

Advanced Networking Research (ANR) group Outline of two research activities

Dr. Merkouris Karaliopoulos Visiting Researcher (Marie Curie Fellow)

ANR in brief

• Set up in 1999 by Prof. Stavrakakis

 Comes under the division of Telecommunications and Signal Processing of the Department

Currently 12 people

http://anr.di.uoa.gr

ANR people

- Head
 - Professor <u>Ioannis Stavrakakis</u>
- Faculty Members
 - Ass. Prof. <u>K. Oikonomou</u>
 - Ass. Prof. C. Xenakis
 - Dr. <u>G. Karagiorgos</u>
- Senior Researchers/Post-Docs
 - Dr. <u>Merkourios Karaliopoulos</u> (Marie Curie Fellow)
 - Dr. Christoforos Ntantogian

- PhD students/Research Assistants
 - Ioannis Manolopoulos
 - <u>Christoforos Panos</u>
 - Panagiotis Pantazopoulos
 - Evangelia Kokolaki
 - Lesia Kozlenko

- Administrative Staff
 - Efi Tsoukali

Topics we carry out research on...

- Wordle on the papers of the last five years
 - http://anr.di.uoa.gr/index.php/publications

Wordle on the venues of our papers over the last five years

http://anr.di.uoa.gr/index.php/publications

Two research work items in 25'

- Service placement
 - group research thread^{1,2,3,4}
 - distributed socio-aware heuristic for the facility location problem

- Perfomance analysis of opportunistic forwarding over mobility traces (a.k.a dynamic networks)
 - Combination of graph expansion techniques with simple path-finding algorithms

¹K. Oikonomou, I. Stavrakakis, "**Scalable Service Migration in Autonomic Network Environments**", special issue of IEEE Journal on Selected Areas in Communications (JSAC) on "Recent Advances in Autonomic Communications", vol. 28, no. 1, pp. 84-94, Jan. 2010

²G. Smaragdakis, N. Laoutaris, K. Oikonomou, I. Stavrakakis, and A. Bestavros, "**Distributed Server Migration** for Scalable Internet Service Deployment", IEEE/ACM Transactions on Networking. (To Appear)

³P. Pantazopoulos, M. Karaliopoulos, I. Stavrakakis, "**Centrality-driven scalable service migration**", in Proc. 23rd International Teletraffic Congress, Sept. 6-8, 2011, San Francisco, USA

⁴P. Pantazopoulos, M. Karaliopoulos, I. Stavrakakis, "**Distributed placement of Internet services**", submitted to IEEE Transactions on Parallel and Distributed Systems

Service placement : description/ motivation

- User generated content (UGC) \rightarrow User generated services (UGS) trend
 - service facilities generated almost anywhere across the network
 - many in number, often of local (small-scale) demand (replication: not preferred option)
 - lack of central coordination
- in-network storage
 - content- and information-centric networking
- storage task distribution towards many lighter storage platforms
 - nanodatacenters aim to offload power-hungry data centers

Objective

- scalable distributed mechanisms for "optimally" placing service components
- "optimally" = minimize aggregate service access costs

Service placement : problem formulation

- Facility-location problem
- <u>INPUT</u>

V : set of nodes

- w_n : demand generated by node n
- $d(x_i,n)$: distance between nodes x_i and n
- 1-median: minimize the access cost of a service located at node k

$$Cost(k) = \sum_{n \in \mathcal{V}} w(n) \cdot d(k, n).$$

F: placement

Service placement : our solution

 service migrates towards the optimum host (opt) in a finite number of steps

The R-balls heuristic*

- Reduce the original k-median to multiple smaller 1-median problems
 - solved within a limited neighborhood of R-hops around current facility

 Demand generated by outer nodes is mapped to the nodes at the outer shell of the R-hop neighborhood

$$Cost(\mathcal{F}) = \sum_{n \in \mathcal{V}} w_n \cdot min_{x_j \in \mathcal{F}} \{ d(x_j, n) \}$$

* G. Smaragdakis, N. Laoutaris, K. Oikonomou, I. Stavrakakis, A. Bestavros, "Distributed Server Migration for Scalable Internet Service Deployment," to appear in IEEE/ACM ToN

Service placement : wCBC / demand mapping

 a high number of shortest paths through the node u (e.g. node 8) does not necessarily mean that equally high demand stems from their sources!

- wCBC assesses to what extent a node can serve as demand concentrator towards a given service location
 - The top a% wCBC-valued nodes are included in the 1-median subgraph

Making the search "more informed" : cDSMA

11

14

Host

Min.Cost node 13

12

Gi

18

10

5

19

6

cDSMA

$$Cost(k) = \sum_{n \in \mathcal{V}} w(n) \cdot d(k, n).$$

Approximation ratio : a negative result...

- N nodes, service generated at node B
- A heavy hitter node A with demand W, all other nodes pose equal unit demand

Performance is excellent in realistic network topologies

Datasets correspond to different snapshots of 7 ISP topologies

					s=0		s=1		s=2		
ISP	Dataset id/AS#	mCC nodes	Diameter	<degree></degree>	$\alpha_{0.025}$	$\lceil G^i \rceil$	$\alpha_{0.025}$	$\lceil G^i \rceil$	$\alpha_{0.025}$	$[G^i]$	
type: Tier-1					27		and the second	0.0	and the second second		-0
Global Crossing	36/3549	76	10	3.71	0.047 ± 0.001	4	0.047±0.002	4	0.046±0.001	4	
-//-	35/3549	100	9	3.78	0.045 ± 0.002	5	0.045 ± 0.001	5	0.043±0.001	5	
NTTC-Gin	33/2914	180	11	3.53	0.024 ± 0.002	5	0.022 ± 0.002	4	0.019 ± 0.002	4	
Sprint	23/1239	184	13	3.06	0.019 ± 0.002	4	0.018 ± 0.002	4	0.017±0.002	4	
-//-	21/1239	216	12	3.07	0.016 ± 0.002	4	0.016 ± 0.002	4	0.014±0.003	4	
Level-3	27/3356	339	24	3.98	0.018 ± 0.002	7	0.017 ± 0.002	6	0.014±0.003	5	
-//-	13/3356	378	25	4.49	0.012 ± 0.002	5	0.012 ± 0.002	5	0.011 ± 0.002	5	
type: Transit	2		1000				NAME OF COMPANY OF COMPANY				
TDC	46/3292	71	9	3.30	0.033 ± 0.003	3	0.027 ± 0.004	2	0.026±0.003	2	
DFN-IPX-Win	41/680	253	14	2.62	0.019 ± 0.003	5	0.015 ± 0.003	4	0.015±0.003	4	
JanetUK	40/786	336	14	2.69	0.012 ± 0.003	5	0.012 ± 0.002	5	0.013±0.002	5	
						/ _					

 $\alpha_{\epsilon} = argmin \{ \alpha | \beta_{alg}(\alpha) \leq (1 + \epsilon) \}$

Less than half a dozen nodes suffice in almost all cases, even under uniform demand

P. Pantazopoulos, M. Karaliopoulos, I. Stavrakakis, "**Centrality-driven scalable service migration**", in Proc. 23rd International Teletraffic Congress, Sept. 6-8, 2011, San Francisco, USA

Service placement: distributed protocol

submitted to IEEE Transactions on Parallel and Distributed Systems

Two research work items in 25'

- Service placement
 - Distributed heuristic for the facility location problem

- Perfomance analysis of opportunistic forwarding over mobility traces (a.k.a dynamic networks)
 - Combination of graph expansion techniques with simple path-finding algorithms^{5,6}

⁵M. Karaliopoulos, C. Rohner, "**Trace-based Performance Analysis of Opportunistic Forwarding under Imperfect Cooperation**", IEEE INFOCOM 2012 Mini-Conference program, Orlando, FL, USA, March 25-30, 2012

⁶M. Karaliopoulos, C. Rohner, "**Trace-based Performance Analysis of Opportunistic Forwarding**" under submission to IEEE Transactions on Mobile Computing

Opportunistic forwarding

- Leverage node mobility and pairwise encounters for disseminating data
 - Store-carry-and-forward principle

The problem

The input

contac	ct id involve	d nodes	contact start time	contact end time
C ₀	1	3	589	940
C ₁	2	3	589	619
C ₂	6	7	639	699
C ₃	1	5	700	816
C ₄	5	6	702	818
C ₅	2	7	816	1185
C ₆	4	8	819	909
C ₇	8	6	938	1182

The output

- Protocol performance metrics
 - Message delivery probability/delivery delay/replicas, (space-time) path hopcounts
- ...for various forwarding protocols
 - randomized and utility-based
- ...for different communication modes
 - point-to-point/multipoint
- ...under full/partial node cooperation

How we go about it

- Work on per-message basis
 - message m = {s,d,t_g}

- Three main processing steps
 - Contact filtering : Filter the original trace for relevant forwarding entries
 - Graph construct derivation : Build the forwarding contact graph Gc=(Vc, Ec)
 - graph expansion technique resulting in a (sparse) directed acyclic graph (DAG)
 - Space-time path computation : Run standard path finding algorithms over the DAG
 - e.g., Dijkstra runs in O(|Vc|+|Ec|) time over the linearized Gc

Contact-filtering step : terminology

- Forwarding contacts : encounters that result in message copying/forwarding
- Forwarding list : list storing nodes that hold a message copy
- Depending on the current status of the forwarding list, parsed encounters are split into three categories
 - O-entry contacts : neither node is listed in the forwarding list
 - 1-entry contacts : one of the two nodes is listed in the forwarding list
 - 2-entry contacts : both nodes are listed in the forwarding list
 - ⇒The treatment of the three types of contacts depends on the actual forwarding protocol rules and the performance metric

Contact-filtering step : epidemic spread

• msg = (n1,n4,t_g), t_g=t_{0,s}- ε , $\varepsilon \rightarrow 0$

contact	involved		contact	contact	additional
id	nodes		start time	end time	fields
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C ₁	n3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

contact	involved	nodes	contact	contact	additional
lu		1	start time	end time	Tielus
• • •				• • •	
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C ₁	n3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

Original trace

filtered trace : epidemic spread

Contact-filtering : Two-hop forwarding

• msg = (n1,n4,t_g), t_g=t_{0,s}- ε , $\varepsilon \rightarrow 0$

contact	involved		contact	contact	additional
id	nodes		start time	end time	fields
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C ₁	n3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

contact	involved	nodes	contact	contact	additional
id			start time	end time	fields
					•••
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C1	n3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

Original trace

filtered trace : two-hop forwarding

• msg = (n1,n4,t_g), t_g=t_{0,s}- ε , $\varepsilon \rightarrow 0$

contact	involved		contact	contact	additional
id	nodes		start time	end time	fields
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C ₁	n3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

Forwarding list = {n1,n2}

• msg = (n1,n4,t_g), t_g=t_{0,s}- ε , $\varepsilon \rightarrow 0$

contact id	involved nodes		contact start time	contact end time	additional fields
	noues		start time	end time	TICIUS
•••	•••	•••			
C ₀	n1	n2	t _{0,s}	t _{0,e}	
Ci	n 3	n4	t _{1,5}	t _{i,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

Forwarding list = {n1,n2,n5}

• msg = (n1,n4,t_g), t_g=t_{0,s}- ε , $\varepsilon \rightarrow 0$

contact	involved		contact	contact	additional
id	nodes		start time	end time	fields
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C ₁	n 3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

Forwarding list = {n1,n2,n5,n6}

• msg = (n1,n4,t_g), t_g=t_{0,s}- ε , $\varepsilon \rightarrow 0$

contact	involved		contact	contact	additional
id	nodes		start time	end time	fields
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C ₁	n3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

Forwarding list = {n1,n2,n5,n6,n3}

• msg = (n1,n4,t_g), t_g=t_{0,s}- ε , $\varepsilon \rightarrow 0$

contact	involved		contact	contact	additional
Id	nodes		start time	end time	fields
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C1	n 3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n 6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7.e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

Stop parsing

Forwarding list = {n1,n2,n5,n6,n3,n4}

Graph construct examples

Shortest path computation

Dijkstra runs in O(|Vc|+|Ec|) time

|Vc| = O(|V|), |Ec| = O(|V|) and Dijkstra complexity : O(|V|)

Extensions for addressing node misbehaviors

- Deferral from message copying/forwarding (encounter-agnostic)
 - if a node defers from both, all encounters involving it can be filtered out offline
 - if a node defers from forwarding only, its contacts are filtered online
 - additional state : list of misbehaving nodes

contact id	involv	ed nodes	contact start time	contact end time	additional fields
• • •				•••	
C ₀	n1	n2	t _{0,s}	t _{0,e}	
C ₁	n3	n4	t _{1,s}	t _{1,e}	
C ₂	n4	n5	t _{2.s}	t _{2,e}	
C ₃	n2	n5	t _{3,s}	t _{3,e}	
C ₄	n5	n6	t _{4.s}	t _{4,e}	
C ₅	n3	n2	t _{5,s}	t _{5,e}	
C ₆	n1	n6	t _{6.s}	t _{6,e}	
C ₇	n2	n6	t _{7,s}	t _{7,e}	
C ₈	n2	n4	t _{8,s}	t _{8,e}	
C ₉	n3	n5	t _{9,s}	t _{9,e}	

black list = {2}, msg = (n1,n6,t_g), t_g=t_{0,s}-\varepsilon

Extensions for addressing node misbehaviors

- Encounter-dependent misbehavior (e.g. social selfishness)
 - per-node black-hole lists
 - may be aggregated offline into disjoint or overlapping communities

contact	involv	ed nodes	contact	contact	additional	
id			start time	end time	fields	
	•••				• • •	
C ₀	n1	n2	t _{0,s}	t _{0,e}		
C ₁	n3	n4	t _{1,s}	t _{1,e}		
C ₂	n4	n5	t _{2.s}	t _{2,e}	• • •	
C ₃	n2	n5	t _{3,s}	t _{3,e}		
C ₄	n5	n6	t _{4.s}	t _{4,e}		filtered out due social communi
C ₅	n3	n2	t _{5,s}	t _{5,e}		
C ₆	n1	n6	t _{6.s}	t _{6,e}		\rightarrow inflated message delivery time
C ₇	n2	n6	t _{7,s}	t _{7,e}		(instead of t_{4s})
C ₈	n2	n4	t _{8,s}	t _{8,e}		, , , , , , , , , , , , , , , , , , ,
C ₉	n3	n5	t _{9,s}	t _{9,e}	0.0.0	
				••••		

comms = $\{1, 2, 3, 6\}$ $\{3, 5, 7\}$	$msg = (n1, n6, t_q), t_q = t_{0,s} - \varepsilon$
--	--

Comparison with simulations runs in ONE

Run times

8			b	lack hole	e selfisl	nness			social selfishness						
msgs		Intel $10^3 ext{ } 10^4$		Cambridge 10 ³ 10 ⁴		Infoc 10 ³	$m05 \\ 10^4$	$rac{ m Intel}{10^8} 10^4$		$\begin{array}{c} {\rm Cambridge} \\ 10^3 & 10^4 \end{array}$		Infoc 10 ³	10^4		
epid	trace ONE	14 3109	216	43 12021	585	$\frac{1027}{53168}$	10853	21 4848	212	100 9615	969	883 53190	8487		
2hop	trace ONE	8 2699	104	30 5978	360	$545 \\ 23615$	5250	$\frac{29}{2717}$	286	130 4435	1253	$1269 \\ 18508$	12436		
SSAW	trace ONE	8 2366	105	30 4886	368	585 8625	5615	29 1885	287	129 2652	1262	1390 2834	12879		

- ONE run times 2-3 orders of time higher for 10³ messages
 - Simulator run times prohibitive for 10⁴ messages

Performance metrics

9	1	black hole selfishness										social selfishness									
89			Intel	2	Cambridge			Infocom05			Intel			Cambridge			Infocom05				
	metric	P_D	D_{avg}	h_{avg}	P_D	D_{avg}	havg	P_D	D_{avg}	h_{avg}	P_D	D_{avg}	havg	P_D	D_{avg}	havg	P_D	D_{avg}	h_{avg}		
epid	trace	976	71474	1.66	619	44066	2.42	884	28101	3.82	750	82506	2.13	615	69802	2.64	888	30438	4.32		
	ONE	975	62874	1.67	619	43373	2.43	887	27081	3.6	750	78270	2.15	613	68210	2.65	889	29073	4.35		
2hop	trace	976	71579	1.6	604	49751	1.71	883	30900	1.85	626	82333	1.59	427	56154	1.61	848	34443	1.88		
	ONE	975	60810	1.61	604	49013	1.7	885	29867	1.85	631	78772	1.59	425	54980	1.59	849	33703	1.87		
SSaW	trace	976	71579	1.6	602	49444	1.71	876	32930	1.79	626	82558	1.59	423	55219	1.6	810	36253	1.83		
	ONE	975	60741	1.62	602	48703	1.7	881	32006	1.80	626	82558	1.59	423	55219	1.6	810	36253	1.83		

Results' accuracy very good (within 5% in almost all cases)

Extensions

- utility-based forwarding
 - per-node additional state: time-varying node-dependent utilities for other nodes

- multicasting
 - stand-alone opportunistic networks
 - coexistence with terrestrial networks : cellular offloading scenarios

M. Karaliopoulos, C. Rohner, "**Trace-based Performance Analysis of Opportunistic Forwarding**" under submission to IEEE Transactions on Mobile Computing

EU-funded collaboration projects (last 5 years)

- (EU-IST-FIRE) EINS (11-15)
 - Network of Excellence in Internet Science
- (EU-IST-FET) RECOGNITION (11-14)
 - Relevance and cognition for self-awareness in a content-centric Internet
- (EU-Marie_Curie) Retune (10-12)
 - Resilience of Opportunistic Networks to Node Misbehaviors
- (EU-IST-FET) SOCIALNETS (08-11)
 - Social Networking for Pervasive Adaptation
- EU-IST-FET/FIRE) ANA (06-10)
 - Autonomic Network Architecture
- (EU-IST-FET/FIRE) BIONETS (06-10) with INRIA (Eitan Altman)
 - Biologically inspired networks and services
- (EU-IST-FET/FIRE) CASCADAS (06-09)
 - Component-ware for Autonomic Situation-aware Communications, and Dynamically Adaptable Services
- (EU-IST) CONTENT (06-09)
 - Overlay networks and services for audio-visual services