next up previous
Next: Construction of a RJMCMC Up: Roads Extraction using a Previous: Stochastic model for a

Data model for extracting line networks

 
Data term for the Candy model



Hypothesis tests :  

H3 : we have three different regions  

  
Figure 5: Three region mask
\includegraphics[width=5cm]{/u/biotite/0/ariana/rstoica/DOCS99/FIGURES/trois_regions.eps}

Using a Gaussian assumption, the log of the likelihood function is :

$\displaystyle \log L(H_{3})$ = $\displaystyle -
\frac{n_{D^{s}_{3}}+n_{D^{sl}_{3}}+n_{D^{sr}_{3}}}{2} -
\frac{n_{D^{s}_{3}}}{2} \log (2\pi \sigma_{D^{s}_{3}}^ 2)$  
  - $\displaystyle \frac{n_ {D^{sl}_{3}} }{2} \log
(2\pi \sigma_{D^{sl}_{3}}^ 2) - \frac{n_ {D^{sr}_{3}} }{2} \log
(2\pi \sigma_{D^{sr}_{3}}^ 2)$ (14)




H2 : we have two different regions  

  
Figure 6: Two region mask
\includegraphics[width=5cm]{/u/biotite/0/ariana/rstoica/DOCS99/FIGURES/deux_regions.eps}  

The log of the likelihood function :

$\displaystyle \log L(H_{2})$ = $\displaystyle -
\frac{n_{D^{el}_{2}}+n_{D^{er}_{2}}}{2} - \frac{n_ {D^{el}_{2}} }{2} \log
(2\pi\sigma_{D^{el}_{2}}^2)$  
  - $\displaystyle \frac{n_ {D^{er}_{2}} }{2} \log
(2\pi\sigma_{D^{er}_{2}}^2)$ (15)




H1 : the segment is in the middle of an homogeneous region  

  
Figure 7: One region mask
\includegraphics[width=3.5cm]{/u/biotite/0/ariana/rstoica/DOCS99/FIGURES/une_region.eps}  

The log of the likelihood function :

$\displaystyle \log L(H_{1})$ = $\displaystyle -
\frac{n_{D^{h}_{1}}}{2} - \frac{n_ {D^{h}_{1}} }{2} \log
(2\pi\sigma_{D^{h}_{1}}^2)$ (16)


  


 
The Total Energy for the Candy model



The conditional energy for a segment :
UD(s) = $\displaystyle \min\{ \log L(H_{3}) - \log L(H_{2}),$  
    $\displaystyle \log L(H_{3})-\log L(H_{1}) \} + U_{ridge,valey}(s)$ (17)

 
Depending on the type of image, we may add to the conditional term :

\begin{displaymath}U_{ridge}(s)=\min\{(\mu_{D^{s}_{3}}-\mu_{D^{sl}_{3}}),(\mu_{D^{s}_{3}}-\mu_{D^{sr}_{3}})\}
\end{displaymath} (18)

or :

 \begin{displaymath}U_{valey}(s)=min\{(\mu_{D^{sl}_{3}}-\mu_{D^{s}_{3}})(\mu_{D^{sr}_{3}}-\mu_{D^{s}_{3}})\}
\end{displaymath} (19)

The total energy becomes :

U(S/D)=UD(S)+U(S) (20)

with :

\begin{displaymath}U(S/D)=-\sum_{s_{i} \in S} U(D/s_{i}) + \log g(s_{i}) + \sum_{s_{i} \diamond s_{j}, i < j} \log h(s_{i},s_{j})
\end{displaymath} (21)


next up previous
Next: Construction of a RJMCMC Up: Roads Extraction using a Previous: Stochastic model for a
Radu Stoica
2000-04-17