PLANETE Protocols and Applications for the Internet

Walid Dabbous

http://planete.inria.fr

1

Today we have the Internet

Internet Users in the World by Geographic Regions - 2011 Asia 922.3 476.2 Europe North America 272.1 atin America / 215.9 Caribbean Africa 110.9 Middle East Oceania / 21.3 Australia 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 Millions of Users Source: Internet World Stats - www.internetworldstats.com/stats.htm

Source: Internet World Stats - www.internetworldstats.com/stats.htm Estimated Internet users are 2,095,006,005 on March 31, 2011 Copyright© 2011, Miniwatts Marketing Group

Estimated to 2,095,006,005 7 billion persons December 2011

2

Increasing heterogeneity

Mobility and episodic connectivity

Unusual but legitimate traffic load
Delivery of real-time high-bandwidth video services

Stakeholders" with no mutual trust

Incremental or Disruptive

- "Network Innovations" may follow either of these two approaches
- Validation
 - -Overlays
 - -Large scale experimental platforms

The team

INRIA researchers

Walid dabbous (S), Claude Castelluccia (G), Thierry Turletti (S), Vincent Roca (G), Chadi Barakat (S), Arnaud Legout (S), Mohamed Ali Kaafar (G). Permanent Engineers Thierry Parmentelat (S).

- 9 Research Engineers
- 15 PhD students

Planète Research Directions

Efficient Data Dissemination

 Content centric Networking

 Network security
 Network monitoring
 Evaluation platforms and methodology

With an experimental approach

1. Efficient Data Dissemination

- Design of efficient, robust and secure broadcasting systems
- Peer-to-peer architectures
- Cope with episodic connectivity
- Content sharing in ad-hoc networks

Data Broadcast

 Application-Level FEC Codes and their applications to broadcast/multicast systems

 A new File delivery application for content distribution

 Enhanced MAC level Encoding scheme for Mobile Satellite TV Broadcasting

research opportunities

- numerous interesting future R&D directions:
 - low rate codes, "Gaussian elimination friendly" LDPC codes, low working memory decoding, UEP, interactions with source video coding, redundancy optimal location in a TCP/IP stack
- many opportunities to disseminate (IETF, open-source codecs, publications)

Dissemination

 Our LDPC-Staircase codes have been included this year as the primary AL-FEC (Application Layer Forward Erasure Correction code) solution for ISDB-Tmm (Integrated Services Digital Broadcasting, Terrestrial Mobile Multimedia), a Japanese standard for digital television (DTV) and digital radio.

Building blocks for content distribution

research activities

- new file-casting application (we have a much better FLUTE replacement, FCAST)
- contributions to and evaluation of *FECFRAME* streaming architecture, and more generally FEC based robust streaming systems

on-going projects

 now: PhD with ALU-BL on "robust, self adaptive, video streaming in wireless systems"

Mid-way between AL-FEC and content distribution systems in fact!

Peer-to-peer protocols

Focus on BitTorrent - Large scale experiments – Large scale measurements Properties of the core algorithms of **BitTorrent** – We show there are close to optimality Properties of the overlay construction strategies

- We show some pathological behaviors

Peer-to-peer protocols

BitTorrent Locality

 We show that we can push BitTorrent locality much further that previously known and that it saves 40% of inter-ISP traffic at the scale of the Internet

BitTorrent Piracy

-We characterize the impact of piracy

Skype Privacy Issues

Episodic Connectivity

 Goal: Manage transparently the mobility of users in a heterogeneous network with episodic connectivity

• Points to resolve:

- Service continuity between infrastructure, ad hoc and DTN networks
- Reliable and secure communications
- Design adequate congestion control mechanisms

Episodic Connectivity

• First results:

- Protocole MeDeHa : Support of service discontinuity between infrastructure WiFi and ad-hoc networks
- Heuristics to enhance routing in DTN
- Objective:
 - Adaptive routing mechanism for infrastructure, MANET and DTN networks
 - Tested in INRIA and UCSC testbeds
- Collaborations:
 - Associated team COMMUNITY avec UCSC
 - ETH Zurich

Content sharing in wireless adhoc networks

- A fully distributed network of wireless devices
- No infrastructure
 - Devices connected by wifi in ad hoc mode
- Sharing content:

- Looking for content in the devices of others
- Once found, share the content with others
- Can be seen as BitTorrent in the Internet but adapted to wireless
 - Share with close devices to reduce resource consumption
 - Seeds take in charge the dissemination of the content in the network 18

BitHoc: Our solution for content sharing

- Available for download at http://planete.inria.fr/bithoc/
- Available for windows mobile

Main window

Note: 1:24 Start 2:24							
S	Start View Tools Help About X						
Torrents List							
	Torrent File	Size	Dow	El			
	Siempre.mp3 BELLA_STELL Akon-Lonely	4061 4224 3716	768 1280 2112	15 24 41			
	◀ ║						
	Pause Delete		Resume Details				

BitHoc: Our solution for content sharing

Publishing a content and searching for it

Nart Start	%:→ ◀< 4:08 🗙						
Publish New File							
+ Publishing Method:							
Publish file via the local Tracker. 👻							
+ List Of Published Files:							
File Name	File Size(byte)						
Akon-Lonely.mp3							
BELLA_STELLA.M 532							
Siempre.mp3.torr 507							
Publish Find Down	nload 🛛 Local Info 🚺 🕨						
Menu							

Nart 👷	↓ € 1:13 🗙				
Lookup Method:					
Ask for a specific Torrent file 🔹					
Lookup Exp: MP3 SONG					
FileName	Host Ip				
BELLA_STELLA.MP3.torrent	10.0.0.2				
Siempre.mp3.torrent	10.0.0.8				
Akon-Lonely.mp3.torrent 10.0.0.3					
▲ Ш					
Find					
Select File for Downloading					
Find Download Local Infos	Log				
Menu					

2. Network Security

RFID security & privacy
Wireless sensor network security
Future Internet security

Network Security

Embedded System Security

- RFID Security and Privacy
 - Private Identification Protocol
 - Efficient Key exchange
- WSN Security
 - Key establishment
 - Secure Aggregation
 - OS Security
 - Virus/worm
 - Code attestation
- Applications
 - CIP protection
 - Urban sensors

Network Security (2)

- Future Internet Security/ CyberSecurity
 - Objective1: Understanding current cyberattacks/fraud, underground economy, Internet weaknesses.
 - Botnet monitoring
 - Localization of hidden malicious servers
 - Localization of TOR hidden servers
 - Objective2: Contribute to the Future Internet Architecture.
 - Secure positioning
 - Secure broadcast
 - OCN: Owner-Centric Networking

Owner-Centric Networking

Main Motivation

- When you publish on the Internet you lose control of your data
- Think of Facebook users in 10 years!
- Main ideas
 - Users publish their contents but keep control
 - Can at anytime retrieve to modify or withdrawn

OCN Principles

- Users publish their contents on servers that they control
- Users exchange links, not contents!
- Users can only access documents via the links, cannot copy unless authorized
- At anytime, users can modify their contents...

Example: OCN-email

 Objet:
 -OCN email notification

 De:
 ccastel@inrialpes.fr

 Date:
 Ven 27 février 2009 11:08

 À:
 walid.dabbous@sophia.inria.fr

 Copie à:
 kaafar@inrialpes.fr (plus)

 Priorité:
 Normale

 Filtrage du courrier:
 Automatiquement | De | Pour | Sujet

 Options:
 Afficher l'en-tête complet | Voir la version imprimante | Télécharger en tant que fichier

You have received an OCN email from Claude Castelluccia.

To read it, click on this link: http://planete.inrialpes.fr/~ccastel/ocn.txt

Thanks for using the OCN-email service.

3. Network Monitoring

 Troubleshooting of network anomalies

 End to end or
 Network solutions

Efficient solutions for network and trafic monitoring

- Network troubleshooting
 - I am accessing a server.
 - There is a problem.

- How can I localize the problem ? From me ? From the server? In the middle ? How important is the anomaly ?
- Trafic classification
 - Applications encrypt their trafic
 - Can one use the packet size and time between packets to know the origin of each stream ? Web, FTP, SMTP, etc

Network-wide traffic monitoring

 Given a large network as GEANT. Operator interested in some OD flows. Where to place monitors ? How much to collect in each monitor ?

European Research Network

An OD (Origin Destination) flow

Experimental Environment for future Internet architecture

- Mathematical modeling

 Difficult to have "tractable" models
- Simulation (e.g. NS) is useful but not sufficient
 - Fast & "cheap"
 - Reproducible
 - Controllable
 - Not realistic networking conditions and code

4. Experimental testbeds

- Physical "research" testbeds
 - Local
 - Wide Area
 - Real networking stack
 - Controllable routers
 - Artificial networking conditions
- Overlays
- Virtual testbeds
 - PlanetLab, OneLab
 - Realistic networking conditions (to some extent)
 - Not controllable & Non reproducible

PlanetLab

815 machines spanning 405 sites and 35 countries nodes within a LAN-hop of > 2M users
Supports *distributed virtualization* each of 350+ network services running in their own *slice* Experimental Environment for future Internet architecture

An integrated validation chain

 Realistic models
 Scalable Simulations
 Controllable Experimentation

- A rigorous benchmarking methodology
 - Environment representation
 - Experiments results storage and comparaison

Experimental Environment for future Internet architecture

Federating Research Testbeds
Adding more heterogeneity to the PlanetLab testbed
Making easier Experimentation
Enhancing network simulations

Revisiting Protocols Evaluation

- Leverage on our experience on NS3 and Onelab
 - Experimental and simulation platforms
- Use collaboration with physicist
 - Non-linear/chaos theory
- Revisit current protocols evaluation with new tools
 - ⇒ Expect to find new surprising results
 - ⇒ Make a methodological progress

Software

- NS-3 Simulator (<u>www.nsnam.org</u>)
- OneLab build of PlanetLab (<u>www.onelab.eu</u>)
- MultiCast Library Version 3
- LDPC large block FEC codec
- WisMon & Wextool
- WiMAX NS-3
- BitHoc

Main Collaborations

- INRIA groups: Maestro, Trec, Temics, Hipercom
- French groups: LIP6, ENSICA, EURECOM/GET, INLN, LIA, U. Evry, etc.
- International groups: UCLA, UC Irvine, UCSC, U. Arizona, U. Lancaster, UMASS, Princeton U., U. Washington, U. Berne, EPFL, U. Pisa, RPI, etc.
- Industrials: Ericsson, Nokia, SUN, Docomo, Expway, Hitachi, Alcatel, FT R&D, LGE, STM, Motorola, Intel, Netcelo, NEC, Boeing, etc.

Planète project team

http://planete.inria.fr