POLYNOMIAL AND RATIONAL APPROXIMATION

E. B. Saff Center for Constructive Approximation

Polynomial Approximation & Interpolation

$$f$$
 analytic at $z = 0$, $s_n(z) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} z^k$

Properties of Taylor polynomials

Interp. Property: $s_n^{(k)}(0) = f^{(k)}(0), k = \overline{0, n}.$

Least Squares Property:

$$\Gamma: |z| = 1, \quad (g,h) := \frac{1}{2\pi} \int_{\Gamma} g(z) \overline{h(z)} |dz|$$

 $1, z, z^2, \dots$ orthogonal

$$(f, z^k) = \frac{1}{2\pi} \int_{\Gamma} f(z)\overline{z}^k |dz| = \frac{1}{2\pi} \int_{\Gamma} \frac{f(z)}{z^k} \frac{dz}{iz}$$
$$= \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z^{k+1}} dz = \frac{f^{(k)}(0)}{k!}.$$

Best $L^2(\Gamma)$ approx to f from \mathcal{P}_n :

$$\sum_{k=0}^{n} \frac{(f, z^k)}{(z^k, z^k)} z^k = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} z^k = s_n(z).$$

Minimal L^{∞} -norm Projection Property:

$$\Delta: |z| \le 1$$
, $\|\cdot\|_{\Delta} = \sup$ norm on Δ

$$\mathcal{A}(\Delta) := \{ f \in C(\Delta) : f \text{ analytic in } |z| < 1 \}$$

$$P: \mathcal{A}(\Delta) \to \mathcal{P}_n$$
 Projection operator

$$(\mathbf{S}_n f)(z) = s_n(z)$$
 Taylor projection operator

Claim:
$$\|\mathbf{S}_n\| \leq \|\mathbf{P}\|$$
 for all \mathbf{P} .

Let
$$\mathcal{B}_{\boldsymbol{t}}: f(z) \to f(\boldsymbol{t}z), \quad |t| = 1$$

$$\left(\mathcal{B}_{\overline{t}}\mathbf{P}\mathcal{B}_{t}\right)\left(z^{k}\right) = \begin{cases} z^{k} & 0 \leq k \leq n \\ t^{k-n}\mathbf{P}\left(z^{k}\right) & k > n \end{cases}$$

$$(\mathbf{S}_n f)(z) = \frac{1}{2\pi i} \int_{|t|=1} \left(\mathcal{B}_{\overline{t}} \mathbf{P} \mathcal{B}_t f \right) (z) \frac{dt}{t}$$

$$\Rightarrow \|\mathbf{S}_n f\| \leq \frac{1}{2\pi} \int_{|t|=1}^{\infty} \|\mathcal{B}_{\overline{t}} \mathbf{P} \mathcal{B}_t \| \|f\| |dt| \leq \|\mathbf{P}\| \|f\|.$$

Maximal Convergence Property

f analytic on $\Delta: |z| \leq 1$. Then

$$\limsup_{n \to \infty} \|f - s_n\|_{\Delta}^{1/n} = \frac{1}{\rho} < 1,$$

where ρ is the radius of the largest open disk about z=0 in which f is analytic. Moreover, $s_n \to f$ in $|z| < \rho$.

Proof. Let $1 < r < \rho$. Then by Hermite Interp. Formula:

$$f(z) - s_n(z) = \frac{1}{2\pi i} \int_{|t|=r} \frac{z^{n+1} f(t)}{t^{n+1} (t-z)} dt, \quad |z| < r$$

$$||f - s_n||_{\Delta} \le \frac{1}{2\pi} \frac{M_r 2\pi r}{r^{n+1}(r-1)}, \quad M_r := \max_{|t|=r} |f(t)|$$

$$\Rightarrow \limsup_{n \to \infty} \|f - s_n\|_{\Delta}^{1/n} \le \frac{1}{r} \left(\to \frac{1}{\rho} \right).$$

Equality later.

Polynomial Approximation on Compact Sets

Given: $E \subset \mathbb{C}$ compact, $\overline{\mathbb{C}} \setminus E$ connected, f analytic on E.

Problem: Construct "good" poly approximations to f on E.

Runge: \exists polys $\{p_n\}$ such that $p_n \to f$ uniformly on E.

Remark: Not true if E separates the plane.

Popular Methods: Faber polys, interpolating polys, CF (AAK) methods

Assume $\overline{\mathbb{C}} \setminus E$ is simply connected

$$w = \varphi(z) : \overline{\mathbb{C}} \setminus E \to \{|w| > 1\},$$

$$\varphi(\infty) = \infty, \quad \varphi'(\infty) > 0$$

$$\varphi(z) = \frac{z}{c} + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots, \quad c = \operatorname{cap}(E) > 0$$

$$\{w^n\}_0^\infty \leftrightarrow \{\varphi^n(z)\}_0^\infty$$

$$\varphi^n(z) = \left(\frac{z}{c} + b_0 + \frac{b_1}{z} + \cdots\right)^n$$

$$= \left(\frac{z^n}{c^n} + \cdots\right) + \frac{1}{z} M_n(z)$$

$$= F_n(z) + \frac{1}{z} M_n(z).$$
Faber polys

Goal: Expand f(z) analytic on E

$$f(z) = a_0 F_0(z) + a_1 F_1(z) + a_2 F_2(z) + \cdots$$

 $z = \psi(w)$ inverse of φ

 $\Gamma_r: |\varphi(z)| = r \ (>1)$ level curves, $C_r: |w| = r$.

NOTE:

$$F_n(z) = \frac{1}{2\pi i} \int_{\Gamma_r} \frac{\varphi^n(t) dt}{t - z} = \frac{1}{2\pi i} \int_{C_r} \frac{s^n \psi'(s) ds}{\psi(z) - z}$$

Write

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_r} \frac{f(t) \, dt}{t - z} = \frac{1}{2\pi i} \int_{C_r} \frac{f(\psi(s))\psi'(s) \, ds}{\psi(z) - z}$$

$$f(\psi(s)) = \sum_{-\infty}^{\infty} a_n s^n$$
 for $1 < |s| < R$

$$f(z) = \sum_{-\infty}^{\infty} a_n \frac{1}{2\pi i} \int_{C_r} \frac{s^n \psi'(s) ds}{\psi(z) - z} = \sum_{0}^{\infty} a_n F_n(z).$$

Maximal Convergence: f analytic on E.

$$\limsup_{n \to \infty} \|f - \sum_{0}^{n} a_k F_k\|_E^{1/n} = \frac{1}{\rho} < 1,$$

where ρ is the largest index such that f is analytic inside Γ_{ρ} . Moreover, Faber series converges to f inside Γ_{ρ} .

Ex:
$$E = [-1, 1], \ \varphi(z) = z + \sqrt{z^2 - 1},$$

 Γ_r : Ellipse foci ± 1 semi – major axis length $(r+r^{-1})/2$

For
$$n \ge 1$$
, $F_n(x) = \cos n\theta$, $x = \cos \theta$

Faber series

⇔ Chebyshev expansion

INTERPOLATION

Determine points of E

so that interpolating polys $p_0, p_1, \ldots, p_n, \ldots$ converge **maximally** for every f analytic on E.

Recall Hermite Formula

$$f(z) - p_n(z) = \frac{1}{2\pi i} \int_{\Gamma_r} \frac{w_n(z)f(t)}{w_n(t)(t-z)} dt$$

$$w_n(z) := \prod_{k=0}^n \left(z - \beta_k^{(n)} \right)$$

(Walsh) Get maximal convergence for every f analytic on E **iff** the w_n 's have asymptotically minimal norm:

(1)
$$\lim_{n \to \infty} ||w_n||_E^{1/n} = \text{cheb}(E) = \text{cap}(E).$$

EX:
$$E: |z| \le 1$$
, $w_n(z) = z^{n+1}$, $w_n(z) = z^{n+1} - 1$

EX: E bounded by smooth Jordan arc or curve Γ . Take images of equally spaced points (roots of unity)

EX:
$$E = [-1, 1]$$

zeros of Chebyshev, not equally spaced

EX: Fekete Points

Let
$$V_n(z_0, z_1, \dots, z_n) := \prod_{i < j} (z_i - z_j).$$

Choose
$$\beta_k^{(n)}=z_k\in E$$
 for which
$$\max\{|V_n(z_0,z_1,\ldots,z_n)|:z_0,z_1,\ldots,z_n\in E\}$$
 is attained.

Remark $\mathcal{F}_n: C(E) \to \mathcal{P}_n$ denotes poly interpolation operator in n+1 Fekete points. Then

$$\|\mathcal{F}_n\| \le n+1.$$

$$(\mathcal{F}_n f)(z)$$

$$= \sum_{k=0}^{n} f\left(\beta_k^{(n)}\right) \frac{V_n(z_0, \dots, z_{k-1}, z, z_{k+1}, \dots, z_n)}{V_n(z_0, z_1, \dots, z_n)}$$

$$\|\mathcal{F}_n f\|_E \le \sum_{k=0}^n |f(\beta_k^{(n)})| \le (n+1)\|f\|_E$$

From logarithmic potential theory, we know that for the Fekete points $\beta_k^{(n)}$,

$$\lim_{n \to \infty} \left\| \prod_{k=0}^{n} \left(z - \beta_k^{(n)} \right) \right\|_{E}^{1/n} = \operatorname{cap}(E)$$

and

$$\frac{1}{n+1} \sum_{k=0}^{n} \delta\left(\beta_k^{(n)}\right) \xrightarrow{*} \mu_E,$$

where $\delta(x)$ is unit point mass supported at x and μ_E is the equilibrium measure for E.

So interpolation in Fekete points gives maximal convergence.

Also true when E is not a continuum, as long as $\overline{\mathbb{C}} \setminus E$ is connected and regular.

Level curves:

$$\Gamma_r: g(z; \infty) = \log r, \qquad r > 1$$

where $g(z; \infty)$ is Green Function with pole at ∞ for $\overline{\mathbb{C}} \setminus E$.

$$g(z; \infty) = \log \frac{1}{\operatorname{cap}(E)} - U^{\mu_E}(z),$$

where

$$U^{\mu_E}(z) := \int_E \log rac{1}{|z-t|} d\mu_E(t)$$
 .

Convergence Rate

 $\mathcal{A}(E) := \{ f \in C(E) : f \text{ analytic in interior of } E \}$

Extension of Weierstrass Thm:

(Mergelyan, 1951) If E is a compact set that does not separate the plane and $f \in \mathcal{A}(E)$, then for each $\epsilon > 0$, \exists poly p such that

$$||f-p||_E < \epsilon$$
.

Remark If E = [a, b], then A(E) = C(E), so Weierstrass \subset Mergelyan.

Geometric Rates of Convergence

Let

$$E_n(f) := \inf\{\|f - p\|_E : p \in \mathcal{P}_n\}$$

= $\|f - p_n^*\|_E, \quad p_n^* \in \mathcal{P}_n.$

THM Let E be a compact set with connected and regular complement, and $f \in A(E)$. Then f is analytic on some open set $G \supset E$ iff

$$\limsup_{n\to\infty} E_n(f)^{1/n} < 1.$$

Proof. (\Rightarrow Fekete points), (\Leftarrow B-W Lemma)

Bernstein-Walsh Lemma. If $P \in \mathcal{P}_n$, and $|P(z)| \leq M$ for $z \in E$, then $|P(z)| \leq Mr^n$, for $z \in F$ on $\Gamma_r : |\varphi(z)| = r \ (r > 1)$.

Proof. $P(z)/\varphi^n(z)$ analytic outside E, even at ∞ .

$$\begin{split} \left| \frac{P(z)}{\varphi^n(z)} \right| & \leq & M \quad \text{as } z \to \partial E \,, \ z \in \overline{\mathbb{C}} \setminus E \\ & \leq & M \quad \text{in } \overline{\mathbb{C}} \setminus E \,, \quad \text{by Max. Principle} \,. \end{split}$$

To complete proof of theorem, assume

(2)
$$\limsup_{n\to\infty} E_n(f)^{1/n} < 1,$$

and we shall show that f has an analytic extension.

From (2),

$$||f - p_n^*||_E < \frac{1}{\rho^n}, \ n \ge n_0, \ \text{for some } \rho > 1.$$

$$||f - p_{n+1}^*||_E < \frac{1}{\rho^{n+1}} \Rightarrow ||p_{n+1}^* - p_n^*||_E < \frac{2}{\rho^n}.$$

By B-W Lemma,

$$||p_{n+1}^* - p_n^*||_E < \frac{2r^{n+1}}{\rho^n}, \quad z \text{ on } \Gamma_r$$

$$\Rightarrow p_0 + \sum_{0}^{\infty} (p_{k+1}^* - p_k^*)$$

converges uniformly inside Γ_r $(r < \rho)$ to an analytic function.

 $\operatorname{\mathbf{COR}} f$ analytic on E

$$\Rightarrow \limsup_{n \to \infty} E_n(f)^{1/n} = \frac{1}{\rho},$$

where ρ is the largest index such that f is analytic inside Γ_{ρ} .

How to Construct Polys of Near Best Uniform Approximation

 $p_n^* \in \mathcal{P}_n$ best uniform approx. to $f \in \mathcal{A}(E)$.

 $card(E) \ge n + 1$ implies p_n^* unique.

Kolmogoroff Characterization:

Let $\mathcal{M} := \{ z \in E : |f(z) - p_n^*(z)| = \|f - p_n^*\|_E \}.$ Then, for all $q \in \mathcal{P}_n$

$$\min_{z \in \mathcal{M}} \mathfrak{Re}\{\overline{(f(z) - p_n^*(z))}q(z)\} \leq 0.$$

Construction: E bounded by a Jordan curve Γ .

$$f \in \mathcal{A}(E)$$
, $||f - p||_E = ||f - p||_{\Gamma}$.

Perfect Circularity: If $f \in \mathcal{A}(E)$, $p \in \mathcal{P}_n$, $(f-p)(\Gamma)$ is perfect circle about 0 with winding $\# \geq n+1$, then $p=p_n^*$.

Proof. If not, $\exists q \in \mathcal{P}_n$ such that

$$||f - q||_E < ||f - p||_E.$$

But then, for $z \in \Gamma$,

$$|(f-p)(z) - (q-p)(z)| = |(f-q)(z)|$$

 $< ||f-p||_E = |(f-p)(z)|$

via ⇒ Rouché q-p and f-p have same number of zeros inside Γ $\therefore q-p$ has $\geq n+1$ zeros, so $q\equiv p$, a contradiction.

Ex: $E: |z| \le 1$, $f(z) = z^{n+1}$, $p_n^*(z) \equiv 0$.

Ex: If error = Blaschke product

$$= \prod_{k=0}^{n} \frac{(z - \alpha_k)}{(1 - \overline{\alpha}_k z)}, \quad |\alpha_k| < 1.$$

Near circularity

winding number of $(f-p)(\Gamma) \ge n+1$, $\max_{\Gamma} |(f-p)(z)| - \min_{\Gamma} |(f-p)(z)| \quad \text{small}$ $\Rightarrow p \text{ near } p_n^*.$

For a large class of functions f, near circularity occurs as $n \to \infty$.

Algorithm (Trefethen) based on

Carathéodory-Fejér Thm: Given

$$p(z) = \sum_{k=0}^{\nu} c_k z^k,$$

∃! power series extension

$$p(z) + \sum_{k=\nu+1}^{\infty} c_k^* z^k =: B(z)$$

analytic in Δ : $|z| \leq 1$ that minimizes $||B||_{\Delta}$ among all such extensions.

B(z) is a finite Blaschke product

$$B(z) = \lambda \frac{\bar{b}_{\nu} + \bar{b}_{\nu-1}z + \dots + \bar{b}_{0}z^{\nu}}{b_{0} + b_{1}z + \dots + b_{\nu}z^{\nu}},$$

 $\lambda =$ modulus of largest eigenvalue, b_k 's components of eigenvector, of Hankel matrix formed from c_k 's (real).

Finding
$$f - p_n^*$$
 for $f(z) = \sum_{n=0}^{\infty} a_k z^k$ on $\Delta \Leftrightarrow$

$$\min \left\{ \left\| \sum_{0}^{n} c_{k} z^{k} + \sum_{n+1}^{\infty} a_{k} z^{k} \right\|_{|z|=1} : (c_{0}, \dots, c_{n}) \right\}$$

By truncating $f(z) = \sum_{0}^{\infty} a_k z^k$ and inverting $z \to 1/z$ and solving CF problem we get nearly circular error curve. That is, we solve CF for

$$||a_m + a_{m-1}z + \dots + a_{n+1}z^{m-n-1} + \dots||_{\Delta}, m >> n.$$