POLYNOMIAL AND RATIONAL
APPROXIMATION

E. B. Saff
Center for Constructive Approximation

V VANDERBILT
UNIVERSITY




Polynomial Approximation & Interpolation

k
f analytic at 2 =0, sn(2) =>7_, /! ]zl(o)zk

Properties of Taylor polynomials

Interp. Property: sff)(O) = f(k)(0), k=0, n.
Least Squares Property:
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Best L2(I") approx to f from Pp:
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= sp(2).
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Minimal L°°-norm Projection Property:
Az <1, |- ||A =sup norm on A

A(A) = {feC(A): f analyticin |z| < 1}
P: A(A) — P, Projection operator

(Snf)(z) = sp(z) Taylor projection operator

Claim: ||Sp|| < ||P]| for all P .

Let By : f(2) — f(tz), [t|=1
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Maximal Convergence Property

f analytic on A :|z| < 1. Then

limsup||f — sn||1A/n 1. 1,

Nn— 00 P
where p is the radius of the largest open disk
about z = 0 in which f is analytic. Moreover,
sn, — fin |z| < p.

Proof. Let 1 <r < p. Then by Hermite Interp.
Formula:
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Equality later. [ ]



Polynomial Approximation on Compact Sets

Given: E C C compact, C\ E connected,
f analytic on E.

Problem: Construct ‘“good’ poly approxima-
tions to f on E.

Runge: 3 polys {pn} such that p, — f
uniformly on E.

Remark: Not true if E separates the plane.

Popular Methods: Faber polys, interpolating
polys, CF (AAK) methods



Assume C\ E is simply connected

w=¢(2) : C\ E — {Jw| > 1},

p(c0) =00, ¢'(c0) >0

p(z) = §+bo+b;1+2—§+- -+, c=cap(k)>0
{w"}g” — {¢"(2)}5"

o) = (St L)
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Fn(z) + %Mn(z) :
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Goal: Expand f(z) analytic on E
f(Z) — CLQFQ(Z) -+ alFl(z) -+ aze(Z) + ...

z = (w) inverse of ¢

M |le(z)| =7r (> 1) level curves, Cy:|w|=r.

NOTE:

1 ore™)dt 1 s™P(s)ds
Fn(z) = 27r7j|_/ t—z 277730 W(z) — 2

fo) = L [fDdt 1 f(s)ei(s) ds
2mi) t— =z 2711 Y(z) — 2

r r

f((s)) = i ans' for 1 <|s| < R

fR) =Y s [SUE

—00 ﬂ-iC’r P(z) — 2

= Z anFn(z).
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Maximal Convergence: f analytic on E.
n
. 1/n 1
lim su — F =<1
msup || f Eoiak kg™ =<1,

where p is the largest index such that f is
analytic inside I',. Moreover, Faber series
converges to f inside Ip.

Ex: E=1[-1,1], o(2) = z+ /22 — 1,

[, : Ellipse foci +1
semi — major axis length

(r+r71)/2

For n > 1, Fp(x) = cosnf, x = cosé

Faber series & Chebyshev expansion



INTERPOLATION

Determine points of E

5(0)
5(1) | 5(1)
/Q(n) ) 6(n) ) ’ ’ ) ) 7§Ln)

so that interpolating polys po,p1,.-.,Pn,. ..
converge maximally for every f analytic on E.

Recall Hermite Formula

wn(Z)f(t)
wn(t) (t — z)

f(z) —pn(z) =

n

wn(2) =TI (= 8{")

k=0



(Walsh) Get maximal convergence for every f
analytic on E iff the wy,'s have asymptotically
minimal norm:

(1) im_[lwnl| 3™ = cheb(E) = cap(E).

n—aoeo

EX: E:|z| <1, wn(z) = 2" wp(z) = 2" -1

EX: E bounded by smooth Jordan arc or curve
. Take images of equally spaced points (roots
of unity)

EX: F=[-1,1]

zeros of Chebyshev, not equally spaced



EX: Fekete Points

Let Vi(z0,21,...,2n) = H (zi — z;5).
1<J

Choose B(”) = z;, € E for which
max {|Vn(z0,21,---,2n)| : 20,21,---,2n € E'}

is attained.

Remark F, : C(E) — Pp denotes poly inter-
polation operator in n + 1 Fekete points.
T hen

[Fnll <n+1.

(Fnf)(2)

(n)) Vn(ZO, ce ey Rk—19 2y Rk41y - s Zn)
Z f(ﬁ Vn(zo, 21, .-, 2n)

|1 Faflli < Z 7 (87) 1< Gt DI



From logarithmic potential theory, we know
that for the Fekete points [3(”),

1/n
= cap(FE)

n

[T (- 5)

k=0

lim
n—~o

E
and

n—|—1 Z 5(5(n)> — pp

where §(x) is unit point mass supported at =z
and ug is the equilibrium measure for E.

So interpolation in Fekete points gives
maximal convergence.



Also true when FE is not a continuum, as long
as C\ E is connected and regular.

_evel curves:

[ :g(z;,00) =logr, r>1

where g(z; o) is Green Function with pole at
oo for C\ E.
9(z; 00) = l0g —— — UME(2),
cap(E)
where
1
[z — ¢

UME(2) = /E 0g g (1) .



Convergence Rate
A(E) :={f € C(F) : fanalytic in interior of E}

Extension of Weierstrass Thm:

(Mergelyan, 1951) If F is a compact set that
does not separate the plane and f ¢ A(FE),
then for each € > 0, d poly p such that

If =pllE <e.

Remark If E = [a,b], then A(F) = C(F), SO
Weierstrass C Mergelyan.

Geometric Rates of Convergence

Let

En(f) = inf{||f —pllg:p € Pn}
= |\|f—pullE, Php € Pn.



THM Let E be a compact set with connected
and regular complement, and f € A(E). Then
f is analytic on some open set G D F iff

limsup Ep(f)Y™ < 1.

n—aoo

Proof. (= Fekete points), (<« B-W Lemma)

Bernstein-Walsh Lemma. If P € P,, and
|P(z)| < M for z € E, then |P(z)| < Mr"™, for
zon Iy :ile(z)=r (r>1).

Proof. P(z)/¢"(z) analytic outside F, even at
0.

‘ P(z)
©"(2)

M asz—0E, zc C\ E

INA

M in C\ E, by Max. Principle.
[ ]



To complete proof of theorem, assume
(2) limsup En(f)Y" < 1,
nN—00

and we shall show that f has an analytic
extension.

From (2),
) 1
If —ppllg < —, n>ng, for some p > 1.
o)

1 2
1f = phtille < =S = |lPpg1 — PullE < o

By B-W Lemma,

« N opntl
IPp41 — PrllE < i on I,

oo
= po+ > _(Pra1— D))
0

converges uniformly inside I, (r < p) to an
analytic function. [ ]



COR f analyticon FE

1
— limsup E,()V/" ==,
n— 00 o,

where p is the largest index such that f is
analytic inside I p.



How to Construct Polys of Near Best
Uniform Approximation

pl € Pp best uniform approx. to f € A(E).
card(E) > n+ 1 implies p; unique.
Kolmogoroff Characterization:

Let M :={z¢c E:|[f(2) —p;(2)| = If—prllE}
Then, for all g € Py,

min Rei (f(2) — pa(2))e(2)} < 0.

Construction: E bounded by a Jordan curve .

feA(E), | f—=vplle=If—-rlr.



Perfect Circularity: If f € A(E), p € Pn,
(f —p)(IM) is perfect circle about 0 with
winding # > n 4+ 1, then p = p;.

Proof. If not, dq € P, such that

|f —alle <If—plEe
But then, for z € I,

(f —p)(z) — (@ —p)(2)| = |(f —q)(2)]
<|[f =pllg=I1(f-p)(2)

via q—p and f —p have same
= number of zeros inside I
Rouché .. gq—p has >n+4 1 zeros,

SO ¢ = p, a contradiction.

L]

Ex: E:|z| <1, f(z) =2"T1 pi(z) =0.

EXx: If error = Blaschke product

n

. H (Z_O‘k)

B k=0 (1 - akz) 7

|Ozk| <1.



Near circularity

winding number of (f —p)(I') > n+1,

max|(f —p)(2)] — min|(f =p)(z)| smal
— p near p),.

For a large class of functions f, near circularity
OCCUrsS as n — oo.

Algorithm (Trefethen) based on

Carathéodory-Fejér Thm: Given

1%
_ k
p(Z) - Z Ckz ’
k=0
d! power series extension

p(z) + > csz =: B(z)
k=v+1

analytic in A : |z|] < 1 that minimizes ||B|la
among all such extensions.



B(z) is a finite Blaschke product

by +b, 12+ -+ bgz"
bo+biz+ -+ bz

B(z) = A\

A = modulus of largest eigenvalue, b.'s compo-
nents of eigenvector, of Hankel matrix formed
from ¢;'s (real).

Finding f — p}, for f(z) = Y% apz" on A &

min . (co,...,cn)

n 0@
chzk + Z akzk
o) n—+1

|2[=1

By truncating f(z) = 2% ap2" and inverting
z — 1/z and solving CF problem we get nearly
circular error curve. That is, we solve CF for

||am—|—am_1z—|—---—I—an_l_lzm_n_l—l—---H m>>n.

A Y



