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I) Background

G. G. Lorentz, 1976  P(z) = S awzk, s>0

k=3s

DEF Ifs/n>60 (0<6<1), then P(z) is
said to be incomplete of type 6 (P € I).

4322 €y, 2°+5z*-2%el,

Ig is closed under multiplication, but not addition.

THM (Lorentz, '76). If {P,} C Iy, deg P, — oo, anEI]
IPallo1y = max [Pa(@) <M Vn,
then
Po(z) >0 for =z € [0,62).

Problem 1: Is this result sharp?
e ——



G. Freud, 1976
Let Wa(z) = e 2%, a > 0, on (=o0, 00)

{pn} orthonormal polynomials w.r.t. Wa,

00
f Pm(m)%(m)ﬁ—wadm = dmn .

a =72 Hermite polynomials

3-term recurrence for the pn

zpn(z) = “n-{-lpn—i-l(:ﬂ) + anpp-1(2) .

Freud Conjecture: lel_;lga n.‘lf “an exists

Problem 2: Resolve this conjecture.



Common Thread
Weighted Polynomials w(z)"Pn(z), deg P < n.

Lorentz Problem:

lw(@)"Pa(@)lljg1) S M, w(z) =217, degPn <.

lf_[eud Problem:

o0
[ pA@e e =1
z = nM%,  pa(z) — Pa(@) = n'/2%pn (n*/°a),

I Pallpygy =1, w(z) = e ?"/2, deg Pn <.

Problem 3:
Generalized Weierstrass Approx. Problem
For E C R closed, w ;: E — [0,00), characterize
those functions f € C(E) that are uniform limits
on E of some {w"Pn}, deg Pr < n.



J. E. Littlewood

"1 constantly meet people who are doubtful,
generally without due reason, about their
potential capacity.”



II) Classical Logarithmic Potential Theory

Let E C C be compact.

cap(E), T(E), cheb(E)
T T T
electrostatics geometric approximation
problem problem problem

Logarithmic Capacity: cap(EF).

Electrostatics Problem: Place a unit charge on E
so that equilibrium is reached in the sense of
minimum energy.

M(E) := {unit measures supported on E}

1
I(p) = ff log = du(z)du(t) Energy
VE = peEBiEE)I(“)

If I(p) =00 Vu€ M(E), then cap(E) :=0.

If I(p) < oo for some p € M(E), then Vg is finite

cap(E) := e~ VE.



“

Frostman: If cap(E) > 0, 3 a unique
ug € M(E) such that I (ug) = Vg.

pg is called equilibrium measure for E.
Proof follows from 3 basic properties:
(i) Compactness of M(E) in weak* topology;
(ii) Strict convexity of I(u) on M(E):
(iii) Lower semi-continuity of I(u).
Potential

Bl 60 B / log

2 du(t) superharmonic

|z — ¢

Properties
e ——" Ooo E

S (uE) = supp (ug) C 8soE; ‘
8E\ S (ug) is polar (cap = 0); &

UHE(z) =Vg q.e. On E.

Ex.
ds
a b
E:|2/<R E: [a,?]
cap(E) =R cap(E) = (b—a)/4
1 1 dz
dup = ——ds dug = —
27R W\/(ﬂ:- a)(b— )



Transfinite diameter: 7(E).
Geometric problem: Place n points on E so that
they are " as far apart” from each other as possible.

2 points: max_|z; — z3| =diamE
z1,20€F

3 points: max (lz]_ - :L"g| |31 — 23| |22 - z3|}1f3
:1,:2,:3EE

n points: max
21,2n€E \1<i<j<n

=:§,.l

|2i — 2]

)Efn(n-l}

B = {zg"),_._,z,ﬂﬂ)} where max is attained is

n-point Fekete set
Fn C 0o E

FACT: 6n |
T(E) = lim_&n transfinite diameter

E¥.
E iz €1 E:[-1,1]
Fn={{‘/i} b — {(1—:.':2) Péi’%)(m)=ﬂ}
7(E) =1 (E)=1/2



Chebyshev Constant: cheb(E)

Polynomial Extremal Problem: Determine the
minimum sup norm for monic polys on E.

tn(E):= min z2" —p._1(z *
n( ) g 1€P: ¢ ” Pn 1( )"E
Tn(.z) — ‘l‘ vl such that ”Tﬂ,“E — tn(E)

is called Chebyshev polynomial.

tmtn(E) = ||Tntm|| < |1 Tmllg [ Tnll 2 = tm(E)tn(E).

S0
|74me tn(E)/™ = inf tn(E)/™ =: cheb(E).

Ex. E:|z|<R E: [-1,1]
Talz) = 2" Ta(z)= o cos(n arccosz)
tn(E) = R™ tn(B) = 1/271

 {
cheb(E) =R cheb(E) = 2



Fundamental Theorem (Fekete, Szeg§, Frostman)

cap(F) = 7(E) = cheb(E).

Moreover, Fekete point sets F, have asymptotic
distribution pg and Fekete polynomials are
asymptotically optimal for the Chebyshev problem.

Essential Observation

P(z) = [] (z— )
k=1

1 1 1
T [ o9 iz — |

du(t) = UH(z),
where

E Z 6z, , &z, unit mass at zj.
ka.....



III) External Fields
E C C closed
w ! E—[0,00) upper semi-continuous,
> 0 on subset of positive cap,
|z|lw(z) — 0 as z — oo if

E is unbded.

New distance function

|z —t| — |z — tlw(2)w(t)

gives rise to

cap(w, E), (w, E), cheb(w, E)



Weighted Capacity: cap(w, E)

Electrostatics in the presence
of the external field

c= ()

p € M(E):= {unit measures supported on E}

L i}
Lu(n) = [ [ 10g |z G )

-~ s

Vw — . f Iw
nE-ﬂ(E) )

Supp (paw)

7 du(2)du(e) +2 f Q(2)du(z).

cap(w, E) ;= e~ "

= ==

3 a unique pw € M(E) called |
weighted equilibrium measure such that

Toy (P"w:) = Vi

Remark: S (pqw) = supp (uw) need not
lie_entirely on O« E



Weighted Transfinite Diameter: 7(w, E)

Z1yZnEE

}Efﬂ(n-l]

n(w):= max { I1 |2 = z5|w(z;)w(z;)

1€i<j<n

bn |,

Fnl(w) = {z&“),...,zﬁﬂ)} points of E
at which max is attained are called

weighted Fekete points.

Fa(w) C S (p)* 1= {z € E: UM(2) + Q(z) = E} .

Weighted Chebyshev Constant: cheb(w, F)

tn(w) := pglell |lw(2)" [2" — p(2)]l g




FUNDAMENTAL THM (Mhaskar & S.)
cap(w, E) =17(w, E) = e~ J Qdbw cheb(w, E),
Q = log(1/w).

Moreover, weighted Fekete points Fp(w) have
asymptotic distribution pw as n — oo, and
weighted Fekete polynomials are asymptotically
optimal in the weighted Chebyshev probliem.



The BIG question: How to find .7

[ = pq IS characterized by the conditions
that for some constant f,

{ U2) +Q(z) =§ z€S(w)
Ul(z) +Q(2) 2 E, z€E

(here we assume E regular, @ continuous)

Essential Problem: Determine S (uw).




Anonymous
" To achieve goals in life,
an important first step is
to find the needed support.”



Properties of the support S (uw).
a) Sup norm of weighted polys
"lives" on S (uw), i.e., if £ IS regular

|w(2)" Pr(2)|l g = llw(2)"Pn(2)|lg(p,)» Y7 VPn € Pn

b) The outer boundary of S (uw) maximizes
F-functional

F(K) :=loglcap(K)] - [ Qau
over compact sets K C F;

F(K) < F(S(pw)), Equality = K surrounds S (pw)

c) S (uw) is the set of peaking points
for weighted polys w(z)"Pn(z) on E.

d) If E C R, "iterated balayage methods”
generate compact sets Kn O S (pw)
with NKn = 5 (uw)*.



Contact Problem of Elasticity

— y=Q(z)

Elastic

Np(t)”

S = 3(Q, \) ={points where stamp touches elastic}
p(t) pressure on contact region

] p(£)dt = )

S

=Q(z)—D, =z€S

f log | — t|p(t)dt
<Q(z)Y-D, z&5

= For external field Q(z)/\, w(z) = e~ @/,

dpy = p(t)dt/A, S = S (pw).



Exi Incomplete polynomials

w(z) = £0/(1=0) on [0,1], 0<@ <1,
S (ma) = [62,1].

Ex| Freud Weights

w(z) = e‘imlﬂ, a>0, onR

S (pw) = [—aa, aa] ,
where

-



Generalized Weierstrass Approximation.

Let £E C R be closed.

—
Conjecture. f € C(E) is the uniform limit

on E of some sequence {w"pn]: degpn <,
iff f(z)=0in E\S (pw)-

'- ———— I

False in general!
But many important cases when true:

Lorentz Case: (S. & Varga) f € C[0,1] is the
uniform limit on [0, 1] of incomplete polynomials
of type 8 iff £ =0 on [0,62] = [0,1]\ S (kw),
w(z) = £0/(1-6)

COR Lorentz result is sharp!




Freud Case (Lubinsky & S.) If w(z) = e~I®I", a > 1,
on R, then f € C(R) is the uniform limit on R of
a sequence

-n1m|“

pn(z), degpn<n, n—00
iff f=0in R\ [-aa,aa] =R\ S (uw).

COR (Mhaskar, Lubinsky, S.) Freud’s conjecture
is true.

THM (Totik) If E C R is an interval and Q=log(1/w)
is convex on E, then conjecture is true.

See also Benko.



Elliptic Fekete Points on S2
S2:={xeR3: |x|= 1}, |-| = Euclidean dist.

For each N > 2, let {x’i N X5 N:”*&xFJN}
maximize

[T |xi—x|

1<i<j<N

over all {x;}}¥ c§2.

{xf,N} are called elliptic Fekete points.

Shub & Smale (Prob. #7 for next century)




N
Expect {x}y}| ' to be well-separated, i.e.,

3C such that
C
‘= min [x* v - x* R
dy = 19'!? ‘th xJ,N| > VN 2 2.

m" —

From results on best-packing on S§2
(due to Habicht & van der Waerden)

C < y/8r/v3 = 3.81.

THM (Dragnev) Elliptic Fekete points are
well-separated with C = 2; in fact,

2

N>2.

dn > ,
N N —1




Proof. Assume xN = }:NN is the North Pole

z] = stereographic
projection,
1=12,...,,N=-1

Then
H X; — X,
1<i<j<N
= 1 0 ~———
I{z{j{N 1 lﬂ_iiﬂN—l ¥

1<i<j<N-1

2 — 2wy (2F) wy (2])

where

1 (N-1)/(N-2)

V1422
Thus {z;“} are weighted Fekete points for wy(2).

wy(z) =




Since wy(z) is radially symmetric it is easy
to determine (from the F-functional) that

S (wuy) ={z€C : |2 <VN =2},

and, moreover, thaPEf a{l the weighted
Fekete points {z;‘}l ~ 7 lie on S (pwy)-
Thus

2 2

—

2

iy — xf| = - O N
e V2

But x%;, was arbitrarily chosen. m

N-1



Other Applications

(1) eigenvalues of random matrices

(2) fast decreasing polynomials

(3) rational approximation and interpolation
(4) extremal problems with constraints

Reference

E. B. Saff, V. Totik

Logarithmic Potentials with External Fields
Springer-Verlag (1997)
ISBN: 3—540-57078-0



