GEOMETRICA

Computational Geometry and Topology

Jean-Daniel Boissonnat

February 15, 2011

<ロ> <同> <同> < 同> < 同> < 同> <

크

Visit of Athens University GEOMETRICA

[01]

[04]

Two sites, one team

Sophia-Antipolis (2003)

P. Alliez

J-D. Boissonnat (head)

- D. Cohen-Steiner
- O. Devillers
- M. Teillaud
- M. Yvinec (vice-head)
- 7 Ph.D. students 2 Postdocs

3 Ph.D. Students 1 Postdoc

11 Ph.D. Theses defended in 2006-2010

Saclay (2006)

F. Chazal (vice-head)	[07]
S. Oudot	[07]
M. Glisse	[09]

イロト イヨト イヨト イヨト

æ

Research directions

- Mesh generation and geometry processing
 - Meshing curved domains
 - Surface reconstruction
 - Mesh optimization
- Topological and geometric inference
 - Geometric sampling theory
 - Computational topology
 - Point cloud analysis
- Geometric data structures and robust computation
 - Triangulations
 - Higher dimensions
- Software development: CGAL

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Two selected results

Mesh generation

Anisotropic mesh generation with guarantees

C. Wormser [Ph.D. 2007, Google Zurich]

Geometric inference

 Optimal transport and geometric structure extraction from point sets

Q. Mérigot [Ph.D. 2009, CNRS]

イロト イヨト イヨト イヨト

Anisotropic mesh generation Geometric structure extraction

CGALmesh

Visit of Athens University GEOMETRICA

Anisotropic mesh generation Geometric structure extraction

Anisotropic mesh generation

Definition-Motivation

Anisotropic meshes

Mesh elements are elongated according to prescribed directions

Requirements on shapes are described through a metric field

Why anisotropic meshes ?

Anisotropic meshes enhance the trade off accuracy / mesh complexity

- interpolation/approximation
- solving anisotropic PDE

Anisotropic mesh generation Geometric structure extraction

Anisotropic mesh generation

Main approaches

Many heuristics

ellipsoidal bubble packing, biting ellipses, anisotropic centroidal Voronoi, pliant method, anisotropic mesh adaptation

Few methods with guarantees

- Anisotropic Voronoi diagrams (2d) [Labelle & Shewchuk 2003]
- Anisotropic Delaunay meshes

[SoCG 2007]

each simplex is Delaunay for the metrics attached to all its vertices

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Anisotropic mesh generation Geometric structure extraction

Anisotropic Delaunay meshes

Stars

Compute the star of each vertex v in the Delaunay triangulation associated to the metric of v

Inconsistencies

a simplex may appear in the stars of some (but not all) of its vertices

Star conciliation

if the metric field is smooth, inconsistencies can be removed by carefully refining the mesh

Anisotropic mesh generation Geometric structure extraction

Visit of Athens University

GEOMETRICA

크

Anisotropic mesh generation

- An algorithm with theoretical guarantees (in any dim)
- ► Implementation in progress ⇒ CGALmesh
- Star stitching is a useful paradigm triangulation of submanifolds of dim $k \ll d$ [SoCG 2010] Delaunay triangulation of Riemannian manifolds

Two selected results

Mesh generation

Anisotropic mesh generation with guarantees

C. Wormser [Ph.D. 2007, Google Zurich]

Geometric inference

- Optimal transport and geometric structure extraction from point sets
 - distance functions for noisy data
 - Voronoi covariance measures

Q. Mérigot [Ph.D. 2009, CNRS]

<ロ> <同> <同> <同> < 同> < 同> < 同> < 同>

Anisotropic mesh generation Geometric structure extraction

Distance function based inference

[DCG, CGTA, CGF 2009]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- If P is a dense sample of a shape S appropriate offsets of P have the same topology as S
- This depends only on two properties of distance functions:
 - ► Robustness with respect to the Hausdorff distance, *i.e.* $||d_K d_{K'}||_{\infty} \le d_H(K, K')$ for two compact sets K, K'
 - Squared distance functions are 1-semiconcave, *i.e.* $||x||^2 d_K^2(x)$ is a convex function

Anisotropic mesh generation Geometric structure extraction

Distance function to a probability measure

- The previous approach obviously fails if there are outliers
- Notion of distance function to a mass distribution, robust with respect to the transport distance
- The square of this function is 1-semiconcave, making it suitable for shape inference from data corrupted by outliers
 - Sublevel-sets are topologically correct [FoCM11]
 - Zero-set of a signed version leads to robust reconstruction [SGP10]

Anisotropic mesh generation Geometric structure extraction

・ロト ・日下・ ・ ヨト

Voronoi covariance measures

- Convolving covariance matrices of the Voronoi cells yields a tensor-valued measure on the data points, robust under Hausdorff perturbations of the data [FoCM10]
- Features locations and directions can be found using eigenanalysis of the local covariance measures [SPM09]

Anisotropic mesh generation Geometric structure extraction

Feature preserving surface reconstruction

- Infer feature graph from data
- Compute implicit surface fitting the data
- Mesh surface using constraint-preserving Delaunay refinement [SGP10]

(日)

Geometric inference in the presence of noise Discussion

- Measure-theoretic framework
- Rather simple to implement even in high dimensions (nearest neighbour search and Monte Carlo methods)
- Does not take into account the statistical nature of noise

GEOMETRICA ID Geometry processing Recent research Geometric inference Perspectives Geometric data structures

Perspectives

- 3 main scientific objectives
 - 3D Geometry processing
 - Geometric inference

ICT-FET CG-Learning

・ロト ・ 日 ・ ・ 回 ・ ・

ERC Grant IRON

Geometric algorithms and data structures ANR Présage

Software development

CGAL

CGAL-HiD

GEOMETRICA ID Recent research Perspectives Geometric

Geometry processing Geometric inference Geometric data structures

Objective 1: 3D Geometry Processing

- Technological paradox: Data increasingly heterogeneous and defect-laden
- Enduring challenge: processing step before meshing in computational engineering pipeline

New spin-off project-team (P. Alliez)

Geometry processing Geometric inference Geometric data structures

< □ > < □ > < □ > < □ >

Objective 2 : Geometric Inference Understanding geometric structures in high dimensional data

- Geometry + statistics
- Complexity, algorithms and implementation
- Data analysis: clustering, segmentation, classification,...

Geometry processing Geometric inference Geometric data structures

< □ > < □ > < □ > < □ >

Objective 3 : Geometric Algorithms and Data Structures

- Probabilistic methods (smoothed analysis)
- Non-Euclidean geometries (hyperbolic geometry)
- Higher dimensions (CGAL HiD)

GEOMETRICA ID Geometry processing Recent research Geometric inference Perspectives Geometric data structures

Collaborations with Athens

European projects

- (2001-2004) ECG: Effective Computational Geometry for Curves and Surfaces
- (2005-2008) ACS: Algorithms for Complex Shapes with certified topology and numerics
- (2010-2013) CGL : Computational Geometric Learning

INRIA Collaborative Research Actions (ARC)

 (2005-2006) Arcadia: Arrangements of Quadrics, algorithms, implementation and applications

イロト イヨト イヨト イヨト

GEOMETRICA ID Geometry processing Recent research Geometric inference Perspectives Geometric data structures

Collaborations with Athens

Master students

- (2003) Athanasios Kakargias
- (2005) Constantinos Tsirogiannis
- (2009) Vissarion Fisikopoulos

(Monique Teillaud, in Galaad) (Monique Teillaud, in Galaad) (Monique Teillaud)

Post-docs

(2006) Elias P. Tsigaridas, 3 month visit (Monique Teillaud)

PhD

Monique Teillaud is a member of the "Three persons committee" for Vissarion Fisikopoulos.

Recent research	Geometric interence
GEOMETRICA ID	Geometry processing

Thank you for your attention!

<ロ> <=>> <=>> <=>> <=>>

æ

Visit of Athens University GEOMETRICA