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Abstract— Peer-to-peer (P2P) systems are complex to analyze
due to their large number of users who connect intermittently
and to the frequency of requests for files or Web objects.

In this paper we propose a mathematical model in which
request streams are represented as fluid flows and then apply
this model in an analysis of Squirrel: a recent P2P cooperative
Web cache.

Our fluid model provides a low-complexity means to estimate
the performance of Squirrel (hit probability and latency) and ex-
hibits the key qualitative properties of this system. The accuracy
of our model is validated by a comparison with discrete-event
simulation.

I. INTRODUCTION

Peer-to-peer systems exhibit continuously increasing com-
plexity in several dimensions, such as number of users, number
of available documents, and access speed, etc. Performance
analysis of peer-to-peer systems suffers from this complexity
and often requires costly numerical methods or model simu-
lations [1], [2].

Inspired by the seminal work of Anick, Mitra and Sondhi
in 1982 [3] and the subsequent success of fluid modeling and
simulation of packet networks (see for instance [4]–[10] and
references therein), in this paper we explore a fluid approach
for modeling content distribution systems where content (e.g.
shared files) is replaced by a fluid.

We have successfully used this approach in [11] to study
the performance (hit rate) of a cluster of Web caches. In
this paper we use a stochastic fluid model to investigate
the performance of Squirrel [12]: a novel peer-to-peer (P2P)
cooperative Web cache. The principle of Squirrel is to replace
a corporate dedicated Web cache by making client desktop
machines cooperate in a peer-to-peer fashion in order to act
globally as an efficient distributed Web cache.

This analysis differs from that in [11] in that within this
new system, clients and caches are the same entities, and
consequently the request rate now depends on the number of
active users.

Alternative approaches include Markovian analysis and
event-driven (or trace-driven) simulations. These approaches
have merit and we do not want to systematically oppose
fluid models to more traditional approaches. Our take-home
message is that simple (macroscopic) fluid models, whenever
they apply, may give fairly accurate qualitative and quantitative

results and at a low numerical complexity. Content distribu-
tion networks appear to be good candidates to illustrate our
approach as they typically involve a large number of users
and many parameters. In turn, these characteristics imply large
state spaces and a high numerical complexity when one uses
detailed (microscopic) models (such as the Markovian) and
simulations.

In Section II we provide an overview of Squirrel. Our fluid
model is introduced in Section III and we use it in Section IV
to compute the main performance of Squirrel (hit probability,
latency, etc.). In particular, we provide a simple expression for
the hit probability, whose complexity is linear in the number
of nodes in the Squirrel network. We show in Section V
that our model provides substantial insight into performance
issues of P2P cooperative Web caches such as Squirrel. Our
analysis shows that two key parameters largely determine
the performance of the system. In Section VI we compare
results obtained with the fluid model to results obtained with
a discrete-event simulation of Squirrel. We find that the fluid
model is both qualitatively and quantitatively accurate. We
conclude in Section VII with possible extensions of our fluid
model.

II. OVERVIEW OF SQUIRREL

Squirrel [12] is a decentralized, peer-to-peer Web cache that
uses Pastry [13] as a location and routing protocol. When
a client requests an object it first sends a request to the
Squirrel proxy running on the client’s machine. If the object is
uncacheable 1 then the proxy forwards the request directly to
the origin Web server. Otherwise it checks the local cache, like
every Web browser would do, in order to exploit locality and
reuse. If a fresh copy of the object is not found in this cache,
then Squirrel tries to locate one on some other node. To do so,
it uses the distributed hash-table and the routing functionalities
provided by Pastry. First, the URL of the object is hashed to
give a 128-bit object identity (a number called object-Id) from
a circular list; then the routing procedure of Pastry forwards
the request to the node with the identity (called node-Id; this
number is assigned randomly by Pastry to a participating node)

1An object can be considered uncacheable if, for example, its URL contains
“cgi-bin”, or if its freshness lifetime is zero (see e.g. [14] for details).



the closest to object-Id. This node then becomes the home node
for this object. Squirrel then proposes two schemes from this
point on: home-store and directory schemes.

In the home-store scheme, objects are stored both at client
caches and at its home node. The client cache may either have
no copy of the requested object or a stale2 copy. In the former
case the client issues a GET request to its home-node, and it
issues a conditional GET (cGET) request in the latter case. If
the home-node has a fresh copy of an object then it forwards
it to the client or it sends the client a not-modified message
depending on which action is appropriate. If the home-node
has no copy of the object or has a stale copy in its cache, then
it issues a GET or a cGET request, respectively, to the origin
server. The origin server then either forwards a cacheable copy
of the object or sends a not-modified message to the home-
node. Then, the home-node takes the appropriate action with
respect to the client (i.e. send a not-modified message or a
copy of the object).

In the directory scheme the home-node for an object
maintains a small directory of pointers to nodes that have
recently accessed the object. A request for this object is sent
randomly to one of these nodes. We will not go deeper into
the description of this scheme since from now on we will only
focus on the home-store scheme. We do so mainly because the
latter scheme has been shown to be overall more attractive than
the directory scheme [12]. In addition, the home-store scheme
is more amenable to a fluid analysis than the directory scheme.

In a Squirrel network (a corporate network, a university
network, etc.), like in any peer-to-peer system, clients arrive
and depart the system at random times. There are two kinds of
failures (or departures): abrupt and announced failures. Each
failure has a different impact on the performance of Squirrel.
An abrupt failure will result in a loss of objects. To see this,
assume that node i is the home-node for object O. If node i
fails, then a new home-node for object O has to be found by
Pastry, as explained above, the next time object O is requested.
Assume that the copy of object O was fresh when node i failed
and consider the first GET request issued for O after the failure
of node i. The GET request is therefore forwarded to the new
home-node for object O (say node j); this request will result
in a miss if j has no copy of O or if its copy is stale. In
this case, the failure of node i will yield a degradation in the
performance since node j will have to contact the origin server
to get a new copy of object O or a not-modified message, as
appropriate. If a node is able to announce its departure and
to transfer its content to its immediate neighbors in the node-
Id space before leaving Squirrel (announced failure), then no
content is lost when the node leaves.

When a node joins Squirrel then it automatically becomes
the home node for some objects but does not store those
objects yet (see details in [12]). In case a request for one of
those objects is issued, then its two neighbors in the node-Id
space transfer a copy of the object, if any. Therefore, we can

2A node determines the freshness of a copy either through an explicit value
provided by HTTP fields (MAX AGE, EXPIRES) or by using a heuristic, as
detailed later.

consider that there is no performance degradation in Squirrel
due to a node arrival, since the transfer time between two
nodes is supposed to be at least one order of magnitude smaller
than the transfer time between any given node and the origin
server.

From now on, the terms “node” and “client” will be used
interchangeably.

III. A MODEL FOR SQUIRREL

A. Modeling the client dynamics

To capture the dynamic behavior of the Squirrel nodes we
use the following model: we assume that there are N < ∞
clients who join and leave Squirrel independently of each
other. The time until a given client joins (resp. leaves) is
exponentially distributed with rate λ > 0 (resp. µ > 0). If we
denote by N(t) ∈ {0, 1, 2 . . . , N} the number of participating
(i.e. connected) clients at time t ≥ 0, then {N(t)}t is a birth
and death process, known in the literature as the Ehrenfest (or
Engset) model [15].

Let
�

∞ denote the stationary number of participating
clients. Setting ρ = λ/µ, we have [15, p. 17]

�
[N∞ = i] =

(

N

i

)

ρi

(1 + ρ)N
, 0 ≤ i ≤ N. (1)

From now on we will consider that the process {N(t)}t is
in steady-state at time t = 0. Let 0 ≤ T1 < T2 < · · ·
denote the successive jump times of the (stationary) process
{N(t)}t. Introduce Nn

def
= N(Tn+), the stationary number

of participating clients just after the occurrence of the n-
th event/jump (i.e. join or leave of a client). Let πi be the
stationary probability that there are i participating nodes just
after a jump. It is shown in Appendix III that

πi =

(

N − 1

i − 1

)

i + ρ(N − i)

2i(1 + ρ)N−1
ρi−1, 1 ≤ i ≤ N

π0 =
1

2(1 + ρ)N−1
. (2)

B. Modeling the content dynamics

We assume that each participating client issues requests for
objects at a constant rate σ > 0, and therefore model the
request process of each client by a fluid flow. The motivation
for this fluid approximation is that requests occur at a much
faster time scale (typically a few requests per hour for each
client) than nodes join/leave events (at most once a day
for each client, much less frequently for abrupt failures).
Therefore, we expect the long-run average performance of
the fluid model to be similar to that of the real, discrete-time
system, where requests occur with any distribution with mean
inter-request time 1/σ. (This claim is experimentally validated
for Poisson arrivals in Section VI.)

In particular, our model represents the instantaneous set of
cached objects in the whole Squirrel network by a global
amount of fluid called X(t) at time t. Indeed, the Pastry
substrate provides sufficient load balancing among nodes to
assume the amount of fluid at each node is an equal share of



the total fluid in the system, thereby allowing us to summarize
this distributed state by the single variable X(t). This quantity
of fluid will increase when objects are downloaded in the
network from the origin server and added to their home node,
i.e. whenever there is a cache miss. On the other hand, the
amount of fluid will decrease as cached objects become stale.
We assume that cached objects have the same constant time-
to-live in cache, given by 1/θ; this assumption is made both
for the sake of simplicity and because most caches use a time-
to-live calculation heuristic for objects without any specified
expiration date (about 70% of requested objects [14]), which
is generally subject to a default maximum value. The usual
default value is 24 hours (see [14] for more details).

We assume that each node can store an unlimited number
of objects. Though individual nodes would probably not
dedicate too much memory to the collaborative cache, even
reasonable cache sizes are sufficient to avoid losses due to a
full cache; one reason for this is that cached objects become
stale fast enough to avoid continuous increase of the content.
For centralized caches, the largest size needed to avoid most
capacity misses is dictated by the clients request rates [16]
and is fairly small. We expect this property to be applicable
to the Squirrel decentralized cache system.

As a result, the variation of the fluid is proportional to
the miss rate and to the expiration rate θ when the nodes
population is constant3. If we call

�
[hit|i, x] the hit probability

when there are i connected nodes containing the fluid x, then
the variation rate of the amount of fluid is

dx

dt
= iσ (1 −

�
[hit|i, x]) − θx

where iσ is the overall request rate in the Squirrel network
when there are i connected nodes.

We now define an appropriate model for the hit probability
function

�
[hit|i, x]. Let us first call c the total number of

objects that can be requested (in our model, the total amount
of existing fluid in the universe). Since x is the quantity of
cached fluid, a very simple model for the hit probability is

�
[hit|i, x] = x

c
. However, this linear function does not take

into account the fact that some objects may be requested more
often than others and thus are more likely to be present in
the network. Since the popularity of Web objects follows a
Zipf-like distribution [17], we can also model

�
[hit|i, x] as a

concave function of the type
�

[hit|i, x] =
(

x
c

)β
, which reflects

the fact that:

• When the amount of fluid is low, popular documents are
quickly retrieved, resulting in a fast increase of the fluid.

• When most popular objects are present in the system, the
fluid can then only increase with requests for rare objects.

It remains to specify how the node join and leave events
impact the performance of our fluid model. We have seen
in Section II that join events will probably not affect the
performance of the system. On the other hand, we consider
all failures (leaves) to be abrupt failures; this assumption is

3Assuming, of course, that at least one node is present.

discussed in Section IV-D. Therefore, when a node leaves its
share of objects is lost to the system. If we assume that the
requests are well balanced across all nodes of the network
(property of the Pastry hashing technique), then a fraction 1/i
of the total amount of fluid is lost when a leave occurs if there
were i nodes connected just before this leave event. This value
has been confirmed empirically in [12].

For the sake of generality we introduce two mappings,
∆u(i) and ∆d(i), that give the fluid reduction generated by a
node up and down event, respectively, given that i nodes were
connected before this event. For Squirrel, ∆d(i) = i−1

i
and

∆u(i) = 1 as discussed above. In other words, if the amount
of fluid is x and that i nodes are connected before a leave
(resp. join) then the amount of fluid just after this event will
be x∆d(i) (resp. x∆u(i)).

A glossary of the model parameters is provided in Table I.

TABLE I

SYSTEM PARAMETERS

N Maximum number of nodes
λ Birth rate of each Squirrel node
µ Death rate of each Squirrel node
ρ λ/µ
π Stationary distribution of {Nn}n

σ Request rate per client
θ Expiration rate of cached objects
c Total number of objects in the universe

(i.e. total amount of fluid)
∆d(i) Fluid reducton after a node failure

when there were i ≥ 1 connected nodes.
Default value: (i − 1)/i (cf. [12])

∆u(i) Fluid reduction after a node join
when there were i ≥ 0 connected nodes.
Default value: 1 (cf. [12])

IV. PERFORMANCE ANALYSIS OF THE SQUIRREL P2P

CACHE SYSTEM

In this section we provide a simple closed-form expression
for the hit probability of the Squirrel system, under the
main assumption that all objects are all equally popular.
Although somewhat unrealistic, this assumption leads to a
clearer analysis and highlights the parameters interactions of
the system. For practical numerical results, we show how this
assumption can be relaxed in Section IV-C. The end-to-end
latency reduction offered by the Squirrel system, which might
be a more meaningful metric than the hit probability, can easily
be derived from the following results as shown in Section
IV-B. Finally, we discuss the possible sources of inaccuracy
of this model in Section IV-D and try to identify remedies
whenever possible.

A. Hit probability analysis

Under the equal popularity assumption, the hit probability
is a linear function of the amount of cached fluid, as shown
in Section III-B. Our first task will be to characterize the fluid
process {X(t)}t.

Recall the definition of N(t) and Nn, the number of
connected nodes at time t and at time Tn+ (i.e. just after



the n-th jump time), respectively (see Section III-A). We
assume that the sample-paths of {N(t)}t and {X(t)}t are

right-continuous. Hence, Xn
def
= X(Tn+) is the amount of

cached fluid just after the n-th jump in the process {N(t)}t.
For easy reference, the main definitions and notation have been
collected in Table II.

TABLE II

VARIABLES

X(t) Total amount of fluid in the system
N(t) Number of connected nodes at time t
{Tn}n Jump times of the process {Nt}t

Nn =N(T+
n ) Number of connected nodes just after

the n-th jump.
Xn =X(T+

n ) Total amount of fluid just after the n-th jump.
Yn =X(T−

n+1
) Total amount of fluid just before the n+1-st

jump. (at the end of the n-th period)
vi limn→∞ � [Yn |Nn = i] /c
ηi c/(1 + α/i)
γ σ/(µc)
α (θc)/σ

The fluid process is defined as described in Section III-B:
between two consecutive jumps (Tn, Tn+1) of {N(t)}t the
fluid increases at rate

d

dt
X(t) = σNn

(

1 −
X(t)

c

)

− θX(t) (3)

provided that Nn > 0. Integrating (3) gives

X(t)=
σNn

σNn

c
+ θ

+

(

Xn−
σNn

σNn

c
+ θ

)

e−(t−Tn)(θ+ σNn
c

)

for Tn ≤ t < Tn+1 provided that Nn > 0. If Nn = 0 then
X(t) = 0 for Tn ≤ t < Tn+1.

If Tn corresponds to a node leave (resp. join) then the
amount of cached fluid is reduced as follows

Xn = ∆d(Nn)X(Tn−) (resp. Xn = ∆u(Nn)X(Tn−))

Therefore, {X(t)}t is a piecewise (exponential) process,
with randomness at jump times {Tn}n. A sample path of the
process {(N(t), X(t))}t is represented on Fig. 1.
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Fig. 1. Sample path of {(N(t), X(t))}t.

For the sake of convenience we introduce

ηi
def
=

c

1 + θc
iσ

. (4)

We can now re-write the solution of (3) as

X(t)=ηNn
+ (Xn−ηNn

) e
−(t−Tn) σNn

ηNn , Tn ≤ t < Tn+1 (5)

The process {(N(t), X(t))}t is an irreducible Markov process
on the set {0, 0} ∪ {{1, 2, . . . , N} × [0, c)}. Denote by X the
stationary regime of {X(t)}t.

We define the steady-state hit probability pH as

pH =

�
[X]

c
(6)

We give a simple formula for pH in Proposition 4.1. This
formula is expressed in terms of the following new parameters
that will play a key role in the understanding of the system
behavior4:

α
def
=

θc

σ
and γ

def
=

σ

µc
. (7)

Proposition 4.1: Assume that for i=0, ..., N−1,

0 ≤ ∆u(i)∆d(i + 1) ≤ 1. (8)

The hit probability pH is given by

pH =
1

(1 + ρ)N

N
∑

i=1

(

N

i

)

ρi vi (9)

where the vector v = (v1, . . . , vN )T is the unique solution of
the linear equation

Av = b (10)

with b = (b1, . . . , bN )T a vector whose components are given
by bi = γi for 1 ≤ i ≤ N , and A = [ai,j ]1≤i,j≤N a N × N
tridiagonal matrix whose non-zero elements are

ai,i = αγ + (γ + 1)i + ρ(N− i), 1 ≤ i ≤ N
ai,i−1 = −i∆u(i − 1), 2 ≤ i ≤ N
ai,i+1 = −ρ(N − i)∆d(i + 1), 1 ≤ i ≤N−1.

Proof: The idea of the proof is to first compute the
expected amount of cached fluid just before a jump in the
process {N(t)}t conditioned on the value of N(t) just before
this jump, and then to invoke Palm calculus to deduce the
expected amount of cached fluid at any time.

Let Yn be the amount of cached fluid just before the (n +
1)-st jump in the process {N(t)}t (i.e. Yn = X(Tn+1−)).

We first compute vi
def
= limn→∞(1/c)

�
[Yn |Nn = i] for 1 ≤

i ≤ N . We show in Appendix I that vi satisfies the following
recursive equation:

vi (ρ(N−i) + αγ + (γ + 1)i) = i∆u(i−1)vi−1

+ρ(N − i)∆d(i + 1)vi+1 + iγ (11)

4The system is defined in terms of 6 parameters: N , c, ρ, µ, θ, σ; definitions
in (7) will allow us to express the hit probability only in terms of 4 parameters,
namely, N , ρ, α and γ, as shown in Proposition 4.1.



for i = 1, 2, . . . , N , or equivalently (10) in matrix form with
v = (v1, . . . , vN ).

The uniqueness of the solution of (10) is shown in Appendix
IV. The vector v in (10) gives the conditional stationary
expected amount of cached fluid just before jump epochs (up
to a multiplicative constant).

However, the hit probability pH in (6) is defined in terms
of the stationary expected amount of cached fluid at arbitrary
epochs. The latter metric can be deduced from the former
by using Palm calculus, through the identity (see e.g. [18,
Formula (4.3.2)])

�
[X] = Λ

� 0

[

∫ T1

0

X(t)dt

]

(12)

where
� 0 denotes the expectation with respect to the Palm

distribution5, T1 denotes the time of the first jump after 0,
and where Λ denotes the global rate of the Engset model, i.e.

Λ =
1

�
0[T1]

. (13)

From now on we assume that the system is in steady-state at
time 0. Under the Palm distribution we denote by N−1 and
Y−1 the number of connected nodes and the amount of cached
fluid respectively, just before time 0 (i.e. just before the jump
to occur at time 0).

We first compute 1/Λ. Using (2) we find

1

Λ
=

N
∑

i=0

πi

� 0[T1 |N0 = i] =
1

µ

N
∑

i=0

πi

ρ(N − i) + i

=
1 + ρ

2Nρµ
. (14)

We show in Appendix II that

�
[X] =

c

(1 + ρ)N

N
∑

i=1

(

N

i

)

ρivi. (15)

Dividing both sides of (15) by c, we get (9), which concludes
the proof.

Conditions (8) in Proposition 4.1 ensure that the system (10)
has a unique solution (see Appendix III). They are satisfied
for the home store scheme (since ∆u(i)∆d(i+1) = i/(i+1)).

Remark 4.1: Since A is a tridiagonal matrix, (10) can be
solved in only O(N ) operations, once the mappings ∆u and
∆d are specified.

B. Latency reduction

The expected delay to fetch a document can easily be
derived from the hit probability as follows: let Te and Ti be the
external and internal latency, respectively. The internal latency
is the average delay induced by the Squirrel network, and thus
is experienced by clients even in case of home node hits. The
external latency is caused by network bottlenecks and Web

5The Palm distribution is the distribution of the process {Xt}t assuming
that a jump occurs at time 0 and that the system is in steady-state at time 0.

server delays outside the organization, and is added to the
internal latency in case of a miss when an object has to be
retrieved from the origin Web server by its home node and is
then sent to the client through the Squirrel network. Typically,
Te accounts for most of the total latency in the absence of
caching (e.g. 77%, and up to 88% for a geographically located
network [19]). The total expected delay with Squirrel is

�
[T ] = Ti pH + (Ti + Te) (1 − pH).

The Squirrel cache system reduces the average delay by saving
the external latency whenever there is a hit. The relative
latency reduction observed with Squirrel is thus

Ti + Te −
�

[T ]

Ti + Te

= pH

Te

Ti + Te

.

C. Zipf popularity

A concave model for the hit probability such as
�

[hit|i, x] =
(x/c)β makes the differential equation (3) nonlinear and
without a known closed-form solution. An alternative approach
is to consider K classes of decreasing popularity: the first
class contains the c1 most popular objects, and the K-th class
contains the cK least popular ones. With c being the total
number of existing objects, we have

∑K
k=1 ck = c. Let us

call ok the index of the least popular object of class k in the
ordered set of objects, that is,

ok =
k
∑

l=1

cl. (16)

Using the Zipf-like popularity distribution [17], the probability
of each class of fluid can easily be obtained as

pk =
�

[request for class k] =
o1−β

k − o1−β
k−1

c1−β
(17)

for class k, where β is the skew factor of the Zipf distribution.
The request rate for each class is given by σk = σpk for

k = 1, 2, . . . ,K, where σ is the average request rate per node
(regardless of object popularity).

The hit probability p̂H is now defined as the weighted sum
of the conditional hit probabilities within each class, namely,

p̂H =

K
∑

k=0

�
[Xk]

ck

pk (18)

where Xk is the (stationary) amount of cached fluid of class
k. Similar to the derivation of the hit probability pH in
Proposition 4.1, we find that

p̂H =

K
∑

k=0

pk

1

ck(1 + ρ)N

N
∑

i=1

(

N

i

)

ρi v
(k)
i (19)

where the vector v
(k) = (v

(k)
1 , . . . , v

(k)
N )T is the unique

solution of the linear equation

A(k)
v

(k) = b
(k) (20)

with b
(k) = (b

(k)
1 , . . . , b

(k)
N )T a vector whose components

are given by b
(k)
i = iσk

µ
for i = 1, 2, . . . , N , and A(k) =



[a
(k)
i,j ]1≤i,j≤N a N × N tridiagonal matrix whose non-zero

elements are

a
(k)
i,i = θ

µ
+ σki

µck
+ i + ρ(N − i), 1 ≤ i ≤ N

a
(k)
i,i−1 = −i∆u(i − 1), 2 ≤ i ≤ N

a
(k)
i,i+1 = −ρ(N − i)∆d(i + 1), 1 ≤ i ≤ N − 1.

D. Discussion and extensions

We now discuss some specific features that were not explic-
itly taken into account in the analysis of Section IV-A, apart
from the popularity of documents.

The first remark is that the model assumes that every
requested object is saved in the cooperative cache when
downloaded a first time from the origin server. However, a
non-negligible fraction (around 28%, cf. [14]) of the requested
objects is in practice non-cacheable (mainly, expiration date
before current date, but also explicit non-cacheable). We can
take into account the uncacheability in our model as follows:
let u be the fraction of objects that are uncacheable. So far,
we have considered that the fluid increases after each miss,
thereby implicitly assuming that all objects are cacheable.
The uncacheability can be incorporated in our model by
considering that only a fraction 1 − u of misses will yield
a fluid increase. This gives rise to the following equation

d

dt
X(t) = (1 − u)σNn

(

1 −
X(t)

c

)

− θX(t)

= (1−u)σNn−

(

(1−u)σNn

c
+ θ

)

X(t) (21)

for Tn < t < Tn+1 and Nn ∈ {1, 2, . . . , N}, since only
requests for cacheable objects will lead to a fluid increase.
Therefore, uncacheable objects can be added to the model
simply by modifying the request rate accordingly.

Secondly, the impact of node join and leave events, modeled
through the mappings ∆u and ∆d, may be slightly different
from the values described in Section III. Indeed, two factors
need to be taken into account. On the one hand, some nodes
may announce their intention to disconnect, thereby avoiding
performance degradation (see Section II). This would change
the value of ∆d(i). Though Proposition 4.1 provides an
expression for general values of ∆d(i), this would require a re-
estimation of ∆d(i). Since it would not exceed one, condition
(8) would still be satisfied. On the other hand, the individual
Squirrel caches may be stored either on disk or in memory.
In the first case, a node i may join with a previously stored
set of documents that have not been removed from its disk
cache when the node went down. This would possibly add
fluid into the network, if the corresponding objects have not
been retrieved by the system while i was down and if i has not
announced its last departure. The problem would not only be
to re-estimate ∆u(i), but also that ∆u(i) might be greater than
one, making condition (8) more difficult to verify. However,
we expect that node i will stay down for a minimum time that
will be orders of magnitude greater than requests inter-arrival
times (the reboot time is typically a few minutes). Meanwhile,
most of the objects stored in node i will be requested again

and added to their new home nodes. As a result, when i will
join again the Squirrel network with its own full cache, it will
probably not add any fluid in the system, thus guaranteeing
that ∆u(i) ≤ 1, and thereby the validity of assumption (8).

Finally, formula (9) involves binomial coefficients
(

N
i

)

and
an exponential in N . Therefore, computing pH accurately for
very large values of N might reveal difficult. Nonetheless, we
would like first to mention that though we have occasionally
encountered such problems, Proposition 4.1 is clearly tractable
for the order of magnitude of several thousands of nodes,
where a simulation would be untractable for high-confidence
results. In addition, for much larger values of N , we believe
that the node dynamics can be approximated by an M/M/∞
model instead of an Engset model. This extension is a work
in progress.

V. QUALITATIVE INSIGHT IN THE SQUIRREL SYSTEM

Proposition 4.1 shows that the performance of the Squirrel
system exhibits only four degrees of freedom: N, ρ, γ, α while
our model introduced six parameters (N,λ, µ, σ, θ, c). We now
examine the relative importance of these new parameters and
how they characterize the Squirrel system behavior.

We first rapidly examine the influence of ρ. Fig. 2 shows
that while there is a sharp drop of the hit probability for very
small values of ρ (smaller that one), the performance is almost
constant when ρ increases. Therefore, except when it is close
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Fig. 2. Impact of ρ (with N = 3, α = 1 and γ = 2).

to zero, ρ has very little influence on the performance of the
Squirrel system. Also, it is very unlikely that ρ will be really
small, since it would mean a non-negligible probability of
reaching a state when all nodes are down (a very unrealistic
situation). Under these circumstances, the limiting factors for
the hit probability will be parameters N , γ and α.

In Fig. 3 we examine the comparative influence of γ and
α on the hit probability. We find that for fixed α, the hit
probability as a function of γ follows a concave shape, and
can reach almost one when α = 0. (This is consistent with
our observation that ρ does not limit the hit probability when
greater or equal to one.) Recall that γ = σ/(µc) where σ is
the individual request rate of the nodes. This concave shape in



γ reminds us the log-like6 performance of a centralized Web
cache (or Web cache cluster) as described in [16], [20], [21].

However, we observe that the hit probability is high on a
very narrow domain (α ≤ 1, γ ≥ 10). Indeed, there is a
strong attenuation in α, so γ only has a real impact on the
performance when α is small.
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Fig. 3. Impact of γ and α on the hit probability (with N = 3 and ρ = 1).
(Note that α is decreasing.)

These observations suggest possible methods to improve
the performance of the Squirrel system. The best possible
improvement will be to reduce parameter α = θc/σ. Since
the total number of existing objects, c, cannot be modified,
there are two options:

• Reduce the expiration rate θ as much as possible: increase
the default value of the maximum allowed value (denoted
by CONF MAX) in the freshness calculation heuristic
for example 7, especially since most cGET requests (e.g.
90%) are responded with Not-Modified message [14].
Another solution can be the refreshment policy proposed
by Cohen and Kaplan in [23].

• Increase the request rate σ, for instance by using prefetch-
ing techniques. We believe that prefetching can be incor-
porated to the fluid model, which will allow us to quantify
the gain of using it. Intuitively, although increasing the
request rate will increase the load in the system, it will
also increase the rate at which objects are retrieved to the
Squirrel network. This phenomenon is already known in
the context of centralized caches [16].

Finally, if the global shape of the hit probability does not
depend on N , the optimal values of γ and α vary with N .
As a result any optimization of the system requires a realistic
estimation of the maximum number of nodes in the network.

6The hit rate is either a logarithm or a small power of the global request
rate.

7In the typical freshness calculation heuristic, the lifetime is
min(CONF MAX, CONF PERCENT×(Date-LastModified)) where
CONF PERCENT is a fraction typically limited to 10% and CONF MAX a
value typically equal to a day, since HTTP/1.1 specifies that a cache must
attach a warning to any response whose age is more than 24 hours [22].

VI. EXPERIMENTAL RESULTS

In this section we compare quantitatively our macroscopic
fluid model with a discrete-event driven simulation of the
Squirrel home-store system. Request arrivals are Poisson and
object time-to-live are taken to be all constant and all identical.
We also assume that nodes follow the same time-evolution as
in the fluid model, i.e. an Engset model. The external latency
is taken into account whereas the internal latency is considered
to be zero (corresponding to instantaneous internal transfers).
Simulation results are given with 99% confidence intervals.
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Fig. 4. Fluid model vs discrete-event simulation. (N = 10, ρ = 1 and
α = 1).

Fig. 4 displays the hit probability as a function of γ with
ρ = 1 and α = 1. We observe that the fluid model curves
closely follow the same shapes as the discrete-event simu-
lations and therefore mimics the simulated system behavior
very accurately. We conclude that the model is robust to
assumptions such as the request rate distribution (which we
assumed constant in Section IV-A), and although microscopic
features such as objects replication and local hits (requests not
forwarded to home node) are being ignored, the fluid model
provides an accurate approximation for the actual performance
of the Squirrel system.

Furthermore, we would like to emphasize that each simula-
tion, even for very small networks (10 nodes), ran for several
hours (typically 20 hours or more) on a Pentium 4 running
at 2.66GHz. Even if our code may not be fully optimized,
it is clear that in comparison with the instantaneous results
provided by the fluid model, simulation is very slow and
limited to very small network sizes.

We show in Fig. 5 how the hit probability would look like
for large networks, since simulation of such systems would be
either too slow or statistically irrelevant. Since Fig. 4 validated
the accuracy of our model for small network sizes, we expect
the results for large networks to be as relevant – though we
do not have simulation results to demonstrate it. We observe
the same shape as in Fig. 4, though on a larger range (thanks
to the low complexity of the model results), which suggests
that Squirrel scales with the same type of behavior, and that
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Fig. 5. Hit probability for large networks (N = 2000 and α = 1000).

the characteristics observed in Section V should be valid for
large networks.

VII. CONCLUSION AND PERSPECTIVES

In this paper we have proposed and studied a fluid model
for the performance analysis of the Squirrel cooperative cache
system. To cope with the large number of users that join and
leave the cache system randomly, we have approximated the
request streams of the individual nodes by a fluid flow. Our
resulting stochastic fluid model turns out to be mathematically
tractable, and has allowed us to provide a simple and very
low-complexity procedure for computing the hit probability.
Moreover, the analysis has emphasized the key characteristics
of the Squirrel system and allows a better understanding
of its performance. Comparison with simulation results has
shown that the hit probability provided by the solution to the
model is an accurate approximation of the actual hit rate and
has validated the qualitative conclusions driven by the model
results.

It is worth noticing that our analysis does not strictly limit
to Squirrel, but can also be straightforwardly applied to other
systems based on distributed hash tables such as Chord, CAN
or Tapestry ( [24]–[26]) for example. The necessary conditions
assumed in this work are the load balancing (provided by Pas-
try), and above all the absence of replication that characterizes
the home-store scheme.

Future work will focus on extending the model to han-
dle prefetching techniques and larger populations of peers.
We also intend to quantify the accuracy of the approach
in the Zipf-like popularity model. Finally, the accuracy and
tractability of this fluid model suggest that it could be adapted
to analyze content distribution systems involving document
replication, such as P2P file sharing applications and CDNs.
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APPENDIX I
PROOF OF EQUATION (11)

Recall that vi = lim
n→∞

�
[Yn |Nn = i]

c
for 1 ≤ i ≤ N . With

(5) we have

vi =
1

c
lim

n→∞

�
[Yn |Nn = i]

=
1

c
lim

n→∞

� [
ηi + (Xn − ηi) e

−(Tn+1−Tn) σi
ηi |Nn = i

]

=
1

c
lim

n→∞

(

ηi ×
αγ + γi

αγ + γi + ρ(N − i) + i

+
(ρ(N − i) + i)

�
[Xn |Nn = i]

ρ(N − i) + i + αγ + γi

)

. (22)

To derive (22) we have used the fact that, given Nn = i,
the random variables Xn and Tn+1 − Tn are independent,
and Tn+1 − Tn is exponentially distributed with parameter
(N − i)λ + µi.

Let us now evaluate limn→∞

�
[Xn |Nn = i] for 1 ≤ i ≤

N . Conditioning on Nn−1 we have

lim
n→∞

�
[Xn |Nn = i] =

lim
n→∞

�
[Xn|Nn = i,Nn−1 = i−1]

×
�

[Nn−1 = i−1|Nn = i]

+ lim
n→∞

�
[Xn |Nn = i,Nn−1 = i + 1]

×
�

[Nn−1 = i + 1 |Nn = i] � [i<N ]

= ∆u(i − 1) lim
n→∞

�
[Yn−1 |Nn−1 = i − 1]

×
πi−1

πi

ρ(N − i + 1)

ρ(N − i + 1) + i − 1

+∆d(i + 1) lim
n→∞

�
[Yn−1, |Nn−1 = i + 1]

×
πi+1

πi

i + 1

ρ(N − i − 1) + i + 1
� [i<N ]

= c
i∆u(i−1)vi−1+∆d(i+1)vi+1ρ(N−i)

ρ(N−i) + i
(23)

by using (2) and the definition of vi. Finally, dividing both
sides by c and introducing (23) into (22) yields (11).

APPENDIX II
PROOF OF EQUATION (15)

Let us determine
�

[X] from the vis. We use the Palm
formula and condition on the value of N0. From (12), (5),
(14) we find

�
[X] = Λ

N
∑

i=1

πi

� 0

[

∫ T1

0

(

ηi+(X0−ηi)e
−t σi

ηi

)

dt|N0 = i

]

= Λ

[

N
∑

i=1

πiηi

� 0[T1 |N0 = i] +
N
∑

i=1

πiηi

σi

×
� 0
[

(X0 − ηi)
(

1 − e
−T1

σi
ηi

)

|N0 = i
]]

= Λ

[

N
∑

i=1

πiηi

1

λ(N − i) + µi
+

N
∑

i=1

πiηi

σi



×
( � 0[X0 |N0 = i] − ηi

)

×
(

1 −
� 0
[

e
−T1

σi
ηi |N0 = i

])

]

(24)

=
Λ

µ

[

N
∑

i=1

πiηi

1

ρ(N − i) + i

+

N
∑

i=1

πi

� 0[X0 |N0 = i] − ηi

ρ(N − i) + i + αγ + γi

]

=
2Nρ

1 + ρ

N
∑

i=1

πi

[

ηi

1

ρ(N − i) + i
+

� 0[X0 |N0 = i] − ηi

ρ(N − i) + αγ + (γ + 1)i

]

. (25)

By definition,
� 0[X0 |N0 = i] = limn→∞

�
[Xn |Nn = i],

which has been computed in (23). By combining (23) and
(11) we obtain

� 0[X0 |N0 = i] = c
(ρ(N − i) + i + αγ + iγ)vi − iσ

µ

ρ(N − i) + i
.

Plugging this value of
� 0[X0 |N0 = i] into the r.h.s. of (25),

and using (2), yields after some straightforward algebra:

�
[X] =

c

(1 + ρ)N

N
∑

i=1

(

N

i

)

ρivi.

which is nothing but (15).

APPENDIX III
STATIONARY DISTRIBUTION OF THE ENGSET MODEL AT

JUMP TIMES

In this section we compute the stationary distribution of the
Markov chain {Nn, n ≥ 1}. Since this chain is periodic with
period 2, it has no limiting distribution. Our goal is to compute
the time average of

�
[Nn = i].

Let P = [pi,j ]0≤i,j≤N be its transition probability matrix.
We have pi,i+1 = ρ(N − i)/(ρ(N − i)+ i) for 0 ≤ i ≤ N −1,
pi,i−1 = i/(ρ(N − i) + i) for 1 ≤ i ≤ N and pi,j = 0 when
|i − j| 6= 1.

Since this Markov chain has a finite-state space and is
irreducible, it is positive recurrent [27, Cor. 5.3.19, 5.3.22].
Therefore, it possesses a unique stationary (i.e., invariant)
distribution π = (π0, · · · , πN ) given by the (unique) solution
of the equation π = πP such that

∑N
i=0 πi = 1 [28, page

208].
We proceed by induction to compute π. From the equation

π = πP we find that π1 = (ρ(N − 1) + 1)π0 and π2 =
ρ(N−2)+2

2 ρ(N − 1)π0. This suggests that

πj =
ρ(N − j) + j

j

ρj−1

(j − 1)!

(N − 1)!

(N − j)!
π0 (26)

for j = 1, 2, . . . , N . Assume that (26) holds for j =
1, 2, . . . , i < N−1. Let us show that it still holds for j = i+1.

We have

πi+1 =
ρ(N − (i + 1)) + i + 1

i + 1

×

(

πi −
ρ(N − (i − 1))

ρ(N − (i − 1)) + i − 1
πi−1

)

=
ρ(N − i − 1) + i + 1

i + 1

(

ρ(N − i) + i

i!

ρi−1

(N − i)!

−
ρ(N − i + 1)

ρ(N − i + 1) + i − 1
×

i − 1 + ρ(N − i + 1)

i − 1

×
ρi−2

(i − 2)!(N − i + 1)!

)

(N − 1)!π0 (27)

=
ρ(N− i −1)) + i +1

i + 1

ρi(N−1)!

i! (N− i −1))!
π0

where (27) follows from the induction hypothesis. The con-
stant π0 is computed by using the normalizing condition
∑N

i=0 πi = 1; we find π0 = 1/(2(1 + ρ)N−1) as announced
in (2). Plugging this value of π0 into (26) gives the general
expression of (2).

APPENDIX IV
UNIQUENESS OF THE SOLUTION OF (10)

The linear system (10) defined in Proposition 4.1 admits
a unique solution if and only if det(A) 6= 0. Since A is a
tridiagonal matrix we can use the LU decomposition [29, Sec.
3.5] A = LU with

L =













l1 0 · · · 0

β2
. . .

. . . 0
...

. . .
. . .

...
0 · · · βn ln













and

U =













1 u1 · · · 0

0
. . .

. . . 0
...

. . .
. . . un−1

0 0 · · · 1













where li’s and ui’s are defined as follows:

a1,1 = l1
ai,i = li + ai,i−1ui−1, i = 2, . . . , N
liui = ai,i+1, i = 1, . . . , N − 1.

Both matrices L and U being bidiagonal matrices it follows
that det(A) 6= 0 if and only if li 6= 0 for i = 1, 2, . . . , N .

We use an induction argument to show that li 6= 0 for i =
1, 2, . . . , N . We have l1 = ρ(N − 1) + 1 + γ(1 + α). Assume
that li > γ(i + α) + ρ(N − i) for i = 1, 2, . . . , n < N − 1
and let us show that ln+1 > γ(n + 1 + α) + ρ(N − n − 1).



We have

ln+1 = an+1,n+1 −
an+1,nan,n+1

ln
= γ(n + 1 + α) + ρ(N − n − 1)

+(n + 1)
ln − ρ(N − n)∆u(n)∆d(n + 1)

ln
> γ(n + 1 + α) + ρ(N − n − 1)

by using the induction hypothesis together with the fact that
0 ≤ ∆u(n)∆d(n + 1) ≤ 1.
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