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1 Definition and algorithms

Linear systems

Given a formal power series f(z) = > fn,2" the [M/N] P.A. are rational
functions

MV = D A = wt Pul) =Y
defined by ) )
i)~ F2) = 0N

The Taylor expansion of P.A. agrees with f(z) up to order N + M and the
polynomials. If go = @Q(0) # 0 then the above definition is equivalent to

Qn(2) f(z) = Pu(z) = O(zN M+
which provides a linear system for ¢;/go and p;/qo . The system is solvable if

fur coo fM41-N
DM/N = # 0 N>1
fmMyi—-n .. i

and Dps/n can be identified with with ¢go . We define f, =0 if k<0. If
N =0 weset go=1 and [M/0] are partial sums of f(z) .



Explicit formulae

The denominator polynomial Qn(z) is given by

frvrsa far cor IMy1—; oo fMy1-N
Qn(z) =Dy, . ' :
M/N | fmu+n  fmen—1 o fmin—; ... fm
1 T xd N

The numerator polynomial is given by

frsa fm cor o fMt1—; -0 fM41-N
Qn(z) = DJT/II/N fM-+N fM-}—-N—l v SMaN—j fz-v.r
Moo frzt L fidb o L b L iy fuat




Nuttal’s formula we quote another compact formula to compute P.A. we shall
prove later, by considering approximations to the resolvent of a symmetric opera-
tor.

fo—zf1 oo N1 —zfN fo
[IN=1/N]¢(2) = (fo --- fn-1) : : :
f-N—-1zfny ... fan—2—Tfon-1 -1

The Padé table has entries are [M/N] . It is normal if DM/N]# 0 for any
N >0, M >0 : its elements are ratios of irreducible polynomials Pj; and Qpn
(no common divisors).

If DIM/N] =0 then the entry [M/N] is given by the ratio of two reducible
polinomials Py = R Py—p and Qn = R Qn_i where R is a polynomial of
degree < max(M, N) , whose coefficents are arbitrary. The Pad/’e table whose
entries are ratios of irreducible polynomials has blocks of equal entries.

Examples The Padé table has blocks if f is a rational function or a function
of 27 for g > 1. Take fon instance f(z) = (1 —2)"! with f, = 1. Then
D[O/N]:l but D[M/N] =0 for M Z ].,N Z 1

11 1+(1+q)z 1X (14 (1+q)z2)

D[1/2]:‘1 1‘20 [1/2] = T+qz—(1+q)22 (1-2)x (1+ (1 +aq1)z2)




Algebraic properties We list a few properties follwoing from defnition

1) If the [M/N] P.A. exists ( Diyyn) # 0 ) exists it is unique.

2) M+ J/Ns(s) = 3 fi ok + 27 [M/N]5(2) F2) = S5 frss s
3) [M = J/NJ(z) = 7 [M — J/N]5(2) F(z) = 27 £(2)

4) [M/N]s+r,(2) =Ry, +[M — J/N](2) degree (R,) <M —n

5) [M/Nlys(2) = (M/N]p(2) )

6) The diagonal [N/N]f(z) P.A. are invariant for omographic tranformations
of f namely Tf = (a+0f)/(v+6f) and of z preserving the origin T'(z) =
az/(b+ cz)



Continued fractions
Are defined by

ap (07
S:b0+b ai Tn:b 1+
1+ as n+ n
ba +
- Ap—1
+bn—|—rn

The following recurrence holds

An + Ty An—l An = b'n An—l + an—1 An—Z
Bn + 7 Bn—l Bn = bn Bn—l + a1 Bn—2
initialized by

S =

A_1:1 A():bo B_1:0 B():].

The ratios A, /B, arethe truncations of the continued fractions with r, =0 .

Theorem For positive continues fractions a, > 0, b, > 0 the even and odd
sequences are monotonic

é S A2n S A2n+2 SSS A2n+1 S A2n—1 S S é
BO B2n B2n—|—2 B2n+1 BQn—l Bl




Analytic continued fractions

Given a power series f(z) =Y., fn,2" where fo =1 we consider the recurrence

f(z) = h) _ L fulz) _ !
fO 1_a02_5lz2§i2§; fn—l 1_an_lz_/6nz2f7}:(12<')z)
Letting
k>1

and f,gl) = fr we start from the first relation and after multiplying both sides
by the denominator of the left side we determine «g, 81 and fs according to

co=fi  Bi=fo—aofi [P = é(fm — aofes)

At the next orders the recurrence reads

n n—1 n n n—1
_pm gl g ) )

1
n+1 n n n—1
0= L (460 aatfDh - 1057)



Truncations and P.A.

The even and odd truncations of the countinues fraction give two diagonal se-
quences of P.A. Let

F<Z):§f(§>: 5

Z — g —

B2
Bn

Z—0n + 1y

z—o1+

Identifying a, = —0,, b, = 2z — ap—1 the truncations A, /B, satisfy

A, = (Z — 1) Ap_1 — /Bn—l An_o AO =0 A =1
B, = (2 —0an_1)Bu_1 — Bn-1Bn_2 By =1 By =z —ap

)
)
Hence A, = Qn_Al(z) and B, = Qn(z)A are polynomials of order n —1 and n
Letting P, = 2"P,(27!) and Q, = 2"Q,(z7!) it can be shown that

_ PN_l(Z)

—) = — z
QN(Z) _[N 1/N]f< )

f(z) +0(2*")




Positive measures

Orthogonal polynomials Let p(t) be a positive measure on R and let

+o0
Flg) = / g(t) du(t)

— 0

The moments and their generating function are
1 o0
PeFE) @ =F () = e
n=0

We define the orthogonal polynomials Qn(z) and their associates by Pn(z) by

]:(thN(t)): 0 for 0<k<N-1 Pyoai(z)=F (QN(“’Q :?N(t))

The normalization is 2~ "Qn(z) — 1 for z — oo . The linear systems saisfies by
the coefficients of Qn(2) are the same as the ones for the denominator @.(z) of
the [N — /N] P.A. and the same relation holds between P,_1(z) and P,_1(z)




Approximate measures
The zeroes z = r,(gN) of the orthogonal polynomial Q ~n(z) are all real and belong
to the support of u . ince Qn(0) =1 we can write

N

Pn_1(2) Pn_1(2) 3 Vi

On@) (e (=) 5 L

We introduce an atomic measure p,(t) such that

Fato) = [ odun)  an) =Yoo
k=1

— 0

The approximate functional satisfies
1 1 O N
f(l—tz>_fN<1—tz>+<z )

Fn(th) = F(tF) for 0<k<2N—1

so that consequence



Quadrature formulae

The approximate functional Fpy allows an analytic extrapolation of the first
2N — 1 moments of the measure, i.e. of the first 2N — 1 coefficients of f(z)

£ = Fy ) Z W ()" fV) = fu for  0<n<2N-1

The transform of a function ¢(¢) , which is a quadrature with respect to u(t) .

Theorem The transform Fy(g) is the Gauss quadrature of F(g) since it is
exact if math g(t) for any polynomial of order m < 2N —1

Fnlg) =Y g(rM)4M

Le T polynomial of order m < 2N —1

Fn(T Z Ty Fn(tF) = Z Ty F(t*) = Fn(T)

k=1

If u(t) =t with support on [—1,1] then Qn(z) are Legendre polynomial, their
Zeroes T»SLN) are the quadrature ponts and ngN) the weights.



Stjeltjes functions

If the support of u(t) is Ry then its Hilbert transform

/() :F<1—1tz> :/0°° {lﬁ(i)t

is a Stjeltjes function. It is analytic on the the complex z cut along Ry

i) The coefficients «,, B, of the continued fraction expansion are positive.

ii) The zeroes of @Qn(z) , orthogonal polynomials with respect to u(t) , are on
R, and interlace with the zeroes of Qn_1(2) .

iii) If z € R_ then f(z) >0 and the following bounds hold
0/1]5(z) < --- < [N =1/N]s(2) < f(z) < [N/N]j(2) < --- < [1/1](2)

iv) The sequences [N — 1/N]s(z), [N/N]s(z) converge uniformly to f(z) in
any compact domain of the cut plane C — Ry, provided that

Z fn_l/% = 400 satisfied if  f, < ac" (2n)!
n=0



Self adjoint operators

The spectral decomposition of a self adjoint operator A in a Hilbert space H
establishes a precise relation with positive measures

A= /+Ooth(t)

— 0

Letting ¢ € H we have

p(t) = (o|P(t)]) f(2) = (81T - zA)7"|¢)

Galerkin’ method Letting ¢, ¢1,...,¢, € E§ C'H we consider the projector
Px defined by

N—
_ Z )it |6} (D% Gik = (¢i|dr)
i,k=

We solve the approximate equation for the the restriction Ay = PyAPn
YN = ¢+ 2ANYN (dlyn) = (9l(I = 2An)""|9)
Letting ¥y =co¢po+ ...+ cn_10N_1 Wwe obtain

(¢lvn) =b* - M~ 'b b, = (drl9)  Mir = ($i|({ — zA)| k)




Perturbative anzsatz Choosing the base ¢, = A¥¢ it is immediate to show
that

(OI(I = 2AN)"Ho) = ¢l(I — 2A) 1 9) + O(=*")

The approximate resolvent is a ratio of two polynominals Py _1(2)/@n(z) , hence
it agrees with [NV —1/N] P.A.to f(z) and coincides with Nuttal’s formula.

(OI(I — 2zAN)" o) = [N — 1/N](p)(1=24)-1|4)

Variational methods

The quadratic functional defined on H

L(x) = {x]o) + (oIx) = (xI(1 = zA)[x)

is stationary for for x =1 where ¥ = (1 — 2A)"1¢ . Indeed

6L(x) = L(x +6x) —S(x) = (ox|¢ — (1 = 2A)x) + (¢ — (1 — 2A)x|6x)

Choosing x € En the variational solution agrees with Galerkin’s method.

{6L0X)}een =0 x=tn=01-2A)""¢  L(¥Yn)=(glYn)



Variational bounds

With the perturbative ansatz the variational solution is the [N —1/N] P.A.
If A is positive then (I —zA) for z € R_ is positive and

L) = L(x) = (I —2zA)"2 ¢ — (I —2zA4)*x|* 2 0

Lower bounds

From previous inequality we obtain

£(x) < f(z) = (8l — 2(A)"|6) [N —1/N;(x) < f(a) zeR-

and the sequence [N —1/N]s(x) is monotonically increasing .

Upper bounds
We consider the functional U defined by

Ux) = (8l¢) + z{x|Al¢) + z{¢|A|x) — z{x|A(1 = zA)[x)
It is easy to check that it is stationary for x = ¢ = (1—2A)"1¢ and ¢ = f(2). In
the subspace given by the perturbative ansatz the stationary soution is [N/N]s(x)

U(x) = f(z) = (SI(I - 2(A) 7 |¢) f(z) <[N/Nlf(z) zeR




(Generalizations

Matrix P.A. They are defined for an analytic L x L matrix Fjg(z) of order
. Explicit formulae of Nuttal’s type are obtained if the matrix is given by

Fi(2) = (¢s|(I — 2A) " Yopr)  4,5=0,...,L—1
by the Galerking or variational method in a subspace
Ern={¢: P15, 01-1,A3, A1, ....,.A¢r_1,...,AN Lo AAN g, L AN g}
The P.A. to a stjeltjes matrix F(z) have bounding properties on R_
[N —1/N]z) < F(z) < [N/N]F(z) r e€R_

Generalized P.A. Consider a sequence of polynomials L,(z) and their gen-
erating function K(z,t) = > t*L,(z) . For instance K(z,t) = e ** and L,(2)
Laguerre polynomials. Letting

+00
F6) = FE(0) = [ K(e0du®) = 3 (2

— o0

the generalized P.A. are defined by the corresponding quadrature formula

[N = 1/N] £ (2) = Fn(K(z,1) = ) VK ("” “("LN)>



Conclusions

Algebraic properties The P.A. are obtained by solving linear systems. If the
ratio of polynomials is irreducible the Pad/’e table is normal, otherwise there are
blocks. The diagonal P.A. are invariant by omographic transformations.

Continued fractions This algorithm has optimal computational complexity.
It provides the diagonal sequence of [n —1/n], [n/n] for 1 <n < N given a
Taylor series up to order 2NN . To be used with extended precision, necessary to
counteract noise effects.

Stjeltjes functions The denominators of diagonal sequences of P.A. are
orthogonal polynomials, with respect to a positive measure, their zeroes being
on its support. This implies convergence of P.A. in the cut plane and bounding
properties on the real axis excluding the cut.

Resolvents of symmetric operators The mean value of the resolvent is a
Stielties function. The Galerkin method in a subspace &p defined by the per-
turbative ansatz gives the diagonal P.A. They are stationary values of quadratic
functionals in the subspace &y . For positive operators the P.A. give bounds.






