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Abstract

As illustrated by the approaches presented dutiegst FSPM workshop (Prusinkiewicz
and Hanan 2007, and this issue), the developmetitiradtional-structural plant models
requires an increasing amount of computer modekigthese models are developed by
different teams in various contexts and with d#far goals. Efficient and flexible
computational frameworks are required to augmeatititeraction between these models,
their reusability, and the possibility to compdrerh on identical datasets.

In this paper, we present an open-source platf@pgnAlea, that provides a user-friendly

environment for modelers, and advanced deploymetihads. OpenAlea allows researchers
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to build models using a visual programming integfand provides a set of tools and models

dedicated to plant modeling. Models and algoritlamesembedded in OpenAleamponents

with well defined input and output interfaces tbah be easily interconnected to form more

complex models and define more macroscopic comgendine system architecture is

based on the use of a general purpose, high-lebagct-oriented script language, Python,

widely used in other scientific areas. We brieflegent the rationale that underlies the

architectural design of this system and we illustrhe use of the platform to assemble
several heterogeneous model components and tolyrgmidtotype a complex modeling

scenario.

I ntroduction

Functional-structural plant models (FSPM) aim towdate and help to understand the
biological processes involved in the developmert faimctioning of plants (Prusinkiewicz
2004; Godin and Sinoquet 2005; Ves al. 2007). This requires efficiently using and
combining models or computational methods fromedéht scientific fields in order to
analyze, simulate and understand complex plantegs®s at different scales. Due to the
different constraints and background of the teathese models are developed using
different programming languages, with different sy of modularity and inter-
operability. In addition, little attention is deweat to the reusability of the code and to its
diffusion (packaging, installation procedures, weite, portability to other operating
systems, and documentation). This makes it diffi¢al exchange, re-use or combine
models and simulation tools between teams (or eviémn a team). This may become

particularly critical as the FSPM community wardsaddress the study of more and more
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complex systems, which requires integrating difierenodels available from different

groups at different scales.

Attempts have been made in the past to developvaddt platforms in the context of
FSPM. The most popular is the L-Studio softwarejettgped since the end of the 80’s by
the group led by P. Prusinkiewicz (Prusinkiewiczd anindenmayer 1990; Mech and
Prusinkiewicz 1996). This platform runs on the Wing operating system and provides
users with an integrated environment and a spelifiguage calledpfg dedicated to the

modeling of plant development. This language wasn#ly upgraded tb+C (based on the

C++ programming language). This greatly extended tbeep of expression and the

openness of the system.

A different user interfacé/Lab, has been designed by the same group tepfgen Linux
systems (Federl and Prusinkiewicz 1999). In itgék VLab design is independent of the
application domain. This interactive environmennhsists of experimentalinits called
objects, that encompass data files, and Linux jwrogr that operate on these ddta.
exchange data, objects must write the data to igle An inheritance mechanism allows
objects to be refined using an object-orienteddystem, and objects may be distributed in
different locations across the web. Such featurakent a powerful system for assembling
pieces of code at a coarse grain level and for giagadifferent versions of any given
model. On the other handLab uses of a shell language to combine stand-alomgrgms
that have a low level of interoperability, does atbbw easy control of data flows at a fine
grain level due to the limited access that the nevdeas to the internal data structures of

the interconnected programs.
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GrolMP (Kniemeyer et al. 2006) is another software platffased on L-systems, that was
developed recently by W. Kurth and his team in tdoatext of plant modeling and
simulation in biology. This open software platfoismmwritten in Java, which renders it
independent of operating systems. SimilarlyL®tudio/VLah GrolMP also relies on a
special purpose languagel,, dedicated to the simulation of plants and, maweegally, to
the dynamic development of graph structures. Theicehof Java as a programming
language allows a tradeoff between an easy-to usgrgmming language (no pointers,

automatic memory managemeeis) and a compiled efficient language such as C++.

Similarly to GrolMP, but in a domain restricted to forest managem@apsisis a
computer platform based on Java (Goreaud et ab)2@fr studying forest practices that is

worth mentioning in these approaches applied totptaodeling.

In a relatively different spirit, thAMAPmodplatform (Godinet al. 1997) focuses on plant
architecture analysis rather than on plant grovtukation. It was originally based on a
home-made languag&ML, that was designed to provide a high degree araction

between users and their models (Goeéinal. 1999). TheAML language was then
abandoned and replaced by a more powerful langoageng from the open software
community, Python, that was found to achieve a vgood compromise between
interactivity, efficiency, stability, expressive \wer, and legibility both for expert
programmers and beginners. This major upgrade efAtMAPmod system (now re-

engineered agPlantg initiated the development of OpenAlea.

Software platforms outside the world of plant maalalso inspired the development of
OpenAlea. In particular, the use of visual prograngmwas introduced in different

projects: AVS in scientific visualization (Upsaet al. 1999), Vision (Sanner 2002) in



92 Dbioinformatics or Orange (Demsat al, 2004) in data-mining. This notion was shown to
93 allow users natural access to the modeling systaineasy sketching and reuse of model

94  components.

95 We present in this paper the open-software platf@menAlea, for plant modeling based
96 on a combination of the two families of approackies plant architecture analysis and
97 visual programming). OpenAlea is a flexible compureased framework designed to
98 facilitate the integration and interoperability lnéterogeneous models and data structures
99 from different scientific disciplines at a fine grdevel. Its architecture will also ease and
100 accelerate the diffusion of new computational mdshas they become available from
101 different research groups. Such a software enviems targeted not only at developers
102 and computer scientists but also at biologists, wiay be able to assemble models while
103 minimizing the programming effort. The first sectig‘OpenAlea at a glance”) presents a
104 general outline of the OpenAlea platform. The selceaction details the design goals and
105 requirements that drove the platform developmehe third section describes the design
106 choices and emphasizes a number of critical teahngsues. Finally, the last section
107 provides an illustration of the use of the platfoom a typical modeling application in the
108 context of ecophysiology. This example shows hog ghatform can ease the integration

109 and interoperation of heterogeneous software coemisnn plant modeling applications.

110

111 OpenAleaat aglance
112

113 OpenAlea provides a graphical user interface (GUiBuAlea, which makes it possible to

114 access easily the different components and furaliiees of the system. It is composed of
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three main zones. The central zone (Figure 1.Bjawas the graphical description of the
model being built. The user can add or delete carapbnodes (in blue) and connect them
via their input/output ports (yellow dots). Eachmgmnent node contains parameters that
can be edited through a specific GUI by clickingtbe node. Component nodes available
in the libraries installed on the user's computan ®©e browsed and selected using the
package manager (Figure 1.A). Once the model igptete the user can get the result of
the model execution at any node by selecting tbderand running it. The evaluation of a
node changes its state which is represented byla. douring the execution of the
dataflow, the flow of node evaluation is thus repmed by a flow of color change.
Depending on the type of the output data, the tesuldisplayed by an appropriate
graphical interface as a text, a graphic, or a 8&hs (Figure 1.D). The result may also be
exported to the Python interpreter for further tiseugh the language (Figure 1.C). Figure
1 shows a small example in which a graphical madel designed to import the geometric
models of a tulip and to multiply it using a compah node representing a spatially

uniform distribution.

Design goals and platform requirements

The OpenAlea platform was designed to meet thevatg requirements:

Ease of use. As stated above, OpenAlea proposes a visual naging environment and a

collection of computational components, which malgemple to combine existing models
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in a new application. It also gives a simple mplatform framework for the development

and integration of components.

Reusability and extendibility. OpenAlea architecture aims at facilitating thévisg of
technical issues linked to sharing, reuse, andgiaten of software components, i.e.
programs, algorithms and data structure from hgtreous languages (mainly C, C++,
Python, and Fortran). This makes the platform udskfu multi-disciplinary projects and

multi-scale modeling of plants.

Collaborative development. The development and ownership of OpenAlea aresdhay
various teams, and open to all the community. TNexall software quality is improved by
enforcing common rules and best practices. Synbejween multidisciplinary teams is
also enhanced. The software life cycle is exterimthuse the system is co-developed by
different teams to suit their own needs. Econonoiescale are achieved by sharing the

costs of development, documentation and maintenance
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Description of the platform

The OpenAlea architecture consists of: (a) a Pytaoguage based system and a set of
tools to integrate heterogeneous models implementedrious languages and on different
platforms; (b) a component framework that allowsayic management and composition
of software components; (c) a visual-programmingliaption for the interactive creation
and control of complex models and for rapid prgbatg; and (d) an environment for

collaborative development and software diffusion.

Python-language based system and Model integration

OpenAlea has been designed using a “language-ceapproach (Sanner 1999) using the
high-level, object-oriented Python script languagea framework. Script languages, like
the Unix shell, have been successfully used foades in the Unix world (Raymond 2004)
to build flexible workflows from small stand-alongograms. Independent pieces of
software can be combined via the language. Newtitumaities are easier to develop for
users in an interpreted script language rather itn@compiled one. However, shell script
languages require conversion of complex data sirest into strings to support
communication between programs. This may be inefficfor large data structures and
requires extra-work for developers to manage seai@n and marshalling methods. This
limitation has been solved in other scientific pegés (e.g. R (R Development Core Team
2007), Matlab (Higham and Higham 2005), and AMAPnoglant modeling (Godiet al.
1997)) which have developed their own domain spet&iinguages where common data
structures are shared in memory. Among all sctgitguages, the general purpose Python
language was found to present unique key featutds. (a) open-source; (b) platform

independent; (c) object-oriented; (d) user-friendtyhas a simple-to-read syntax and is
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easy to learn, which allows even non computer $isisrto prototype rapidly new scripts or
to transform existing ones (Asher and Lutz 1999st&dnout 1998); (e) interactive: it
allows direct testing of code without compilatiorogess. The Python community is large
and active, and a large number of scientific lilmsuare available (Oliphant 2007). Python
framework enhances usability and inter-operability providing a uniqgue modeling
language for heterogeneous software. It allowsxterel, compare, reuse and interconnect
existing functionalities. It is used as a glue laage between integrated components.
Although the performance penalty is high for intetpd language compared to compiled
language, performance bottlenecks in Python prograan be rewritten in compiled
language for optimizing speed. Existing C, C++ ortfan programs and libraries can be
imported as extension modules. For this, wrapgesdpecify how the components can be
used in the Python language have to be impleme&thdard wrapping tools, such as
Boost.Python  (http://www.boost.org), Swig (httpWw.swig.org), and F2PY
(http://www.scipy.org/F2PY), are used to suppois thtegration process. Transforming an
existing library into a reusable component can aswilt in improvement in its design and
programming interface. For this reason, we reconthika separation of different software
functionality (e.g. data-structure, computatioratki, graphical representatioatc) into
different independent modules. This is intended ingrove software quality and
maintenance. However, the cost to obtain an ovqtallity improvement of software may
be expensive in development time. A disadvantagecopt language is that syntax errors
are detected at run-time rather than at compile-tiffo detect these errors early in the
development process and to test the validity offtmetionalities, unit-test suites can be
developed and source code checker can be usedyike (http://www.logilab.org) and

PyCheckerlfttp://pychecker.sourceforge.net/

9
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Component framework

OpenAlea implements the principles ot@amponent framewor{Councill and Heineman
2001) which allows users to combine dynamically existangd independent pieces of
software into customized workflows (Ludascledral. 2006). This type of framework
allows the decomposition of applications into seaparand independent functional
subsystems. Communication between components ideva&ch through interfaces
(Szyperski 1998) and is explicitly represented BQiegdly as connections between

components.

The software relies on several key concepts: (@de(Figure 2) representssaftware unit

or “logical component”. It is a function object whi provides a certain type of service. It
reads data on its inpytorts and provides new data on its output ports. (bjladaflow
(Johnstoret al 2004) is a graph composed of nodes connecteditgserepresenting the
flow of data from one node to the next. It defiadsigh level functional process well suited
for coarse grain computation and close to natugarghm design. (c) Acomposite-node
or macro nodds a node that encapsulates others nodes assemlaeathtaflow and makes
it possible to define a hierarchy of componentsd®&oomposition allows user to factorize
common processes in a unique node and to creaaded and reusable subsystems. (d) A
packages a deployment unit that contains a set of nodatg as well as meta-information
like authors, license, institutes, version, catggdescription and documentation. (e) The
package managemllows for the dynamic search, loading and disdoge of the
functionalities by introspection of the availabkecgages installed on the computer without

requiring specific configuration. The platform mdek and libraries are developed in a

10
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distributed way, and the availability of functioitaldepends on the user-defined system

configuration.

Users can develop new functionalities that are dddke the package manager at run-time
without modification of the framework. The framewocan be extended by combining
nodes into composite-nodes or by implementing nemctfonality directly in Python at
run-time using a code editor. Dataflows containmages and composite-nodes can be
saved as standalone applications for end-users Bython scripts.

In the dataflow, the nodes communicate by exchandtgthon objects. An input and
output port can be connected if their data typescampatible. Otherwise, an adapter has
to be inserted between the two nodes. A simple twagnsure input/output compatibility
between heterogeneous components is to use theéastladata type available in Python
such as list, dictionary, etc. For more complexegjpsuch as graphs, some abstract
interfaces are provided in OpenAlea to standardimbease communication.

The evaluation of a dataflow is a recursive algnitfrom a specific node selected by a
user. All the nodes connected to its input ports @raluated before evaluating the node
itself. Cyclic dependencies in the graph are mamdyesetting the previously computed

output values on the output ports or using defeallies for the first evaluation.

Visual Programming

To enable scientists to build complex models withdwaving to learn a textual
programming language, we designed the visual progriag environment\VisuAlea
Using VisuAlea the user can combine graphically different preces nodes provided by

OpenAlea libraries and run the final scenario. Gnephical models show clearly the

11
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dependencies between the processes as a grapéivalrk and ease the understanding of
the structure of the model. Users can interactieslf, save and compose nodes. In this
visual approach, a graphical interface is assatiatgh each node and enables the
configuration and visualization of their parametansl data. Customizing parameters of the
dataflow provides the user with an interactive wayexplore and control the model.
Complex components will have specifically desigdedog boxes. For others, a dialog box
can be automatically generated according to the typhe input port. In this case, a widget
catalog provides common editors for simple typeg.(eénteger, float, string, color,
filename, etc.), 2D and 3D data plotters, sequamckgraph editors. Thus, models that do
not provide GUI can be easily integrated in thei@isenvironment. Moreover, the catalog
can easily be extended with new widgets for newa tigies.

Advanced users may add new components by simplingdd Python function directly
from VisuAlea. GUI and documentation are extra@ed generated automatically. Finally,
a Python shell has been integrated in the visualr@mment to give a flexible way for
programmers to interact procedurally with the congrds and to extend their behavior
while taking advantage of the graphic represematiothe data. Visualea favors the reuse

of code and provides an environment for rapid fgypiog.

In a standard modeling process, the modeler dtgrtseating a package in which (s)he can

add components and a new dataflow. The dataflowbeasaved in the package, or a sub-
part of the dataflow can be grouped into a composdde and saved to be re-used as a
single node in a more complex dataflow or withelént data sets.

To illustrate this principle, let us consider a s#t nodes corresponding to a light

interception model, inspired from the real casehgforesented below:

12
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e anode to read and construct a database of digjiiaents of a plant;
* a mesh reconstruction node, to calculate a triangdsh representation of a plant
from the digitized points;
» alight model node, to compute total light intertoep on a 3D structures using data
describing the light sources.
The dataflow in Figure 3.A shows a first connectidrthese nodes starting with a filename
node for the digitized points and a parameter nodesky description. Eventually, this
dataflow can be viewed as a more macroscopic mtusi implements a reusable
functionality. In Figure 3.B, the different compane are grouped to form the macro node
“composite light model” that can be tested withfefiént parameters and reused in other
dataflows. It is reused in the dataflow in Figur€ and tested on a set of sky paramgtgrs
to explore, for instance, the response of the mddelifferent lighting conditions.

Resulting values are finally displayed on a 2D plot

Development environment and diffusion

For developers and modeling scientists, OpenAlesiges a set of software tools to build,
package, install, and distribute their modules imréform way on multiple operating

systems. It decreases development and maintenasste whilst increasing software
quality and providing a larger diffusion. In pattiar, some compilation and distribution
tools make it possible with high level commands dseers to avoid most of the problems
due to platform specificity. While pure Python campnts are natively platform

independent, others have to be rebuilt and instadle each specific platform, which may

be a rather complex task. To ease the compilatmhd®eployment processes on multiple
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platforms, we have developed various tools suc@snsX and Deploy. SConsX is an
extension package of SCons (Knight, 2005). It sifiesl the building of platform
dependent packages by supporting different typeowoipilers (i.e. GCC, MinGW, Visual
C++) and platform environments. Similarly, Deplogtends the standard Setuptools library
for packaging and installation of modules by addagupport for reusable components
with shared libraries. A graphical front-end ofsthool has been developed to facilitate the
install, update or removal of OpenAlea packagesWindows, Linux and MacOS X
platforms. The user selects the packages (s)hesriemd a list of available packages. The
selected packages and their dependencies are digmligadownloaded and installed on
the system. The list of available packages iseetd from standard or user-defined web
repositories (e.g. OpenAlea GForge public web reépgsor personal private repository
using authentication). Third-party Python packagéshe Python Package Index (PyPlI,

http://pypi.python.org ) are also accessible thiotigs interface.

Some collaborative tools allow information, sounmeEles, binaries and data to be shared
and distributed over the internet. First, a collalive website

(http://openalea.gforge.inria)fwhere the content is provided by users and deeeto

makes it possible to share documentation and nkws$ers access to the documentation
(user tutorials, developer guides and general go@EE. A short presentation for each
components distributed in OpenAlea is available pralided by the maintainer of the
component. The website serves as a first mediuexdiange between users, modelers and
developers. Second, the project management andigtiduted development of OpenAlea

IS made using a GForge serveéttg://gforge.inria.fy that contains amongst other things

useful bug tracking and versioning tools for tharse code.
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The OpenAlea platform is distributed under an opeuarce license to foster collaborative
development and diffusion. This license allows mxdé component developers to choose
their own license, including closed source oneswéi@r, only open source components
are distributed through the OpenAlea component sigpy. Selecting an open source
license for a component allows users to benefitfersupport of the OpenAlea community
such as (i) compilation of binaries on differenergting systems, (ii) easy access through
the OpenAlea website and component repository) fipssible improvement of the
component by other teams which can provide bugfidecumentation, and new features.
The OpenAlea license is also compatible with noanegource ones and allows integration
with proprietary modules. Users can also retriemd ahare proprietary modules from

private repositories in a secure and authenticagdusing the deployment tools.
Currently integrated components

Several components have already been integratédt¢oin OpenAlea from different fields
of plant modeling, such as plant architecture aig]yplant geometric modeling,

ecophysiological processes, and meristem modefidganulation (see Figure 4.).

» Plant architecture analysis: the VPlants packagegessor of AMAPmMod, provides
data structure and algorithms to store, represadt explore multi-scale plant
architectures. Statistical models like Hidden-Markoee models (Duranet al
2007) or change points detection models (Guéebal 2007) are provided to
analyze branching pattern and tree architecture.

* Plant geometry modeling: The PlantGL graphic lipr@@radalet al 2007) contains

a hierarchy of geometric objects dedicated to plapresentations that can be

15
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assembled into a scene graph, a set of algoritbrmanipulate them and some
visualization tools. Some parametric generative@sses to build plant architecture
(e.g. Weber and Penn 1995) are also integrated.

» Eco-physiological processes: Caribu (Chelle and rind 1998) and RATP
(Sinoquetet al 2001) provide methods for light simulation in 8Bvironments and
for computing radiation interception, transpiraticand carbon gain of a tree
canopy. The Drop model (Dufour-Kowalslet al 2007) simulates rainfall
interception and distribution by plants.

* Meristem modeling: Mechanical models of tissue cotapcell deformation and
growth (Choparaet al 2007).

* Finally, a catalog component provides common témisgeneral purposes such as
simple mathematical functions, standard data strast(e.g. string, list, dictionary,

etc), and file manipulation services.

A case-study of use of OpenAlea in ecophysiology: estimation by simulation of light

inter ception efficiency

Overview

The objective, in this case-study, was to deterrhim@ the integral of the fraction of light
intercepted by a maize crop over the plant cyclseissitive to natural variation in leaf
shapes. To do so, the light interception efficiedtiE) is estimated by a simulation
procedure using different leaf shapes which werasueed in the field for a given number
of maize genotypes. This procedure required theotifaee types of model: (i) a model of

3D leaf shapes, (ii) a simulator of the developmehthe canopy, here ADEL-maize

16



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

(Fournier and Andrieu, 1998), and (iii) a radiativeodel, here Canestra (Chelle and
Andrieu, 1998).

Such a chain of models has already been develapdised several times (e.g. Fournier
and Andrieu 1999; Pommet al. 2001; Everst al. 2007). However, the user had to re-use
and adapt the existing models developed usingrdiitekinds of tools (R scripts for pre
and post processing, Unix scripts and open-L-systenpts for simulation), which is not
an easy task without the help of their authorsthis example, we show how OpenAlea
helped setting up a more ergonomic, self-documemgedsable and versatile application.
We detail hereafter how the three simulation taskse embedded into independent
functional components, and finally assembled usirspAlea to get the final application

(see Figure 5.)

From field data to 3D leaf shapes

Two properties of leaf shapes were measured: thatwm of leaf width as a function of
the distance from the base of the leaf, and thér&Bctory of the leaf midribs. In previous
uses of ADEL-maize, an analytical model of leafgha.e. composed of conic arcs (Prevot
et al. 1991), was fitted to the data to smooth themand remove digitizing errors. The
estimated parameters of this leaf model were usedpaits to the L-system based 3D plant
generator. In this case-study, we have developesheparametric model because the shape
of midrib leaf curves of certain genotypes preseetgeral inflexion points which can not
be easily approximated using conics. This was motedbefore due to the difficulty to
design new algorithm which used external scientibcaries. The midrib curve and the

variation of the leaf width are approximated, ie rarametric model, with NURBS curves

17



383 using the least square fitting algorithm (Piegl ahler 1997), available in the Python
384 scientific library, SciPy (Oliphant 2007). To optae the final radiative computation,
385 whose complexity depends on the square of the numbériangles of the leaves, the
386 NURBS curves have been simplified as polylines vaitgiven number of points using a
387 decimation algorithm (Agarwal and Varadarajan 20@@veloped in Python. Under
388 VisuAlea (Figure 5.A), the user can graphically et leaf data and control the level of
389 discretization of the final mesh by setting theueal of the ‘fit leaves’ nodes which convert
390 the leaf measurement into simplified polylines. ndgsiknowledge about maize leaf
391 development (Fournier and Andrieu, 1998), the $wpe can be reconstructed at any stage
392 of its development. To obtain the leaf shape frone tcurves and user-defined
393 developmental parameters (e.g. length, radius, a.RlantGL mesh is computed by
394 sweeping a section line of length following the thidvariation along the approximated
395 midrib curve. Such reconstruction was handled ley‘dymbols’ node (Figure 5.A.4) and

396 used during the geometric reconstruction of thatpla
397 From 3D leaf shapes to canopy development

398 In previous applications, ADEL-maize, which is dgpcript, was used to simulate directly
399 canopy 3D development. The simulation was dongvndteps. First, the model computed
400 the evolution of the topology and of the dimensiohshe organs of each plant, and stored
401 it as a string. Second, a 3D mockup of the canogy @omputed using the cpfg interpretor
402 and a homomorphisnin this application, we did not apply the homonosm to be able

403 to use the geometric leaf shapes built outside. ciiig plant reconstruction was performed

404 from the L-system string using LOGO style turtletenpretation (Prusinkiewicz, 86)
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implemented in PlantGL (Pradet al, 2007). Finally, the resulting individual planbok-

ups were sent to a planter node that distributeglints over a defined area.

From Canopy reconstruction to LIE

LIE was computed with the radiative model Caribhjch is a package of OpenAlea. The
model is itself composed of several programs that lme arranged to fit particular needs.
We used one of the arrangements that computeofutet interception for an overcast sky,
issued in the package in the form of a VisuAleaflatv. We simply saved this Caribu

dataflow as a composite node, imported it to thelA&taflow (see Figure 5.A), and made
connections between slots. This package also glieatlded visualization tools based on
PlantGL (such as the one producing output in Figu€® and post-treatment routines for
computing LIE. The complete dataflow (Figure 5.Aufd be saved as a composite node

and used in a new dataflow that iterates on diffeirgout datasets (similarly to Figure 4).

In this application, OpenAlea was used to extermdctpabilities of the original application
and to re-implement it in a more modular way, wimtgroving the clarity of the chaining
of the models. The ADEL application has inheritedvrfeatures from the use of already
existing tools. These new features include a) arpatric model to represent leaf shapes
using parametric surfaces computed directly frogitidied leaves; b) user control of the
number of polygons used to represent leaf shapes;)aaccess to a large palette of sowing
strategies. Visualization and plotting tools arevied by PlantGL to generate different
kinds of outputs (images, animations ...). Althoulgé tlataflow presented in Figure 5.A is

specific to this particular application, it is dgseditable and configurable for other
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objectives. For example, we can easily imaginea@pg the maize model by another plant
model, even developed with another simulator. Alktfinally requires a very limited
programming effort, thanks to the re-use of ligayiand the automatic generation of

graphical interfaces under VisuAlea.

Conclusion

The major achievement of OpenAlea is to providesaal and interactive interface to the
inner structure of an FSPM application. This gneatiproves the potential of sharing and
reusing specialized integrated models, since endmkdaib-models, data-structures, or
algorithms can be recomposed or combined to ffedtht modeling objectives. This also
increases, for end users, the knowledge of howpalication works as one can evaluate
independently any part of the model dataflow. As@flea is primarily intended for the
FSPM community, we hope that such a platform vadilitate the emergence and sharing
of generic components and algorithms able to perfetandard modeling tasks in this
domain. We also paid a particular attention to mhoyg tools to ease the integration of
existing models, so that a large community of dg&ncould use and “feed” the platform.
In its present state, OpenAlea is suited to builaheples like the one presented here, where
individual components have to be chained sequéntatd with a genericity of algorithms
at the level of model subunit. The visual programgnénvironment has been designed for
models integration and connection rather than fadeling feedback and retroaction
between models. It has been based on a dataflovelmbddomputation where control flow

and feedback are difficult to represent, like indtional languages. However, retro-action

20



452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

and feedback can be managed within specific nddessimulation nodes or biophysical
solvers. OpenAlea only partially addresses the toprespointed by Prusinkiewicz et al.
(2007), regarding the construction of comprehensivedels that incorporate several
aspects of plant functioning with intricate intdrans between functions (for example a
plant development model coupled with hormonal aanyartitioning of resources, water
fluxes and biomechanics). This would probably regjio define and share generic data
structures representing the plant on differentes;adnd address, both theoretically and
algorithmically, the problem of simulating diffeigorocesses acting in parallel on different
scales.

A first step, might be, more modestly, to start reetions between OpenAlea and other
major software platforms dedicated to FSPM simafeti(e.g. LStudio/Vlab, GrolMP) in
order to identify current limitations and start idéig data standards and databases that can

be shared by the plant modeling community.
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Figure 1. Snapshot of the OpenAlea visual modekngironment. (A) The package
manager list packages and nodes found on the sy$BdnThe graphical programming
interface enables users to build visual dataflowirttgrconnecting nodes. A 3D scene is
built by associating a single geometry with a randtistribution of points. (C) Low level
interactions are done in the Python interprete). ALBD viewer is directly called by the

Plot3D component. (E-F) Widgets specific to eaampgonent are automatically generated.

28



588

nb_plant !i@;—

.:T def regular{nb_plant, nb_rank, dx, dy):
nb_rank |10
dx |-30.0 Calculates a regular plant distribution

nb_plants : total number of plants

nb_rank : total number of rows

dw, dy: distance between 2 plants on the x-axis and the y-axis
Return a list of (xy) position

regular distribution dy |%i:::

MName : regular distribution
Package : _my package__
Documentation :

nx = int{ nb_plant / nb_rank )
ny = nb_rank

return [ (i ®#dx, | * dy)
for j in xrange(nb_rank)
for i in xrange(nx)

Calculates a regular plant distribution
nb_plants : total number of plants
nb_rank : total number of rows

dw, dy: distance between 2 plants on the x-axis and the y-axis 1
Return a list of (xy) position

589
590

591 Figure 2. A graphical node is a visual represematif a function. Input ports at the top
592 represent the input arguments and output porteeabottom, the resulting values. In this
593 example, the "regular" node generates a list oftipas(x,y) corresponding to a regular
594 plant distribution. Documentation is automaticadiytracted and display in a tooltip. The
595 node widget allows to set the value of the parareetén the right, we show the related
596 Python code.

597
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Variable

Read 3D points

Build triangles

&4
ligth model | Light interception
<

& S
Display 3D scene Display epsilon_i
o o
A

epsilon i for each set of parameter

Figure 3. In the first example, we construct a ptandel from a set of 3D points read in a
file. Then, the light interception is computed ugia sky description. The 3D plant is
displayed in a 3D viewer, and the results of tghtimodel are displayed in the shell. In the
second example, the dataflow is simplified by giogmsome nodes in a composite node.

The third example shows the same model appliediffarent set of parameters.
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Figure 4. Example of components integrated in OpeafA) Estimation of the fractal
dimension of a plant foliage using the box countmegthod (DaSilveaet al. 2006) (B) A

visual programming example used to explore the logyoand geometry of multiscale
plant databases using VPlants components. (C) 3acsutissue of a meristem. (D)
Procedural generation of a tree architecture utiegWeber and Penn algorithm. (E) A

community of plants generated at the crown scdlggube PlantGL component.
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1. Load the database | 55 gfdm
of leaves. >

2. At the leaves with
Nurbs curves.

3. Simplify the mesh
of each leaf. 5. Simulate 100 plants

with cpfg

4. Build geometric models
for leaf and stem symbol

ina field

6. Parse the output
string of cpfg and build a
3D model

11. Visualization of the light
intercepted by the crop.

d—&
plot with values
D

Figure 5. Snapshots of the VisuAlea dataflow (A)d af two outputs of an application
allowing to reconstruct a maize canopy (B) anddin@ate light distribution within it (C).
Annotations on the dataflow succinctly describeftivetions of the different nodes. Nodes
1 to 4 defines the leaf shape model, which is &tfan that returns leaf shape at a given
stage of development, from a set of curves fittedigitize mature leaf shape data. Node 5
is an L-System engine simulating plant developmémm an L-system script
(‘LSystemRules’). Nodes 6 to 8 are for the recamgton of the 3D scene: one node
combines the L-system output with the leaf modelettonstruct the plants (‘turtle’), and
one node (‘planter’) is used for placing plantsading to a pattern (‘regular’). Node 9 is
for the radiative model, and node 10 and 11 ar@foducing 3D outputs (B and C). Three
parameters are represented with nodes to alloweatdnteraction with the application: the
number of polygons used to represent leaves (8)tdtal number of plants in the scene

(100) and the number of rows (4).
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