
Code-Size Conscious Pipelining of Imperfectly Nested Loops

Mohammed Fellahi Albert Cohen
ALCHEMY Group, INRIA Futurs, Orsay, France

{first.last}@inria.fr

Sid Touati
PRiSM, University of Versailles, France

Sid.Touati@uvsq.fr

Abstract
This paper is a step towards enabling multidimensional software
pipelining of non-perfectly nested loops on memory-constrained
architectures. We propose a method to pipeline multiple inner loops
without increasing the size of the loop nest, apart from an out-
ermost prolog and epilog. We focus on the domain of media and
signal processing, where short inner loops are common and where
embedded constraints drive the selection of code-size conscious al-
gorithms. Our first results indicate that the additional constraints
associated with the method do not impede the extraction of signif-
icant amounts of instruction-level parallelism. In addition to pre-
serving precious scratch-pad or cache memory, our method also
avoids the performance overhead of prologs and epilogs resulting
from pipelined inner loops with short trip count.

Keywords Loop nest optimization, software pipelining, multidi-
mensional retiming, code size, startup time.

1. Introduction
Software pipelining optimizes the exploitation of instruction-level
parallelism (ILP) inside inner loops, with a reduced code size
overhead compared to aggressive loop unrolling [23]. Even better,
pipelining alone (without additional unrolling for register alloca-
tion) does not increase loop kernel size: typically, due to tighter
packing of instructions, kernel size typically decreases on VLIW
processors.

Unfortunately, most applications contain multiple hot inner
loops occurring inside repetitive control structures; this is typically
the case of streaming applications in media (or signal) processing,
nesting sequences of filters (or transforms) inside long-lived outer
loops (e.g., the so-called time loop). When considering embedded
or stream computing systems with scratch-pad memories, fitting
more inner loops on a single scratch=pad generally means higher
performance, as streaming codes are generally bandwidth hungry.1

As a result, current compilers have to trade ILP in inner loops for
scratch-pad resources, leading to suboptimal performance.

2. Problem Statement
For the sake of simplicity, we will first consider two levels of nested
loops, with a single outer loop, called the global loop, enclosing
one or more inner loops, called phases.2 We show that the conflict
between pipelining and code size can often be a side-effect of
separating the optimization of individual inner loops. We show how
to pipeline all phases without any overhead on the size of the global
outer loop.

1 On multi-core architectures like the IBM Cell, although all efforts where
made to maximize inter-core/scratch-pad connectivity, intra-core register
bandwidth is still an order of magnitude higher.
2 An analogy with a stream-oriented coarse grain scheduling algorithm [15].

Technically, we propose to modulo-schedule [23] as many
phases as possible, while merging the prolog of each outer iter-
ation of a phase with the epilog of its previous outer iteration. Such
prolog-epilog merging is enabled by an outer loop retiming (or
shifting) [16, 6] step, at the cost of a few additional constraints on
modulo scheduling. It is then possible to reintegrate the merged
code block within the pipelined kernel, restoring the loop to its
original number of iterations. This operation is not always possible,
and depends on the outer loop’s dependence cycles. Indeed, after
software-pipelining, prolog-epilog merging may affect phases that
are in dependence with statements shifted by the software pipeline
(along an inner loop). This makes our problem more difficult than
in the perfectly nested case [24].

We consider low-level code after instruction selection but before
register allocation; we thus ignore scalar dependences except def-
use relations, and break inductive def-use paths whenever a simple
closed form exists. We assume all dependences are uniform, mod-
eled as constant distance vectors whose dimension is the common
nesting depth between the source and sink of the dependence [1].
We capture all dependences in a directed graph G labeled with de-
pendence vectors.

2.1 Running Example
Our running example is given in Figure 1. Statements and phases
are labeled. Both intra-phase and inter-phase dependence vectors
are shown.

The classical approach to the optimization of such an example is
(1) to look for high-level loop fusions that may improve the locality
in inner loops, often resulting in array contraction and scalar pro-
motion opportunities [1, 29], and (2) to pipeline the phases (inner
loops) whose trip count is high enough. We assume the first loop
fusion step has been applied, and that further fusion is hampered
by complex dependence patterns or mismatching loop trip counts.
The result of the second step is sketched using statement labels
in Figure 2; notice the modified termination condition in pipelined
phases. As expected, this dramatically improves ILP, at the expense
of code size increase. In addition, some ILP is lost in the prolog
and epilog of each phase, and this results in accumulated overhead
across the execution of the global loop.

The alternative is to shift the prolog of each pipelined phase,
advancing it by one iteration of the global loop, then to merge
it with the corresponding epilog of the previous iteration of the
global loop. This is not always possible, and we will show in the
following sections how to formalize the selection of phases subject
to pipelining as a linear optimization problem.

Back to our running example, a possible solution is to pipeline
and apply prolog-epilog merging to phases A, B, E and F . The
code after advancing the prologs of pipelined phases is outlined in
Figure 3; notice the outermost prolog — resulting from advancing
the first global iteration of the phase prologs — and epilog — the
last global iteration of phase epilogs. Yet this code is incorrect, for
two reasons.



// Global loop
for (i=0; i<n; i++) {

// Phase A

for (j1=0; j1<m1; j1++) {
a1 t = x0[i][j1];
a2 t = t + 1;
a3 x1[i+1][j1] = t;

}

0, 0
0, 0

// Phase B

for (j2=0; j2<m2; j2++) {
b1 t = x1[i][j2]
b2 x2[j2] = t;

}
0, 0

1

// Phase C

for (j3=0; j3<m3; j3++) {
c1 t = x2[j3];
c2 s = s + t;

}
0, 0

0

// Phase D

for (j4=0; j4<m4; j4++) {
d1 x1[i+2][j4] = s;
d2 s = x1[i+2][j4+1];

}
0, 00, 1

0

2

// Phase E

for (j5=0; j5<m5; j5++) {
e1 t = x3[i][j5];
e2 x5[i+1][j5] = t;

}
0, 0

1

// Phase F

for (j6=0; j6<m6; j6++) {
f1 t = x5[i][j6];
f2 x3[i+3][j6] = t;

}
0, 0

2
2

0

}

Figure 1. Running example

• The inter-phase dependence from statement e2 to statement
f1 is violated, since f1 in the prolog of phase F has been
anticipated before one full iteration of phase E; some instances
of this violation are depicted by a bold arc on Figure 3. To fix
this violation, one may shift the whole phase E, advancing it by
one iteration of the global loop. This is possible since the only
inter-phase dependence targeting phase E (statement e1) has a
non-null distance.

• A similar problem exists with the inter-phase dependence from
statement b2 to statement c1; some instances of this violation
are depicted by a bold dashed arc on Figure 3. Yet we will see
that this violation cannot be fixed by shifting, due to the accu-
mulation of shifting constraints on the cycle of inter-phase de-
pendences involving A, B, C and D. We choose not to pipeline
C in the following; we will later demonstrate the optimality of
this choice after formalizing the global optimization problem.

// Global loop
for (i=0; i<n; i++)

A a1

a1‖a2

for (j1=0; j1<m1-2; j1++)
a1‖a2‖a3

a2‖a3

a3

B b1

for (j2=0; j2<m2-1; j2++)
b1‖b2

b2

C c1

for (j3=0; j3<m3; j3++)
c1‖c2

c2

D for (j4=0; j4<m4-1; j4++)
d1

d2

E e1

for (j5=0; j5<m5-1; j5++)
e1‖e2

e2

F f1

for (j6=0; j6<m6-1; j6++)
f1‖f2

f2

Figure 2. Software pipelining all phases independently

The final code after pipelining all phases but C,3 prolog-epilog
merging, shifting E, and reintegrating the merged prologs and epi-
logs into the kernels is outlined in Figure 4; notice the modified ter-
mination condition on the global loop, and the restored termination
condition on the pipelined phases (due to prolog-epilog merging).

The body of the global loop recovered its original size, and
prolog/epilog overhead has disappeared. This major improvement
was done at the minor expense of the loss of ILP on phase D, and
some extra code outside the global loop, due to the global shifting
of phase E.4

2.2 Inter-Phase Dependences
In the following, shifting is understood as advancing the execution
of a statement by one or more iterations. For example, shifting
b1 implies that the first iteration of b1 (or more) will end up in a
prolog of phase B; this prolog will have to be merged with the
epilog of this phase for the previous iteration of the outer loop.

3 Attempting to pipeline D does not bring any ILP.
4 The first iteration of the global loop executes E only, while the last
iteration executes every phase but E.



a1

a1‖a2

b1

c1

e1

f1

// Global loop
for (i=0; i<n; i++)

A for (j1=0; j1<m1-2; j1++)
a1‖a2‖a3

a2‖a3

a3

a1

a1‖a2

B for (j2=0; j2<m2-1; j2++)
b1‖ b2

b2

b1

C
for (j3=0; j3<m3; j3++)

c1‖c2

c2

c1

0

D for (j4=0; j4<m4-1; j4++)
d1

d2

E for (j5=0; j5<m5-1; j5++)
e1‖ e2

e2

e1

F for (j6=0; j6<m6-1; j6++)
f1‖f2

f2

f1

0

a2‖a3

a3

b2

c2

e2

f2

Figure 3. Advancing prologs of pipelined phases (incorrect code)

Since the dependence from a3 to b1 is carried by the outer loop,
its associated distance (0) does not tell anything about the precise
iterations of b1 within phase B that are in dependence. Shifting b1

along the inner loop — by any positive amount — is thus equivalent
to shifting the whole phase B by 1 iteration of the outer loop.
This observation is key to converting our prolog-epilog merging
problem into a classical retiming one.

// Prolog for shifted iteration of E
e1

for (j5=0; j5<m5; j5++)
e1‖e2

// Prologs of A, B, and F
a1

a1‖a2

b1

f1

// Global loop
for (i=0; i<n-1; i++)

A for (j1=0; j1<m1; j1++)
a1‖a2‖a3

B for (j2=0; j2<m2; j2++)
b1‖b2

C for (j3=0; j3<m3; j3++)
c1

c2

D for (j4=0; j4<m4; j4++)
d1

d2

E for (j5=0; j5<m5; j5++)
e1‖e2

F for (j6=0; j6<m6; j6++)
f1‖f2

// Epilog for shifted interation of E
e2

for (j1=0; j1<m1; j1++)
a1‖a2‖a3

for (j2=0; j2<m2; j2++)
b1‖b2

for (j3=0; j3<m3; j3++)
c1

c2

for (j4=0; j4<m4; j4++)
d1

d2

for (j6=0; j6<m6; j6++)
f1‖f2

// Epilogs of A, B, and F
a2‖a3

a3

b2

f2

Figure 4. Software pipelining with prolog-epilog merging



3. Characterization of Pipelinable Phases
From the global dependence graph G with multidimensional de-
pendence vectors, the phase dependence graph Gp is defined as
follows:

• nodes of Gp are the phases;
• an arc links a phase A to a phase B if and only if there is a

path in G from a statement a of A to statement b of B; to avoid
spurious transitively covered arcs, we also require this path to
contain a single inter-phase arc;

• the distance associated with an arc of Gp is the sum of the dis-
tances, for the dimension of the global loop, along the corre-
sponding path from a to b in G.

Arcs in Gp will be called phase dependences. They corre-
spond to one inter-phase dependence and zero or more transitively-
covered intra-phase dependence.

Notice the distance associated with a phase dependence takes
into account non-zero distances along the outer dimension of intra-
phase dependences.

A B C D E F
1 0 0

1

2

0

2

Figure 5. Phase dependence graph

Figure 5 shows the phase dependence graph for the running
example.

3.1 Causality Condition
Every time a phase is software pipelined, we just showed that
merging its prolog and epilog is equivalent — when considering Gp

— to shifting the whole phase by 1. To guarantee that all phases can
be pipelined and their prolog and epilog merged, it is thus sufficient
that every forward arc in Gp has distance d > 0, and any backward
arc has distance d > 1.

This is of course too restrictive, and in general we are back to a
traditional retiming problem [16]. Pipelining all phases is possible
if and only if, for any cycle C,

X
p∈C

dp − nb backward edges(C) ≥ nb phases(C). (1)

We can state a more general result.
Let us define

kC
def
=

X
p∈C

dp − nb backward edges(C). (2)

THEOREM 1. For every cycle, the number of phases that can be
safely pipelined is greater than or equal to kC .

This is only a lower bound, as we did not captured in Gp

whether pipelining a phase did result in an intra-phase shifting of
the specific statements involved in some inter-phase dependence.

Proof. Let us prove this result. Let a(i, p, j) denote an instance
of instruction a, given an iteration i of the global loop, a phase p
and an iteration j of p. Let ta(i,p,j) denote the execution time of
a(i, p, j) and a(i, p) denote the set of instances of a at global loop
iteration i.

b(i′, p′) depends on a(i, p) with dependence distance d

=⇒ ∀j, j′, ta(i,p,j) < tb(i′,p′,j′) and i ≤ i′. (3)

Indeed, a phase dependence in Gp between p and p′ corresponds
to dependences between two sets of statement instances a(i, p) and
b(i′, p′).

Software pipelining p′ may imply shifting occurrences of in-
struction a. We call cj the associated shifting distance along p′, ci

the shifting distance along the global loop, and we consider two
cases.

Forward edge. If p′ depends on p with distance d and p′ follows
p in the loop nest, ci must be chosen such that d ≥ 0.

Backward edge. If p′ depends on p with distance d and p′ pre-
cedes p in the loop nest, ci must be chosen such that d > 0.

We may compute ci, taking into account the global loop shifts
over outgoing arcs, the distance d, and whether p′ is pipelined or
not. The global loop shifts and d are the classical retiming variables
and parameters. What happens to p′ can be modeled easily, as we
previously observed in Section 2.2 that shifting along an inner loop
by any amount cj can be compensated by shifting along the global
loop by 1.

Therefore software pipelining p′ will increase the total pressure
over a cycle by at most 1. This constraint can be modeled by
decrementing the distance d when p′ is pipelined. We are back to
a classical retiming problem, from which we deduce that p′ can be
pipelined if decrementing d does not induce any cycle with negative
or null distance in Gp.

A simple recurrence on the number of pipelined phases con-
cludes the proof.

3.2 Necessary and Sufficient Condition
In the absence of any information about the statements involved as
sink and source of phase dependences, one may only assume that
pipelining a phase will incur a shifting constraint along the global
loop. In this case, the sufficient condition becomes a necessary one,
and the previous proof can be extended to show that the number of
phases that can be pipelined while merging prologs and epilogs is
exactly kC , as defined by (2).

Conversely, when considering the full dependence graph G, it is
possible to constrain the pipelining of individual phases so that to
forbid any inner loop shifting on some specific statements (targets
of inter-phase dependences). This will allow to further pipeline
some phases without impacting retimability of the global loop. We
will come back to this extension when describing the complete
algorithm.

4. Global Optimization Problem
Based on Theorem 1, we can formalize the software pipelining
of multiple inner loops with prolog-epilog merging as a global
optimization problem.

4.1 Multidimensional Knapsack Problem
First of all, the causality preservation condition in Theorem 1 needs
to be extended to cover the whole phase dependence graph Gp.
Indeed, software-pipelining kC phases for each cycle C may create
a retiming conflict, as a phase may belong to several cycles and
can be chosen to be software-pipelined for one cycle and not for
another.

The subject is not to software pipeline exactly kC phases for
each cycle C but to minimize the global outer loop execution time.
Since it is not possible to software pipeline more than kC phases



for each cycle C, we have to maximize an objective function under
some constraints. The objective function associated with the (static)
cycle count for the loop nest is the sum over all phases p of

profitp = seqtimep −mpIIp,

where seqtimep is the number of cycles to execute phase p and IIp

is the initiation interval for the pipelined version of phase p. Let
wCp ∈ {0, 1} denote whether phase p belongs to cycle C. The
optimization problem is the following:8>><>>:

variables: ∀p ∈ {1, . . . , nb phases}, Xp ∈ {0, 1}
objective: max

Pnb phases
p=1 profitpXp

constraints: ∀C ∈ {1, . . . , nb cycles},Pnb phases
p=1 wCpXp ≤ kC

(4)

This is a multidimensional Knapsack problem, a well known
NP-complete problem; unlike the one-dimensional case, there is no
known pseudo-polynomial algorithm [21] but some heuristics give
good results [22].

4.2 Algorithm
1. If for every cycle

kC ≥ nb phases
then software-pipeline each phase independently.

2. Otherwise:
• solve the multidimensional knapsack problem to identify

which are the kC phases to pipeline;
• retime the global outer loop, considering phase dependences

in Gp, reducing their distance by one every-time the sink
phase has been pipelined and contains intra-phase shifted
statements at the sink of an inter-phase dependence; this
step is guaranteed to terminate according to Theorem 1.

3. As an optional extension, pipeline all remaining phases with the
additional constraint that statements at the sink of an inter-phase
dependence may not be shifted; this may be easily modeled in
any modulo scheduling algorithm by placing such statements
initially in column 0 [23]. This step is guaranteed not incur
global retiming constraints.

4. Generate code, gathering all prologs and epilogs from pipelined
phases, and iterating on them according to the retiming of the
global outer loop.

5. Back to the Running Example
Figure 2 showed how to software pipeline all phases independently.
This allows to compute the initiation interval IIp for every phase
p. The profit of pipelining a phase is the difference in (static)
execution cycles between executing the original inner loop body
and the pipelined version. Figure 6 shows the profit for all phases
in the running example, assuming the trip counts of all phases are
identical and equal to m = m1 = · · · = m6.

Phase A B C D E F
Profit 2m m m 0 m m

Figure 6. Profit table

The graph Gp was given in Figure 5. It consists of two cycles,
(ABCD) and (CEF ). These cycles share phase C, which makes
the optimization problem even more interesting as a naive approach
may select C to be pipelined for one cycle but not for the other.
Figure 7 shows kC , the maximum number of phases that can be
pipelined for each cycle.

Cycle ABCD CEF
kC 2 2

Figure 7. Cycle retiming constraints

Overall, we have to solve the following optimization problem:8><>:
Xj ∈ 0, 1
max(2X1 + X2 + X3 + X5 + X6)
X1 + X2 + X3 + X4 ≤ 2
X3 + X4 + X5 + X6 ≤ 2

A greedy approximation of the solution orders phases from the
most profitable phase to the less profitable one, and selects as many
phases as possible for software pipelining, while respecting the kC

constraint for every cycle C. The result for the running example is
to pipeline A, C, and E, with a total profit of 4m.

A B C D E F
0 0 0

0

1

-1

2

Figure 8. Modified phase dependence graph after pipelining A, B,
E and F

The multidimensional knapsack solution is better: phases A,
B, E, F are pipelined, with a total profit of 5m. Figure 8 shows
the modified phase dependence graph, where pipelined phases are
shaded, and the decremented distances of incoming arcs appear in
a bold face — following the retiming model of the proof of The-
orem 1. Notice phase C is more profitable than B, but pipelining
B instead gives us a chance to choose another phase for the other
cycle and increases the total profit. This corresponds to a speedup
of 13/(13− 8) = 1.625.

As this example shows, it may be overall more effective to
pipeline less profitable phases but maximize the profit on every
cycle. This observation is very natural when the phases have a
different trip count, but our running example shows that this may
also occur when cycles in the phase dependence graph are not
disjoint.

The resulting code, with prolog-epilog merging and generation
of the global loop’s prolog and epilog was shown in Figure 4.

6. Ongoing and Future Work
Our method goes beyond incrementally extending software pipelin-
ing to nested loops. It features a slightly more complex change in
the schedule of statement instances, compared to plain retiming.
This raises many questions, some of which are discussed below.

6.1 Experimental Studies
We are currently implementing the algorithm. The lack of reference
dependence graphs for multi-dimensional pipelining problems will
limit our ability to compare with previous work in the area; it is
also the reason why we are not able yet to present experimental
figures. However, studying well known media, signal-processing
and numerical codes, we have gathered enough results to become
confident about the practical applicability of the technique.

Indeed, a large number of codes exhibit a global time loop and
a series of inner loops: this is the case for loop nests resulting from
the scheduling of Synchronous Data-Flow graphs (SDF) [10, 2, 15,
14]. The static scheduling of SDF is an important problem arising



from the mapping of data-flow applications onto multi-processors.
In most cases, these codes have no inter-phase dependence cycles:
the multidimensional knapsack problem is trivial, and we know
that all phases can be freely pipelined, maximizing the ILP gains
without code size increase inside the global loop.

In addition, when mapping and generating code for SDF, it is
necessary to allocate the FIFO buffers to communicate live data
between actors [10]. Enforcing a bound on a buffer will result into a
back-pressure, modeled as a memory-based anti-dependence [20].
Some of these dependences may eventually build cycles with non-
unit distance similar to those of the running example.

As a generalization, many dependence cycles in nested loops in-
volve memory-based — write-after-write (output) and write-after-
read (anti) — dependences. In this case, renaming and privatization
[27, 17] allow to eliminate any unnecessary dependence that does
not carry the flow of a value [11]. To reduce the memory footprint,
one generally combine these expansion techniques with array con-
traction (a.k.a. folding) [12], or the more general storage mapping
optimization [25, 4].

Overall, combining preliminary transformations including loop
rerolling, fusion and distribution, unroll-and-jam, privatization,
contraction, if-conversion and inlining [1], we found excellent ap-
plications in production-quality implementations of 802.11a, JPEG
and MPEG4 (de)compression, GNU radio and polyphase filtering.5

6.2 Managing Code Growth With Predicated Execution
Our method results in code growth outside the global loop. This is
much less harmful to performance than inner prologs and epilogs,
yet it may still cause some problems on memory-constrained em-
bedded architectures. In addition, this growth is amplified by the
accumulation of global loop shifts induced by the prolog-epilog
merging constraints. Rather than fully hoisting the prolog and epi-
log code, an alternative code generation strategy for predicated
ISAs consists in guarding the phases with predicate registers con-
ditioned by the global loop iterator. This is well known for single-
dimensional pipelining: Intel ICC uses rotating predicate registers
and a dedicated counted loop instruction to collapse the prolog and
epilog inside the modulo-scheduled kernel in most cases [7, 9]. A
extension of this technique could be crafted here, with the addi-
tional complexity to manage two levels of nesting and predication;
it would also induce some predicate manipulation overhead in the
absence of hardware support for nested rotating registers. Eventu-
ally, unlike the single-loop prolog-epilog collapsing via predica-
tion [9], our method would not incur any performance overhead:
pipeline depth has no influence on startup time, as prologs and epi-
logs are hoisted outside the global loop.

6.3 Managing Register Pressure
There is an unfortunate side-effect of retiming a prolog (resp.
epilog) along the global loop: any live variable entering (resp.
leaving) the pipelined kernel will interfere with every variable in
other phases. The effect on register pressure can be disastrous [26].
There are multiple ways to tackle with this problem.

• The increased pressure is comparable to aggressive scheduling
of unrolled or fused loops [18, 3]. We have seen that prolog-
epilog merging competes with loop fusion when dependence
patterns are simple enough; our technique has similar impact
on register pressure, which should be encouraging given the
practical importance of loop fusion among loop optimizations
for memory locality and ILP enhancement.

5 All benchmarks studied in the context of the ACOTES and SARC FP6
European projects:
http://www.hitech-projects.com/euprojects/ACOTES,
http://www.sarc-ip.org.

• It is always possible to spill/fill live variables at phase bound-
aries. This operation is very likely to be cheaper than run-
ning through the low-ILP epilog of a deeply pipelined inner
loop. It is even more likely to be shorter, especially on archi-
tectures with ISA support for register spill/refill like IA64’s
register stack engine [19], register windows (Sparc), or multi-
push/multi-pop operations (CISC).

• When applying our technique to coarser grain, process schedul-
ing, interprocess communication goes through FIFO channels
generally implemented as scratch-pad memories or caches [5,
14]. The increased pressure is similar to the effect of array re-
naming in this case, and rarely a practical problem compared to
array privatization [5].

6.4 Integration Into a Loop Nest Optimization Framework
Associated with our ongoing experimental work, we are working
on three different extensions.

First of all, it will be easy to generalize the algorithm to arbitrar-
ily deeply nested loops, provided a strategy to pipeline individual
perfectly nested loops can be defined [24], as well as a code gener-
ation technique accommodating for imperfectly nested phases.

In addition, we will try to combine our method with other forms
of multi-level pipelining and combined pipelining and unroll-and-
jam [3, 24], to maximize the extraction of fine grain parallelism
through multiple levels of shifting. E.g., considering phase C of
the running example, it is possible to improve ILP by shifting c1,
advancing it by one iteration of the global loop.

Eventually, we plan integrate our technique into a more gen-
eral loop nest optimization framework, based on the polyhedral
model [13, 28]; this framework may not allow to model fine-grain
resources (instruction-level reservation tables), but will extend to
even more important optimizations for locality and parallelism [8].

7. Conclusion
Software pipelining nested loops is not a new idea. Yet our prolog-
epilog merging method may appear as the most natural extension
to single loop pipelining. Indeed, it avoids the code size and startup
time overhead of nested prologs and epilogs: these advantages are
exactly the motivations backing software pipelining in favor of loop
unrolling. We formalize the prolog-epilog merging idea, combining
single loop pipelining and multidimensional retiming, modeling
the global scheduling constraints as a multidimensional knapsack
problem.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures. Morgan and Kaufman, 2002.

[2] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogenous systems. Int.
J. in Computer Simulation, 4(2):155–182, 1994.

[3] S. Carr, C. Ding, and P. Sweany. Improving software pipelining
with unroll-and-jam. In Proceedings of the 29th Hawaii Intl. Conf.
on System Sciences (HICSS’96) Volume 1: Software Technology and
Architecture. IEEE, 1996.

[4] P. Carribault and A. Cohen. Application of storage mapping
optimization to register promotion. In Intl. Conf. on Supercomputing
(ICS’04), pages 247–256, St-Malo, France, June 2004.

[5] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele,
and A. Vandecappelle. Custom memory management methodology.
Kluwer Academic, 1998.

[6] A. Darte, G.-A. Silber, and F. Vivien. Combining Retiming and
Scheduling Techniques for Loop Parallelization and Loop Tiling.
Parallel Processing Letters, 7(4):379–392, 1997.



[7] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt. Overlapped loop support in
the Cydra 5. In Intl Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’89), pages 26–38, Apr.
1989.

[8] A. Douillet and G. R. Gao. Software-pipelining on multi-core
architectures. In Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT’07), Brasov, Romania, Sept. 2007. To appear.

[9] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, J. Ng, and
D. Sehr. An overview of the Intel IA-64 compiler. Intel Technical
Journal, Q4, 1999.

[10] D. G. M. E. A. Lee. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Trans. Computers,
36(1):24–25, 1987.

[11] P. Feautrier. Array expansion. In Intl. Conf. on Supercomputing
(ICS’88), pages 429–441, St. Malo, France, July 1988.

[12] G. Gao, R., V. Sarkar, and R. Thekkath. Collective loop fusion for
array contraction. In LCPC’5 Fifth Workshop on Languages and
Compilers for Parallel Computing, LNCS 757, pages 281–295, New
Haven, august 1992.

[13] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. Intl. J. of Parallel
Programming, 2006. Special issue on Microgrids. 57 pages.

[14] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’06), San Jose, CA, Oct. 2006.

[15] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling
of stream programs. In LCTES’03, June 2003.

[16] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, Dec. 1991.

[17] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array dataflow
analysis and its use in array privatization. In Principles of
Programming Languages (PoPL’93), pages 2–15, Charleston, South
Carolina, Jan. 1993.

[18] K. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with
loop transformations. ACM Transactions on Programming Languages
and Systems, 18(4):424–453, july 1996.

[19] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture.
IEEE Micro, pages 44–55, Mar. 2003.

[20] A. Moonen, M. Bekooij, and J. van Meerbergen. Timing analysis
model for network based multiprocessor systems. In Proc. of
ProRISC, 15th annual Workshop of Circuits, System and Signal
Processing, pages pages 91–99, Veldhoven, The Netherlands, Nov.
2004.

[21] R. Parra-Hermandez and N. J. Dimopoulos. A new heuristic for
solving the multichoice multidimensional knapsack problem. IEEE
Transactions on Systems, Man, and Cybernetics — Part A: Systems
and Humans, 35(5), Sept. 2005.

[22] J. Puchinger, G. R. Raidl, and U. Pfershy. The multidimensional
knapsack problem: Structure and algorithms. Technical Report No.
006149 INFORMS Journal of Computing, Mar. 2007.

[23] B. R. Rau. Iterative modulo scheduling: an algorithm for software
pipelining loops. In MICRO 27: Proceedings of the 27th annual
international symposium on Microarchitecture, pages 63–74, New
York, NY, USA, 1994. ACM Press.

[24] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao.
Single-dimension software pipelining for multi-dimensional loops.
In Proceedings of the International Symposium on Code generation
and Optimization(CGO’04), Mar. 2004.

[25] M. M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-
independant storage mapping for loops. In Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS’98), 8, 1998.

[26] S. Touati and C. Eisenbeis. Early Control of Register Pressure
for Software Pipelined Loops. In Proceedings of the International
Conference on Compiler Construction (CC), Warsaw, Poland, Apr.
2003. Springer-Verlag.

[27] P. Tu and D. Padua. Automatic array privatization. In Languages and
Compilers for Parallel Computers (LCPC’93), number 768 in LNCS,
pages 500–521, Portland, Oregon, Aug. 1993.

[28] N. Vasilache, A. Cohen, and L.-N. Pouchet. Automatic correction
of loop transformations. In Intl. Conf. on Parallel Architectures and
Compilation Techniques (PACT’07), Brasov, Romania, Sept. 2007.
To appear.

[29] S. Verdoolaege, M. Bruynooghe, G. Janssens, and F. Catthoor. Multi-
dimentsional incremetal loops fusion for data locality. In ASAP, pages
17–27, 2003.


