
Algebraic Dataflows for Big Data Analysis* 

Jonas Dias1, Eduardo Ogasawara1,2, Daniel de Oliveira3, Fabio Porto4, Patrick Valduriez5 , Marta Mattoso1 
1Federal University of Rio de Janeiro - COPPE/UFRJ, 2CEFET/RJ, 3Fluminense Federal University - UFF 

4LNCC National Laboratory for Scientific Computing, Brazil 
5INRIA and LIRMM, France 

{jonasdias, marta}@cos.ufrj.br, eogasawara@cefet-rj.br, danielcmo@ic.uff.br 
fporto@lncc.br, Patrick.Valduriez@inria.fr 

 
Abstract— Analyzing big data requires the support of data-
flows with many activities to extract and explore relevant in-
formation from the data. Recent approaches such as Pig Latin 
propose a high-level language to model such dataflows. How-
ever, the dataflow execution is typically delegated to a MapRe-
duce implementation such as Hadoop, which does not follow an 
algebraic approach, thus it cannot take advantage of the opti-
mization opportunities of PigLatin algebra. In this paper, we 
propose an approach for big data analysis based on algebraic 
workflows, which yields optimization and parallel execution of 
activities and supports user steering using provenance queries. 
We illustrate how a big data processing dataflow can be mod-
eled using the algebra. Through an experimental evaluation 
using real datasets and the execution of the dataflow with 
Chiron, an engine that supports our algebra, we show that our 
approach yields performance gains of up to 19.6% using alge-
braic optimizations in the dataflow and up to 39.1% of time 
saved on a user steering scenario. 

Keywords: big data; dataflow; algebraic workflow; 
performance evaluation.* 

I. INTRODUCTION 
Big data analyses are critical in business and scientific 

data processing. Analyses over big datasets may depict more 
accurate results regarding Web data, users behavior, and 
challenging scientific researches [1]. They involve the exe-
cution of many activities, such as: programs to collect and 
extract data for analysis, data cleaning procedures, annota-
tions, data aggregations, core programs to perform analyses 
and tools to visualize and interpret the results. These activi-
ties are typically organized in a dataflow and may use tradi-
tional programs for information retrieval, data mining, com-
putational mechanics or novel approaches developed by 
scientists.  

Many users currently use MapReduce [2] implementa-
tions  to perform big data analysis in a High Performance 
Computing (HPC) environment (typically clusters). The 
only thing they have to concern about is to code Map and 
Reduce functions while the framework provides data paral-
lelism. Hadoop† is a very popular open source implementa-
tion of MapReduce. However, it does not provide features to 

                                                             
* Work partially funded by CNPq, CAPES, FAPERJ and INRIA 

(SwfP2Pcloud and Hoscar projects) and performed (for P. Val-
duriez) in the context of the Computational Biology Institute 
(www.ibc-montpellier.fr). 

† http://hadoop.apache.org/ 

model complex dataflows [3]. Dataflows are commonplace 
in both business analytics and scientific experimentation, 
where they are typically called scientific workflows. 

One approach to develop dataflows for big data analysis 
is Pig Latin [3], which combines MapReduce and SQL 
programming styles and provides native operations to load, 
process, filter, group, and store data in Hadoop. Pig, the 
implementation of Pig Latin, considers the optimization of 
the dataflow logic [4] including the optimized placement of 
filter operations, as well as collapsing two filters into a 
single Map operation. These optimizations are suitable for 
the native Pig Latin operations (like filter and group). How-
ever, when the user (that can be a scientist or a business 
user) needs to use customized code, Pig Latin requires using 
User Defined Functions (UDF), which hide the behavior of 
the customized program [5]. When it comes to task dis-
patching and resource allocation, Pig relies on Hadoop to 
handle MapReduce tasks. Unfortunately, the Hadoop execu-
tion plan does not take advantage of the declarative features 
of Pig Latin, providing little room for dataflow runtime 
optimization. There are several efforts aiming at improving 
Hadoop performance [6–8]. However, they focus on im-
proving the way Hadoop works, changing the way data is 
stored and accessed and tuning Hadoop parameters. Since 
Hadoop is not aware of the entire dataflow and the history 
of executions, it cannot optimize the execution, by taking 
advantage of data movements and task execution behavior. 

We believe that concepts from well-established distrib-
uted query optimization in Relational Database Manage-
ment Systems (RDBMS) [9] may well improve big data 
processing. RDBMS typically exploit their knowledge re-
garding the behavior and implementation of relational alge-
bra operators, as well as database statistics. This knowledge 
allows for the RDBMS to know how a given operation con-
sumes and produces data, thus making it possible to create 
equivalent query execution plans and estimate the cardinali-
ty of intermediate results. Then, based on a cost function, 
the RDBMS can pick the best plan and adjust it at runtime. 

Compared with RDBMS, current dataflow processing 
approaches lack information regarding the behavior of the 
activities they are executing and the statistics of their execu-
tion. For the execution statistics, we can benefit from data 
provenance techniques for scientific workflows [10]. Sever-
al studies [11–14] point to the importance of bringing prov-
enance to MapReduce execution frameworks. Provenance, 
as long as it is available for querying during runtime, allows 
for the analysis of partial results, thus leveraging the dynam-



ic steering of workflows by users [15]. Dynamic steering of 
workflows is associated to features that allow for changes 
and adjustments in the workflow during its execution so the 
workflow engine dynamically adapts the execution to the 
current configuration or scenario. By steering workflows, 
scientists may change parameters such as filtering criteria 
during the execution of the workflow, e.g. to reflect better 
results for the experiments [16]. Based on provenance, it is 
also possible to estimate the execution time of an activity, 
the amount of data produced by a Map function or the ag-
gregation factor of a Reduce function, for example. Prior to 
dataflow execution, Hadoop cannot know whether the Map 
function programmed by the user always produces a single 
output for each input or several outputs for each input. This 
lack of data statistics typically yields dataflows with a static 
execution strategy.  

To tackle this lack of data statistics, some approaches 
[17] use static code analysis to optimize the dataflow based 
on the behavior of the activities. Other approaches require 
the development of the dataflow through a well defined API 
[18] so the knowledge over data behavior is captured by the 
interpreter. Both approaches may be the best options for 
applications such as text searching or novel web mining 
approaches that use recently developed Java code that can 
be easily used as an UDF. 

In this paper, we discuss how algebraic workflows may 
support big data analysis enabling more flexible execution 
approaches through provenance data. Our workflow algebra 
[19] is inspired by the relational algebra for databases and 
provides a uniform dataflow representation that adds 
metadata to dataflow activities that leverage data statistics. 
In the algebraic approach, data processed by activities is 
modeled as relations while activities are mapped to algebra-
ic operators. This approach is suitable for big data work-
flows (e.g.  bioinformatics ones [20,21] and oil and gas 
[19,22]). The algebraic representation brings many opportu-
nities for workflow optimization through algebraic trans-
formations and leverages the management of data parallel-
ism through different execution strategies. Furthermore, the 
execution model for the workflow algebra is tightly coupled 
to the provenance database, enabling real-time provenance. 
Querying provenance at runtime allows for adaptive sched-
uling based on provenance statistics [21] and other features 
such as user steering [16]. Such features avoid a black-box 
execution and may produce faster and more efficient work-
flows. We show performance comparisons between differ-
ent execution strategies and different execution plans for the 
same workflow, obtained through algebraic optimizations. 
Our experimental evaluation shows up to 19.6% of perfor-
mance improvements. In addition, our experiments show up 
to 39.1% of time saved on a user steering scenario. 

This paper is organized as follows. Section II introduces 
our approach with a motivating example. Section III briefly 
describes the algebraic approach for data-centric workflows, 
its execution model and real-time provenance. Section IV 
presents our experimental evaluation and Section V con-
cludes. 

II. MOTIVATING EXAMPLE 
To illustrate how a workflow for big data analysis can be 

modeled using our algebra [19], a dataflow that searches for 
trends in scientific publications was chosen. This dataflow 
is called BuzzFlow, and it uses data collected from bibliog-
raphy databases such as DBLP‡ and PubMed§, to show 
trends and their correlations in the published papers during 
the last 20 years. BuzzFlow is an example of a general big 
data analysis dataflow and will be consistently used in the 
remainder of the paper as proof of concept. 

 
Figure 1. BuzzFlow dataflow 

BuzzFlow is composed of 13 activities as shown in Fig-
ure 1. The boxes represent the activities of the workflow and 
the arrows represent the datasets that flow between them. 
Activity 1 splits the input file into fragments to enable paral-
lel processing of the dataset. Activity 2 produces a list of 
words and its frequency on the year, i.e. it produces a set of 
output data that contains the year, the word and its frequen-
cy. Activity 3 aggregates the frequency value for each year 
and word. Activity 4 removes every year before 1992. Then, 
activity 5 aggregates the output relation by Word and writes, 
in a history file, the frequency that the word had on every 
year since 1992. Activity 5 also stores the total frequency of 
the word to be sorted in descending order by activity 6. For 
each word in the results, activity 7 creates a histogram of the 
data contained in the history file, plotting the frequency of 
the word along the years. The results obtained so far follows 
a Zipf distribution. Thus, activity 8 selects the interesting 
information based on the Zipf’s law and decides whether a 
given input tuple should continue in the dataflow or not. 
Activity 9 selects ten of the most frequent terms on recent 
years (2011 and 2012). The activity selects the history file 
of those terms produced in activity 5. Next, activity 10 

                                                             
‡ http://www.informatik.uni-trier.de/~ley/db/ 
§ http://www.ncbi.nlm.nih.gov/pmc/ 

1.Fragment+Bibliography+File+

call$FileSplit(file.xml).

2.Run+Buzzword+Analysis+

for$each$bd.in.BD.call.Buzz(bd).

Bibliography 
Data (BD) set 

3.Reduce+Results+by+Word+

for$each$word,.year.in.ZD.
call.WordReduce(ZD,.word,.year).

Buzzword 
Data (ZD) set 

4.Filters+old+years+

for$each$year.in.RD..
call.YearFilter(rd).

Reduced Data 
(RD) set 

5.Create+the+History+of+Words+

for$each$word.in.RD..
call.BuzzHistory(RD,.word).

Reduced 
Data (RD) set 

6.Sort+Words+by+Frequency+

call.OrderBy(HD,.frequency).

Histories 
Data (HD) set 

7.Create+Histogram+Picture+

for$each$hd.in.HD.
call.HistCreator(hd).

8.Applies+a+Zipf+Filter+

for$each$frequency.in.HD..
call.ZipfFilter(frequency).

9.Select+Top+10+words+

call.Top10.(RD,.HD).

Histories Data 
(HD) set 

10.Cross+Join+Top+Words+

call.CrossJoin(TD,.HD).

Histories Data 
(HD) set 

11.Correlate+Words’+Histories+

for$each$(word,.tword).in.CD.
call.correlate(word,.tword).

Crossed Results 
Data (CD) set 

12.Filters+Low+CorrelaQons+

for$each$corr$in.OD.call.
TopCorrelaLon(corr).

Correlated Data 
(OD) set 

13.Gather+Histograms+

for$each$corr$in.OD.call.
getHistograms(corr).

Correlated Data 
(OD) set 

Bibliography 
Files SplitMap 

SplitMap 

Reduce 

Filter 

Reduce 

SRQuery Map 

Filter 

MRQuery 

MRQuery 

Map 

Filter 

SRQuery 

(HD) 



makes a cross product between the outputs of activities 8 
and 9. The idea is to correlate the “hot terms” of the recent 
years with the buzzwords of the last two decades. Thus 
activity 10 produces the input data set for activity 11. Each 
input of activity 11 contains a “hot topic” of a recent year 
(tword) and a buzzword from the past two decades (word). 
It compares their histories and calculates the correlation 
between the terms. Activity 12 filters only the pairs (tword, 
word) with higher correlations (above 95%). Then, activity 
13 selects the histograms for these pairs. 

This example shows that a meaningful big data analysis 
requires a good number of activities and each activity has a 
particular behavior regarding how it consumes and produces 
data. Some activities consume a single input and produce 
many. Some activities only modify the data, e.g. activity 6 
or 7, while others may filter the data out, e.g. activities 4 or 
8. Some activities also group data into a single output, e.g. 
activities 3 or 5. Without understanding the behavior of the 
activities, it may be hard to estimate data cardinality prior 
the execution of the dataflow. Thus, our algebraic workflow 
approach is appropriate for big data analysis. Furthermore, 
provenance data may provide tremendous help to scientists 
by allowing for their analysis during runtime and steering of 
their workflows. 

III. ALGEBRAIC BIG DATA PROCESSING 
In relational databases, relational algebra is the main 

support for query execution and optimization. We believe it 
is important to review and possibly inherit successful fea-
tures from the well-established relational algebra for big 
data processing. Pig Latin already uses characteristics from 
relational databases. In an RDBMS, algebraic operators 
(like select, project, join, union) have precise semantics but 
extensions done through UDF do not, which requires com-
plex optimization strategies such as predicate migration 
[23]. With our workflow algebra, the main properties of 
relational algebra are kept while supporting general-purpose 
compiled programs and scripts without relying on UDF. 

Our algebraic approach for data-centric workflows [19] 
associates an algebraic operator (𝜙) to activities of the data-
flow. An algebraic operator expresses the behavior of an 
activity with respect to how it consumes the input data and 
produces the output data. For an output relation T that fol-
lows a schema T we write 𝑇 ← 𝜙 𝑌,𝜔,𝑅 . We say that 
𝑅 = {𝑅!,𝑅!,… ,𝑅!} is the set of input relations with sche-
mas {Ri, .., Rn}, 𝜔 = {𝜔!,𝜔!,… ,𝜔!} is the set of additional 
operands and Y <{Ri, .., Rj}, Ti, UC> is the dataflow activity 
that executes a given computational unit (UC) to produce an 
output relation compatible with schema T. Observe, howev-
er, that a UC may be a legacy or third-party software not 
amenable to the relational representation of the data. 

Activities always consume and produce relations, i.e. 
sets of tuples. For a single input tuple, Map activities pro-
duce a single output tuple whereas SplitMap may produce 
many. Reduce aggregates tuples into a single one based on a 
grouping attribute Ga. Filter decides if an input tuple must 
go to the output or not. SRQuery and MRQuery execute 

relational algebra expressions: SRQuery for single relation 
queries (i.e. selection and/or projection) while MRQuery 
involves multiple relations (cross product or join). For de-
tails please refer to [19]. The algebraic operators associated 
to BuzzFlow activities are shown on Figure 1.   

Although relations represent data, the content of the files 
are not inserted into relations. The relations store only 
metadata with the references to files with binary or unstruc-
tured data. However, some important parameters and results 
may be extracted from files to be inserted in a relation to 
enable queries over experiment data results in provenance.  

A. Execution Model 
The parallel execution model of the algebraic approach 

for workflows is based on the activation concept. Activation 
is the finest unit of data that is necessary to execute an in-
stance of a given activity [19]. It includes the minimum set 
of tuples from the input relation that is necessary to execute 
the activation based on the operator that is associated to the 
activity. For example, for a Map operator, only one tuple per 
activation is necessary. However, for a Reduce, the activa-
tion may contain a horizontal fragment of the input relation. 
The activation also contains information about the UC and 
the reference to the output tuple or relation. The execution 
of a given activation is composed of three steps: data in-
strumentation, program invocation and result extraction 
[19]. The instrumentation step extracts data from the input 
relation to build command lines to be invoked. The program 
invocation should execute the command line on different 
nodes/processors of the execution environment, such as a 
cluster or a cloud. As the activations finish, the results are 
extracted and inserted in the output relation. Although data 
instrumentation is an automated process, result extraction 
may need the development of an extract component. Since 
the activity Correlate instantiates a general compiled pro-
gram or script (correlate), the output can be domain-
specific. The extract component is executed per activation 
and is responsible to extract desired results in the form of a 
tuple or relation. 

As long as input data is available for an activity, activa-
tions are produced and ready to execute. However, the exe-
cution model allows for the scheduling and execution of 
activations following four different strategies. The strategies 
are based on two scheduling policies and two distribution 
strategies. The blocking policy (i.e. First-Activity-First [19]) 
says that all the activations of a given activity are executed 
prior the execution of any activation of further activities. If 
an activity B consumes data produced by an activity A, then 
B only executes after all activations of A are finished. Alter-
natively, there is the pipeline policy (i.e. First-Tuple-First 
[19]). If an activity C consumes data from B, which con-
sumes data from A, the policy executes an activation of A 
followed by an activation of B and then an activation of C. 
There are also two distribution strategies: the Static strategy 
sends bags of activations for each computing resource that 
requests tasks to process. The Dynamic strategy sends a 
single activation per request. The combination of these 
characteristics yields the four execution strategies: Static-



Blocking, Static-Pipeline, Dynamic-Blocking and Dynamic-
Pipeline (please refer to [19] for more details). 

Although we propose a novel approach for workflow de-
sign and execution, we believe it is complementary to other 
approaches such as Pig, as each approach has its specific 
features that are better for a given set of applications. For 
example, in Figure 2 we show a hypothetical Pig dataflow 
and the respective execution plan in Hadoop (Hadoop Jobs). 
But instead of running jobs in Hadoop, Pig could simply 
make a call to Chiron, our workflow engine that implements 
the proposed algebra (Figure 2 shows a translation of the 
Pig workflow to algebra). In this comparison, Hadoop exe-
cutes three static MapReduce jobs while the algebraic ap-
proach is able to stipulate different execution strategies 
(static-blocking, dynamic-pipeline and dynamic-blocking) 
for different fragments of the workflow. The choice for the 
best execution strategy may be related to intermediate data 
cardinality and provenance statistics. The possibility to 
choose between different execution strategies brings flexi-
bility and better performance. 

 
Figure 2. Comparison between execution strategies. 

B. Real-time Provenance Support 
Since the algebraic approach for workflows is an exten-

sion of relational algebra, it is possible to use a database to 
manage the workflow relations. Thus, it is easier to integrate 
all information of a workflow within the provenance data-
base. Chiron workflow engine uses provenance data to man-
age the whole workflow execution, and for instance, decide 
what to execute next based on the previous activity execu-
tion. Consequently, the provenance database reflects the 
execution history in a structured way, and becomes availa-
ble to scientists for querying at runtime. 

Real-time provenance support allows scientists to moni-
tor the workflow, perform preliminary analysis on the ex-
periment while it is running and take actions regarding exe-
cution. For example, let us consider a scientist is executing 
BuzzFlow in the cloud. By querying the provenance data-
base, she knows that activity ZipfFilter is running and sev-
eral activations already finished, thus there are results avail-
able. She queries the output relation of ZipfFilter and checks 
the path to several histogram files in the cloud storage. The 
scientist can now stage out the histogram files and analyze 
them. If she finds that the filter is allowing irrelevant data to 
pass, she can decide to make the filter more rigorous by 
changing the parameters of the command line program. If 
the scientist changes the parameter in the provenance data-

base, all remaining activations will use the new parameter 
values. Additionally, the scientist can reset the status of the 
ZipfFilter activity, so it will be executed all over again with 
the new parameters. 

Scientists can also look for errors in the workflow and 
check possible causes using provenance data. Depending on 
the error, it may be possible to fix it by changing a miscon-
figured parameter or activity. All such capabilities are relat-
ed to steering of workflow executions by the user [15].  
Steering of workflows involves several complex issues in 
scientific workflows execution that are related to the best 
approach to monitor the execution, the support to runtime 
analysis and the dynamic changes in the workflow execu-
tion. Although different tools can be developed to support 
steering of workflows, we believe real-time provenance 
support is one of the main features that can fully support it.  

IV. EXPERIMENTAL EVALUATION 
In this section, we show how the algebraic approach 

may support big data experiments. The workflow execution 
engine can take advantage of the algebra to compute differ-
ent execution strategies that improve the efficiency of the 
workflow. Furthermore, the scientist can query the experi-
ment and fine-tune the execution to produce better results. 
During the study, we consider the four different execution 
strategies presented in Section III.A (static-blocking, static-
pipeline, dynamic-blocking and dynamic-pipeline). The 
executions of BuzzFlow were performed on an SGI Altix 
ICE 8200 cluster, with a total of 32 nodes (and 32 × 8 cores) 
of 2.66GHz Intel Xeon 5355 8-core processors. The work-
flow was executed using Chiron**, a parallel workflow en-
gine that implements our algebra. Each execution of 
BuzzFlow generated 70,811 parallel activations with more 
than 600,000 tuples in the relations of the workflow for the 
DBLP bibliography. 

 
Figure 3. Execution time for the four different strategies. 
BuzzFlow was executed using the four available execu-

tion strategies. We show the execution time of the most 
compute-intensive activities of the dataflow in Figure 3. We 
can see that the execution strategy choice impacts signifi-
cantly the dataflow performance. The worst strategy for the 
workflow (static-pipeline) takes 79.7 minutes to complete 
while the best strategy (dynamic-blocking) takes 56.6 

                                                             
** http://chironengine.sf.net 



minutes - a performance difference of up to 29.1%. The 
dynamic dispatching strategies outperform the static ones. 
Since most activations of the dataflow are short-term and 
the experiments are executed in a cluster with private and 
high-speed InfiniBand network connection, dispatching 
individual activations as the compute nodes request them 
tends to be more efficient because it minimizes the overall 
idle time of available resources. The best choice for the 
execution strategy may vary depending on the workflow and 
the execution environment. The static approach may be 
better on environments with higher latency, for example.  

The results in Figure 3 do not show significant perfor-
mance differences between the blocking and pipeline strate-
gies. To provide a better view of the differences between 
these execution strategies, we applied an algebraic optimiza-
tion (AT1) in BuzzFlow. AT1 makes Correlate and Histo-
gramCreator activities execute one after the other. Both 
activities are time-consuming and are associated to the Map 
operator. Thus, the dataflow engine may benefit from pipe-
lining the activations. We execute AT1 with both dynamic-
blocking and dynamic-pipeline strategies as depicted in 
Figure 4. Although AT1 improves the usage of the pipeline 
strategy, it increases the cardinality of intermediate results, 
which affects the performance of the workflow negatively. 
Alternatively, another algebraic optimization (AT2) places 
ZipfFilter before HistogramCreator because ZipfFilter de-
creases the cardinality of data in approximately 90%. Thus, 
a better alternative for the workflow is to anticipate the 
ZipfFilter activity. We execute AT2 only with the dynamic-
pipeline strategy. For both AT1 and AT2, we performed 
manual optimizations. Figure 4 shows the time comparison 
between the original BuzzFlow and the algebraically trans-
formed versions AT1 and AT2. 

 
Figure 4. Performance of different BuzzFlow designs 

The results show the impact on performance of different 
ways of modeling the dataflow using the algebraic approach 
for big data processing. AT2 is a better choice since it re-
duces the cardinality of intermediate results. The way the 
activities are chained into the dataflow and the choice of a 
given execution strategy can impact the execution perfor-
mance. These optimizations are related to the logic of the 
dataflow. However, scientists usually need to fine-tune the 
dataflow to obtain more accurate results while they are 
experimenting with data. For instance, in the BuzzFlow 
example, the ZipfFilter activity can be adjusted to filter 
more or less data depending on the requirements of the 
experiment. The filter adjustment, in this case, is related to 

the best trade-off between precision and recall that scientists 
need. ZipfFilter is originally configured to filter out around 
90% of the data. Scientists may analyse preliminary results 
at runtime and decide to change the parameter of ZipfFilter 
to increase the filtering level to 95%, for example. Increas-
ing the filter speeds up the execution of the remainder of the 
workflow because it reduces the cardinality of intermediate 
data for the remaining activities.  

In order to change a parameter of the workflow, scien-
tists typically abort current workflow execution and re-
execute the workflow with the new configuration (with the 
new parameter value). This manual approach is very simple, 
but it is hard to maintain and not very efficient because the 
activities of the workflow that are not affected by the 
change do not need to be re-executed. We believe scientists 
should be able steer the workflow execution by making 
changes while the workflow is running. Thus, the workflow 
engine should be sensitive to the parameter values and dy-
namically adjust the execution accordingly. This steering 
approach may be more efficient as shown in Figure 5. In the 
figure, we show the comparison between the manual and 
steering approaches applied to both the original BuzzFlow 
and the enhanced AT2 optimization. The manual approach 
includes: the time to run the workflow until the activity 
ZipfFilter produces its results; the overhead between the 
partial data analysis and the workflow restart; and the time 
to run the workflow again with the new parameter config-
ured for the filter. Alternatively, the steering approach in-
cludes: the time to run the workflow until the activity 
ZipfFilter produces its results; the overhead time to change 
the parameter at runtime; and the time to run the remainder 
of the workflow with the new filter configuration. 

The steering approach is expected to be more efficient 
than the manual approach since it saves the re-execution of 
several activities of the workflow. In this case, we save up 
to 39.8% of execution time by steering the original 
BuzzFlow. The AT2 transformation takes less advantage of 
user steering (30.6% of improvement) because the ZipfFilter 
activity is anticipated, thus fewer activities are re-executed 
in the manual approach. Additionally, more activities are 
executed after the changes.  

 
Figure 5. Manual re-execution approach compared to user 

steering. 
This experimental evaluation highlights the flexibility of 

the algebraic approach to manage dataflows. Using algebra-
ic optimizations and choosing the best execution strategy for 
the workflow improves the execution performance signifi-



cantly. Furthermore, considering the experimental process 
where scientists refine a dataflow to produce more accurate 
results, the real-time provenance leverages user steering of 
the dataflow. Analyzing partial data and performing changes 
at runtime can save execution time, thus resulting in more 
efficient experiments. 

V. CONCLUSION 
In this paper, we presented an algebraic approach for big 

data processing. It extends concepts from dataflow lan-
guages and parallel databases to model workflows that can 
be executed in parallel. The algebra provides data uniformi-
ty and algebraic operations that are associated to activities, 
which can invoke general-purpose programs, including 
legacy code and third-party software. The workflow algebra 
offers different execution strategies for the workflow and 
provides opportunities for workflow optimization using 
algebraic transformations. Since the workflow algebra is an 
extension of relational algebra, it is straightforward to use 
the provenance database to store the workflow relations, so 
that scientists can query provenance and experiment data at 
runtime. We illustrated how a general dataflow (called 
BuzzFlow) can be modeled in the algebra for big data pro-
cessing. We also discuss some real-time queries that lever-
age the steering of workflows by scientists during the exper-
iment execution. 

We present an experimental evaluation using real da-
tasets collected from DBLP and the execution of BuzzFlow 
with Chiron, a workflow engine that supports our algebra. 
The choice of different execution strategies influences the 
dataflow performance by up to 29.1%. We also showed the 
impact on performance of different ways of modeling the 
dataflow. The performance difference between the original 
dataflow and other equivalent designs generated through 
algebraic optimizations is up to 19.6%. These performance 
differences open opportunities for optimizers that, based on 
a cost model and provenance statistics, may choose the best 
design and execution strategy for a given input dataflow. On 
a user steering scenario, where scientists need to fine-tune 
the experiment to obtain more accurate results, our approach 
yields up to 39.1% of time saving. 

By combining well-funded concepts from database tech-
nologies with new technologies for data processing, we 
believe the algebraic approach is a promising approach to 
handle big data analysis. It has the possibility to optimize 
the dataflow through algebraic optimizations, the choice of 
the most appropriate execution model for each fragment of 
the dataflow and real-time provenance support. The pro-
posed algebra may be combined with current big data pro-
cessing technologies, to work, for example, with Pig Latin. 
Other approaches such as [6–8] can also be combined to the 
algebraic approach to improve data partitioning and replica-
tion. 

VI. REFERENCES 
[1] C. Lynch, 2008, Big data: How do your data grow?, Nature, v. 455, n. 

7209 (print Setembro.), p. 28–29.  
[2] J. Dean and S. Ghemawat, 2008, MapReduce: simplified data pro-

cessing on large clusters, Communications of the ACM, v. 51, n. 1, p. 
107–113.  

[3] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, 2008, 
Pig latin: a not-so-foreign language for data processing, In: Proceed-
ings of SIGMOD, p. 1099–1110 

[4] C. Olston, B. Reed, A. Silberstein, and U. Srivastava, 2008, Automatic 
optimization of parallel dataflow programs, In: USENIX 2008 Annual 
Technical Conference on Annual Technical Conference, p. 267–273 

[5] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, 2012, SkewTune in 
action: mitigating skew in MapReduce applications, Proceedings of the 
VLDB Endowment, v. 5, n. 12 (Agosto.), p. 1934–1937.  

[6] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and J. 
Schad, 2012, Only aggressive elephants are fast elephants, Proceed-
ings of the VLDB Endowment, v. 5, n. 11, p. 1591–1602.  

[7] A. Floratou, J.M. Patel, E.J. Shekita, and S. Tata, 2011, Column-
oriented storage techniques for MapReduce, Proceedings of the VLDB 
Endowment, v. 4, n. 7 (Abril.), p. 419–429.  

[8] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.B. Cetin, and S. 
Babu, 2011, Starfish: A Self-tuning System for Big Data Analytics, In: 
Proceedings of the 5th Conference on Innovative Data Systems Re-
search, p. 261–272 

[9] M.T. Özsu and P. Valduriez, 2011, Principles of Distributed Database 
Systems. 3 ed. New York, Springer. 

[10] J. Freire, D. Koop, E. Santos, and C.T. Silva, 2008, Provenance for 
Computational Tasks: A Survey, Computing in Science and Engineer-
ing, v.10, n. 3, p. 11–21.  

[11] Y. Amsterdamer, S.B. Davidson, D. Deutch, T. Milo, J. Stoyanovich, 
and V. Tannen, 2011, Putting lipstick on pig: enabling database-style 
workflow provenance, Proceedings of the VLDB Endowment, v. 5, n. 4 
(Dezembro.), p. 346–357.  

[12] H. Park, R. Ikeda, and J. Widom, 2011, RAMP: A System for Captur-
ing and Tracing Provenance in MapReduce Workflows, Proceedings 
of the VLDB Endowment, v. 4, n. 12 

[13] D. Crawl, J. Wang, and I. Altintas, 2011, Provenance for MapReduce-
based data-intensive workflows, In: Proceedings of the 6th workshop 
on Workflows in support of large-scale science, p. 21–30 

[14] R. Ikeda, H. Park, and J. Widom, 2011, Provenance for Generalized 
Map and Reduce Workflows, In: Proceedings of the 5th Conference on 
Innovative Data Systems Research 

[15] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. 
Goble, M. Livny, L. Moreau, et al., 2007, Examining the Challenges of 
Scientific Workflows, Computer, v. 40, n. 12, p. 24–32.  

[16] J. Dias, E. Ogasawara, D. Oliveira, F. Porto, A. Coutinho, and M. 
Mattoso, 2011, Supporting Dynamic Parameter Sweep in Adaptive and 
User-Steered Workflow, In: 6th Workshop on Workflows in Support of 
Large-Scale Science, p. 31–36 

[17] F. Hueske, M. Peters, M.J. Sax, A. Rheinländer, R. Bergmann, A. 
Krettek, and K. Tzoumas, 2012, Opening the black boxes in data flow 
optimization, Proceedings of the VLDB Endowment, v. 5, n. 11, p. 
1256–1267.  

[18] C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R. Brad-
shaw, and N. Weizenbaum, 2010, FlumeJava: easy, efficient data-
parallel pipelines, In: Proceedings of the 2010 ACM SIGPLAN confer-
ence on Programming language design and implementation, p. 363–
375 

[19] E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez, and M. 
Mattoso, 2011, An Algebraic Approach for Data-Centric Scientific 
Workflows, Proc. of VLDB Endowment, v. 4, n. 12, p. 1328–1339.  

[20] K.A.C.S. Ocaña, D. Oliveira, J. Dias, E. Ogasawara, and M. Mattoso, 
2012, Discovering Drug Targets for Neglected Diseases Using a 
Pharmacophylogenomic Cloud Workflow, In: Proceedings of the IEEE 
8th International Conference on e-Science 

[21] D. Oliveira, K. Ocaña, F. Baião, and M. Mattoso, 2012, A Prove-
nance-based Adaptive Scheduling Heuristic for Parallel Scientific 
Workflows in Clouds, Journal of Grid Computing, v. 10, n. 3, p. 521–
552.  

[22] G. Guerra, F. Rochinha, R. Elias, D. Oliveira, E. Ogasawara, J. Dias, 
M. Mattoso, and A.L.G.A. Coutinho, 2012, Uncertainty Quantification 
in Computational Predictive Models for Fluid Dynamics Using Work-
flow Management Engine, International Journal for Uncertainty 
Quantification, v. 2, n. 1, p. 53–71.  

[23] J.M. Hellerstein and M. Stonebraker, 1993, Predicate migration: 
optimizing queries with expensive predicates, In: ACM SIGMOD Rec-
ord, p. 267–276 

 


