition 7" and a function f € Fp, the measure on the region
presented earlier in equation (3.30) takes on the form:

(3.37)

Pr(¢r | £ T)=]] [(*’%)2exp {—faz (Wai —/M}

o 1€Eq

Here « indexes the subbands (leaf nodes) of the decomposition 7. The number of
coefficients in subband « is given by N,. The i*" wavelet coefficient of the finite dyadic
shaped image ¢g is given by w, ;. The mean of subband «a is denoted by /. It should
be noted here that p, is zero unless o = 0, which corresponds to the scaling coefficient
subband. f, is the (constant) value of f on subband «. On the left hand side of
equation (3.37), the boldface symbols g and f denote the sets containing the means
and inverse variances, respectively, for all values of a.
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3.3.2 Arbitrarily Shaped Regions

For arbitrarily shaped regions, dyadic wavelet packets no longer form a basis. There
are two problems. First, the basis elements may not be aligned with the boundary and
so may include a significant information from outside the region R. Second, a shifting
of the region with respect to the basis elements will produce a different representation
of the same texture.

The problem of dealing with such regions comes into play in applications such as
the segmentation of textured scenes, where we do not have control over the shape of
the region being analysed. Later, in section 5, we detail two methods for treating this
situation.
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Training Texture Models

The probabilistic framework developed so far provides us with the means to describe
texture via a model which adapts to its underlying structure. Training such a model
can be expressed as the task of finding

e the wavelet packet basis, or equivalently the dyadic partition 7', for the texture
of interest and

e the values of the means, u., and the inverse variances, f,, associated with each
leaf node (subband) a € T'.

In order to train a texture model, we need representative samples of the texture
which can be used to estimate the parameters of the model. We will use Maximum A
Posteriori (MAP) estimation to find the optimal parameter set for the texture model.
The first step in this estimation process is the construction of a posterior probability of
the parameters given the training data available for the texture. Using Bayes’ theorem,
this probability is expressed as

Pr(d| f,p,T)Pr(f, pT)
Pr(d) ’

Pr(f,pn,T|d)= (4.1)
The probability of the training data given the model parameters is determined via
the likelihood function, Pr(d | f, p, T). The a priori knowledge about the model
parameters is captured by the prior probability, Pr ( f, p, T').

As a MAP approach to parameter estimation requires us to maximise the expression
in equation (4.1) over all possible parameter values, the denominator on the right hand
side can be disregarded as it is a function only of the data and so will not affect the
optimisation step. The reduced form of the posterior probability considered is therefore
given by

Pr(f,pu.T|d)xPr(d| f,pT)Pr(f, pnT). (4.2)

In what follows, we discuss each term of this expression in turn.
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4.1 The Likelihood Function

As previously shown in section 3.3.1, it is easy to construct wavelet packet bases for
dyadic shaped regions in an image. Sample patches used to train the texture model are
therefore chosen to be of this shape. If only a single texture patch, which we will denote
by ¢r, is used to estimate the parameters of the model, then the form of the likelihood
Pr(¢r | f, p, T) is given by equation (3.37).

Choosing only one data sample, however, will cause problems later on if we try to
use the resulting texture model to analyse other sample patches from the same texture.
The reason for this is clear and is related to the notion of translation invariance. As
we discussed in chapter 2, the decimated wavelet transform of a texture patch involves
a downsampling step which produces a representation of the texture which will differ
significantly from the representation obtained by performing the same transform on a
patch taken from another part of the same texture. Such a difference in representations
will prove fatal for any classification or segmentation scheme which relies on the model
to recognise samples of the texture which appear anywhere translated in a scene. It
is for this reason that modelling the underlying structure present in the texture, while
ignoring the effect of different translations, requires us to use a number of samples. In
this way we may obtain what can be considered as an average representation of the
texture.

4.1.1 Multiple Training Patches

As we would like our distribution to be translation invariant, we select M patches,

denoted by gé%), ceey gég%M), which represent shifted versions of the texture. The size of
the patches are manually chosen so that the largest periodicity in the texture is present
in the patch. The number of patches, M, is chosen to cover a few periods of the largest
periodicity in the texture. Multiple patches are selected from the original texture using
an evenly spaced process which starts from the top left corner and proceeds in a left
to right, top to bottom manner. Figure 4.1 shows an example of this patch selection
procedure.

In this case, the form of the likelihood becomes

i () e )

« m 1

(4.3)
where w™. is the i wavelet coefficient in subband « of the decomposition on the m!"

training patch, and the mean of subband « is given by fi,.
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Patchl Patch2 Patch3 Patch4

Patchb Patch6 Patch7 Patch8

Figure 4.1: An example of the patch selection procedure wherein eight translated
patches are chosen from the original textured image for use in training.

4.2 The Prior Probability

Now that we have a suitable expression for the likelihood, we turn our attention to the
choice of prior probability for the model parameters. This probability can be rewritten
as

Pr(f, . T)=Pr(f,u| T)Pr(T). (4.4)

Let us first consider the prior distribution on the wavelet packet decomposition tree
T. It is important to realise that a small number of subbands will ease the computational
burden of any classification or segmentation scheme which makes use of these texture
models. Ideally, therefore, the decomposition should adapt to the underlying structure
of the texture using as few subbands as possible. Incorporating this requirement into
the prior distribution on 7" will promote smooth decompositions, 7.e. those which are
constant on large regions. An obvious choice for this kind of prior is

Pr(T)=2""(3)e P (4.5)

where |T'| is the total number of nodes in the entire wavelet packet decomposition tree,
and ( determines the severity of the penalisation. Although this prior penalises large
trees, it does so by assigning an equal weight of 3 to each node in the tree. As we are
performing a decimated wavelet packet decomposition, the size of the nodes in the tree
decreases as their level in the tree increases. Therefore, the prior in equation (4.5) does
not penalise the tree size in an accurate manner.
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In order to take into account the difference in node sizes throughout the tree, we
do not consider each new node as a single unit, but instead as the number of pixels it
contains. Therefore, each node « in the tree should be penalised less than its parent
node, but more than its child nodes. We have adopted this approach by assigning a

weight of Mia to each node in the tree, where M, is the factor which represents the

difference in size of the root node and the current node a. We refer to this amount as
the redundancy factor. The notion of a redundancy factor for a node comes from the
redundancy present if the wavelet transform is not decimated. Figure 4.2 shows the
meaning of M, for each level in an undecimated wavelet transform.

Decimated Level Undecimated Redundancy Factor

LLTTET Pl o JLLLLLTTT] 20 =1
[T 1] 1 (LTI TTT 2l =9
(1] o |LLLITTTTT] 23 =8
L] 3 |(LLLITTTTT] 2 =16

Figure 4.2: The difference between the outputs of a decimated and an undecimated
wavelet transform which shows the redundancy associated with each level in the latter.

With this in mind, we can write the prior distribution on 7" as
Pr(T)=743) [[ e {--2-1 . (4.6)
Mq

This prior penalises decompositions of uniform depth relative to decompositions of the
same size but with varying depth. An example of this is shown in figure 4.3 wherein
both decompositions have the same number of nodes.

The decomposition on the left is a full wavelet packet decomposition down to level
2 and so consists of 16 partitions of the same size. The decomposition on the right
hand side is an adaptive wavelet packet decomposition, down to level 4. It is clear from
the diagram that this decomposition has focused on a particular area of the frequency
domain and has left the other areas intact. The prior in equation 4.6 will favour the
adaptive decomposition over the full standard wavelet packet decomposition.

Once the decomposition T is known, we express our ignorance about the values of
f and p by assuming a uniform distribution on both parameters.

4.3 Estimating the Texture Model Parameters

With these distribution choices in mind, we can perform a MAP estimation for f and
p. As shown in section 3.2, the Gaussian assumption combined with the requirement
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A Y

Figure 4.3: An example of how the prior probability on the decomposition T prefers
varying depth decompositions over uniform depth ones.
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of translation invariance produced a distribution which is characterised by a function
f on the Fourier domain. Our restriction on the form of this function, along with the
frequency support of the wavelet basis functions gives rise to the fact that the subbands
in the resulting decomposition are independent to the degree that the wavelets frequency
support lies in a partition element. This approximate independence between subbands
means that we can perform the MAP estimation on a per subband basis which, for a
fixed tree structure T, yields

fa:é MNe

2€, - 222 (wgz —,ua)2
m g

(4.7)

and

o = T 0 SR (48)

where €, is the average energy per wavelet coefficient in subband a.

In order to find the optimal decomposition and its corresponding f, and u, values
we use an algorithm which performs a depth-first search through the space 7 to find
the exact MAP estimates for T, f, and pw.

4.3.1 Algorithm

An outline of this search algorithm for a single texture patch is provided by the pseu-
docode in figure 4.4. In this section, all references to line numbers are relative to this
pseudocode.

The algorithm starts by calling a recursive depth-first search function FOD on the
root node of the decomposition tree. For each node a generated by this recursive call,
its associated parameter values, j, and f,, are calculated (line 06). In the pseudocode
presented in figure 4.4 the root node of the decomposition tree is set to contain a single
texture patch (line 02). However, in practice, we use M texture patches which means
that the parameter values are actually calculated from equations (4.7) and (4.8), which
use information from all M available data sources. A brief insight into the code structure
for multiple training texture patches is given in appendix C.

At this point, the probability of node « is calculated using equation (4.3). It should
be noted that this equation represents the product over all leaf nodes in the decompo-
sition and so here only the contribution of node «a to this product is computed. The
penalty incurred by the addition of node « to the existing decomposition tree is calcu-
lated as outlined in section 4.2. This penalty is then combined with the probability of
node « which results in what we refer to as the penalised probability associated with
the node (line 07).

When the parameters and the penalised probability for a given node have been
calculated, the algorithm performs a test to determine the depth at which the node is
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01| Create the root node R of the decomposition tree.
02| Set it to contain the original training patch.
03| Call the following recursive function FOD on R.

04|

051 FOD (N) // Find Optimal Decomposition for node N
06| Compute parameter values for node N

071 Compute the penalised probability of node N
08| IF node N is at the maximum decomposition level
091 Set subtree to be empty

101 ELSE

111 Generate the three possible splits of node N
12| FOR EACH split

13] FOR EACH node C in the split

14| FOD (C)

15] END

161 END

171 Make decision about subtree structure

18] RETURN

Figure 4.4: Pseudocode for the depth-first search algorithm which finds the optimal
wavelet packet decomposition for a given texture.
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located in the tree (line 08). If the node is already at the maximum level, then the
function FOD sets the subtree of this node to be empty (line 09) and returns, causing
the depth-first search algorithm to backtrack one level (line 18).

In the case where the maximum level has not yet been reached, the algorithm creates
three possible splits of the current node (line 11) which correspond to the quad split,
binary split in the vertical direction, and binary split in the horizontal direction that
were introduced in section 3.3. The function FOD is called on each child node of each
split (lines 13 and 14). This is where the depth-first search of the decomposition tree
actually takes place.

Once all the calls to the function FOD on the child nodes have returned, the optimal
subtree for each child node has been computed (line 16). The algorithm must now make
the decision to either keep the current node as the best representation of this section of
the frequency domain (this amounts to setting its subtree to be empty, i.e. no further
splits), or select one of the three subtrees which represent the three possible splits of
this section of the frequency domain (line 17).

In order to make this decision, a penalised probability must be calculated for each
of the three possible splits. This is done by summing the penalised probabilities of the
child nodes in the split and then adding a penalty corresponding to the root node of the
subtree this split represents (i.e. the current node). Once computed, these penalised
split probabilities are compared to the penalised probability of the current node. If the
current node has a higher penalised probability, then its subtree is set to be empty.
Otherwise the subtree of the current node is set to be the subtree corresponding to the
split which has the highest penalised probability.

When the function FOD returns from its initial call on the root node, the tree which re-
mains is the optimal wavelet packet decomposition tree for the training patch contained
in the root node for the particular choice of mother wavelet and penalty. Figure 4.5
shows a simplified example of how the depth-first recursion is carried out.

4.4 Training Results

In this section we present a visualisation of the optimal wavelet packet decompositions
obtained with our training scheme. Models were trained for several textures from both
the Brodatz texture album and from high resolution remote sensing images. The original
textures are shown in figures 4.6 and 4.7, respectively. Below the textures are the
magnitude images of their Fourier transforms which shows the type of structure present
in each texture. Our algorithm attempts to capture this underlying structure in as few
a subbands as possible.

To start our training process, we selected 64 sample patches of size 128 x 128 for each
texture, according to the procedure outlined in section 4.1.1. The presence of the mean
in an image usually greatly simplifies the task of describing and classifying regions of
the image. Therefore, it may prevent us from accurately evaluating our framework for
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u) v)

Figure 4.5: Choosing the optimal wavelet packet decomposition for a texture patch
which is placed at the root of the decomposition tree (a). By considering only horizontal
binary splits, each node will have either an empty subtree or a subtree consisting of two
nodes. The depth-first search algorithm expands the decomposition tree down the left
hand side until the maximum level (chosen here to be level 3) is reached (b)—(d). At
this point, the algorithm backtracks to the node which forms the root of the subtree
enclosed in the dashed box (e). Calculations are carried out to compare the penalised
probability of the current node (coloured in gray) to that of the two way split that makes
up its subtree. A decision is made to prune back the decomposition and set the subtree
of the current node at level two to be empty (f). The other existing node at level two
is expanded (g) and a similar process is carried out (h) resulting in the decision to keep
the expansion (i). This process continues until every node in the tree has been visited
and its optimal subtree fixed. At this point the option of retaining only the root node
versus the option of keeping the adaptive subtree which has been constructed below it
is considered (u). The decision is to leave the subtree untouched (v). The final diagram
therefore shows the optimal wavelet packet decomposition tree structure for the single
training patch contained in the root node for a given mother wavelet and penalty.
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Figure 4.6: A selection of textures from the Brodatz album: Herring (left), Raffia
(centre), Wood (right), and their corresponding Fourier transform magnitudes below.

texture description. It is for this reason that we decided to omit it from the calculations.
We thus subtracted the mean intensity from each of the patches before using them to
train the texture model. These sample texture patches were then used in the depth first
search algorithm presented above in section 4.3.1.

A maximum level of 6 was chosen for the decomposition. This level allows a very fine
division of the Fourier domain to take place if necessary, yet it avoids the computational
explosion associated with higher levels.

We experimented with several kinds of mother wavelets. Results presented in this
section show the different optimal wavelet packet decompositions obtained using the
Haar, Daubechies4, and Coifletl mother wavelets.

The penalty [ was chosen so as to produce a wavelet packet decomposition of the
texture which strikes an even balance between the final number of leaf nodes and the
amount of texture structure captured. This value was tuned using visual comparisons
with the Fourier transform of the texture. Instead of comparing the resulting decompo-
sitions directly to the magnitude images of the Fourier transform as shown in figures 4.6
and 4.7, we generated folded versions of the magnitude images which represented the
quarter of the frequency plane which is analysed by a wavelet decomposition. These
folded magnitude images are shown in the first row of the figures 4.8— 4.13.

Changes in the choice of mother wavelet and the value of 3 yield very interesting
and quite different decompositions. The images of these adaptive wavelet packet de-
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Figure 4.7: A selection of textures cropped from 50cm resolution aerial images:
Ploughed (left), Forest (centre), Warehouse (right), and their corresponding Fourier
transform magnitudes below. Images were provided by the French Mapping Institute

(IGN).
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compositions are shown in this section. Each image displays the logarithm of e, shifted
and rescaled to the range [0,255]. The reason for not displaying the raw &, values is
because most of these values are zero when scaled and quantised to eight bits.

From these results it can be seen that on average the resulting decomposition adapts
well to the structure present in the texture. What remains to be seen is how these models
perform in applications such as texture segmentation where an accurate description of
texture is essential. This issue will be addressed in the following chapter.

4.5 Discussion: An Analysis of the Subband Statistics

An analysis of the subband coefficients of the adaptive wavelet packet decompositions
suggests the need for a distribution which is more complicated than the Gaussian used
in this thesis. Examples of subband histograms are shown in figure 4.14. It is clear that
there are three distinct types of statistics present.

As mentioned in chapter 2, previous work in the area of texture analysis proposed
the use of a generalised Gaussian distribution to model marginal wavelet statistics [59].
The first row in figure 4.14 shows coefficients which seem to follow this rule. These
coefficients belong to high frequency subbands and the form of the distribution can
easily be attributed to the fact the coefficients are a response to the edge content in
the texture. Those coefficients which lie in or around zero represent the homogeneous
area in the texture and some noise, while the other coefficients represent the edges in
the textures. The second row shows histograms from subbands in broad intermediate
to low frequency ranges which follow more closely a Gaussian distribution. Finally, in
the third row, we can see a new bimodal form. Histograms of this shape arise from
the subbands which adapted to the periodic content of the texture, and represent much
narrower intermediate to low frequency ranges.

These three histogram forms were noted previously in the literature when the sub-
band histograms from a standard wavelet decomposition were analysed as part of a
texture classification study [24]. However, the histograms which exhibited a bimodal
form were dismissed as occurring only in low frequency ranges which do not contain
much textural information. The fact that they did not possess a unimodal form was
ignored and all subbands were modelled by a generalised Gaussian distribution.

Our subband analysis suggests just the opposite: that the bimodal form occurs
in subbands which correspond to the intensity peaks in the frequency domain that
characterise the structure of the texture. This points toward an exciting new avenue of
research which may permit a more accurate modelling of marginal wavelet statistics.

We tested the following quartic model:

N 1 _ (€ayi— :UJa)2
Pr(o] )= g — o XD T (4.9)

Z(MO" Oa a 1€x

where e, ; denotes the energy of the ith wavelet coefficient in subband « of the wavelet



Discussion: An Analysis of the Subband Statistics o7

Figure 4.8: Top row: three identical copies of the folded magnitude Fourier transform of
the Herring texture. The nine images below show the optimal decompositions obtained
using the Haar, Coifletl, and D4 wavelets (columns 1, 2, and 3 respectively), and /3
penalty values of 2000, 5000, and 8000 (rows 2, 3, and 4 respectively).
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Figure 4.9: Top row: three identical copies of the folded magnitude Fourier transform of
the Raffia texture. The nine images below show the optimal decompositions obtained
using the Haar, Coifletl, and D4 wavelets (columns 1, 2, and 3 respectively), and /3
penalty values of 2000, 5000, and 8000 (rows 2, 3, and 4 respectively).
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Figure 4.10: Top row: three identical copies of the folded magnitude Fourier transform of
the Wood texture. The nine images below show the optimal decompositions obtained
using the Haar, Coifletl, and D4 wavelets (columns 1, 2, and 3 respectively), and /3
penalty values of 2000, 5000, and 8000 (rows 2, 3, and 4 respectively).
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Figure 4.11: Top row: three identical copies of the folded magnitude Fourier transform
of the Ploughed texture. The nine images below show the optimal decompositions

obtained using the Haar, Coifletl, and D4 wavelets (columns 1, 2, and 3 respectively),
and 3 penalty values of 2000, 5000, and 8000 (rows 2, 3, and 4 respectively).
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Figure 4.12: Top row: three identical copies of the folded magnitude Fourier transform of
the Forest texture. The nine images below show the optimal decompositions obtained
using the Haar, Coifletl, and D4 wavelets (columns 1, 2, and 3 respectively), and /3
penalty values of 2000, 5000, and 8000 (rows 2, 3, and 4 respectively).
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Figure 4.13: Top row: three identical copies of the folded magnitude Fourier transform
of the Warehouse texture. The nine images below show the optimal decompositions
obtained using the Haar, Coifletl, and D4 wavelets (columns 1, 2, and 3 respectively),
and 3 penalty values of 2000, 5000, and 8000 (rows 2, 3, and 4 respectively).
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Figure 4.14: Histograms of subbands in an adaptive wavelet packet decomposition.
Rowl: The original Raffia texture patch and its corresponding adaptive wavelet packet
decomposition. Row2: Subband histograms which have a unimodal form corresponding
to that of a generalised Gaussian distribution. Row3: Subband histograms which have
a unimodal form corresponding to that of a Gaussian distribution. Row4: Subband
histograms which have a bimodal form.
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packet decomposition, i.e. e, ; = w? ;. The normalising constant is given by

o 2
Z(Jhes Oar) H H / exp { %} deq.i (4.10)

a Ea

By making the following change of variable
Rai = €ayi — Ha
the normalising constant becomes

N\ 2
7 fo) =111 / me’{p{_%(?l> }dz“’i -t
Lo a,i a e

a Ea

By approximating the expression in equation (4.11), it is possible to analytically
compute estimates of the distribution parameters, p, and o,. Under the assumption
that ue is large relative to o, we make the following approximation [38]:

+oo 1 1 <za,i>2 ; too 1 (za,i>2 p
——————exp{—= Zoi = exp { — = Zoi
—pa VPt + Lo 2\ o4 o —00  VHa 2\ 04 o

(4.12)

With this approximation, equation (4.13) reduces to

L 2
=TI1I \/2_“ { 7(6““202““) } (4.13)

a Ex

The resulting Maximum Likelihood estimates for the distribution parameters are given
by

2
. es .
fla = L’ea Sl (4.14)

and

Go = (Z wl; Zwmﬂa> (4.15)

1EQ 1€EQ

where N, denotes the number of pixels in the subband «.

Figure 4.15 shows some of the double peaked histograms plotted against this quartic
model. Several of these fit the distribution quite well. We have also fitted a Gaussian
distribution to this data to highlight how unsuitable it is for these particular subbands.

From these graphs it is clear that such a quartic model will better represent the
subband statistics of the adaptive wavelet packet decompositions.
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Figure 4.15: Subband histograms from the adaptive wavelet packet decompositions.
Gaussian - black (dotted line); Quartic - blue (dashed line); Data histogram - red (solid

line);
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Chapter 5

Segmenting Textured Scenes

The probabilistic framework developed in the previous chapters allows us to adaptively
describe texture in a coherent manner. Models which result from this procedure capture
the underlying structure of the textures they represent and have the potential to be used
within the context of a supervised texture segmentation scheme. In this chapter, we
focus on this problem of partitioning scenes into textured regions and labelling each of
the regions according to the real world entity it represents.

By way of introducing the notation which will be used in this chapter, let us consider
a toy example of the general segmentation task. Figure 5.1 shows a finite composite
image ¢ which we would like to segment. ' We define a label set, denoted by L, to be

Figure 5.1: An image, ¢, to be segmented into regions each of which corresponds to the
texture of an entity represented in the image.

the finite collection of labels representing the entities that might be present in an image.
The three real world entities that gave rise to this particular scene are forest, sand and
water. We can denote the label set for this image as:

L={FS W (5.1)

The process of classifying an image is carried out via class map, A: D — L, which

!Previously, ¢ represented the image defined on the infinite domain D.,. For notational simplicity,
we redefine the unsubscripted ¢ here to denote the image defined on the finite domain D.

67
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assigns a label to each pixel in the finite image domain D. 2 Three possible class maps
of the image ¢ are presented in figure 5.2. Clearly, some class maps represent more
accurate results than others. The goal of the analysis is therefore to find the correct
class map, A*.

S

y.

Figure 5.2: Examples of class maps for the image ¢.

S W

5.1 A Probabilistic Statement of the Problem

In terms of probabilities, the segmentation problem can be stated as follows.

Segmentation Task: Find the class map A which yields the highest probability for
Pr(A | ¢, B). Here ¢: D — C denotes the observed image with the image
co-domain C' = R or Z. Information on the textures in the scene is contained
in the set B which includes, for each texture class I, the optimal wavelet packet
decomposition for describing that texture and the corresponding parameter values.

Maximum A Posteriori (MAP) estimation requires us to find:

A* = arg max Pr(A | ¢, B) (5.2)

Using Bayes’ Theorem, this posterior probability can be written as

Pr(¢ | A B)Pr(A| B)
Pr(¢ | B)

Pr(A| ¢ B)= (5.3)

In order to find \*, we need to maximise the expression on the right hand side of
equation (5.3) over all possible class maps. As the denominator of this expression does
not depend on ), it will not influence the optimisation procedure and so can be ignored
in the computation of A\*. Therefore, we work with the following reduced form of the
probability:

Pr(A| ¢,B)xPr(¢| X\, B)Pr(\| B) (5.4)

In chapter 3, we introduced )\ as the map which assigns labels to pixels in the infinite image. Here
we redefine X to denote such an assignment carried out on the finite image domain D.
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The quantity Pr (¢ | A, B) is the likelihood function which relates the observed image
¢ to the values of the conditioning parameters. Any a priori knowledge on the class
map A is expressed via the prior probability, Pr(\ | B).

Before proceeding with the analysis, a couple of assumptions are made about the
relationship between textured regions in the scene.

The first assumption states that, given a classification, pixel values inside a region
with a fixed label do not depend on pixel values outside that region. This allows us to
express the likelihood function as a product over elements in the label set as follows:

Pr(¢ |\ B)=]]Pr(¢n | A B) (5.5)

lel

where R; C D is the set of points in the image domain whose label is [. An assumption
of independence at this level is certainly questionable. There are many examples where
the pixel values of neighbouring textured regions are correlated. The most obvious of
these is the case when the regions are subject to illumination from the same source,
be that from the sun, or from an artificial light. Ideally, the effect of this common
light source should be built into the description of the textured scene. In order to do
this, however, other factors need to be taken into consideration such as the possible
presence of clouds and hence shadows in the image. Such issues make it extremely
difficult to model the dependencies between pixels in the scene and so the assumption
of independence is frequently adhered to in segmentation schemes.

The second assumption states that the probability of the pixel values inside a region
with a fixed label does not depend on the class map outside this region. This simplifies
the conditioning in the likelihood function to give

Pr(¢ | A\ B) =[] Pr(ér | Ar, Bi) (5.6)
el

where Ag, is the label map restricted to R; which, by definition, is constant and equal
to . Here the set B; contains prior information on the texture [ only, i.e.

By = { ﬁa {ﬂa}il:p {fa}ilzl }

where 5; denotes the number of leaf-nodes in the optimal wavelet packet decomposition

ﬁ. The main issue surrounding this assumption is that it is quite plausible to have a
situation wherein knowing the class of one textured region in the scene provides informa-
tion about a neighbouring region. For example, suppose that roads which are created in
forested areas are different from roads which are constructed elsewhere. Knowing that
the neighbouring region is forest tells you something about the type of road you have
detected. This knowledge is, more often than not, highly scene specific and so is hard
to build into a general model. Hence this assumption, although it sometimes ignores
information about the scene, is acceptable.
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These simplifying assumptions yield the following expression for the posterior probabil-
ity:

Pr(A| ¢, B)o [[[Pr(én | Ar, Bi)| Pr(A | B) (5.7)
lel
From this it is clear that in order to carry out the segmentation task we need the
following two things

e A prior probability for the class map A and,

e For each texture represented in the label set, a probability distribution on the
finite region, ¢p,.

These two requirements will be discussed in turn in the following sections.

5.1.1 Choosing a Prior for the Class Map

We choose a trivial prior on the class map which assumes independence between pixels
in a region and, in addition to this, assigns equal probability to each texture class. This
prior is expressed in terms of the pixels inside each region as follows:

|Ri
Pr(A|B):H(%> (5.8)

lel

where |R;| denotes the number of pixels in the finite region labelled [, and |£| denotes
the number of entities represented in the label set £. As each pixel in the image must
belong to one and only one texture class, the prior probability on the class map for the
entire image reduces to a function of the prior probabilities for the class map of the
individual pixels in the image
1
Pr()\|B):Hm (5.9)

TEP

where = represents a single pixel in the finite image ¢.

Although this is an unrealistic assumption, the heuristic segmentation scheme we
will introduce in section 5.2 will perform a type of average which behaves somewhat
like a Potts prior.

5.1.2 Computing the Likelihood

Before calculating the likelihood function for a given region, ¢p,, we must first consider
the form of the region. Imagine that it is dyadic in shape. In this case, equation (3.37)

can be used and calculating the likelihood is a relatively straightforward procedure
which is outlined below:
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e From the training phase, we have the set B; containing the optimal wavelet packet
decomposition for texture [, as well as the corresponding estimated parameter sets.

e Apply the optimal decomposition to the dyadic-shaped finite region ¢g,. This will
result in a set of decimated subbands containing the wavelet coefficients which
describe the region. For each subband «, the coefficients are denoted by wa,;,
where 1 = 1,..., N,, the number of pixels in the subband.

e Using these coefficients, along with the estimated parameter sets for texture [, we
can compute the likelihood for the region as follows

1

Si Na f B .
Pr(ér | Ar. Bi) =[] I <—a> exp {—fa(wa,i - ﬂa)2} (5.10)
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This approach is fine if we are sure that we will analyse a dyadic-shaped region. How-
ever, in practice, images are usually made up of textured regions which have irregular
boundaries. As we already mentioned in section 3.3.2, using a method such as that
described above to calculate the likelihood for such regions may lead to errors due to
the fact that the wavelets do not form a basis for the region.

We originally considered investigating the possibility of developing an iterative op-
timisation method which would attempt to satisfy, for an arbitrarily-shaped region,
condition 2 of section 3.1.3 exactly. The underlying concept was to generate an initial
segmentation of the scene using some heuristic classification step. This rough seg-
mentation could then be used as a starting point for a more precise analysis. For
each arbitrarily-shaped region resulting from this segmentation, wavelet basis functions
which adapt to the irregular boundary could be created and in conjunction with regular
wavelet functions which fit inside the interior of the region, they would provide a basis
for the region. Classification would then be performed using this wavelet basis and its
result would act as the starting point for the next basis creation step, followed by a
new classification. This process would continue until a stopping criterion is reached.
There are two major drawbacks with this proposition. Firstly, the new adaptive basis
functions at each step would have to be chosen so as to have the same frequency sup-
port as the function used to generate the trained wavelet packet decomposition. This
is not a trivial condition to satisfy. The second problem is that this iterative scheme
would be extremely computationally intensive. For these reasons we have decided not
to consider this as a possible solution to the difficulties which arise when dealing with
arbitrarily-shaped regions.

So the question which remains is: how do we calculate, in a reasonable manner,
Pr(¢r, | Ar,, B;) for a region which is arbitrarily-shaped? We will consider the
segmentation of two distinct types of scenes: natural Brodatz texture mosaics and
remote sensing images. Due to the difference in component textures in these images, we
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treat the two cases separately. The segmentation methods proposed will be described
in turn in sections 5.2 and 5.3, respectively.

5.2 Application: Brodatz Mosaics

As discussed before, applying a decimated wavelet transform to the types of textured
regions present in these mosaics will lead to errors. We attempt to ameliorate the
situation by completing the basis on the region using the following approximate scheme.

Step 1: For each basis function in the optimal wavelet packet decomposition, fl, cal-
culate all possible shifts of it within the region. For example, assume that a basis
function is given by a 2 x 2 filter. This filter should be applied to every single
pixel in the region, as is shown in figure 5.3.

Step 2: Take a geometric mean of the probabilities computed from these shifts. With
this procedure a displacement of the region with respect to the basis functions
will not cause as significant a change in the response of the wavelet transform as
would be the case if a decimated wavelet transform is used. Hence it will result
in a more translation invariant measure of the energy.

Figure 5.3: Applying the wavelet filter at all possible locations in the arbitrarily-shaped
texture patch in order to approximate a basis for the region.

This procedure is equivalent to creating an undecimated wavelet packet decomposition
of the region and then averaging the response of each wavelet filter according to the
amount of redundancy it contains relative to a decimated wavelet transform. This can
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then be used to compute the following approximation to the probability for the region:

Si IR i v, ;
Pr(ér | Ar, B~ ][] <f) exp {—M—a(wmx—ﬂa)?} (5.11)

a=1 x=1

where M., the redundancy factor for subband «, captures the redundancy present in
the undecimated representation of the region as demonstrated previously in figure 4.2
of section 4.2. Note that this distribution is not the same as that found by pretend-
ing that the coefficients in the undecimated wavelet decomposition are independently
distributed.

Although this technique was motivated by a need to approximate a basis for the region,
it also has the great advantage of creating a pixelwise likelihood expression. This
results from the fact that in an undecimated transform each pixel in the region has a
corresponding wavelet coefficient in each subband. Hence we can swap the order of the
products in equation (5.11) to get

\Ri| S i Mo f
Pr(¢r, | Ar» B) =[] ] (f) exp {—M—“(wa,r—,za)Q} (5.12)

rz=1 a=1

For notational simplicity, we summarise the product over subbands by

VAT i
I | (%)™ oo - enem o} =]

a=1

Hence this procedure results in a likelihood and prior term which can be written in
terms of individual pixels in the image. This means that we can express our posterior
probability as

Prv | 6 B) o IT 7 Hi [{wasSy] (5.13)
€D

and so it is possible to perform a pixelwise Maximum Likelihood (ML) classification of
the image ¢.

In practice, we know that A is likely to be somewhat regular. One way to introduce
this, of course, is to define a Potts prior and use simulated annealing to make a Maximum
A Posteriori (MAP) estimate of A. However, as is well known, simulated annealing is
very slow, and it turns out that another approach produces results that are as good, if
not better, while being considerably more computationally efficient. We keep the trivial
prior as defined in section 5.1.1 and use the following classification rule:

() = arg max GHV( )Hz {waw baer] (5.14)
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where V() is the set of neighbours of pixel x, which includes z itself. Examples of
neighbourhoods can be seen in figure 5.4. This rule has a similar effect to the Potts prior,
but it still allows a pixelwise classification because it uses the data at the neighbours of a
pixel but not their unknown classes. In consequence, one can use larger neighbourhoods
with little extra penalty.

a) b)

Figure 5.4: a) Neighbourhood-5 and b) Neighbourhood-7 schemes for pixel z

5.2.1 Results

This segmentation method was tested on several 512 x 512 Brodatz texture mosaics.
The results can be seen in figures 5.5 and 5.6. Misclassification percentages are given
in tables 5.1 and 5.2, respectively.

Figure 5.5(i) | Figure 5.5(j) | Figure 5.5(k) | Figure 5.5(1)
Error 2.6% L.7% 2.5% 2.4%

Table 5.1: Number of misclassified pixels given as a percentage of the total number of
pixels in the mosaics of figure 5.5.

Figure 5.6(i) | Figure 5.6(j) | Figure 5.6(k) | Figure 5.6(1)
Error 1.8% 1.9% 1.5% 3.1%

Table 5.2: Number of misclassified pixels given as a percentage of the total number of
pixels in the mosaics of figure 5.6.
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i) ) k) )

Figure 5.5: Row 1: Original mosaics: a) Circular mosaic of Herring and Raffia; b)
Rectangular mosaic of Calf, D102, and Hexholes152; ¢) Freehand mosaic of Herring
and Raffia; d) Rectangular mosaic of Calf, Fabric0004, and Hexholes152. Row 2: Their
ground truth images. Row 3: Segmentation results.
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i) ) k) )

Figure 5.6: Row 1: Original freehand mosaics of textures: a) Fabric0015 and Fabric0018;
b) Fabric0017 and Tmage38; ¢) Grass and Metal0000; d) D102 and Raffia. Row 2: Their
ground truth images. Row 3: Segmentation results.
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5.2.2 Comparison With a Gibbs Texture Model

We have tested the performance of our method for synthetic data against another super-
vised texture segmentation scheme developed by Gimel’farb [35]. This approach, based
on a conditional Gibbs model, describes the spatial structure of a grayscale texture mo-
saic via the pixelwise and pairwise pixel interactions in a fixed neighbourhood. These
interactions appear in the form of Gibbs potential functions in the exponent of the con-
ditional probability distribution of the region map, given its corresponding grayscale
mosaic. The model captures not only the texture properties of a single homogeneous
textured region, but also the inter-region structure present in the mosaic.

When presented with a new test mosaic to segment, a likelihood maximization algo-
rithm (Controllable Simulated Annealing) is used to minimise the probabilistic distance
between the first-order and second-order statistics for the training data (mosaic and
region map) and the mosaic to be segmented. Some comparison results for the original
mosaics of figure 5.5 are presented in figure 5.7.

a) b) C) d)

Figure 5.7: Comparison results from the method described in [35]. Images provided by
Dr. Georgy Gimel'farb of the University of Auckland, New Zealand.

It should be noted that the method in [35] was tested on scaled down (by a factor
of two) versions of the textures used in our experiments. The training mosaics used can
be seen in figure 5.8. Results for this method could probably be improved if full scale
images are used.

However, even with the results on the scaled down test images, one can see where
the two methods differ. Firstly, the presence of a texture which varies in brightness
and/or directionality poses a problem for the method in [35]. The fourth mosaic of
figure 5.5 has a centre strip containing the texture Fabric0004. We can see where this
texture changes toward the right hand edge of the mosaic. It is apparent from the
segmentation results of figure 5.7 that the algorithm had difficulty with this particular
area of the mosaic. The training procedure of our method, which uses a collection of
sample patches from each texture, allows us to avoid such problems at the segmentation
phase.

Secondly, the method in [35] relies heavily on the geometric structure of the training
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b)

Figure 5.8: Training mosaics used in the method presented in [35]. Images provided by
Dr. Georgy Gimel'farb of the University of Auckland, New Zealand.

mosaics which consist of rectangular regions. This structure created particular problems
for the third test mosaic. However, we can also see how the inclusion of structure in the
training process has perhaps enhanced the segmentation of the rectangular shaped test
mosaics. As our method trains each texture separately, there is no inter-region structure
present in our models. This might explain the lack of precision at the boundaries in our
results on the rectangular mosaics, but it also allows us the freedom to segment mosaics
with all kinds of inter-region structure present, such as the freehand and circular test
mosaics presented above.

5.2.3 Comparison With a Discriminative Feature Selection Approach

We have shown above that our method is highly competitive against a texture classifi-
cation method which belongs to the Markov Random Field class of texture models. It is
also useful to compare our method against a technique which takes a spatial frequency
filtering approach to texture analysis. In this section we discuss such a method and
present some results obtained by applying it to our mosaics in figure 5.6.

One of the filtering methods presented in [5] uses a Gabor-like filter bank to extract

information from the texture. An image, f(x), is decomposed into a series of subbands,

sé-(u) where j indexes the subband and [ denotes the level at which the subband lies

in the decomposition of the image. These subbands are computed via the following
expression

sg(u) = Aé [g (u; mé, Eg) F(u)] (5.15)

where the isotropic Gaussian function g(u) has a centre frequency of mé- and a band-
width given by E;, the discrete Fourier transform of the image is denoted by F(u), and
Aé- represents a set of band-limiting operators.

Having performed such a decomposition on a textured mosaic, the underlying goal of
the method proposed in [5] is to find the subset of subbands in this decomposition which
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maximally discriminates between the textures present in the mosaic. This subband
selection procedure is motivated by the need to reduce the number of features used to
classify the mosaic. It is also considered to help in avoiding the selection of subbands
which may potentially confuse the classification procedure.

Choosing this subset of features is carried out as follows: A prototype of each
texture present in the mosaic is selected. Each prototype is subjected to the same
decomposition as that performed on the mosaic. A distance measure is then used to
judge the similarity of matching subbands in the decomposition of each prototype. This
allows a decision to be made regarding the relevance of a particular subband for the
purposes of classification. The subbands selected are ranked according to their ability to
discriminate between the textures present in the mosaic and they are then applied within
a simple k-means classification scheme using the mean features from the prototypes as
the class centres.

This technique was tested on the two-texture Brodatz mosaics shown previously on
the first row of figure 5.6. For a given mosaic, a level 3 decomposition was carried out
which resulted in 19 subbands. A single 64 x 64 prototype was selected for each texture
in the mosaic. The ten best subbands were chosen using a Bhattacharyya distance
measure. Several classification experiments were carried out using an increasing number
of features each time. The results with the lowest error rate are shown in figure 5.9. The
error rates are recorded in table 5.3 along with the corresponding number of features
used to perform the classification.

a) b) c) d)

Figure 5.9: Comparison results obtained from the method described in [5]. These images
(a)—(d) correspond to the mosaics (a)—(d), respectively, in figure 5.6. Images provided
by Dr. Abhir Bhalerao of the University of Warwick, U.K.

This method produces similar results to those obtained with our method. The main
advantage with this particular approach is that it uses only a relatively small number
of features to carry out the classification. However, it is important to realise that
with this method one cannot have a description of a single texture as such. Instead
features are also chosen relative to another texture. Adding a new texture into a scene
might therefore pose problems as the most discriminating features would need to be
recalculated as opposed to just adding in one more texture model as is the case with
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Figure 5.9(a) | Figure 5.9(b) | Figure 5.9(c) | Figure 5.9(d)
Error 2.6% 1.7% 1.7% 4.3%
# Features 8 5 6 10

Table 5.3: Row 1: Number of misclassified pixels given as a percentage of the total
number of pixels in the mosaics of figure 5.9. Row 2: Number of features (out of a total
of 19) used to obtain these error rates.

the texture segmentation scheme developed in this thesis.

The results presented in this application section highlight the success of our adaptive
texture models for the segmentation of handmade mosaics which consist of natural
textures taken from the Brodatz album. Although this collection is made up of a wide
variety of patterns, including many forms of micro and macro texture, it represents
only a tiny subset of the observable textures present in our visual world. In order to
truly test the capability of our models as texture descriptors, we need to use them as
an analysis tool for other types of textures. In the next two sections we test our models
on a selection of remote sensing images and wildlife scenes.

5.3 Application: Remote Sensing Images

The automatic detection of regions in remote sensing images is often helped by the
inclusion of textural information from the scene. A steadfast improvement in the quality
of imaging equipment has recently lead to images which boast a high resolution of the
captured scene. In these types of images, texture is an easily accessible feature and so
they present us with an excellent opportunity to evaluate our models.

To this end, we have cropped several areas from large remote sensing images. They
are shown in the first row of figure 5.10. This selection includes a 1-metre resolution
aerial image, two 1-metre resolution satellite images captured by the IKONOS satellite,
and one lower resolution synthetic aperture radar (SAR) image. For each image in turn,
we decided on a number of classes corresponding to entities in the images. This informa-
tion is recorded in table 5.4. Based on these classes, we manually created ground truth
images which can be seen in the second row of figure 5.10. A separate model was trained
for each texture class according to the procedure described in chapter 4. It is clear from
these images that the individual textured regions are far from dyadic in shape and so
we are left in the same position as before, i.e. needing to analyse arbitrarily-shaped
regions. The approximate probabilistic segmentation scheme developed in section 5.2
was tested on these images. It did not produce very satisfactory classifications. As a
result of this we decided to investigate the use of a simple and heuristic classification
method which is described below.

We start by noting that each texture model has a largest effective filter size, cor-
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responding to the smallest elements in the Fourier domain partition. This filter size
is dyadic. For example, optimal decompositions which involve a level three analysis of
the frequency domain, have a largest effective filter size of eight. Given a set of texture
models then, there is a largest effective filter size among them all. To classify a single
pixel z in the image domain, we examine an image patch centred on x of size equal to
this largest filter size among all models. We can calculate the probability of the image
restricted to this dyadic patch for each trained texture model using equation (3.37), as
was previously outlined at the beginning of section 5.1.2. Assuming that the prior on
the class map A is uniform on £, these data probabilities can be normalized to give the
posterior probabilities for the class of the patch. The MAP estimate of the class of the
patch is then given, tautologically, by the class with maximum posterior probability.
Rather than assign this class to every pixel in the patch however, we heuristically assign
this class only to the pixel z at the centre of the patch. We then repeat this procedure
for every pixel in the image.

The danger of such a pointwise procedure is that the class map A can be irregular.
However, as in section 5.2, we use the heuristic procedure that has a similar effect
to a regularizing prior: it smooths the class map and shortens boundaries. This is
done by combining the posterior probability distributions on £ at each pixel, as in
equation (5.14).

5.3.1 Results

The results of this heuristic classification procedure are shown in the third and fourth
rows of figure 5.10. From these images we can see that the segmentation method per-
forms quite well. The major classification errors occur near the boundary between
textures, as would be expected. However it is worth noting that in some cases the clas-
sification is, in a sense, more accurate than the ground truth provided for the scene. The
obvious examples of this are the segmentation results of the SAR image in figure 5.10(c)
and the satellite image in figure 5.10(d). In the case of the former, it is clear from the
original image that there is a small mountainous region in the middle of the plain. This
is ignored by the ground truth. However it is picked up by the segmentation method
and correctly classified as belonging to the mountainous texture as can be seen from
the black inside the white region. A similar thing has happened in the satellite image
where a tree in the ploughed field is detected as not belonging to the ploughed texture.
Here though it is incorrectly classified as belonging to the border texture class. In the
following sections, we present two measures which can be used to evaluate and better
understand the results of the segmentation task.

5.3.1.1 The Kappa Value

It is standard practice among the remote sensing community to assess the accuracy of
a segmentation procedure using a statistic known as the kappa value [15, 17, 18]. The
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Figure 5.10: Original images: a) Aerial, 1m resolution ©IGN, b) IKONOS satellite, 1m
resolution ©Space Imaging, c) SAR, d) IKONOS satellite, 1m resolution ©Space Imag-
ing; Manually created ground truth images: e) — h); Neighbourhood-1 classifications: i)
—1); Neighbourhood-7 classifications: m) — p).
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Classes (in order of increasing grey level)
Figure 5.10(a) | Field, Scrub, Ploughed, Border

Figure 5.10(b) | Flood, Trees

Figure 5.10(c) | Mountains, Plain

Figure 5.10(d) | Scrub, Ploughed, Woodland, Field, Border

Table 5.4: Classes defined for the ground truth images in figure 5.10.

concept behind this approach is to measure the degree to which two “judges” agree in
their respective sorting of the pixels in an image into the L mutually exclusive groups
available. For this particular test dataset, one judge is the person who created the
ground truth image and the other judge is the supervised texture segmentation routine
we have developed. In order to calculate the kappa value for a given segmentation
result, we must first construct its error matriz. For each class in the corresponding
ground truth image, this matrix records the number of pixels from this class which were
labelled as belonging to each of the L possible classes. The error matrix for the leftmost
neighbourhood-1 segmentation result presented in figure 5.10 is shown in table 5.5.

CLASS Field | Scrub | Ploughed | Border | Row Sum
Field 71320 439 8779 1849 82387
Scrub 0 10879 2156 428 13463

Ploughed 0 1276 101365 44 102676

Border 632 7173 5728 18341 31874

Column Sum | 71952 | 19758 118028 20662 230400

Table 5.5: Error matrix for the segmentation result shown in figure 5.10(i).

The kappa value is given by the following expression:

T T
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K== = (5.16)
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where z;; is the it" diagonal element in the error matrix; x;. is the sum of the entries in

the i*" row; x.; is the sum of the entries in the i*" column; r denotes the total number
of rows in the error matrix; and N is the total number of pixels in the image under
consideration. Values range from —1 (no agreement between the two judges at all) to
+1 (complete agreement between the judges), with a value of 0 being interpreted as
no agreement above that expected from a random classification. Kappa values for the
eight segmentation results shown in figure 5.10 are presented in table 5.6.
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Figure 5.10(a)

Figure 5.10(b)

Figure 5.10(c)

Figure 5.10(d)

Nbd-1

0.81

0.70

0.74

0.78

Nbd-7

0.81

0.68

0.75

0.78

Table 5.6: Kappa values for the segmentation results presented in figure 5.10.

An important point to comment on here is the fact that the ground truth images
in this test dataset were generated by a non-expert individual. > This automatically
introduces an element of uncertainty into the process of evaluation by the kappa value.
One might wonder what true meaning lies behind a kappa value which compares the
results of our segmentation method to such a subjective representation of the ground
truth. In response to this, it is worth mentioning that the methods usually employed to
create ground truth images for such applications are also highly subjective in nature.
A panel of experts may know more about the classes present in the image, but due
to the inherent complexity of adjacent classes in the scene, their ability to precisely
define the borders of these classes can be quite restricted. Comparisons between on-
site measurements and expert ground truth produced by hand from the corresponding
images resulted in error rates of up to 10%. This seems to suggest that perhaps the
kappa value can never really be a reliable measure of the accuracy of a segmentation
method. Whatever one’s opinion happens to be on this issue, it is always wise to bear
in mind that the kappa value compares the ability of a method to something which is
ultimately subjective and so the confidence one places in its reliability as an accuracy
measure is directly related to one’s confidence in the ground truth.

5.3.1.2 Entropy Measurements

Due to this issue surrounding the kappa value, we attempt to provide a more intuitive
understanding of how our segmentation method performs on such remote sensing data.
We propose to use entropy information extracted from our segmentation procedure as
a measure of the strength of each pixel class assignment. The details of this technique
are given below.

As was discussed in section 5.2, in order to carry out a pixelwise classification of the
image we need to calculate, for each pixel in the image, the probability that it comes
from each possible texture in turn. These pixelwise posterior probabilities are computed
using equation (5.14) with a 1x1 neighbourhood, and are denoted here by ¢. Hence

@(z) = Hi [{wa,z}taer] (5.17)

represents the posterior probability that pixel x in the image ¢ comes from texture
class [. As a first step towards calculating entropy measures, we need to normalise

3The Linux based image software GIMP was used to outline the different classes present in the
remote sensing images.
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these probabilities over classes in order to obtain a normalised distribution on the class
of textures. The normalised probabilities are given by:

R 1C))
pu(x) Zkeﬁ qr ()

We may now calculate the entropy associated with pixel x as follows:

(5.18)

S(x)==>_ pix) logpi(x) (5.19)

lel

In understanding what this measure tells us, we need to examine its limiting cases.
The first such case arises when the segmentation method is absolutely sure that pixel
x belongs to a particular class, say [ = 2. Hence we have that ps(z) = 1 and p;(z) =0
for all [ # 2. Setting log 0 = 0, it is clear that we end up with an entropy measure of 0.
The other extreme occurs when the segmentation method considers all texture classes
as having equal probability. In this situation we end up with an entropy of log L as
demonstrated below:

1 1
S(x) = —Z T logz =logL (5.20)
lel

For each pixel in the neighbourhood-1 classification results, we have calculated its en-
tropy and rescaled the resulting values to lie within the range [0,255]. This produces
an image with black pixels indicating a high degree of confidence in the label choice,
white pixels indicating a high level of uncertainty in the label choice, and a range of
gray-level values in between representing pixels which were assigned labels with a vary-
ing degree of certainty. A colour-bar representation of this confidence in label choice is
shown in figure 5.12. Entropy images for each of the neighbourhood-1 classifications in
figure 5.10 can be found in figure 5.11. Here we can see that the interior of most of the
entity regions is black in colour, suggesting that the major source of uncertainty in our
method lies primarily at the boundaries between entity regions, as would be expected.
The entropy measure provides us with a better indication of the effect of the advice
given by the model to a human expert, because that advice will be ignored if the model
is uncertain about its decision.

We have also generated an entropy-weighted misclassification image for each of the
neighbourhood-1 classifications. These images are presented in figure 5.13. The value
of a pixel x is given by

e ST [28( N\ (), \*(2)) — 1] (5.21)

where A is the algorithm output, and A\* is the manually created ground truth (note

that e is analogous to the number of classes that were confused by the algorithm).
Thus, after rescaling the resulting values to lie within the range [0, 255], those values
greater than 128 represent “correct”, with certainty increasing with increasing intensity,
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b) c) d)

Figure 5.11: Entropy images, (a)—(d), corresponding to the neighbourhood-1 segmen-

tation results in figure 5.10 (i)—(1), respectively.

| Decreasing confidence in label assignment =}

Figure 5.12: The colour-bar indicating the confidence in labelling decision associated
with each colour in the entropy images of figure 5.11.

while those values less than 128 represent “incorrect”, with certainty increasing with
decreasing intensity. The entire colour-bar and its ranges are shown in figure 5.14.

(22 '
VoL g

a) b)

Figure 5.13: Entropy-weighted misclassification images, (a)—(d), corresponding to the
segmentation results in figure 5.10 (i)—(l), respectively.

5.4 Application: Wildlife Scenes

For the final test dataset we have chosen a couple of images of wild animals in their
natural habitat. The original images are shown in figure 5.15. The textures present
in these images are quite different from the ones encountered in the previous sections.
This is mainly due to the fact that in each scene there is a primary texture which is
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Figure 5.14: The colour-bar indicating the confidence in labelling decision associated
with each colour in the entropy-weighted misclassification images of figure 5.13.

inherently linked to a distinct predefined object. This makes it relatively easy to agree
upon the type of textures present in the image and their general location.

Figure 5.15: Two wildlife images of size 512 x 512 consisting of textures a) Background
and Zebra and b) Leaves, Jaguar, and Trunk. Images provided by Dr. Abhir Bhalerao
of the University of Warwick, U.K.

The image in figure 5.15(a) can be split into two regions, one corresponding to the
striped texture of the zebra fur and the other representing the background which in
this case is the grass in which the animals are standing. A manually generated ground
truth for this image is shown in figure 5.16(a). In the right hand image we have three
textures to model: the spotted texture of the jaguar fur, the bark of the tree trunk, and
the leaves above the head of the animal which form the background of this particular
scene. The manually created ground truth for this image is shown in figure 5.16(b).
Most of the background texture of figure 5.15(a) is behind the animals and so is out of
focus. However in the lower half of the image a sharper focus on this texture introduces
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a) b)

Figure 5.16: Manually created ground truth for the images shown in figure 5.15.

an element of structure. Patches chosen to model this texture were selected so as to
have an even amount of both in focus and out of focus background samples. Several of
these patches are shown in figure 5.17.

Figure 5.17: A selection of the patches of size 64 x 64 which were used to train the
model for the Background texture.

Most people will happily identify all parts of the zebra as belonging to the same texture.
That is why it was so easy to draw an approximate ground truth map for this particular
image. More than likely, this is due to the fact that we know, a priori, the shape of
the animal and hence we use this additional information to determine what we should
consider as zebra texture. As easy as this task may seem to the human eye, a closer
examination of the texture reveals some potential pitfalls for an automatic texture
classification scheme. Although the texture can loosely be described as being comprised
of white and black stripes, these stripes often possess a degree of curvature and they
change direction depending on their location on the body of the animal. The distance
between the stripes also varies considerably. We have attempted to train a single model
for this Zebra texture using a combination of patches which include all these variants.
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Examples are shown in figure 5.18.

Figure 5.18: A selection of the patches of size 64 x 64 which were used to train the
model for the Zebra texture.

Similar reasoning lies behind the selection of the patches for the textures in fig-
ure 5.15(b), examples of which are presented in figures 5.19, 5.20, and 5.21. The back-
ground of this image is particularly difficult to model. It is severely out of focus which
results in a possible loss of structure from the Leaves texture. It is clear from the
segmentation results that this blurring affects the modelling ability of our method.

Figure 5.19: A selection of the patches of size 64 x 64 which were used to train the
model for the Leaves texture.

Figure 5.20: A selection of the patches of size 64 x 64 which were used to train the
model for the Jaguar texture.

The segmentation method described in section 5.2 was used to carry out classifi-
cations on these images. Results are shown in figure 5.22. The first row presents the
pixelwise classifications obtained. As the neighbourhood size increases, the zebra image
starts to approximate the ground truth. However as the pixelwise result for the jaguar
image was so poor, increasing the neighbourhood size does not improve matters.

As can be seen from the results, the classification of the texture corresponding to
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Figure 5.21: A selection of the patches of size 64 x 64 which were used to train the
model for the Trunk texture.

the animal in each scene is good. This is quite interesting as the directionality and scale
in these textures change a lot depending on what part of the animal is being analysed.

5.5 Discussion: The Effect of the Mother Wavelet

During the training phase described in chapter 4, we noticed that the resulting adap-
tive decompositions were different depending on which mother wavelet was used. This
suggests that the choice of mother wavelet is an important step in the modelling process.

This notion of one wavelet being more suitable than another for the purposes of
signal analysis is not new. In [36] several measures have been proposed to select the
best mother wavelet. One example tested a number of different mother wavelets from
the Daubechies family. An artificial dataset was constructed so as to have a structure
similar to that of the Daubechies2 mother wavelet. Random noise was then added
to this test signal to make the job of finding the best mother wavelet harder. An
entropy measure, based on normalised wavelet coefficients, was computed for the wavelet
transform resulting from each mother wavelet applied to the signal. This measure
identified the Daubechies2 mother wavelet as being the best wavelet for analysing the
data in the signal.

Extending this selection procedure to more complicated signals and images is not
obvious. The structure of the data no longer mimics that of one of the analysing
mother wavelets. This is clearly an issue for using such wavelet selection techniques for
complicated textures such as those analysed in this thesis.

Early on in the literature not much consideration was given to the issue of choosing
the correct mother wavelet for the purposes of texture analysis. The general opinion
seemed to be that the particular form of the mother wavelet used in the analysis of
textures did not have any real significant effect on the classification results of images
containing these textures [11, 30]. However, in recent years, this attitude has changed
and there is now a growing realisation that the quality of the classification can often be
strongly related to the mother wavelet used to analyse the texture [62].

In order to test the influence of the mother wavelet, we trained models for a selection
of textures from the Brodatz album using the following three mother wavelets: Haar,
Daubechies4, and Coifletl. For each texture, 64 patches of size 128 x 128 were selected
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Figure 5.22: Classification results for the two images in figure 5.15: a) and b)
neighbourhood-1; ¢) and d) neighbourhood-15
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and trained, as detailed in chapter 4, with the maximum decomposition level set to 6
and a penalty of 8 = 64000. Examples of some of the resulting adaptive decompositions
are shown in figure 5.23.

Mosaics containing these textures were segmented as in section 5.2. A size 1 neigh-
bourhood was chosen so as to remove the smoothing effect of the neighbourhood scheme
which might prevent us from evaluating the texture capabilities of our models.

Some classification results obtained using the different mother wavelet models are
shown in figure 5.24. The error rates for these classifications are provided in table 5.7.

Daubechies4 | Haar | Coifletl
D102Raffia 12.7% 14.7% | 11.1%
Fabric0000Fabric0004 18.1% 18.9% | 11.6%
HerringLeaves0012 11.9% 14.6% | 9.8%

Table 5.7: Errors in the classification of the mosaics presented in figure 5.24 using a
selection of different mother wavelets. The number of misclassified pixels is given as a
percentage of the original mosaic.

It appears that the Coiflet1 mother wavelet performs best in situations where macro-
textures are being analysed. This has undoubtedly something to do with the fact that
it has the largest filter length among the mother wavelets being tested. However, it
is also clearly better at picking up the directionality in the Fabric0004 texture in the
centre mosaic. These differences in classification results warrant further investigation
into the effects that different mother wavelets have on texture analysis. This issue will
be discussed more in the following chapter.
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Figure 5.23: Original textures Fabric0000 (left), Herring (middle) and D102 (right);
Folded Fourier magnitude images (row2); Adaptive decompositions generated using a
mother wavelet of type Daubechies4 (row3), Haar (row4) and Coiflet]l (rowb).
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Figure 5.24: Original mosaics of Brodatz textures D102 and Raffia (left), FabricO000
and Fabric0004 (centre) and Herring and Leaves0012 (right); Pixelwise classification
results obtained using models trained down to level 6 with a penalty of g = 64000 and
mother wavelet of type Daubechies4 (row2), Haar (row3) and Coiflet]l (row4).



Chapter 6

Conclusion and Future Work

This chapter provides a brief overview of the work carried out along with a discussion
on the contributions and shortcomings of the models developed. We highlight two new
avenues of research which should extend the scope of the models and, in doing so,
improve the accuracy of the texture classification scheme.

6.1 Summary of the Work

In this thesis, we have addressed the problem of texture description. Texture is an
important attribute of the appearance of many semantic entities of interest in a wide
variety of images. The ability to describe it therefore contributes significantly to scene
understanding. Features computed from textural information in an image form an
integral part of many segmentation and classification methods. We have chosen to adopt
a probabilistic approach to the problem as it provides us with a coherent framework
within which to work.

Although texture appears in finite regions in the images we process, it does not
explicitly depend on the size or shape of these regions. Based on this observation, we
have chosen to describe texture via a distribution on the space of infinite images which
captures the variations present in the texture that give rise to its defining structure.
A Gaussian form was chosen for this distribution which, along with the requirement
of translation invariance, produced a distribution for texture that is diagonal in the
Fourier basis.

Starting with this measure on the space of infinite images, we derived a distribution
for texture on a finite region of interest via marginalisation. The computational com-
plexity associated with calculating the resulting probability of the texture on the region
required that we diagonalise the inverse covariance of the distribution on the region.
This was made possible by placing a restriction on the form of the inverse covariance,
namely that it must be piecewise constant on a dyadic partition of the frequency domain.

Due to the local compact nature of the frequency support of wavelet packet basis
functions, the elements of such a dyadic partition correspond to subbands in a wavelet
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packet decomposition of the textured image. If the wavelet packet basis functions also
form a basis for the region of interest, then they satisfy the conditions needed in order
to diagonalise the inverse covariance of the distribution on the region. They therefore
provide us with the means to calculate the probability of the texture on the region.

Learning the parameters of a wavelet packet texture model involves training it on
sample patches of the texture. These patches were chosen to be dyadic in shape so
that the wavelet packet basis functions would form a basis on them. The underlying
structure of the texture was then captured by decomposing the patches where neces-
sary as determined by the probability measure. The extent to which the patches are
decomposed is controlled by a penalty that promotes a relatively smooth partition of
the frequency space, with fine divisions permitted only in areas which have a lot of
activity. This results in an adaptive wavelet packet decomposition of the texture.

The trained texture models were applied to the supervised segmentation of several
types of images: natural images from the Brodatz album, textured scenes cropped from
high resolution remote sensing images, and images of wildlife in their natural habitat.
The segmentation results presented in chapter 5 demonstrate the suitability of the
models for the task of texture analysis and clearly support the use of a wavelet packet
based probabilistic framework for the classification of a variety of different textured
images.

6.2 Understanding What the Adaptive Models Achieve

The texture models developed in this thesis are based on a partitioning of the Fourier
domain that corresponds to a wavelet packet decomposition of the textured image. They
could equally well be expressed in terms of a standard wavelet basis. Considering what
this means throws light on what the models achieve. Although the inverse covariance
of a model is (approximately) diagonal in the adapted wavelet packet basis chosen by
the training procedure, it will not in general be diagonal in the standard wavelet basis.
Mathematically, this is clear. Intuitively, the reason is the following. Many textures
possess periodic correlations between pixels at intermediate frequencies that extend
over many wavelengths [24]. The standard wavelet basis, however, links the notions of
scale and frequency, so that the range of correlations is of the order of the inverse of
the frequency of the wavelet (i.e. one wavelength). Correlations between pixels over
a range corresponding to many wavelengths can thus only be captured in a standard
wavelet basis by introducing interactions between coefficients. This is typically achieved
through the use of tree models, as discussed in chapter 2, in which coefficients interact
via their parents, grand-parents, and so on.

In contrast, the adaptive bases presented here capture these long-range correlations
using wavelet packet bases that can represent correlations between pixels over many
wavelengths while remaining independent, with no need for interactions between the
coefficients themselves. For Gaussian models, this type of description is always possible,
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since the inverse covariance can always be diagonalised, at least in principle. The
problem is that the basis elements may not have compact spatial support, which renders
them unsuitable for segmentation. The procedure presented in this thesis can thus
be thought of as finding the basis that diagonalises an inverse covariance that must
simultaneously be learnt, subject to probabilistic restrictions on its form that ensure
the more or less compact spatial support of the basis elements.

The adaptive nature of the bases overcomes the computational burden associated
with fixed depth full wavelet packet decompositions. This is because the adaptive
decompositions do not unnecessarily divide up the entire frequency domain, but instead
only partition those areas which contain the characteristic frequencies present in the
texture.

They also provide a better description of the texture. If certain wavelets are in-
dependent then this is clearly best expressed through the use of one large region of
constant f, rather than four or more regions each with similar, but not quite equal f.

6.3 Future Work

Although the models have proved successful for the purposes of texture description,
there are several issues which remain unresolved. These are addressed below.

6.3.1 Selecting the Mother Wavelet

A comparison of the Fourier transform of a texture to the adaptive decompositions pro-
duced using different mother wavelets, such as that carried out in section 5.5, suggests
that certain wavelets generate “better” decompositions than others. By this we mean
that their resulting decompositions match more closely to the structure present in the
Fourier transform.

These different decompositions were tested in section 5.5 to see if they produced
different classifications of the same mosaics. The results shown in figure 5.24 suggest
that the filter length of the mother wavelet plays a significant role in the analysis
and classification of macrotextures. This observation, along with the difference in the
adaptive decompositions produced by the different wavelets, as shown in figure 5.23,
indicates the need for further research on the topic of mother wavelet selection.

This research should not only focus on selecting between orthogonal wavelets such as
those used in this thesis. It should also examine the performance of wavelets which have
attractive properties such as increased directional selectivity and translation invariance.
Complex wavelet packets could be used for this purpose as they improve on regular
wavelets in both these senses. The possibility of designing new wavelets which match
the structure present in a given texture is also an option.
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6.3.2 The Need for a More Complex Distribution

Although the assumption of a Gaussian distribution yields models which adapt quite
well to the structure of the texture being analysed, the simplicity of the distribution
has several drawbacks.

As discussed throughout this thesis, the requirement of translation invariance is
absolutely essential in any texture classification scheme. With our choice of a Gaussian
distribution, this requirement is easily satisfied as shown in section 3.2.2. A drawback
of the resulting translation-invariant Gaussian models, however, is that they have no
way of taking into account the relative phase of Fourier components, and yet phase is
critical for texture structure. For phase information to be included in the distribution,
a more complicated model is required.

Another important requirement for texture models is that of rotation invariance,
however the models presented in this thesis do not have that property. One can impose
rotation invariance on a Gaussian distribution, but the results are not that interesting
since the inverse covariance must now be a function only of the magnitude of the fre-
quency. Non-trivial rotation invariance can be achieved by mixtures over rotations or
by otherwise increasing the complexity of the model.

The analysis of the adaptive wavelet packet subband statistics carried out in sec-
tion 4.5 unveiled the presence of double peaked histograms. This discovery contradicts
the notion that all wavelet packet subbands should be modelled by unimodal distri-
butions. This points toward an obvious extension to our modelling assumption of a
Gaussian distribution. The subbands which exhibit this bimodal behaviour cannot be
modelled by a Gaussian or generalised Gaussian distribution. Instead a more compli-
cated model is needed.

All three of these modelling issues can be treated in future work by extending the
Gaussian model through the addition of quartic terms to the exponent. The quartic
model proposed in section 4.5 presents one possible way to address this extension.

Changes in both the form of the distribution and in the mother wavelet, can be read-
ily incorporated into the probabilistic framework which we have developed in this thesis.
These changes should result in a more adaptive modelling procedure which chooses the
most appropriate analysis tool and distribution for the texture being described.
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Wavelets

This appendix provides a brief overview of wavelets. For a more detailed explanation
of the subject, the reader is referred to [2, 49, 60, 79].

A.1 The Wavelet Transform

Let f € L*(R) be a function in the space of square integrable functions. Expanding
f in terms of a wavelet basis allows one to analyse the function locally in both space
and frequency. The family of wavelets which make up the fundamental elements of
this expansion are generated through a series of translations and dilations of a single
function ¢ € L?(R), known as the mother wavelet. The mother wavelet is a function

with zero mean
“+o0
Y(x)der =0 (A.1)

— 00

which is normalised, ||¢/]| = 1.

For the continuous case, the expansion elements are determined via the following
expression:

Goalw) = —— <x — t) (A.2)

sl $

where s,t € R and s # 0. These elements are also normalised, i.e. [[1s,]| = 1. The
parameters s and ¢ are known as the scaling and translation parameters, respectively.
Figure A.1 shows examples of such expansion elements.

The continuous wavelet transform of the function f is then given by

Cf(S,t) = (f,¢s,t>
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Wavelets

where ¢* denotes the complex conjugate of ¢. One may think of the wavelet coeffi-
cient, C'f(s,t), as a measure of similarity or correlation between the function f and the

analysing wavelet at position ¢ and scale s, with a large coefficient representing a high

degree of similarity.

\

Figure A.1: Scaled and translated versions of the Daubechies2 [22] mother wavelet.

As demonstrated by Mallat [60], each wavelet ¢, ; has a local support in both the
spatial and frequency domain. This can be seen in figure A.2 which shows the Heisenberg
boxes corresponding to two wavelets from the same family but which are at different

scales and positions. It is this space-frequency localisation property of wavelets which

has made them so popular in signal and image processing.

Throughout this thesis we have used the discrete form of the wavelet transform in our
calculations. The main difference between this type of analysis and that described above
is that the scaling and translation parameters are no longer continuous. Instead they

are integers and, furthermore, they are restricted to a set of dyadic values:
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Frequency

Space

Figure A.2: Space-frequency localisation of wavelet basis functions.

where (j, k) € Z2. Hence for the discrete case equation (A.2) becomes

1 iy
ilal = = (2 k) . (A.5)

A.2 A Multiresolution Analysis Framework

Performing a wavelet analysis of a function f € L?(R) is best explained within the
framework of multiresolution analysis. A multiresolution approximation of the space
L%*(R) is formally defined to be a sequence of closed subspaces {V;};cz of L*(R) which

has the following properties:

e The subspaces are nested:

eV cWVicWVyCcVo C Vg

e The dilation property:

v(r)eV,ov2r)eV; 1 VjeZ

e The translation property:

v(r) EVog vz —2k)eVoVhkeEZ
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e The subspaces provide an approximation of the space L%(R):

Ujez Vj is dense in L?*(R) and Njez Vi = {0}

e There exists a scaling function ¢ € Vy whose set of translates, {¢(x —k)} ez, form
an orthonormal basis for the subspace V;.

From the above properties, we can see that any function in the subspace V7 can
be expressed as a linear combination of the basis functions of the subspace Vj. This is
captured in the following expression:

1

+oo
759 (5) = k;ooh[k] o(z — k) (A.6)

which is known as the dilation equation. This equation describes the relationship be-
tween the dilation of the function ¢ by 2 and the complete set of its translates. Here
hlk] is a discrete filter, known as the conjugate mirror filter, whose coefficients are given
by

Wik = <%¢ (5). o k>> | (A7)

We can also state the more general result that for each scale j € Z, the set of translations

{ost1= oz -n] (A8
forms an orthonormal basis for the subspace V.

An operator P; is defined such that P, f is the projection of the function f € L*(R)
onto the subspace V. This projection represents an approximation of f at scale 27. Due
to the nature and nesting order of the subspaces, information about f is lost when we
move between the approximations P;_;f and P;f. This missing information or detasil
about the function f which is present at scale 2771, but which is missing at scale 27, is
contained in W; which is known as the detail space at scale 2. W; is the orthogonal
complement of V; in V;_y:

Vici=V; o W; (A.9)

where @ denotes the direct sum. From equation (A.9), we can see that any function in
the subspace V;j_; can be expressed as the sum of a function in the detail space W; and
a function in the approximation space V;.

It can be shown [60] that there exists a function ¢y whose set of translations forms
an orthonormal basis for Wj. Using the same reasoning as in the case of the scaling
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function, an element of the detail space W7 can be written as a linear combination of
the elements in the subspace V. Hence, there must exist another discrete filter ¢ such
that v is given by
1 x o=
-0 (5) = X glklo@—k) (A.10)

k=—o00

where
ot = (50 (5) 0 la-0) (A11)

The set of all dilations and translations {9k }(; r)ez2 forms an orthonormal basis for

L?(R). This function 1 is the mother wavelet we introduced at the beginning of the
appendix.
When a function f is expanded via a multiresolution analysis, there must be a level
or scale at which the analysis stops. This reference level, which we will denote by J,
may be arrived at naturally by the length of the signal being analysed or it may be
selected by the user. Whichever way it is chosen, once J has been selected we may
express the function f as the sum of all the details up to scale J plus its approximation
at scale J:
fla)=A;+) _D;. (A.12)

i<J

The conjugate mirror filters h and ¢ represent a low-pass and a high-pass filter,
respectively. In practice, the discrete wavelet transform is carried out by convolving
these two filters with the original signal in order to generate the approximation to the
signal at a given level and the detail representation of the signal at that level.
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Appendix B

Completing the Square in ¢

The expression for the energy in equation (3.16) can be viewed as containing the fol-
lowing three terms in ¢p :

Quadratic Term : (¢p| FriloR)
Linear Term : (¢r|Frplor)+ (05| Frrl|or)
Constant Term : {(¢r|Frr|or)

To complete the square in ¢ we take the following steps:
e Preserve the quadratic term (¢ | Frp | or)
e Introduce a linear term (¢ + Frror| Frp | ¢p + Frror)
e Cancel the extra Fpp term {¢p + (FRR)AFRRCZ)R | Frrlop + (FRR)ilFRR¢R>

Expanding this last expression yields

E(¢) = (¢g|Frrlor)+ ((Frr) 'Frror|Frrlor)+
(67| Frr| (Frr)~ ' Frror) + ((Frr)~ ' Frror| Frr| (Frp)™ Frror)
= (6r|Frrlor)+ ((Frr)”'Frror|Frror) +
(67| Frr(Frr) ' Frror) + (Fra) " 'Frror | Frp(Fra) ™ Faror)
= (Sr|Frrlor) + ((Frg) 'Frror|Frror) +
(0r| Frr|or) + ((FRp) ™' Frror | Faror) - (B.1)
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Examining the second term of equation (B.1) in detail gives

(Frp'Frror|Frror) = (npFip 'mpFigdr|npFigdp)

-1
= <7rRFiR¢R|i};F7r}; TrFipon)

= (mpFiror|mpFig ' TpFipdr)
= (ngFir¢Rr|9R)
= (Finn|7h|op)
= (irér|Frl|dp)
= (or|ikFrh|6p)
= (¢r|7rFig|og)

= (¢r|Frrlor) (B-2)

which is exactly the second term in equation (3.16).
Therefore, we have found that the extra piece of the energy puzzle is the final term
of equation (B.1) which when expanded becomes

(Fpp 'Frpor|Fpror) = (npFig 'npFigdr|mzFiror)
: R .

= (mgpFir¢r|igFn, wRrFipdR)

= (npFirdp|npFip) 'npFigdr)

— (¢rlihFrirpFig 'rpFig|ér)

= (¢r|mrFigmpFig 'nzFir| ¢r)

= (¢r|FriFrr '"Frrlor). (B.3)
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We can therefore complete the square in the following manner

E(¢) = (¢p+Frp "Faror|Farlor+ (Far)” Frror)
— (R | Frr(Frr) "Frr|or) + (6r | Frr|0R) - (B.4)
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Appendix C

Implementation

The implementation part of our work was carried out using the Java programming
language. The software we wrote consists of two main parts: a scheme to train adaptive
texture models and a scheme to use these models to segment textured scenes. Both
of these schemes share the same software design and large portions of code. For this
reason it is sufficient to provide the details for the training part of the implementation
only.

C.1 The Java Programming Language

In the field of image processing, Java is not an obvious programming language choice and
is frequently overlooked in favour of C or C++. This may be related to the fact that Java
has a reputation for being a slow language that is not well suited for computationally
intensive tasks.

In order to investigate this performance issue, we performed an experiment to de-
termine how much slower Java was compared to C/C+-+. We wrote a function which
multiplies two 128 x 128 matrices containing double precision floating point numbers,
which is highly representative of the computations carried out by our software. We
implemented that function in both Java and C and plotted the execution time against
the number of iterations of this operation. The graph can be seen in figure C.1. This
produced the surprising result that, after a given number of iterations, Java performs
just as well as C, the only difference between the two languages being that the Java
program takes longer to start. This is due to the fact that a Java program is not directly
executed by the processor of the machine, as is the case for a program written in C, but
rather it is interpreted by a virtual machine. It is this virtual machine which introduces
a significant start-up delay of about 100ms. However, as our application has running
times measured in minutes if not hours, this problem does not affect us. Hence we have
shown that Java performs just as well as C for long-running applications of the type we
want to develop.

As the performance issue has been resolved for our particular application, it is
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Figure C.1: Comparing Java and C: Time taken to perform a number of iterations of
the multiplication of two 128 x 128 matrices containing double precision floating point
numbers.
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perhaps worth mentioning some of the advantages of the Java programming language.
One of its key features is that a Java program can run unmodified on any computer
that has a Java virtual machine installed. This is because, as mentioned above, a Java
program is interpreted by a Java virtual machine, which shields the program from any
specificities of the underlying hardware or operating system. As a consequence, we were
able to run our training and segmentation tasks indifferently on PCs running Linux or
Windows, or even on Sun Sparc Stations running the Solaris operating system. This
feature proved to be very useful as it allowed us to take full advantage of any available
processing power in our work environment.

C.2 The Use of Class Inheritance

As Java is a fully fledged object-oriented language, we were able to make use of powerful
techniques, such as inheritance, in our programming. Two examples taken from our code
are decomposition trees and multiple wavelets.

The wavelet packet decompositions produced by our training algorithm are repre-
sented by trees. The root of the tree is the original image to be decomposed, and the
nodes represent the successive transforms applied to the image in order to obtain a set
of subbands, which are located at the leaves of the tree. As Java is an object-oriented
language, each node in the decomposition tree is an object, i.e. an instance of a class.
In order to represent all three splits which are considered at each node in the tree, we
created eight classes corresponding to the eight transforms which are carried out on
each node: low pass on rows, high pass on rows (the combination of these two make
up the first split type); low pass on columns, high pass on columns (the combination of
these two make up the second split type); low pass on rows and low pass on columns,
low pass on rows and high pass on columns, high pass on rows and low pass on columns,
high pass on rows and high pass on columns (the combination of these four make up the
first split type). In order to be able to perform operations on nodes that do not depend
on the type of the node (such as the calculation of the model parameters), we created
an abstract class that represents nodes in general. The eight classes are all subclasses
of this general node class.

We also used class inheritance for making our software flexible with respect to which
mother wavelet we want to use to decompose the texture. Here, as in the above example,
we set up an abstract class that represents a general wavelet transform, and then created
as many subclasses as mother wavelets used in our analysis.

C.3 Multithreaded Programming

Another very useful feature of Java that we used is multi-threading. Java provides us
with the ability to start multiple threads within a single application. Threads (also
known as lightweight processes) are parallel executions of different pieces of code that
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belong to the same application, much in the same way processes are parallel executions
of different applications that run on the same machine. Threads allow us to run inde-
pendent computations in parallel, while retaining the possibility to specify when and
where those computations must wait for each other before moving on.

Threads proved very useful for designing the part of our software that deals with
training a texture model from multiple samples extracted from different locations of the
original texture patch. Our starting point was the code we had for training a texture
model on only one patch. What we did was to create one thread for each patch, and run
those training tasks in parallel. However, it is not desirable to have these tasks run fully
independently from each other. Depending on the patch considered, the algorithm could
make different choices, resulting in different tree structures, which would be impossible
to average out into a single model for the texture. This is why we have to make sure
that all the trees produced by the different training tasks running in parallel share the
same structure, even if the value of the parameters contained in each node of the trees
are different.

In order to achieve this result, we choose to synchronise our threads so that, at each
node, all the threads wait for each other, compare their results, and decide collectively
on which split, if any, should be retained. As described above in section 4.3.1, this
decision is made by comparing the penalised probability for the parent node with the
penalised probabilities of the child nodes which make up the three possible splits. These
probabilities are calculated according to equation 4.3. The contribution from each
texture patch is controlled by a separate thread. Once all the threads have arrived
at the same point in the algorithm, they combine their information to compute these
probabilities.

Using threads for our multiple patch training scheme was a good idea since it al-
lowed us to reuse the original code we had written for training a model on a single
patch. In addition, there is an added benefit of using threads. If the machine used has
more than one processor, the Java virtual machine will automatically dispatch threads
evenly between the processors available, a task that would require considerable time
and expertise in other languages. When run on a two-processor PC, we noted that our
application took about half the time it took on a similar one-processor machine.
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