LOGARITHMIC POTENTIALS WITH EXTERNAL FIELDS

E. B. Saff
Center for Constructive Approximation
Department of Mathematics
Vanderbilt University

Outline

- I) Background
- II) Classical Theory of Log Potentials
- III) External Fields (varying weights)
- IV) Applications
 - (a) Generalized Weierstrass Problem
 - (b) Optimal Nodes for Bivariate Interpolation
 - (c) Minimal Energy Points on the Sphere

Background

G. G. Lorentz, 1976
$$P(x) = \sum_{k=s}^{n} a_k x^k$$
, $s > 0$

DEF If $s/n \ge \theta$ (0 < θ < 1), then P(x) is said to be incomplete of type θ ($P \in I_{\theta}$).

$$x + 3x^2 \in I_{1/2}$$
, $x^3 + 5x^4 - x^6 \in I_{1/2}$

 I_{θ} is closed under multiplication, but not addition.

THM (Lorentz, '76). If $\{P_n\} \subset I_{\theta}$, deg $P_n \to \infty$, and

$$||P_n||_{[0,1]} = \max_{x \in [0,1]} |P_n(x)| \le M \quad \forall n,$$

then

$$P_n(x) \to 0$$
 for $x \in [0, \theta^2)$.

Problem 1: Is this result sharp?

G. Freud, 1976

Let
$$W_{\alpha}(x) = e^{-|x|^{\alpha}}$$
, $\alpha > 0$, on $(-\infty, \infty)$

 $\{p_n\}$ orthonormal polynomials w.r.t. W_{α} ,

$$\int_{-\infty}^{\infty} p_m(x)p_n(x)e^{-|x|^{\alpha}}dx = \delta_{mn}.$$

 $\alpha = 2$ Hermite polynomials

3-term recurrence for the p_n

$$xp_n(x) = a_{n+1}p_{n+1}(x) + a_np_{n-1}(x)$$
.

Freud Conjecture: $\lim_{n\to\infty} n^{-1/\alpha}a_n$ exists

Problem 2: Resolve this conjecture.

Common Thread

Weighted Polynomials $w(x)^n P_n(x)$, deg $P_n \le n$.

Lorentz Problem:

$$||w(x)^n P_n(x)||_{[0,1]} \le M, \quad w(x) = x^{\theta/(1-\theta)}, \text{ deg } P_n \le n.$$

Freud Problem:

$$\int_{-\infty}^{\infty} p_n^2(x)e^{-|x|^{\alpha}}dx = 1$$

$$x \to n^{1/\alpha}x, \quad p_n(x) \to P_n(x) = n^{1/2\alpha}p_n\left(n^{1/\alpha}x\right),$$

$$\|w^n P_n\|_{L_2(\mathbb{R})} = 1, \quad w(x) = e^{-|x|^{\alpha/2}}, \text{ deg } P_n \le n.$$

Problem 3:

Generalized Weierstrass Approx. Problem For $E \subset \mathbb{R}$ closed, $w : E \to [0, \infty)$, characterize

those functions $f \in C(E)$ that are uniform limits on E of some $\{w^nP_n\}$, $\deg P_n \leq n$.

J. E. Littlewood

"I constantly meet people who are doubtful, generally without due reason, about their potential capacity."

II) Classical Logarithmic Potential Theory

Let $E \subset \mathbb{C}$ be compact.

cap
$$(E)$$
,

 \uparrow
electrostatics
problem

$$au(E)$$
,

 \uparrow

geometric

problem

$$\mathsf{cheb}(E)$$
 \uparrow
 $\mathsf{approximation}$
 $\mathsf{problem}$

Logarithmic Capacity: cap(E).

Electrostatics Problem: Place a unit charge on E so that equilibrium is reached in the sense of minimum energy.

 $\mathcal{M}(E) := \{ \text{unit measures supported on } E \}$

$$I(\mu) := \int\!\!\int \log \frac{1}{|z-t|} d\mu(z) d\mu(t)$$
 Energy $V_E := \inf_{\mu \in \mathcal{M}(E)} I(\mu)$

If
$$I(\mu) = \infty$$
 $\forall \mu \in \mathcal{M}(E)$, then $cap(E) := 0$.

If $I(\mu)<\infty$ for some $\mu\in\mathcal{M}(E)$, then V_E is finite $\operatorname{cap}(E):=e^{-V_E}.$

Frostman: If cap(E) > 0, \exists a unique $\mu_E \in \mathcal{M}(E)$ such that $I(\mu_E) = V_E$.

 μ_E is called equilibrium measure for E.

Proof follows from 3 basic properties:

- (i) Compactness of $\mathcal{M}(E)$ in weak* topology;
- (ii) Strict convexity of $I(\mu)$ on $\mathcal{M}(E)$;
- (iii) Lower semi-continuity of $I(\mu)$.

Potential

$$U^{\mu}(z) = \int \log \frac{1}{|z-t|} d\mu(t)$$
 superharmonic

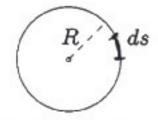
Properties

$$S(\mu_E) = \operatorname{supp}(\mu_E) \subseteq \partial_{\infty} E;$$

 $\partial_{\infty} E \setminus S(\mu_E)$ is polar (cap = 0);

 $U^{\mu_E}(z) = V_E$ q.e. on E.

Ex.



$$E: |z| \leq R$$

$$cap(E) = R$$

$$d\mu_E = \frac{1}{2\pi R} ds$$

$$cap(E) = (b - a)/4$$

$$d\mu_E = \frac{1}{\pi} \frac{dx}{\sqrt{(x-a)(b-x)}}$$

Transfinite diameter: $\tau(E)$.

Geometric problem: Place n points on E so that they are "as far apart" from each other as possible.

2 points: $\max_{z_1,z_2 \in E} |z_1 - z_2| = \text{diam } E$

3 points: $\max_{z_1,z_2,z_3\in E}(|z_1-z_2||z_1-z_3||z_2-z_3|)^{1/3}$

i i

 $n \text{ points: } \max_{z_1, \dots, z_n \in E} \left(\prod_{1 \le i \le j \le n} \left| z_i - z_j \right| \right)^{2/n(n-1)} =: \delta_n$

 $\mathcal{F}_n = \left\{ z_1^{(n)}, \dots, z_n^{(n)}
ight\}$ where max is attained is $n ext{-point Fekete set}$

 $\mathcal{F}_n \subset \partial_\infty E$

FACT: $\delta_n \downarrow$

 $\tau(E) := \lim_{n \to \infty} \delta_n$

transfinite diameter

Ex.

 $E: |z| \le 1$ E: [-1, 1] $\mathcal{F}_n = \left\{ \sqrt[n]{1} \right\}$ $\mathcal{F}_n = \left\{ \left(1 - x^2 \right) P_{n-2}^{(1,1)}(x) = 0 \right\}$ $\tau(E) = 1$ $\tau(E) = 1/2$

Chebyshev Constant: cheb(E)

Polynomial Extremal Problem: Determine the minimum sup norm for monic polys on E.

$$t_n(E) := \min_{p_{n-1} \in \mathcal{P}_{n-1}} ||z^n - p_{n-1}(z)||_E.$$

 $T_n(z) = z^n + \cdots$ such that $||T_n||_E = t_n(E)$ is called Chebyshev polynomial.

$$t_{m+n}(E) = ||T_{n+m}|| \le ||T_m||_E ||T_n||_E = t_m(E)t_n(E).$$

So

$$\lim_{n\to\infty} t_n(E)^{1/n} = \inf_{n\geq 1} t_n(E)^{1/n} =: \mathrm{cheb}(E).$$

Ex.
$$E: |z| \leq R$$

$$E: [-1, 1]$$

$$T_n(z) = z^n$$

$$T_n(x) = \frac{1}{2^{n-1}} \cos(n \arccos x)$$

$$t_n(E) = R^n$$

$$t_n(E) = 1/2^{n-1}$$

$$cheb(E) = R$$

$$cheb(E) = R$$
 $cheb(E) = \frac{1}{2}$

Fundamental Theorem (Fekete, Szegő, Frostman)

$$\mathsf{cap}(E) = \tau(E) = \mathsf{cheb}(E).$$

Moreover, Fekete point sets \mathcal{F}_n have asymptotic distribution μ_E and Fekete polynomials are asymptotically optimal for the Chebyshev problem.

Essential Observation

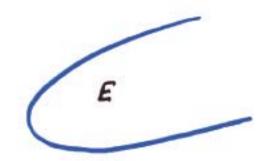
$$\begin{split} P(z) &= \prod_{k=1}^n \left(z-z_k\right) \\ &\frac{1}{n}\log\frac{1}{|P(z)|} = \int\log\frac{1}{|z-t|}\,d\mu(t) = U^\mu(z), \end{split}$$

where

$$\mu := rac{1}{n} \sum_{k=1}^n \delta_{z_k}$$
 , δ_{z_k} unit mass at z_k .

III) External Fields

 $E\subset \mathbb{C}$ closed



 $w: E \to [0, \infty)$ upper semi-continuous, > 0 on subset of positive cap, $|z|w(z) \to 0$ as $z \to \infty$ if E is unbded.

New distance function

$$|z-t|
ightarrow |z-t| w(z) w(t)$$

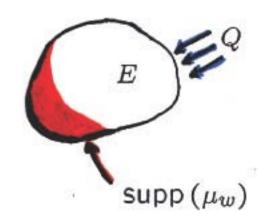
gives rise to

$$\tau(w,E)$$

Weighted Capacity: cap(w, E)

Electrostatics in the presence of the external field

$$Q := \log\left(\frac{1}{w}\right)$$



 $\mu \in \mathcal{M}(E) := \{ \text{unit measures supported on } E \}$

$$I_w(\mu) := \iint \log \frac{1}{|z - t| w(z) w(t)} d\mu(z) d\mu(t)$$

$$= \iint \log \frac{1}{|z - t|} d\mu(z) d\mu(t) + 2 \int Q(z) d\mu(z)$$

$$V_w := \inf_{\mu \in \mathcal{M}(E)} I_w(\mu)$$

 $cap(w, E) := e^{-V_w}$

 \exists a unique $\mu_w \in \mathcal{M}(E)$ called weighted equilibrium measure such that

$$I_{w}\left(\mu_{w}\right)=V_{w}.$$

Remark: $S(\mu_w) = \text{supp}(\mu_w)$ need not lie entirely on $\partial_\infty E$

Weighted Transfinite Diameter: $\tau(w, E)$

$$\delta_n(w) := \max_{z_1, \dots, z_n \in E} \left\{ \prod_{1 \le i < j \le n} |z_i - z_j| w(z_i) w(z_j) \right\}^{2/n(n-1)}$$

$$\delta_n\downarrow$$
, $au(w,E):=\lim_{n\to\infty}\delta_n(w)$

$$\mathcal{F}_n(w) = \left\{ z_1^{(n)}, \dots, z_n^{(n)} \right\}$$
 points of E

at which max is attained are called

weighted Fekete points.

$$\mathcal{F}_n(w) \subset S(\mu_w)^* := \{ z \in E : U^{\mu_w}(z) + Q(z) = F_{w} \}.$$

Weighted Chebyshev Constant: cheb(w, E)

$$t_n(w) := \min_{p \in \mathcal{P}_{n-1}} \|w(z)^n [z^n - p(z)]\|_E$$
,

$$cheb(w, E) := \lim_{n \to \infty} t_n(w)^{1/n}.$$

FUNDAMENTAL THM (Mhaskar & S.)

$$\operatorname{cap}(w,E) = \tau(w,E) = e^{-\int Q d\mu_w} \operatorname{cheb}(w,E),$$

$$Q = \log(1/w).$$

Moreover, weighted Fekete points $\mathcal{F}_n(w)$ have asymptotic distribution μ_w as $n\to\infty$, and weighted Fekete polynomials are asymptotically optimal in the weighted Chebyshev problem.

The **BIG** question: How to find μ_w ?

 $\mu = \mu_w$ is characterized by the conditions that for some constant F_w ,

$$\left\{egin{array}{ll} U^{\mu}(z)+Q(z)=F_{\hspace{-0.1cm}m{u}} & z\in S(\mu) \ & \ U^{\mu}(z)+Q(z)\geq F_{\hspace{-0.1cm}m{u}} & z\in E \end{array}
ight.$$

(here we assume E regular, Q continuous)

Essential Problem: Determine $S(\mu_w)$.

Anonymous

"To achieve goals in life, an important first step is to find the needed support."

Properties of the support $S(\mu_w)$.

a) Sup norm of weighted polys "lives" on $S(\mu_w)$, i.e., if E is regular

$$||w(z)^n P_n(z)||_E = ||w(z)^n P_n(z)||_{S(\mu_w)}, \quad \forall n, \ \forall P_n \in \mathcal{P}_n$$

b) The outer boundary of $S(\mu_w)$ maximizes F-functional

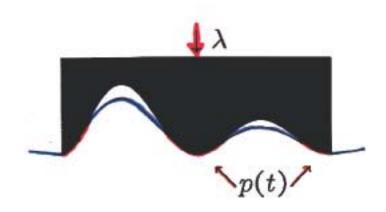
$$F(K) := \log[\operatorname{cap}(K)] - \int_K Q d\mu_K$$

over compact sets $K \subset E$;

$$F(K) \leq F(S(\mu_w))$$
, Equality $\Rightarrow K$ surrounds $S(\mu_w)$

- c) $S(\mu_w)$ is the set of **peaking points** for weighted polys $w(z)^n P_n(z)$ on E.
- d) If $E \subset \mathbb{R}$, "iterated balayage methods" generate compact sets $K_n \supset S(\mu_w)$ with $\cap K_n = S(\mu_w)^*$.

Contact Problem of Elasticity



 $S = S(Q, \lambda) = \{\text{points where stamp touches elastic}\}$ p(t) pressure on contact region

$$\int_{S} p(t)dt = \lambda$$

$$= Q(x) - D, \quad x \in S$$

$$\int \log|x - t|p(t)dt$$

$$< Q(x) - D, \quad x \notin S$$

 \Rightarrow For external field $Q(x)/\lambda$, $w(x) = e^{-Q/\lambda}$,

$$d\mu_w = p(t)dt/\lambda$$
, $S = S(\mu_w)$.

Ex Incomplete polynomials

$$w(x) = x^{\theta/(1-\theta)}$$
 on [0, 1], $0 < \theta < 1$,

$$S\left(\mu_{w}\right)=\left[\theta^{2},\mathbf{1}\right].$$

Ex. Freud Weights

$$w(x) = e^{-|x|^{\alpha}}, \ \alpha > 0, \ \text{ on } \mathbb{R}$$

$$S\left(\mu_{w}\right)=\left[-a_{\alpha},a_{\alpha}\right],$$

where

$$a_{\alpha} := \left[\frac{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{1}{2}\right)}{2\Gamma\left(\frac{\alpha+1}{2}\right)} \right]^{1/\alpha}.$$

Generalized Weierstrass Approximation.

Let $E \subset \mathbb{R}$ be closed.

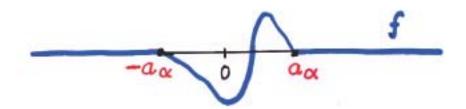
Conjecture. $f \in C(E)$ is the uniform limit on E of some sequence $\{w^n p_n\}_{q}^{\infty}$, $\deg p_n \leq n$, iff f(x) = 0 in $E \setminus S(\mu_w)$.

False in general!

But many important cases when true:

Lorentz Case: (S. & Varga) $f \in C[0,1]$ is the uniform limit on [0,1] of incomplete polynomials of type θ iff f=0 on $\left[0,\theta^2\right]=\left[0,1\right]\setminus S\left(\mu_w\right)$, $w(x)=x^{\theta/(1-\theta)}$.

COR Lorentz result is sharp!



Freud Case (Lubinsky & S.) If $w(x) = e^{-|x|^{\alpha}}$, $\alpha > 1$, on \mathbb{R} , then $f \in C(\mathbb{R})$ is the uniform limit on \mathbb{R} of a sequence

$$e^{-n|x|^{lpha}}p_n(x),\quad \deg p_n\leq n,\quad n o\infty$$
 iff $f=0$ in $\mathbb{R}\setminus [-a_lpha,a_lpha]=\mathbb{R}\setminus S\left(\mu_w
ight).$

COR (Mhaskar, Lubinsky, S.) Freud's conjecture is true.

THM (Totik) If $E \subset \mathbb{R}$ is an interval and $Q = \log(1/w)$ is convex on E, then conjecture is true.

See also Benko.

Elliptic Fekete Points on S2

 $\mathbb{S}^2 := \left\{ \mathbf{x} \in \mathbb{R}^3 \, : \, |\mathbf{x}| = 1 \right\}, \quad |\cdot| = \text{Euclidean dist}.$

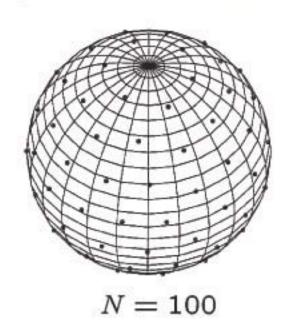
For each $N \ge 2$, let $\left\{\mathbf{x}_{1,N}^*, \mathbf{x}_{2,N}^*, \dots, \mathbf{x}_{N,N}^*\right\}$ maximize

$$\prod_{1 \le i < j \le N} \left| \mathbf{x}_i - \mathbf{x}_j \right|$$

over all $\{\mathbf{x}_i\}_1^N \subset \mathbb{S}^2$.

 $\left\{\mathbf{x}_{i,N}^{*}\right\}$ are called *elliptic Fekete points*.

Shub & Smale (Prob. #7 for next century)



Expect $\left\{\mathbf{x}_{i,N}^{*}\right\}_{1}^{N}$ to be *well-separated*, i.e.,

 $\exists C$ such that

$$d_N := \min_{i \neq j} \left| \mathbf{x}_{i,N}^* - \mathbf{x}_{j,N}^* \right| \geq \frac{C}{\sqrt{N}}, \quad \forall N \geq 2.$$

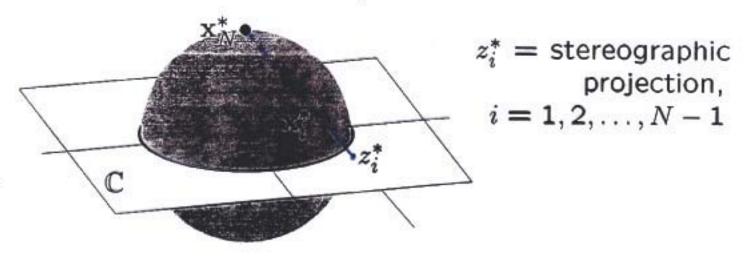
From results on best-packing on S² (due to Habicht & van der Waerden)

$$C \leq \sqrt{8\pi/\sqrt{3}} \approx 3.81$$
.

THM (Dragnev) Elliptic Fekete points are well-separated with C=2; in fact,

$$d_N \ge \frac{2}{\sqrt{N-1}}, \quad N \ge 2.$$

Proof. Assume $\mathbf{x}_N^* = \mathbf{x}_{N,N}^*$ is the North Pole



Then

$$\prod_{1 \le i < j \le N} \left| \mathbf{x}_i^* - \mathbf{x}_j^* \right|$$

$$= \prod_{1 \leq i < j \leq N-1} \frac{2 \left| z_i^* - z_j^* \right|}{\sqrt{1 + \left| z_i^* \right|^2} \sqrt{1 + \left| z_j^* \right|^2}} \prod_{1 \leq i \leq N-1} \frac{2}{\sqrt{1 + \left| z_i^* \right|^2}}$$

$$= 2^{N(N-1)/2} \prod_{1 \le i < j \le N-1} \left| z_i^* - z_j^* \right| w_N \left(z_i^* \right) w_N \left(z_j^* \right) ,$$

where

$$w_N(z) := \left(\frac{1}{\sqrt{1+|z|^2}}\right)^{(N-1)/(N-2)}$$
.

Thus $\left\{z_i^*\right\}$ are weighted Fekete points for $w_N(z)$.

Since $w_N(z)$ is radially symmetric it is easy to determine (from the F-functional) that

$$S(\mu_{w_N}) = \left\{ z \in \mathbb{C} : |z| \le \sqrt{N-2} \right\},$$

and, moreover, that all the weighted Fekete points $\left\{z_i^*\right\}_1^{N-1}$ lie on $S\left(\mu_{w_N}\right)$. Thus

$$|\mathbf{x}_N^* - \mathbf{x}_i^*| = \frac{2}{\sqrt{1 + \left|z_i^*\right|^2}} \ge \frac{2}{\sqrt{1 + N - 2}} = \frac{2}{\sqrt{N - 1}}.$$

But \mathbf{x}_N^* was arbitrarily chosen.

Other Applications

- (1) eigenvalues of random matrices
- (2) fast decreasing polynomials
- (3) rational approximation and interpolation
- (4) extremal problems with constraints

Reference

E. B. Saff, V. Totik

Logarithmic Potentials with External Fields Springer-Verlag (1997)

ISBN: 3-540-57078-0