

History: Three Rivers Project

- IBM project
- Objective
 - Bring IBM Power Systems back into the Top5 list
 - Push forward Linux on Power
 - Scale-out
- Strategy
 - Find a willing partner to deploy bleeding edge technologies in an open collaborative environment
 - Research university preferred.
 - Integrate a complete supercluster architecture
 - optimized for cost/performance
 - using latest available technologies for interconnect, storage, and software
- Goals
 - Get system into Top500 list by SC2004 in Pittsburgh PA, hence the name.
 - Complete installation in 11/04 and system acceptance in 1H05

History: UPC

- CEPBA (1991 2004)
 - "Research and service center" within the Technical University of Catalonia (UPC)
 - Active in the European projects context
 - Research
 - Computer architecture
 - Basic HPC system software and tools
 - Data bases
- CIRI (2000 2004)
 - R&D partnership agreement between UPC and IBM
 - Research cooperation between CEPBA and IBM

MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

Index

History

Barcelona Supercomputing Center – Centro Nacional de Supercomputación

MareNostrum description

Building the infrastructure

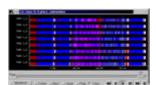
Setting up the system

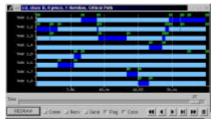
Running the system

Barcelona Supercomputing Center

- Mission
 - Investigate, develop and manage technology to facilitate the advancement of science.
- Objectives
 - Operate national supercomputing facility
 - R&D in Supercomputing and Computer Architecture.
 - Collaborate in R&D e-Science
- Consortium
 - the Spanish Government (MEC)
 - the Catalonian Government (DURSI)
 - the Technical University of Catalonia (UPC)

MareNostrum: Building and running the system - Lisbon, August 29th, 2005


Grid @ Large workshop


IT research and development projects - Deep Computing

 Continuation of CEPBA (European Center for Parallelism in Barcelona) research lines in Deep Computing:

- Tools for performance analysis.
- Programming models.
- Operating Systems.
- Grid Computing and Clusters.
- Complex Systems & e-Business.
- Parallelization of applications.

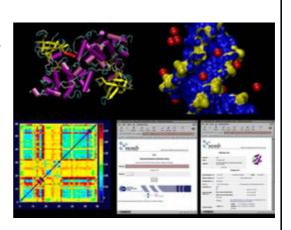
THE DATE OF THE PROPERTY OF TH

MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

IT research and development projects – Computer Architecture

- Superscalar and VLIW processor scalability to exploit higher instruction level parallelism.
- Microarchitecture techniques to reduce power and energy consumption.
- Vector co-processors to exploit data level parallelism, and application specific coprocessors.
- Quality of Service in multithreaded environments to exploit thread level parallelism.
- Profiling and optimization techniques to optimize the performance of existing applications.


MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

Life Science projects

- Genomic analysis.
- Data mining of biological databases.
- Systems biology.
- Prediction of protein fold.
- Study of molecular interactions and enzymatic mechanisms and drug design

Earth Science projects

- Forecasting of air quality and concentrations of gaseous photochemical pollutants (e.g. troposphere ozone) and particulate matter.
- Transport of Saharan dust (outbreaks) from North Africa toward the European continent and its contribution to PM levels.
- Modeling the climate change. This area of research is divided into:
 - Interaction of air quality and climate change issues (forcing of climate change).
 - Impact and consequences of climate change on a European scale

MareNostrum: Building and running the system - Lisbon, August 29th, 2005

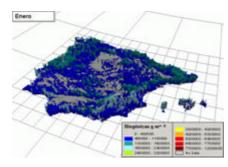
Grid @ Large workshop

Services

- Computational Services: Offering our parallel machines computational power.
- Training: Organizing technical seminars, conferences and focused courses.
- Technology Transfer: Carrying out projects for industry as well as to cover our academic research and internal service needs.

~

MareNostrum: Some current applications


Isabel Campos Plasencia University of Zaragoza

- Fusion Group
- · Research of nuclear fusion materials
- · Follow-up of crystal particles

Javier Jiménez Sendín

Technical University of Madrid

• Turbulent channel simulation with Reynold numbers of friction of 2000

Markus Uhlmann

 Direct Numerical Simulation of Turbulent Flow With Suspended Solid Particles

Modesto Orozco National Institute Nacional of Bioinformatics

- Molecular dynamics of all representative proteins
- DNA unfolding simulation

Gustavo Yepes Alonso

Autonomous University of Madrid

- · Hydrodynamic simulations in Cosmology
- Simulation of a universe volume of 500

Mpc (1.500 millions light year)

MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

Opportunities

- Access Committee
 - Research groups from
 - Spain
 - Mechanism to promote cooperation with Europe, ...
- European projects
 - Infrastructure: DEISA
 - Mobility: HPC-Europa
- Call for researchers

HPC-Europa

Index

History

Barcelona Supercomputing Center - Centro Nacional de Supercomputación

MareNostrum description

Building the infrastructure

Setting up the system

Running the system

MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

MareNostrum

- 4.812 PowerPC 970 FX processors
 - 2406 2-way nodes
- 9.6 TB of Memory
 - 4 GB per node
- 236 TB Storage Capacity
- 3 networks
 - Myrinet
 - Gigabit
 - 10/100 Ethernet
- Operating System: Linux
 - Linux 2.6 (SuSE)

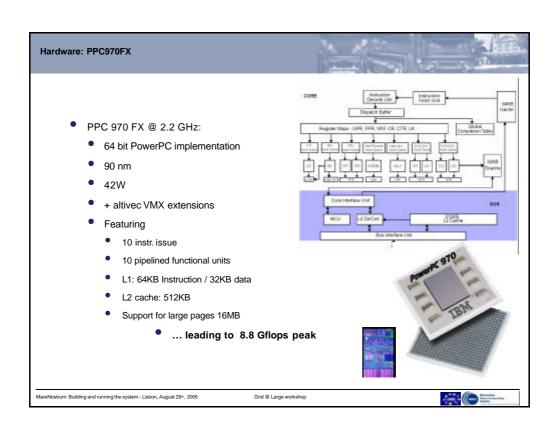
Peak Performance 42.35 TFlops

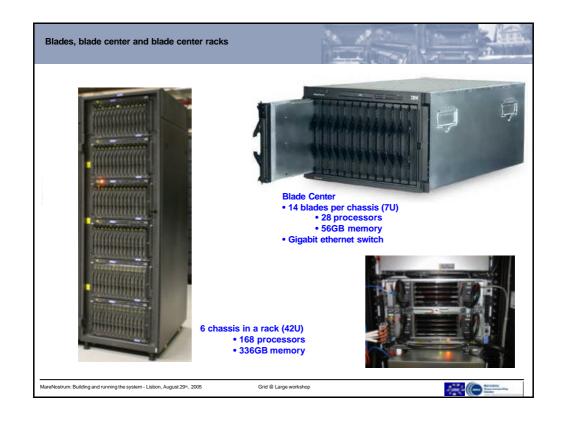
MareNostrum: Overall system description

- 29 Compute Racks (RC01-RC29)
 171 BC chassis w/OPM and gigabit ether switch
 2392 JS20+ nodes w/myrinet daughter card
- 4 Myrinet Racks (RM01-RM04)
- 10 clos256+256 myrinet switches
- 2 Myrinet spines 1280s

- 1 Operations Rack (RH01)
- 7316-TF3 display
- · 2 p615 mgmt nodes
- 2 HMC model 7315-CR2
- 3 Remote Async Nodes
- 3 Cisco 3550 • 1 BC chassis (BCIO)

- 7 Storage Server Racks (RS01-RS07)
- 40 p615 storage servers 6/rack
- 20 FastT 100 3/rack
- 20 EXP100 3/rack
- 1 Gigabit Network Racks
- 1 Force10 E600 for Gb network
- 4 Cisco 3550 48-port for 10/100 network


MareNostrum: Building and running the system - Lisbon, August 29th, 2005


Grid @ Large workshop

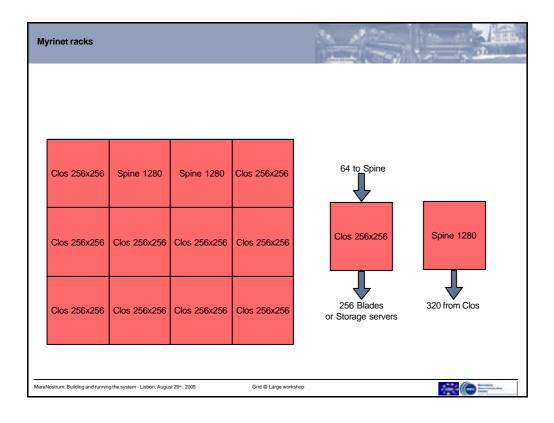
Environmental

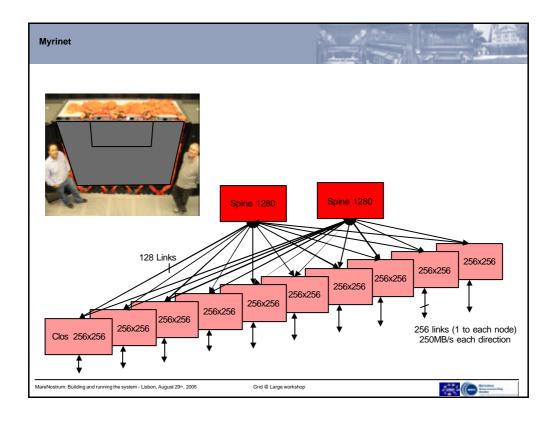
	Individual	Frames	Composite
Compute	1200 Kg 21.6 KWatts 73699 BTUs/hr	29 172 * 7U chassis	34800 Kg 626,4 KWatts 2137271 BTUs/hr
Storage	440 Kg 6 KWatts 12000 BTUs/hr	7	3080 Kg 42 KWatts 84000 BTUs/hr
Management	420 Kg 1.5 KWatts 5050 BTUs/hr	1	420 Kg 1.5 KWatts 5050 BTUs/hr
Myrinet	40 Kg 1.4KWatts	4 12 * 14U chassis	480 Kg 16,8 Kwatts
Switch	128 Kg 5 KWatts 16,037BTU/hr	2	256 Kg 10 Kwatts 32 BTUs/h
TOTAL	Weight Power Heat AC Required Space		39036 Kg 696,7 Kwatts Over 2 million BTUs/hr 180 Tons AC 160 sq meters

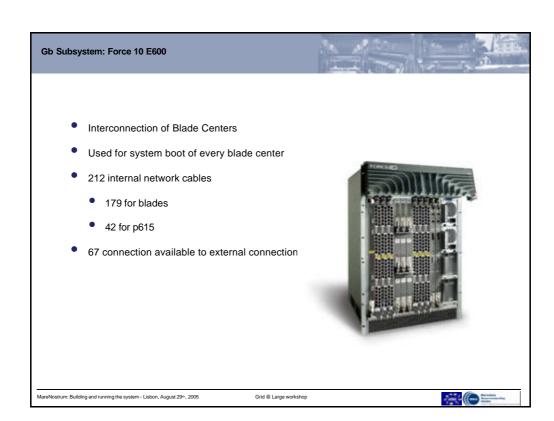
29 bladecenter 1350 xSeries racks (RC01-RC29)

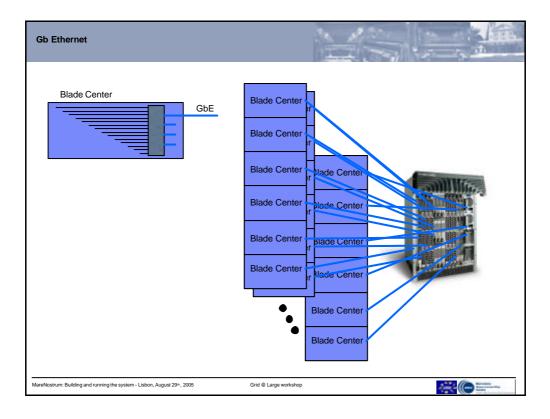
- Box Summary per rack
 - 6 Blade Center Chassis
- Cabling
 - External
 - 6 10/100 cat5 from MM
 - 6 Gb from ESM to E600
 - 84 LC cables to myrinet switch
 - Internal
 - 24 OPM cables to 84 LC cables

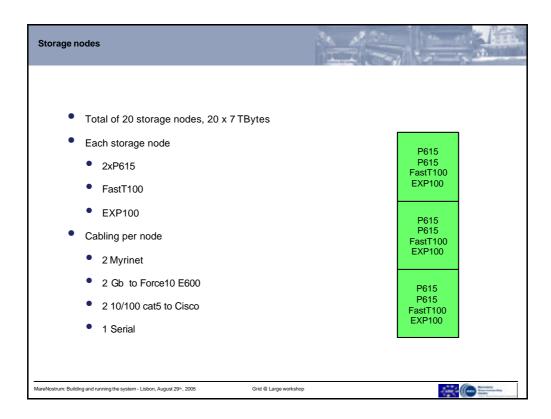
MareNostrum: Building and running the system - Lisbon, August 29th, 2005

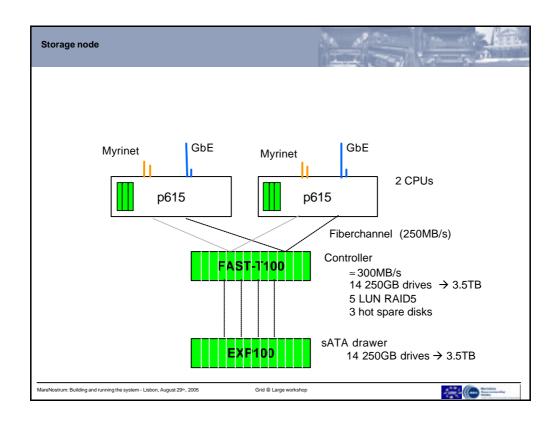

Grid @ Large workshop




Myrinet racks


- 10 Clos 256x256 switches
 - Interconnect up to 256 Blades
 - Connect to Spine (64 ports)
- 2 Spine 1280
 - Interconnect up to 10 Clos 256x256 switches
 - Monitoring using 10/100 connection





Index

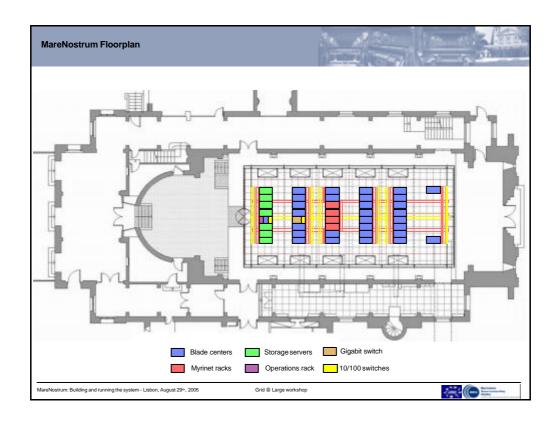
History

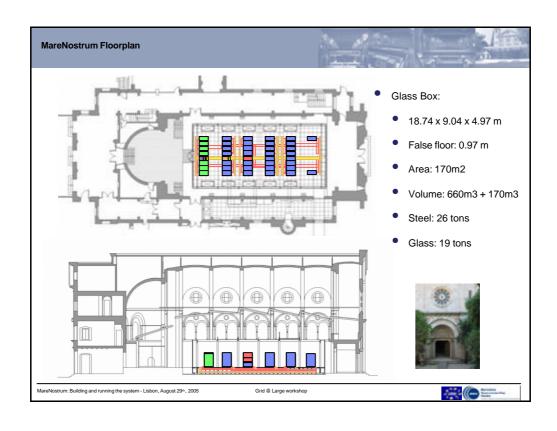
Barcelona Supercomputing Center - Centro Nacional de Supercomputación

MareNostrum description

Building the infrastructure

Setting up the system


Running the system


MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

Service

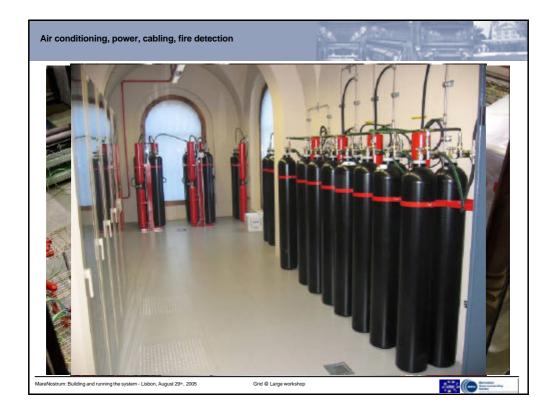
- The hole
 - 15.5 x 16 x 5.4 m
- Power
- External AC

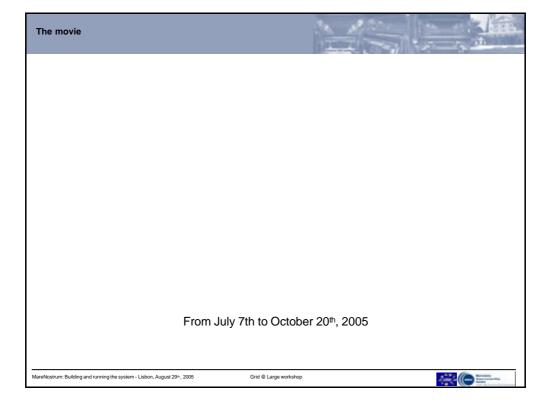
MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

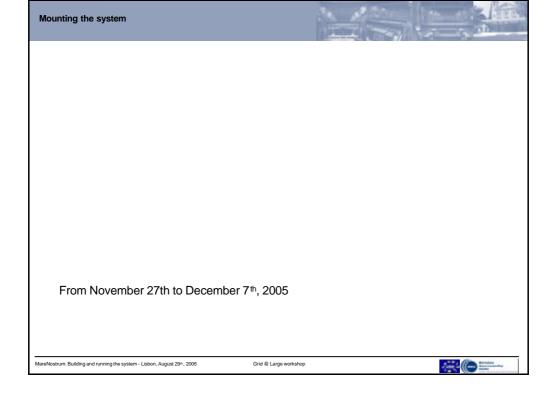
Power

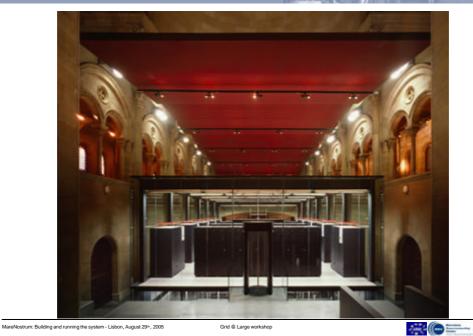
- 3 transformers from High to Low voltage
 - Machine
 - Air Conditioning + others
 - Redundant
- UPS
 - Disk servers + networking + some internal AC
- Generator (diesel)
 - Disk servers + networking + some AC


- 4 External Units
 - 7°C → 12°C
- 2 water tanks
 - 25000 liters
 - 2 pumps (connected to generator)
- 10 Internal Units
 - 16°C → 26°C


MareNostrum: Building and running the system - Lisbon, August $29^{\rm th}$, 2005

Grid @ Large workshop





Site preparation

Cables

- Myrinet
 - 172*14 + 40 fibers (25 meters)
 - Near 61 km
- Gigabit and Ethernet (x2)
 - 212 cupper (25 meters)
 - 5,3 km
- Power
 - Blade Center rack: 4 * 29
 - Disk server rack: 3 * 7
 - Myrinet rack: 6 * 4

History Barcelona Supercomputing Center – Centro Nacional de Supercomputación MareNostrum description Building the infrastructure Setting up the system Running the system

MareNostrum: Building and running the system - Lisbon, August 29th, 2005

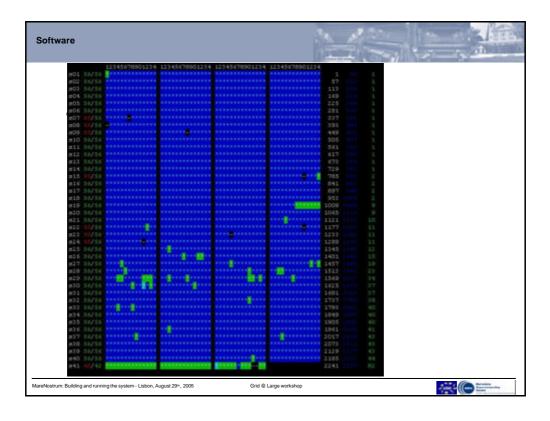
Grid @ Large workshop

Software

- Diskless boot
 - 2 mins. 1 node
 - ≈15 mins.
- Linux
 - 2.6 SuSE
- Each P615, using their SCSI disks, hosts via NFS
 - Root file system
 - Varfile system
 - for 40 blades

Software

- GPFS
 - Basic shared file system
 - Home, projects, scratch, apps
 - Scalability
 - Largest tested site ever: 1100 nodes
 - Testbed till 2406
 - Through GbE


MareNostrum: Building and running the system - Lisbon, August 29th, 2005

Grid @ Large workshop

Software

- LoadLeveler
 - Scalability:
 - Official: 1 job → 128 nodes
 - Tested: → 400
 - New version soon
 - Alternative: Slurm

