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Abstract

The knowledge of the state sequences that explain a given observed sequence for
a known hidden Markovian model is the basis of various methods that may be
divided into three categories: (i) enumeration of state sequences, (ii) summary of
the possible state sequences in state profiles, (iii) computation of a global measure
of the state sequence uncertainty. Concerning the first category, the generalized
Viterbi algorithm for computing the top L most probable state sequences and the
forward-backward algorithm for sampling state sequences are derived for hidden
semi-Markov chains and hidden hybrid models combining Markovian and semi-
Markovian states. Concerning the second category, a new type of state (and state
change) profiles is proposed. The Viterbi forward-backward algorithm for comput-
ing these state profiles is derived for hidden semi-Markov chains and hidden hybrid
models combining Markovian and semi-Markovian states. Concerning the third cat-
egory, an algorithm for computing the entropy of the state sequence that explains
an observed sequence is proposed. The complementarity and properties of these
methods for exploring the state sequence space (including the classical state profiles
computed by the forward-backward algorithm) are investigated and illustrated with
examples.

Key words: Entropy; Generalized Viterbi algorithm; Forward-backward algorithm
for sampling; Hidden Markov chain; Hidden semi-Markov chain; Plant structure
analysis; Viterbi forward-backward algorithm.

1 Introduction

Our focus will be on hidden semi-Markov chains and hidden hybrid models combin-
ing Markovian and semi-Markovian states; see Guédon (2005) for this latter family
of models. These statistical models generalize hidden Markov chains (see Ephraim
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and Merhav (2002) for a tutorial about hidden Markovian models) and are particu-
larly useful for analyzing homogeneous zones within sequences or detecting change
points between zones. Hidden semi-Markov chains were first introduced in the con-
text of speech recognition by Ferguson (1980) and have since been applied in such
different contexts as for instance gene finding (Burge and Karlin, 1997; Lukashin and
Borodovsky, 1998), protein secondary structure prediction (Schmidler et al., 2000),
the analysis of branching and flowering patterns in plants (Guédon et al., 2001) and
the analysis of rainfall data (Sansom and Thomson, 2001).
Once a hidden Markovian model has been estimated, it is generally of interest to
understand the hidden state sequence structure underlying each observed sequence.
The knowledge of solely the most probable state sequence computed by the Viterbi
algorithm tells us nothing about the remainder of the state sequence space while
the state profiles computed by the forward-backward algorithm do not highlight
structural differences between possible state sequences. Questions of interest are
(Foreman, 1993):
• Is the most probable state sequence most probable by a long way or are there

other state sequences with near-optimal probability?
• Do these near-optimal sequences have state structures very similar to the most

probable state sequence or do they differ greatly?
The knowledge of state sequences that explain a given observed sequence for a known
hidden Markovian model is the objective of various methods that may be divided
into three categories:
• enumeration of state sequences,
• state profiles i.e. state sequences summarized in a J × τ array where J is the

number of states and τ the length of the sequence,
• computation of a global measure of the state sequence uncertainty.
The first category includes two main methods, a deterministic method and a ran-
domized method. In the case of hidden Markov chains, the top L most probable
state sequences can be computed by the generalized Viterbi algorithm proposed
by Foreman (1993) while state sequences can be simulated for a given observed se-
quence (Chib, 1996). This latter method was initially proposed as a building block of
Bayesian estimation methods but has also been used for exploring the state sequence
space (Cawley and Pachter, 2003). One outcome of this paper will be to derive a
generalized Viterbi algorithm and an algorithm for sampling state sequences for
hidden semi-Markov chains and hidden hybrid models combining Markovian and
semi-Markovian states.
State profiles and state change profiles were first proposed as a way to explore
the state sequence space by Churchill (1989). These state profiles are smoothed
probabilities, computed by the forward-backward algorithm, as a function of the
index parameter. In these state profiles, individual state sequences and in particular
the most probable state sequence are not apparent. One of the main outcomes of
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this paper is to propose a new type of state and state change profiles computed by
the Viterbi forward-backward algorithm. This algorithm was initially proposed by
Brushe et al. (1998) for estimating hidden Markov chains. In this paper, the Viterbi
forward-backward algorithm is derived for hidden semi-Markov chains and hidden
hybrid models combining Markovian and semi-Markovian states. We will show that
these new state and state change profiles give two complementary synthetic points of
view on the structural differences between state sequences and are thereby directly
related to the outputs of the generalized Viterbi algorithm.
The entropy of the state sequence that explains an observed sequence for a known
hidden Markov chain was proposed as a global measure of the state sequence un-
certainty by Hernando et al. (2005). They derived an algorithm which can be trans-
posed to hidden semi-Markov chains and hidden hybrid models. We here propose
an alternative approach inspired by the statement of the EM algorithm for hidden
semi-Markov chains (Guédon, 2003).
The remainder of this paper is organized as follows. Hidden hybrid Markov/semi-
Markov chains are formally defined in Section 2. The Viterbi forward-backward algo-
rithm is presented in Section 3 while the generalized Viterbi algorithm is presented
in Section 4 and the forward-backward algorithm for sampling state sequences is pre-
sented in Section 5. An algorithm for computing the entropy of the state sequence
that explains an observed sequence is derived in Section 6. All these algorithms are
illustrated in Section 7 using two examples. Section 8 consists of concluding remarks.

2 Hidden hybrid Markov/semi-Markov chain definition

Let {St} be a hybrid Markov/semi-Markov chain with finite state space {0, . . . , J − 1};
see Kulkarni (1995) for a general reference about Markov and semi-Markov models.
This J-state hybrid Markov/semi-Markov chain is defined by the following parame-
ters:
• initial probabilities πj = P (S0 = j) with ∑

j πj = 1,
• transition probabilities
- semi-Markovian state j: for each k �= j, pjk = P (St+1 = k|St+1 �= j, St = j) with∑

k �=j pjk = 1 and pjj = 0,
- Markovian state j: p̃jk = P (St+1 = k|St = j) with ∑

k p̃jk = 1.
It should be noted that absorbing states are Markovian by definition.
An explicit occupancy (or sojourn time) distribution is attached to each semi-
Markovian state

dj (u) = P (St+u+1 �= j, St+u−v = j, v = 0, . . . , u− 2|St+1 = j, St �= j) , u = 1, . . . ,Mj,
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where Mj denotes the upper bound to the time spent in state j. Hence, we assume
that the state occupancy distributions are concentrated on finite sets of time points.
For the particular case of the last visited state, we need to introduce the survivor
function of the sojourn time in state j, Dj (u) = ∑

v≥u dj (v).
If the process starts out at t = 0 in a given semi-Markovian state j, the following
relation is verified

P (St �= j, St−v = j, v = 1, . . . , t) = dj (t)πj. (1)
Relation (1) means that the process enters a ‘new’ state at time 0.
The implicit occupancy distribution of a nonabsorbing Markovian state j is the
‘1-shifted’ geometric distribution with parameter 1− p̃jj

dj (u) = (1− p̃jj) p̃u−1
jj , u = 1, 2, . . .

Hybrid Markov/semi-Markov chains can be viewed as a sub-class of semi-Markov
chains where the occupancy distributions of some nonabsorbing states are con-
strained to be geometric distributions.
A hidden hybrid Markov/semi-Markov chain can be viewed as a pair of stochastic
processes {St, Xt} where the output process {Xt} is related to the state process {St},
which is a finite-state hybrid Markov/semi-Markov chain, by a probabilistic function
or mapping denoted by f (hence Xt = f (St)). Since the mapping f is such that
f (j) = f (k) may be satisfied for some different j, k, that is a given output may be
observed in different states, the state process {St} is not observable directly but only
indirectly through the output process {Xt}. To simplify the algorithm presentation,
we consider a single discrete output process. This output process {Xt} is related
to the hybrid Markov/semi-Markov chain {St} by the observation (or emission)
probabilities

bj (y) = P (Xt = y|St = j) with ∑
y
bj (y) = 1.

The definition of the observation probabilities expresses the assumption that the out-
put process at time t depends only on the underlying hybrid Markov/semi-Markov
chain at time t. Note that Xt is considered univariate for convenience: the extension
to the multivariate case is straightforward since, in this latter case, the elementary
observed variables at time t are assumed to be conditionally independent given the
state St = st.
In the sequel, Xτ−10 = xτ−10 is a shorthand for X0 = x0, . . . ,Xτ−1 = xτ−1 (this
convention transposes to the state sequence Sτ−10 = sτ−10 ).
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3 Viterbi forward-backward algorithm

Individual state sequences are not apparent in the usual state profiles computed
by the forward-backward algorithm. The distinctive property of the state profiles
computed by the Viterbi forward-backward algorithm is to select segments of indi-
vidual state sequences and in particular the entire most probable state sequence. In
this way, structural differences between sub-optimal state sequences and the most
probable state sequence are highlighted.
For a semi-Markovian state j, the Viterbi forward-backward algorithm is based on
the following decomposition of the probability of the observed sequence xτ−10 jointly
with the most probable state sequence leaving state j at time t

maxs0,...,st−1
maxst+1,...,sτ−1

P (St−10 = st−10 , St = j, St+1 �= j, Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

= maxst+1,...,sτ−1
P (Xτ−1

t+1 = xτ−1
t+1 , Sτ−1

t+1 = sτ−1
t+1 |St+1 �= j, St = j)

× maxs0,...,st−1
P (St+1 �= j, St = j, St−10 = st−10 , Xt0 = xt0

)
=βj (t)αj (t) . (2)

For a Markovian state j, the Viterbi forward-backward algorithm is based on the
following decomposition of the probability of the observed sequence xτ−10 jointly with
the most probable state sequence being in state j at time t

γj (t)= maxs0,...,st−1
maxst+1,...,sτ−1

P (St−10 = st−10 , St = j, Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

= maxst+1,...,sτ−1
P (Xτ−1

t+1 = xτ−1
t+1 , Sτ−1

t+1 = sτ−1
t+1 |St = j)

× maxs0,...,st−1
P (St = j, St−10 = st−10 ,Xt0 = xt0

)
= β̃j (t) α̃j (t) . (3)

The objective of the Viterbi forward-backward algorithm is to compute γt (j) what-
ever the state type and this induces some supplementary difficulties for semi-Markovian
states (for the same reasons, the computation of P (St = j| Xτ−10 = xτ−10

) for a semi-
Markovian state j is less intuitive than the computation of P (St+1 �= j, St = j|
Xτ−10 = xτ−10

) in the forward-backward algorithm; see Guédon (2003)). In the fol-
lowing, we will show that it is possible to design a backward recursion for semi-
Markovian states whose complexities both in time and in space are similar to those
of the forward recursion, that is O (Jτ (J + τ))-time in the worst case and O (Jτ)-
space. This means that the computation of γj (t) = maxs0,...,st−1

maxst+1,...,sτ−1 P
(St−10 = st−10 , St = j, Sτ−1

t+1 = sτ−1
t+1 , Xτ−10 = xτ−10

) instead ofmaxs0,...,st−1

maxst+1,...,sτ−1 P
(St−10 = st−10 , St = j, St+1 �= j, Sτ−1

t+1 = sτ−1
t+1 , Xτ−10 = xτ−10

) for a
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semi-Markovian state j does not entail a change in the order of magnitude of algo-
rithm complexity.
For a semi-Markovian state j, the forward recursion is given by (Guédon, 2003,
2005),
t = 0, . . . , τ − 2 :

αj (t)= maxs0,...,st−1
P (St+1 �= j, St = j, St−10 = st−10 ,Xt0 = xt0

)

= bj (xt)max
[
max1≤u≤t

[{u−1∏
v=1

bj (xt−v)
}
dj (u)maxi �=j {pijαi (t− u)}

]
,

{ t∏
v=1

bj (xt−v)
}
dj (t+ 1)πj

]
. (4)

The censoring at time τ−1 of the sojourn time in the last visited state distinguishes
the case t = τ − 1

αj (τ − 1)
= maxs0,...,sτ−2

P (Sτ−1 = j, Sτ−20 = sτ−20 ,Xτ−10 = xτ−10
)

= bj (xτ−1)max
[

max1≤u≤τ−1

[{u−1∏
v=1

bj (xτ−1−v)
}
Dj (u)maxi �=j {pijαi (τ − 1− u)}

]
,

{τ−1∏
v=1

bj (xτ−1−v)
}
Dj (τ) πj

]
. (5)

For a Markovian state j, the forward recursion initialized for t = 0 by

α̃j (0)=P (S0 = j,X0 = x0)
= bj (x0)πj,

is given by,
t = 1, . . . , τ − 1 :

α̃j (t)= maxs0,...,st−1
P (St = j, St−10 = st−10 , Xt0 = xt0

)
= bj (xt)maxi {p̃ijα̃i (t− 1)} . (6)

The probability of the observed sequence xτ−10 jointly with the most probable state
sequence is maxj {αj (τ − 1)} (it should be noted that αj (τ − 1) = α̃j (τ − 1) =
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maxs0,...,sτ−2 P (Sτ−1 = j, Sτ−20 = sτ−20 , Xτ−10 = xτ−10
)). The quantity pijαi (t− u) in

(4) and (5) should be replaced by p̃ijα̃i (t− u) if state i is Markovian and, con-
versely, the quantity p̃ijα̃i (t− 1) in (6) should be replaced by pijαi (t− 1) if state i
is semi-Markovian; see Guédon (2005). The resulting forward recursion computes in
parallel αj (t) = maxs0,...,st−1 P (St+1 �= j, St = j, St−10 = st−10 , Xt0 = xt0) for semi-
Markovian states and α̃j (t) = maxs0,...,st−1 P (St = j, St−10 = st−10 , Xt0 = xt0) for
Markovian states.
On the basis of decomposition (2) for semi-Markovian states and decomposition (3)
for Markovian states, we can build the following backward recursion.
The backward recursion is initialized for t = τ − 1 by

βj (τ − 1) = β̃j (τ − 1) = 1,
where state j may be indifferently Markovian or semi-Markovian.
Hence,

γj (τ − 1) = αj (τ − 1) = α̃j (τ − 1) .
For a semi-Markovian state j, the backward recursion is given by,
t = τ − 2, . . . , 0 :

βj (t)
= maxst+1,...,sτ−1

P (Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+1 = sτ−1

t+1 |St+1 �= j, St = j)

=maxk �=j

[
max

[
max1≤u≤τ−2−t

{
maxst+u+1,...,sτ−1

P (Xτ−1
t+u+1 = xτ−1

t+u+1, Sτ−1
t+u+1 = sτ−1

t+u+1|
St+u+1 �= k, St+u = k)P (Xt+u

t+1 = xt+u
t+1 |St+u−v = k, v = 0, . . . , u− 1)

×P (St+u+1 �= k, St+u−v = k, v = 0, . . . , u− 2|St+1 = k, St �= k)} ,
P (Xτ−1

t+1 = xτ−1
t+1 |Sτ−1−v = k, v = 0, . . . , τ − 2− t)

×P (Sτ−1−v = k, v = 0, . . . , τ − 3− t|St+1 = k, St �= k)]
×P (St+1 = k|St+1 �= j, St = j)]

=maxk �=j

[
max

[
max1≤u≤τ−2−t

[
βk (t+ u)

{u−1∏
v=0

bk (xt+u−v)
}
dk (u)

]
,

{τ−2−t∏
v=0

bk (xτ−1−v)
}
Dk (τ − 1− t)

]
pjk

]

=maxk �=j {ξk (t+ 1) pjk} , (7)

where
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ξk (t+ 1) = maxst+2,...,sτ−1
P (Xτ−1

t+1 = xτ−1
t+1 , Sτ−1

t+2 = sτ−1
t+2 |St+1 = k, St �= k) .

For a Markovian state j, the backward recursion is given by (Brushe et al., 1998),
t = τ − 2, . . . , 0 :

β̃j (t)= maxst+1,...,sτ−1
P (Xτ−1

t+1 = xτ−1
t+1 , Sτ−1

t+1 = sτ−1
t+1 |St = j)

=maxk

{
maxst+2,...,sτ−1

P (Xτ−1
t+2 = xτ−1

t+2 , Sτ−1
t+2 = sτ−1

t+2 |St+1 = k)
×P (Xt+1 = xt+1|St+1 = k)P (St+1 = k|St = j)}

=maxk

{β̃k (t+ 1) bk (xt+1) p̃jk
}

=maxk

{ξ̃k (t+ 1) p̃jk
} , (8)

where

ξ̃k (t+ 1) = maxst+2,...,sτ−1
P (Xτ−1

t+1 = xτ−1
t+1 , Sτ−1

t+2 = sτ−1
t+2 |St+1 = k) .

Hence, ξk (t+ 1) in (7) should be replaced by ξ̃k (t+ 1) if state k is Markovian
and, conversely, ξ̃k (t+ 1) in (8) should be replaced by ξk (t+ 1) if state k is semi-
Markovian. The resulting backward recursion computes in parallel
βj (t) = maxst+1,...,sτ−1 P

(Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+1 = sτ−1

t+1 |St+1 �= j, St = j) for semi-
Markovian states and β̃j (t) = maxst+1,...,sτ−1 P

(Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+1 = sτ−1

t+1 | St = j)
for Markovian states.
For a semi-Markovian state j, the computation of γj (t) requires the following addi-
tional maximization step. For each u (taken in decreasing order), the quantity

maxv≥u maxs0,...,st maxst+v+1,...,sτ−1
P (St0 = st0, St �= j, St+w = j, w = 1, . . . , v, St+v+1 �= j,

Sτ−1
t+v+1 = sτ−1

t+v+1,Xτ−10 = xτ−10
)

should be compared with the current evaluation of

γj (t+ u)= maxs0,...,st+u−1
maxst+u+1,...,sτ−1

P (St+u−10 = st+u−10 , St+u = j, Sτ−1
t+u+1 = sτ−1

t+u+1,
Xτ−10 = xτ−10

) ,

where
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maxs0,...,st maxst+v+1,...,sτ−1
P (St0 = st0, St �= j, St+w = j, w = 1, . . . , v, St+v+1 �= j,

Sτ−1
t+v+1 = sτ−1

t+v+1,Xτ−10 = xτ−10
)

= maxst+v+1,...,sτ−1
P (Xτ−1

t+1 = xτ−1
t+1 , Sτ−1

t+v+1 = sτ−1
t+v+1, St+v+1 �= j,

St+v−w = j, w = 0, . . . , v − 2|St+1 = j, St �= j)
×maxs0,...,stP

(St+1 = j, St �= j, St0 = st0, Xt0 = xt0
) . (9)

The first term in (9) is directly extracted from the computation of ξj (t+ 1) while the
second term maxs0,...,st P (St+1 = j, St �= j, St0 = st0, Xt0 = xt0) = maxi �=j {pijαi (t)}
is computed and stored during the forward recursion; see Appendix A. The compu-
tation of ξj (t+ 1) decomposes in two passes:

• a first pass for each u taken in increasing order justified by the recursive compu-
tation of ∏u−1

v=0 bj (xt+u−v),
• a second pass for each u taken in decreasing order for the two-step maximization

described above.

In this manner, the mandatory maximization required for computing βj (t) is re-used
in the computation of (γj (t+ u) ;u = 1, . . . , τ − 1− t) with only a single supple-
mentary maximization for each couple (t, u). For a semi-Markovian state j, γj (t) is
initialized at time t with βj (t)αj (t) .

Hence, in the computation of

γj (t)= maxs0,...,st−1
maxst+1,...,sτ−1

P (St−10 = st−10 , St = j, Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

=maxu,v maxs0,...,st−u
maxst+v+1,...,sτ−1

P (St−u0 = st−u0 , St−u �= j,
St−u+w = j, w = 1, . . . , u+ v, St+v+1 �= j, Sτ−1

t+v+1 = sτ−1
t+v+1, Xτ−10 = xτ−10

) ,

the maximizations on v for each u are byproducts of the computation of {βj (t− u) ;
u = 0, ..., t} while the maximization on u requires a supplementary maximization for
each u.

The computation of γj (t) for semi-Markovian states requires some supplementary
computations at time t = 0. It is thus necessary to compute
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maxs1,...,sτ−1
P (S0 = j, Sτ−11 = sτ−11 , Xτ−10 = xτ−10

)

=max
[

max1≤u≤τ−1

[
βj (u− 1)

{ u∏
v=1

bj (xu−v)
}
dj (u)

]
,

{ τ∏
v=1

bj (xτ−v)
}
Dj (τ)

]
πj

= ξj (0)πj.

For each u (taken in decreasing order), the quantity

maxv≥u maxsv,...,sτ−1
P (Sw = j, w = 0, . . . , v − 1, Sv �= j, Sτ−1

v = sτ−1
v ,Xτ−10 = xτ−10

)

should then be compared with the current evaluation of

γj (u− 1) = maxs0,...,su−2
maxsu,...,sτ−1

P (Su−20 = su−20 , Su−1 = j, Sτ−1
u = sτ−1

u ,Xτ−10 = xτ−10
) .

It should be noted that the reestimation of state occupancy distributions (M-step
of the EM algorithm) requires similar supplementary computations at time t = 0;
see Guédon (2003). In the case of a hidden semi-Markov chain, the complexity
of this algorithm is O (Jτ (J + τ))-time in the worst case and O (Jτ)-space. An
implementation of this algorithm is proposed in Appendix A in pseudo-code form
where common computations between semi-Markovian states and Markovian states
are highlighted.
In practice, the posterior probabilities should preferably be used

γj (t)= maxs0,...,st−1
maxst+1,...,sτ−1

P (St−10 = st−10 , St = j, Sτ−1
t+1 = sτ−1

t+1 |Xτ−10 = xτ−10
)

= γj (t) /P
(Xτ−10 = xτ−10

) .

where the normalizing constant P (Xτ−10 = xτ−10
) is computed by the forward re-

cursion of the forward-backward algorithm presented in Guédon (2005); see also
Section 5. Hence, the selected segments of state sequences are represented at the
level of their posterior probability γj (t) in the state profiles; see the examples in
Section 7.
We are now able to discuss the respective properties of the state profiles computed
by the Viterbi forward-backward algorithm and the usual state profiles computed
by the forward-backward algorithm. Since
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Lj (t)=P (St = j|Xτ−10 = xτ−10
)

=P (St+1 �= j, St = j|Xτ−10 = xτ−10
)+ P (St+1 = j|Xτ−10 = xτ−10

)
−P (St+1 = j, St �= j|Xτ−10 = xτ−10

)
=P (St+1 �= j, St = j|Xτ−10 = xτ−10

)+ Lj (t+ 1)
−P (St+1 = j, St �= j|Xτ−10 = xτ−10

) , (10)

the smoothed probabilities Lj (t) at time t are related to the other smoothed prob-
abilities at times t′ �= t; these probabilities express all the possible state sequences
for a given observed sequence. The quantities γj (t) may be unrelated to analog
quantities computed at times t′ �= t since these latter quantities may correspond
to globally different state sequences. As a consequence, the variations of Lj (t) as a
function of t are generally smoother than the variations of γj (t) as a function of t.
The most probable state sequence can be directly deduced as

s̃t = argmaxj

{
maxs0,...,st−1

maxst+1,...,sτ−1
P (St−10 = st−10 , St = j, Sτ−1

t+1 = sτ−1
t+1 |Xτ−10 = xτ−10

)} .

The state sequence computed as

s̃t = argmaxj P (St = j|Xτ−10 = xτ−10
) .

may not be a valid state sequence.
Hence, the most probable state sequence is only apparent in the state profiles com-
puted by the Viterbi forward-backward algorithm.
If the focus is on the state changes rather than on the states, the quantitiesmaxs0,...,st−1

maxst+1,...,sτ−1 P
(St−10 = st−10 , St = j, St+1 �= j, Sτ−1

t+1 = sτ−1
t+1 | Xτ−10 = xτ−10

) ormaxs0,...,st−1

maxst+1,...,sτ−1 P
(St−10 = st−10 , St−1 �= j, St = j, Sτ−1

t+1 = sτ−1
t+1 | Xτ−10 = xτ−10

) can be
computed instead of γj (t) by close variants of the above-described algorithm (for
semi-Markovian states, this in particular avoids a maximization step). It should be
noted that the quantities P (St = j | Xτ−10 = xτ−10

), P (St+1 �= j, St = j| Xτ−10 = xτ−10
)

and P (St = j, St−1 �= j| Xτ−10 = xτ−10
) are linked (see (10)) while the quantities

maxs0,...,st−1 maxst+1,...,sτ−1 P
(St−10 = st−10 , St = j, Sτ−1

t+1 = sτ−1
t+1 | Xτ−10 = xτ−10

),maxs0,...,st−1

maxst+1,...,sτ−1 P
(St−10 = st−10 , St = j, St+1 �= j, Sτ−1

t+1 = sτ−1
t+1 | Xτ−10 = xτ−10

) and
maxs0,...,st−1 maxst+1,...,sτ−1 P

(St−10 = st−10 , St−1 �= j, St = j, Sτ−1
t+1 = sτ−1

t+1 | Xτ−10 = xτ−10
)

may correspond to globally different state sequences.
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4 Generalized Viterbi algorithm

The objective of the generalized Viterbi algorithm is to compute the top L most
probable state sequences for a given observed sequence (Foreman, 1993). In the case
of a hidden Markov chain, the optimality of this algorithm relies on the fact that
the top L partial most probable state sequences being in state j at time t (assuming
that the number of possible partial state sequences at times t−1 and t ≥ L) require
at most computation of the top L partial most probable state sequences being in
each state at time t−1, the extreme situation being the case where the top L partial
most probable state sequences being in state j at time t are built from the top L
partial most probable state sequences being in a given state i at time t − 1. This
principle directly transposes to the hidden semi-Markov chain case where the top
L partial most probable state sequences leaving state j at time t require at most
computation of the top L partial most probable state sequences leaving each state
i at times t − u for u = 1, . . . , t. The main difference in the presentation of this
algorithm compared with the simple Viterbi algorithm (see recursion (4), (5) and
(6)) is the management of ranks of partial state sequences at times t− u.
Let Lt denote the number of partial state sequences at time t. The number of partial
state sequences increases at each time step until it exceeds L, in which case it stays
fixed at L.
For a semi-Markovian state j, the forward recursion is given by the following re-
cursion. For each time t, the ranks of the partial state sequences (r (t− u, j) ;
u = 1, . . . , t; j = 0, . . . , J − 1) should be initialized at 1.
n = 1, . . . , Lt :

αn
j (t)= bj (xt)max

[
max1≤u≤t

[{u−1∏
v=1

bj (xt−v)
}
dj (u)maxi �=j

{pijαr(t−u,i)
i (t− u)}

]
,

{ t∏
v=1

bj (xt−v)
}
dj (t+ 1)πj

]
. (11)

The quantity αnj (t) is the probability of the partial observed sequence xt0 jointly with
the nth partial state sequence leaving state j at time t. The above maximization
selects a duration u and a partial state sequence leaving state i at time t− u with
associated rank r (t− u, i). This rank should then be incremented by one to prevent
reselecting the same configuration. The particular case of being in the first state
visited should be properly managed since this configuration can only be selected
once (since L0 = 1). More generally, the ranks for the values of t − u such that
Lt−u < L should be carefully managed; see Appendix B.
The censoring at time τ−1 of the sojourn time in the last visited state distinguishes
the case t = τ − 1,
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n = 1, . . . , Lt :

αn
j (τ − 1)

= bj (xτ−1)max
[

max1≤u≤τ−1

[{u−1∏
v=1

bj (xτ−1−v)
}
Dj (u) maxi �=j

{pijαr(τ−1−u,i)
i (τ − 1− u)}] ,

{τ−1∏
v=1

bj (xτ−1−v)
}
Dj (τ) πj

]
. (12)

In the case of a hidden semi-Markov chain, the complexity of this algorithm is
O (LJτ (J + τ))-time in the worst case and O (LJτ)-space. This space complexity
may become a limitation in the case of long sequences.
For a Markovian state j, the forward recursion is initialized for t = 0 by (L0 = 1)

α̃1
j (0) = bj (x0)πj.

For each time t, the ranks of the partial state sequences (r (t− 1, j) ; j = 0, . . . , J − 1)
should be initialized at 1. The forward recursion is given by (Foreman, 1993),
n = 1, . . . , Lt :

α̃n
j (t) = bj (xt)maxi

{p̃ijα̃r(t−1,i)
i (t− 1)} . (13)

The quantity α̃n
j (t) is the probability of the partial observed sequence xt0 jointly with

the nth partial state sequence being in state j at time t. The above maximization
selects a partial state sequence being in state i at time t − 1 with associated rank
r (t− 1, i). This rank should then be incremented by one to prevent reselecting the
same configuration. The rule described in Section 3 for mixing Markovian and semi-
Markovian recursions directly transposes to recursions (11), (12) and (13).
The probability of the observed sequence xτ−10 jointly with the nth most probable
state sequence is maxj

{αr(j)
j (τ − 1)} (or maxj

{α̃r(j)
j (τ − 1)}) where the ranks of

the state sequences (r (j) ; j = 0, . . . , J − 1) are initialized at 1 and the rank of the
selected state sequence is incremented by one to prevent reselecting the same state
sequence.
To retrieve the top L most probable state sequences, the recursion described above
should be complemented by a backtracking procedure. In this respect, our presen-
tation differs from that of Foreman (1993) where the partial state sequences were
built during the forward recursion for each time t, each state j and each rank n. In
the case of semi-Markovian states, the backtracking procedure operates by jumps
on the basis of three backpointers, the first giving the optimal preceding state, the
second the associated rank and the third the optimal preceding time of transition
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from this preceding state, while, in the case of Markovian states, the backtracking
procedure operates step by step on the basis of two backpointers, the first giving
the optimal preceding state and the second the associated rank. An implementation
of this algorithm is proposed in Appendix B in pseudo-code form.
The Viterbi forward-backward algorithm and the generalized Viterbi algorithm give
two complementary points of view on the state sequences that explain an observed
sequence. While the top L most probable state sequences are enumerated by the gen-
eralized Viterbi algorithm, the output of the Viterbi forward-backward algorithm can
be viewed as the superposition (from the less probable to the most probable) of all
the state sequences in a J×τ array. Hence, the computation of the quantities γj (t) =
maxs0,...,st−1 maxst+1,...,sτ−1 P

(St−10 = st−10 , St = j, Sτ−1
t+1 = sτ−1

t+1 | Xτ−10 = xτ−10
) may

mask some state sequences of high probability (except the top two most probable
state sequences). One drawback of the generalized Viterbi algorithm is that the
number of state sequences should be a priori fixed without knowledge of the weight
of these top L most probable state sequences with respect to all the state sequences.
The exact number of state sequences can be easily computed by a close variant of the
forward recursion of the forward-backward algorithm presented in Guédon (2005)
(see also Section 5) where the strictly positive parameters (initial, transition, state
occupancy and observation probabilities) are replaced by one and the normalization
step is removed. The total number of state sequences is then the sum of the forward
quantities at time τ − 1. One challenging problem would be to compute the number
of state sequences whose cumulated posterior probability is (1− ǫ) (ǫ = 10−2 or
ǫ = 10−3 to fix the ideas).

5 Forward-backward algorithm for sampling state sequences

A different strategy for obtaining state sequences is to sample from the conditional
distribution P (Sτ−10 = sτ−10 | Xτ−10 = xτ−10

). Since

P (Sτ−10 = sτ−10 |Xτ−10 = xτ−10
)

=P (Sv = s0, v = 0, . . . , u− 2|Su−1 = s0, Su �= s0, Sτ−1
u = sτ−1

u ,Xτ−10 = xτ−10
)

×P (Su−1 = su−1|Su−1 �= su, Sτ−1
u = sτ−1

u ,Xτ−10 = xτ−10
)

×P (Su−1 �= su, Sτ−1
u = sτ−1

u |Xτ−10 = xτ−10
) ,

the following conditional distributions should be used for sampling state sequences:
• final state (initialization)

P (Sτ−1 = sτ−1|Xτ−10 = xτ−10
) ,
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• state occupancy (semi-Markovian states)

t = τ − 1 :
P (Sτ−1−u �= sτ−1, Sτ−1−v = sτ−1, v = 1, . . . , u− 1|Sτ−1 = sτ−1, Xτ−10 = xτ−10

) ,
t < τ − 1 :
P (St−u �= st, St−v = st, v = 1, . . . , u− 1|St = st, St+1 �= st, Sτ−1

t+1 = sτ−1
t+1 , Xτ−10 = xτ−10

) ,
• previous state

P (St = st|St �= st+1, Sτ−1
t+1 = sτ−1

t+1 , Xτ−10 = xτ−10
) , semi-Markovian state,

P (St = st|Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
) , Markovian state.

The forward-backward algorithm for sampling state sequences decomposes into two
passes, a forward pass which is the usual forward recursion of the forward-backward
algorithm, and a backward pass for sampling state sequences.
For a semi-Markovian state j, the forward recursion is given by (Guédon, 2005),
t = 0, . . . , τ − 2 :

Fj (t)=P (St+1 �= j, St = j|Xt0 = xt0
)

= bj (xt)
Nt


 t∑
u=1

{u−1∏
v=1

bj (xt−v)
Nt−v

}
dj (u)∑

i �=j
pijFi (t− u)

+
{ t∏

v=1
bj (xt−v)
Nt−v

}
dj (t+ 1)πj

]
, (14)

where Nt = P (Xt = xt|Xt−10 = xt−10
) is a normalizing factor.

The censoring at time τ−1 of the sojourn time in the last visited state distinguishes
the case t = τ − 1

Fj (τ − 1)=P (Sτ−1 = j|Xτ−10 = xτ−10
)

= bj (xτ−1)
Nτ−1


τ−1∑
u=1

{u−1∏
v=1

bj (xτ−1−v)
Nτ−1−v

}
Dj (u)∑

i �=j
pijFi (τ − 1− u)

+
{τ−1∏

v=1
bj (xτ−1−v)
Nτ−1−v

}
Dj (τ)πj

]
. (15)

For a Markovian state j, the forward recursion initialized for t = 0 by
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F̃j (0)=P (S0 = j|X0 = x0)
= bj (x0)

N0
πj,

is given by,
t = 1, . . . , τ − 1 :

F̃j (t)=P (St = j|Xt0 = xt0
)

= bj (xt)
Nt

∑
i
p̃ijF̃i (t− 1) . (16)

The normalizing factor Nt is obtained directly during the forward recursion as follows

Nt=P (Xt = xt|Xt−10 = xt−10
)

=∑
j
P (St = j,Xt = xt|Xt−10 = xt−10

) .

with

P (S0 = j,X0 = x0) = bj (x0) πj,

and for a semi-Markovian state j,
t = 1, . . . , τ − 1 :

P (St = j,Xt = xt|Xt−10 = xt−10
)

=P (Xt = xt|St = j){P (St = j, St−1 �= j|Xt−10 = xt−10
)

−P (St �= j, St−1 = j|Xt−10 = xt−10
)+ P (St−1 = j|Xt−10 = xt−10

)}

= bj (xt)


∑
i �=j

pijFi (t− 1)− Fj (t− 1) + P (St−1 = j|Xt−10 = xt−10
)
 , (17)

where P (St−1 = j|Xt−10 = xt−10
) = P (St−1 = j,Xt−1 = xt−1|Xt−20 = xt−20

) /Nt−1,
and for a Markovian state j,
t = 1, . . . , τ − 1 :
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P (St = j,Xt = xt|Xt−10 = xt−10
) = bj (xt)∑

i
p̃ijF̃i (t− 1) . (18)

The quantity pijFi (t− u) in (14) and (15), and the quantity pijFi (t− 1) in (17),
should be replaced by p̃ijF̃i (t− u) and p̃ijF̃i (t− 1) respectively if state i is Markov-
ian and, conversely, the quantity p̃ijF̃i (t− 1) in (16) and (18) should be replaced
by pijFi (t− 1) if state i is semi-Markovian (Guédon, 2005). The resulting forward
algorithm computes in parallel Fj (t) = P (St+1 �= j, St = j| Xt0 = xt0) for semi-
Markovian states and F̃j (t) = P (St = j| Xt0 = xt0) for Markovian states. Note that
Fj (τ − 1) = F̃j (τ − 1) = P (Sτ−1 = j| Xτ−10 = xτ−10

).
The backward pass can be seen as a stochastic backtracking procedure, in contrast to
the optimal backtracking procedure of the (generalized) Viterbi algorithm (Cawley
and Pachter, 2003).
The backward pass is initialized for t = τ − 1 by,
j = 0, . . . , J − 1 :

P (Sτ−1 = sτ−1|Xτ−10 = xτ−10
) = F̃j (τ − 1) = Fj (τ − 1) .

The final state sτ−1 is drawn from the smoothed probabilities
(P (Sτ−1 = j|Xτ−10 = xτ−10

) ; j = 0, . . . , J − 1) .
For a semi-Markovian state st+1, the backward pass relies for state change on,
j = 0, . . . , J − 1 :

P (St = j|St �= st+1, Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

= P (Sτ−1
t+1 = sτ−1

t+1 , St �= st+1, St = j,Xτ−10 = xτ−10
)

P (Sτ−1
t+1 = sτ−1

t+1 , St �= st+1,Xτ−10 = xτ−10
)

= P (Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+2 = sτ−1

t+2 |St+1 = st+1, St �= st+1
)

P (Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+2 = sτ−1

t+2 |St+1 = st+1, St �= st+1
)

×P (St+1 = st+1|St+1 �= j, St = j)P (St+1 �= j, St = j|Xt0 = xt0)
P (St+1 = st+1, St �= st+1|Xt0 = xt0)

= pjst+1Fj (t)
Gst+1 (t+ 1) ,

where Fj (t) and Gst+1 (t+ 1) = ∑
i �=st+1 pist+1Fi (t) are computed and stored during

the forward recursion. If state j is Markovian, pjst+1Fj (t) should be replaced by
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p̃jst+1F̃j (t) (Guédon, 2005).

The state st is drawn from the conditional distribution

(P (St = j|St �= st+1, Sτ−1
t+1 = sτ−1

t+1 , Xτ−10 = xτ−10
) ; j = 0, . . . , J − 1) .

For a Markovian state st+1, the backward pass is given by (Chib, 1996),

j = 0, . . . , J − 1 :

P (St = j|Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

= P (Sτ−1
t+1 = sτ−1

t+1 , St = j,Xτ−10 = xτ−10
)

P (Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

= P (Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+2 = sτ−1

t+2 |St+1 = st+1
)P (St+1 = st+1|St = j)

P (Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+2 = sτ−1

t+2 |St+1 = st+1
)P (St+1 = st+1|Xt0 = xt0)

×P (St = j|Xt0 = xt0
)

= p̃jst+1F̃j (t)
G̃st+1 (t+ 1) ,

where the filtered probability F̃j (t) and the predicted probability G̃st+1 (t+ 1) =∑
i p̃ist+1F̃i (t) are computed and stored during the forward recursion. If state j is

semi-Markovian, p̃jst+1F̃j (t) should be replaced by pjst+1Fj (t).

The state st is drawn from the conditional distribution

(P (St = j|Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
) ; j = 0, . . . , J − 1) .

If the selected state st = j is semi-Markovian, the backward pass relies for state
occupancy on
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P (St−u �= j, St−v = j, v = 1, . . . , u− 1|St = j, St+1 �= j, Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

= P (Sτ−1
t+1 = sτ−1

t+1 , St+1 �= j, St−v = j, v = 0, . . . , u− 1, St−u �= j,Xτ−10 = xτ−10
)

P (Sτ−1
t+1 = sτ−1

t+1 , St+1 �= j, St = j,Xτ−10 = xτ−10
)

= P (Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+2 = sτ−1

t+2 |St+1 �= j, St = j)
P (Xτ−1

t+1 = xτ−1
t+1 , Sτ−1

t+2 = sτ−1
t+2 |St+1 �= j, St = j)

×P (Xtt−u+1 = xtt−u+1|St−v = j, v = 0, . . . , u− 1)
P (Xtt−u+1 = xtt−u+1|Xt−u0 = xt−u0

)

×P (St+1 �= j, St−v = j, v = 0, . . . , u− 2|St−u+1 = j, St−u �= j)
P (St+1 �= j, St = j|Xt0 = xt0)

×P (St−u+1 = j, St−u �= j|Xt−u0 = xt−u0
)

=
{u−1∏

v=0
bj (xt−v)
Nt−v

} dj (u)Gj (t− u+ 1)
Fj (t) , (19)

for u < t+ 1 and

P (St−v = j, v = 1, . . . , t|St = j, St+1 �= j, Sτ−1
t+1 = sτ−1

t+1 ,Xτ−10 = xτ−10
)

=
{ t∏
v=0

bj (xt−v)
Nt−v

} dj (t+ 1)πj
Fj (t) , (20)

for u = t+ 1.
The conditional probabilities (19) (20) are simply the terms summed for each u
in the computation of the forward probability Fj (t) (14) divided by this forward
probability.
If the state selected at time τ−1 is semi-Markovian, the expressions (19) (20) should
be replaced by

P (Sτ−1−u �= j, Sτ−1−v = j, v = 1, . . . , u− 1|Sτ−1 = j,Xτ−10 = xτ−10
)

=
{u−1∏

v=0
bj (xτ−1−v)
Nτ−1−v

} Dj (u)Gj (τ − u)
Fj (τ − 1) ,

for u < τ and

P (Sτ−1−v = j, v = 1, . . . , τ − 1|Sτ−1 = j,Xτ−10 = xτ−10
)

=
{τ−1∏

v=0
bj (xτ−1−v)
Nτ−1−v

} Dj (τ)πj
Fj (τ − 1) ,
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for u = τ .
The time spent in state j is drawn from

(P (St−u �= j, St−v = j, v = 1, . . . , u− 1|St = j, St+1 �= j, Sτ−1
t+1 = sτ−1

t+1 , Xτ−10 = xτ−10
) ;

u = 1, . . . ,min (t+ 1,Mj))

It should be noted that, in practice, the time complexity of the backward pass is
relatively low since for a semi-Markovian state j, the conditional distribution both
for the preceding states and the sojourn times in state j need only to be computed at
state change times. In this respect, the backward pass is similar to the backtracking
procedure of the Viterbi algorithm which operates by jumps (Guédon, 2003). Hence,
it is possible to sample quite a large number of state sequences and to extract, among
these state sequences, those which are structurally different with reference to the
most probable state sequence (or with reference to already extracted state sequences)
and whose probability is not negligible. This sampling algorithm can be used as a
building block in estimation methods that rely either on stochastic versions of the
EM algorithm (MCEM or SEM algorithm; see Tanner (1996) and McLachlan and
Krishnan (1997)) or in Bayesian estimation methods (Scott, 2002). One interesting
property of the sampling of state sequences lies in the fact that the number of state
sequences has not to be a priori defined (unlike the number L of the top most
probable state sequences computed by the generalized Viterbi algorithm which has
to be a priori defined; see Section 4). Another interesting property is that the memory
requirement does not depend on the number of sampled state sequences unlike the
memory requirement of the generalized Viterbi algorithm which increases with L.
The sampling of state sequences can therefore be recommended if the number of
possible state sequences is very high.

6 Entropy as a global measure of the state sequence uncertainty

Following Hernando et al. (2005), we propose to use the entropy of the state se-
quence that explains an observed sequence as a global measure of the state sequence
uncertainty. For a hidden Markovian model, this entropy is given by

H (Sτ−10 |Xτ−10 = xτ−10 ; θ)
=− ∑

s0,...,sτ−1
P (Sτ−10 = sτ−10 |Xτ−10 = xτ−10 ; θ) logP (Sτ−10 = sτ−10 |Xτ−10 = xτ−10 ; θ)

=− ∑
s0,...,sτ−1

P (Sτ−10 = sτ−10 |Xτ−10 = xτ−10 ; θ) logP (Sτ−10 = sτ−10 ,Xτ−10 = xτ−10 ; θ)

+ logP (Xτ−10 = xτ−10 ; θ)
=−E {log f (Sτ−10 ,Xτ−10 ; θ) |Xτ−10 = xτ−10 ; θ}+ logP (Xτ−10 = xτ−10 ; θ) ,
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where θ designates the parameters of the model. The first term is the conditional
expectation used in the statement of the EM algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 1997) while the second term is the log-likelihood of the
observed sequence. In the sequel, we will omit to note systematically θ. For a hidden
semi-Markov chain, the entropy can be rewritten as

H (Sτ−10 |Xτ−10 = xτ−10
)

=−∑
j
P (S0 = j|Xτ−10 = xτ−10

) log πj

−∑
i

∑
j �=i

τ−2∑
t=0

P (St+1 = j, St = i|Xτ−10 = xτ−10
) log pij

−∑
j

∑
u

{τ−2−u∑
t=0

P (St+u+1 �= j, St+u−v = j, v = 0, . . . , u− 1, St �= j|Xτ−10 = xτ−10
)

+P (Su �= j, Su−v = j, v = 1, . . . , u|Xτ−10 = xτ−10
) I (u ≤ τ − 1)} log dj (u)

−∑
j

∑
u

{P (Sτ−1−v = j, v = 0, . . . , u− 1, Sτ−1−u �= j|Xτ−10 = xτ−10
)

+P (Sτ−1−v = j, v = 0, . . . , u− 1|Xτ−10 = xτ−10
) I (u = τ)} logDj (u)

−∑
j

∑
y

τ−1∑
t=0

P (Xt = y, St = j|Xτ−10 = xτ−10
) log bj (y)

+
τ−1∑
t=0

logP (Xt = xt|Xt−10 = xt−10
) . (21)

For a Markovian state i, the terms corresponding to the state occupancy distribution
and the transition probabilities (pij, j = 1, ..., J ; j �= i) should be replaced by

−∑
j

τ−2∑
t=0

P (St+1 = j, St = i|Xτ−10 = xτ−10
) log p̃ij. (22)

The entropy can thus be directly extracted as a byproduct of the forward-backward
algorithm; see Guédon (2003, 2005) for the practical computation of the terms in-
volved in (21) and (22). The entropy is upper bounded by log(number of possible
state sequences). The exact number of state sequences can be computed by a close
variant of the forward recursion of the forward-backward algorithm presented in
Guédon (2005); see Section 5. The entropy is also upper bounded by (Cover and
Thomas, 1991; Theorem 2.6.6)

H (Sτ−10 |Xτ−10 = xτ−10
) ≤

τ−1∑
t=0

H (St|Xτ−10 = xτ−10
) ,

with
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τ−1∑
t=0

H (St|Xτ−10 = xτ−10
)=−

τ−1∑
t=0

∑
j
P (St = j|Xτ−10 = xτ−10

) logP (St = j|Xτ−10 = xτ−10
)

=−
τ−1∑
t=0

∑
j
Lj (t) logLj (t) .

A specific algorithm was proposed by Hernando et al. (2005) for computing the
entropy of the state sequence that explains an observed sequence in the case of a
hidden Markov chain. This algorithm includes the classical forward recursion as a
building block and requires a forward recursion on the entropies of partial state
sequences being in state j at time t

H (St−10 |St = j,Xt0 = xt0
)

=− ∑
s0,...,st−1

P (St−10 = st−10 |St = j,Xt0 = xt0
) logP (St−10 = st−10 |St = j,Xt0 = xt0

)

=∑
i
P (St−1 = i|St = j,Xt−10 = xt−10

) {H (St−20 |St−1 = i,Xt−10 = xt−10
)

− logP (St−1 = i|St = j,Xt−10 = xt−10
)} ,

with

P (St−1 = i|St = j,Xt−10 = xt−10
) = p̃ijF̃i (t− 1)

G̃j (t) .

The termination step is given by

H (Sτ−10 |Xτ−10 = xτ−10
)

=− ∑
s0,...,sτ−1

P (Sτ−10 = sτ−10 |Xτ−10 = xτ−10
) logP (Sτ−10 = sτ−10 |Xτ−10 = xτ−10

)

=∑
j
F̃j (τ − 1){H (Sτ−20 |Sτ−1 = j,Xτ−10 = xτ−10

)− log F̃j (τ − 1)} .

This algorithm can be transposed to hidden semi-Markov chains. In this case, the
algorithm requires a forward recursion on the entropies of partial state sequences
leaving state j at time t

H (St−10 |St = j, St+1 �= j,Xt0 = xt0
)

=− ∑
s0,...,st−1

P (St−10 = st−10 |St = j, St+1 �= j,Xt0 = xt0
)

× logP (St−10 = st−10 |St = j, St+1 �= j,Xt0 = xt0
) .
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Whatever the approach retained, the complexity of the algorithm for computing the
entropy of the state sequence that explains an observed sequence is the complexity
of the forward-backward algorithm, that is O (Jτ (J + τ))-time in the worst case
and O (Jτ)-space. The entropy may be normalized by the sequence length τ , or
unormalized depending on the application context. For instance, if the number of
state changes is fixed irrespective of the sequence length (this is the case for the
Corsican pine sequences presented in Section 7.1), the unormalized entropy should
be used.

7 Application to the analysis of plant structure

7.1 Growth and branching Corsican pin trunks

The data set comprised four sub-samples of Corsican pines (Pinus nigra Arn. ssp.
laricio Poir., Pinaceae) planted in a forest stand in Centre region (France): 31 six-
year-old trees, 29 twelve-year-old trees (first year not measured), 31 eighteen-year-old
trees (first year not measured) and 13 twenty—three-year-old trees (two first years not
measured). Trees of the first sub-sample (six years old) remained for two years in the
nursery before transplantation while trees of the three other sub-samples remained
for three years in the nursery before transplantation. Plantation density was 1800
trees/ha for the first sub-sample (six year old) and 2200 trees/ha for the three other
sub-samples. Tree trunks were described by annual shoot from the base to the top
where two variables were recorded for each annual shoot: length (in cm) and number
of branches per tier. The very first non-measured annual shoots were always very
short. The annual shoot is defined as the segment of stem established within a year.
In the Corsican pine case, branches of roughly equivalent size are located at the top
of the shoot just below the shoot limit and thus form a tier of branches.
The observed growth is the result of the modulation of the endogenous growth com-
ponent by climatic factors. For the endogenous growth component, two assumptions
can be made:
• the endogenous growth component takes the form of a trend,
• the endogenous growth component is structured as a succession of phases sepa-

rated by marked transitions.
The objective of this study was to investigate this latter assumption.
From these four sub-samples (different climatic years are thus mixed for a given
stage of development), a three-state hidden semi-Markov chain composed of two
successive transient states followed by a final absorbing state was estimated.
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Fig. 1. Corsican pine: mixture of observation distributions for the variable “length
of the annual shoot”.
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Fig. 2. Corsican pine: characteristics of state sequences.

(b) Viterbi forward-backward algorithm
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Fig. 3. Corsican pine: state and state change profiles.
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This hidden semi-Markov chain represents the succession of growth phases. The EM
algorithm was initialized with a three-state “left-right” model with the three pos-
sible initial states and possible transitions from each state to the following states
(i.e. from state j to state k with k > j and in particular from state 0 to state
2). The convergence of the EM algorithm required 17 iterations. In the estimated
model, state 0 is the only possible initial state and state 1 cannot be skipped.
This deterministic succession of states supports the assumption of a succession of
growth phases. For the two observed variables (length of the annual shoot, number
of branches per tier), the observation distributions are parametric discrete distri-
butions chosen among binomial, Poisson and negative binomial distributions with
an additional shift parameter. The fit of the empirical marginal distribution for the
variable “length of the annual shoot” by the mixture of observation distributions
is shown in Fig. 1. Hence, the three states correspond clearly to different ranges of
values for the variable “length of the annual shoot”.
We selected two eighteen-year-old individuals which correspond to some of the higher
values for the entropy. The two individuals are among the 10 eighteen-year-old in-
dividuals above 1.42 for the state sequence entropy. For 12 eighteen-year-old indi-
viduals, the state sequence entropy is below 1.15.
There are 34 possible state sequences for the first individual but the cumulated
posterior probability of the top 11 most probable state sequences exceeds 0.999
(Fig. 2). The observed bivariate sequence is:
5 4 20 39 36 34 36 31 54 51 34 41 68 60 43 75 (length of the annual shoot in cm)
2 3 5 8 6 7 6 6 8 11 5 7 8 8 5 8 (number of branches per tier)

The top 5 most probable state sequences are:
0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 (0.55 0.55 16)
0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 (0.12 0.67 21)
0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 (0.11 0.78 21)
0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 (0.1 0.88 21)
0 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 (0.07 0.95 21)

where the first indicator in parentheses is the posterior probability of the state
sequence, the second indicator is the cumulated posterior probability of the top n
most probable state sequences and the last indicator is the number of cells used by
the top n most probable state sequences in the J × τ array. The main structural
difference between the sub-optimal state sequences and the most probable state
sequence is the difference in year for the transition from state 1 to state 2. It should be
noted that the 3rd, 4th and 5th state sequences are masked in the state profiles (Fig.
3b), while they are apparent in the state change profiles (Fig. 3d) both computed
by the Viterbi forward-backward algorithm.
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Fig. 4. Corsican pine: characteristics of state sequences.
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This example illustrates the fact that the state profiles and state change profiles
computed by the forward-backward algorithm (Fig. 3ac) give two different points
of view on the same information while the state profiles and the state change pro-
files computed by the Viterbi forward-backward algorithm (Fig. 3bd) may highlight
different properties of the state sequences; see Section 3 for a rationale for this
behavior.
There are 24 possible state sequences for the second individual but the cumulated
posterior probability of the top 6 most probable state sequences exceeds 0.999 (Fig.
4). The observed bivariate sequence is:
4 4 29 30 35 41 36 46 63 57 61 53 47 65 58 74 (length of the annual shoot in cm)
1 2 3 5 6 7 3 5 6 3 5 5 5 5 5 7 (number of branches per tier)
The top 5 most probable state sequences are:
0 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 (0.37 0.37 16)
0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 (0.32 0.69 18)
0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 (0.17 0.86 19)
0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 (0.08 0.94 19)
0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 (0.05 0.99 20)
It should be noted that, among the top 5 most probable state sequences, only the
4th state sequence is masked in the state profiles (Fig. 5b) while this state sequence
is apparent in the state change profiles (Fig. 5d) both computed by the Viterbi
forward-backward algorithm. As for the first example, the main structural difference
between the sub-optimal state sequences and the most probable state sequence is the
difference in year for the transition from state 1 to state 2. While the state profiles
computed by the forward-backward algorithm are quite similar (Figs. 3a and 5a),
there are in fact marked differences between the sub-optimal state sequences. For the
first example, the relative weight of the second most probable state sequence is only
0.23 but with a transition from state 1 to state 2 five years before with reference to
the most probable state sequence (Fig. 3b), while for the second example, the relative
weight of the second most probable state sequence is 0.89 but with a transition from
state 1 to state 2 two years before (Fig. 5b). The number of cells can be interpreted
as the beam size of the top n most probable state sequences. Hence, large differences
in the number of cells (Figs. 2 and 4) highlight structurally different state sequences
and may be used to detect such sequences automatically.

7.2 Branching structure of red oak growth units

This second example focuses on the branching structure of growth units observed
on the main axis of four-year-old red oaks (Quercus rubra L.). These trees were
observed in the Nabas forest (southwest of France). Red oak is characterized by a
polycyclic growth which means that an annual shoot may be composed of several
successive growth units (i.e. portion of the axis built up between two resting phases).
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If growth occurs in two stages within a year, the annual shoot is said to be bicyclic,
and comprises a spring growth unit followed by a summer growth unit; for more
detailed information, see Heuret et al. (2003). Summer growth units were described
node by node from the top to the base. For each node, the type of axillary production
chosen among latent bud (0), one-year-delayed monocyclic offspring shoot (1) and
one-year-delayed polycyclic offspring shoot (2), was recorded.
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Fig. 6. Red oak: Estimated hidden semi-Markov chain.

The hidden semi-Markov chain estimated from 55 branching sequences is composed
of five states (Fig. 6). The initial state is followed by either state 1 or by states 2
and 3. This corresponds to two categories of growth unit: (i) those that possess only
one-year-delayed monocyclic offspring shoots (state 1) and (ii) those that possess
one-year-delayed polycyclic offspring shoots towards the top and one-year-delayed
monocyclic offspring shoots lower down (succession of states 2 and 3); see Heuret et
al. (2003) for a more detailed biological discussion. Most individuals are unambigu-
ous regarding the choice between state 1 and states 2 and 3.
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Fig. 7. Red oak: Characteristics of state sequences.
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Fig. 8. Red oak: State and state change profiles.
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We chose one of the ambiguous individuals. There are 840 possible state sequences
for the selected individual but the cumulated posterior probability of the top 65
most probable state sequences exceeds 0.999 (Fig. 7). The observed sequence is:
0 0 0 0 0 0 1 1 1 2 1 2 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

The top 10 most probable state sequences are:
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 (0.482 0.482 29)
0 0 0 0 0 0 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 (0.16 0.642 45)
0 0 0 0 0 0 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 (0.091 0.733 46)
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 (0.043 0.776 47)
0 0 0 0 0 0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 (0.033 0.809 48)
0 0 0 0 0 0 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 (0.026 0.835 49)
0 0 0 0 0 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 (0.026 0.861 50)
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 (0.021 0.882 51)
0 0 0 0 0 0 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 (0.019 0.901 52)
0 0 0 0 0 0 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 (0.017 0.918 53)
To illustrate the behaviour of the forward-backward algorithm for sampling state
sequences, we generated 1000 state sequences. Among these 1000 state sequences,
we obtained 497 times the most probable state sequence, 74 other state sequences
visiting state 1 and 429 state sequences visiting states 2 and 3. While the state pro-
files computed by the forward-backward algorithm focus on the relative frequencies
of these two categories of state sequences (Fig. 8 ac), the state profiles computed
by the Viterbi forward-backward algorihm focus on the second most probable state
sequence visiting state 2 and 3 as a structurally different alternative to the most
probable state sequence visiting state 1 (Fig. 8 bd). While the marginal probabil-
ities for the two main paths (state 1 versus states 2 and 3) within the model are
quite close (Fig. 8 a), the posterior probability of the most probable state sequence
visiting state 1 is about three times the posterior probability of the second most
probable state sequence visiting states 2 and 3 (Fig. 8 b).

8 Concluding remarks

The Corsican pine and the red oak examples illustrate two contrasted situations.
While in the Corsican pine example, state sequence uncertainty reduces to uncer-
tainty concerning state change times in a fixed succession of states, in the red oak
example, the uncertainty concerns both the state change times and the succession
of states. We chose simple examples (simple non-ergodic models estimated from
samples of short sequences) in order to illustrate the complementarity between the
proposed methods, including the generalized Viterbi algorithm for computing the
top L most probable state sequences. One should be aware that in other contexts
where ergodic models are estimated from long sequences, only state (or state change)
profiles can be used for exploring the state sequence space structure.
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Exploring the state sequence space may consist in extracting state sequences, whose
probabilities are not negligible, that differ from the most probable state sequence
and from other state sequences previously extracted on the basis of the same criteria.
These structural differences between state sequences are naturally highlighted in the
state profile computed by the Viterbi forward-backward algorithm. The output of
the Viterbi forward-backward algorithm can be viewed as the superposition (from
the less probable to the most probable) of all the state sequences in a J × τ array.
Hence, segments of individual state sequences and in particular the entire most
probable state sequence are directly apparent in the state profiles computed by
the Viterbi forward-backward algorithm while individual state sequences are not
apparent in the states profiles computed by the forward-backward algorithm. Since
the superposition rule is different for state profiles and the two types of state change
profiles (corresponding to state entering or state exit) computed by the Viterbi
forward-backward algorithm, state profiles and state change profiles may highlight
different structures in state sequences.
The entropy of the state sequence that explains an observed sequence, which is the
most obvious measure of state sequence uncertainty, can be computed as a byprod-
uct of the forward-backward algorithm. Hence the Viterbi forward-backward algo-
rithm and the forward-backward algorithm play complementary roles for exploring
the state sequence space structure. We feel that both the Viterbi forward-backward
algorithm, the generalized Viterbi algorithm and the forward-backward algorithm
for sampling state sequences should be standard in hidden Markovian model imple-
mentation where currently only the forward-backward and Viterbi algorithms are
typically implemented.
Methods for exploring the state sequence space in the case of hidden hybrid Markov/semi-
Markov chains are fully implemented in the AMAPmod software which is freely
available at http://amap.cirad.fr.
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Appendix A: Pseudo-code of the Viterbi forward-backwardalgorithm
The following convention is adopted in the presentation of the pseudo-code of the
Viterbi forward-backward algorithm: The operator ‘:=’ denotes the assignment of
a value to a variable (or the initialization of a variable with a value) and the
working variables Forwardj (t), Observ, StateInj (t+ 1), Transitionij, Backwardj (t),
Occupancyj (u) and Auxj (t+ 1) are introduced for this implementation. Forwardj (t)
is used to compute αj (t) for a semi-Markovian state and α̃j (t) for a Markovian
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state, Backwardj (t) is used to compute βj (t) for a semi-Markovian state and β̃j (t)for a Markovian state while Auxj (t+ 1) is used to compute ξj (t+ 1) for a semi-
Markovian state and ξ̃j (t+ 1) for a Markovian state. Transitionij corresponds to
pij for a semi-Markovian state and to p̃ij for a Markovian state. This highlights the
natural mixing of the forward (respectively backward) recursion for semi-Markovian
and Markovian states. The other variables correspond to the quantities already in-
troduced in Section 3.

Forward recursion
for t := 0 to τ − 1 do
for j := 0 to J − 1 do
if state j is semi-Markovian then

Forwardj(t) := 0
Observ := 1

if t < τ − 1 then
for u := 1 to min(t+ 1,Mj) do

Observ := Observ bj(xt−u+1)
if u < t+ 1 then
if Observ dj(u)StateInj(t− u+ 1) > Forwardj(t) then

Forwardj(t) := Observdj(u)StateInj(t− u+ 1)
end if

else {u = t+ 1}
if Observ dj(t+ 1)πj > Forwardj(t) then

Forwardj(t) := Observdj(t+ 1)πj
end if

end if
end for

else {t = τ − 1}
for u := 1 to min(τ ,Mj) do

Observ := Observ bj(xτ−u)
if u < τ then
if ObservDj(u) StateInj(τ − u) > Forwardj(τ − 1) then

Forwardj(τ − 1) := ObservDj(u) StateInj(τ − u)
end if

else {u = τ}
if ObservDj(τ) πj > Forwardj(τ − 1) then

Forwardj(τ − 1) := ObservDj(τ) πj
end if

end if
end for

end if
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else {state j is Markovian}
if t = 0 then

Forwardj(0) := bj(x0)πj
else {t > 0}

Forwardj(t) := bj(xt)StateInj(t)
end if

end if
end for

if t < τ − 1 then
for j := 0 to J − 1 do

StateInj(t+ 1) := 0
for i := 0 to J − 1 do
if Transitionij Forwardi(t) > StateInj(t+ 1) then

StateInj(t+ 1) := Transitionij Forwardi(t)
end if

end for
end for

end if
end for

In a first step, the quantities Forwardj (t) = maxs0,...,st−1 P (St+1 �= j, St = j,
St−10 = st−10 , Xt0 = xt0) are computed for each semi-Markovian state and the quan-
tities Forwardj (t) = maxs0,...,st−1 P (St = j, St−10 = st−10 , Xt0 = xt0) are computed for
each Markovian state. In a second step, the quantities StateInj (t+ 1) are computed.
For a semi-Markovian state j, StateInj (t+ 1) = maxs0,...,st P (St+1 = j, St �= j, St0 =st0, Xt0 = xt0) while for a Markovian state j, StateInj (t+ 1) = maxs0,...,st P (St+1 = j,
St0 = st0, Xt0 = xt0). The quantities Forwardj (t) and StateInj (t+ 1) should be stored
for each time t and each state j.

Backward recursion
for j := 0 to J − 1 do

Backwardj(τ − 1) := 1
γj(τ − 1) := Forwardj(τ − 1)

end for

for t := τ − 2 to 0 do
for j := 0 to J − 1 do
if state j is semi-Markovian then

Observ := 1
for u := 1 to min(τ − 1− t,Mj) do

Observ := Observ bj(xt+u)
if u < τ − 1− t then

Occupancyj(u) := Backwardj(t+ u)Observdj(u)
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else {u = τ − 1− t}
Occupancyj(u) := ObservDj(τ − 1− t)

end if
end for

Auxj(t+ 1) := 0
for u := min(τ − 1− t,Mj) to 1 do
if Occupancyj(u) > Auxj(t+ 1) then

Auxj(t+ 1) := Occupancyj(u)end if
if Auxj(t+ 1) StateInj(t+ 1) > γj(t+ u) then

γj(t+ u) := Auxj(t+ 1)StateInj(t+ 1)
end if

end for

else {state j is Markovian}
Auxj(t+ 1) := Backwardj(t+ 1) bj(xt+1)

end if
end for

for j := 0 to J − 1 do
Backwardj(t) := 0
for k := 0 to J − 1 do
if Auxk(t+ 1)Transitionjk > Backwardj(t) then

Backwardj(t) := Auxk(t+ 1)Transitionjk
end if

end for
γj(t) := Backwardj(t)Forwardj(t)

end for
end for

In a first step, for each semi-Markovian state j, the auxiliary quantities Occupancyj (u) =
maxst+u+1,...,sτ−1 P

(Xτ−1
t+1 = xτ−1

t+1 , Sτ−1
t+u+1 = sτ−1

t+u+1, St+u+1 �= j, St+u−v = j, v = 0, . . . , u−
2|St+1 = j, St �= j) are computed for increasing values of u, the auxiliary quan-
tity Auxj (t+ 1) is then computed for decreasing values of u and the quantity
Auxj (t+ 1)StateInj (t+ 1) = maxv≥umaxs0,...,st maxst+v+1,...,sτ−1 P (St0 = st0, St �= j,
St+w = j, w = 1, . . . , v, St+v+1 �= j, Sτ−1

t+v+1 = sτ−1
t+v+1, Xτ−10 = xτ−10

) is compared to
the current evaluation of γj (t+ u) = maxs0,...,st+u−1 maxst+u+1,...,sτ−1 P

(St+u−10 = st+u−10 ,
St+u = j, Sτ−1

t+u+1 = sτ−1
t+u+1, Xτ−10 = xτ−10

). Then in the second step, the quanti-
ties Backwardj (t) are extracted. It should be noted that γj (t) is initialized with
βj (t)αj (t). The quantities Backwardj (t) and γj (t) should be stored for each time
t and each state j while the auxiliary quantities Occupancyj (u) need only be stored
for each sojourn time u and the auxiliary quantities Auxj (t+ 1) need only be stored
for each state j.
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Supplementary computation for t = 0 (computation of ξj (0)πj)
for j := 0 to J − 1 do
if state j is semi-Markovian then

Observ := 1
for u := 1 to min(τ ,Mj) do

Observ := Observ bj(xu−1)
if u < τ then

Occupancyj(u) := Backwardj(u− 1)Observdj(u)
else {u = τ}

Occupancyj(u) := ObservDj(τ)
end if

end for

Auxj(0) := 0
for u := min(τ ,Mj) to 1 do
if Occupancyj(u) > Auxj(0) then

Auxj(0) := Occupancyj(u)end if
if Auxj(0)πj > γj(u− 1) then

γj(u− 1) := Auxj(0)πj
end if

end for
end if

end for

For numerical stability, a log transformation should be applied to all the model
parameters. As a consequence, all the products are turned into sums in a practical
computer implementation.

Appendix B: Pseudo-code of the generalized Viterbi algo-rithm
For each time t, each state j and each rank n, three backpointers must be recorded,
the first PreviousStatenj (t) giving the optimal preceding state, the second PreviousRanknj (t)giving the associated rank and the third Occupancynj (t) giving the optimal preceding
time of transition from this preceding state. We need also to introduce the working
variables Statenj (t+ 1) and Ranknj (t+ 1).

Forward recursion
L0 := 1

for t := 0 to τ − 1 do
for j := 0 to J − 1 do
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if state j is semi-Markovian then
Observ(1) := bj(xt)
for u := 2 to min(t+ 1,Mj) do

Observ(u) := Observ(u− 1) bj(xt−u+1)
end for
for u := 1 to min(t+ 1,Mj) do

r(u) := 1
end for

for n := 1 to Lt do
Forwardn

j (t) := 0
if t < τ − 1 then
for u := 1 to min(t+ 1,Mj) do
if u < t+ 1 then
if Observ(u) dj(u)StateInr(u)

j (t− u+ 1) > Forwardn
j (t) then

Forwardn
j (t) := Observ(u) dj(u)StateInr(u)

j (t− u+ 1)
PreviousStatenj (t) := Stater(u)j (t− u+ 1)
PreviousRankn

j (t) := Rankr(u)j (t− u+ 1)
Occupancynj (t) := u

end if
else {u = t+ 1}
if Observ(t+ 1) dj(t+ 1)πj > Forwardn

j (t) thenForwardn
j (t) := Observ(t+ 1) dj(t+ 1)πj

Occupancynj (t) := t+ 1
end if

end if
end for

else {t = τ − 1}
for u := 1 to min(τ ,Mj) do
if u < τ then
if Observ(u)Dj(u)StateInr(u)

j (τ − u) > Forwardn
j (τ − 1) then

Forwardn
j (τ − 1) := Observ(u)Dj(u)StateInr(u)

j (τ − u)
PreviousStatenj (τ − 1) := Stater(u)j (τ − u)
PreviousRankn

j (τ − 1) := Rankr(u)j (τ − u)
Occupancynj (τ − 1) := u

end if
else {u = τ}
if Observ(τ)Dj(τ)πj > Forwardn

j (τ − 1) then
Forwardn

j (τ − 1) := Observ(τ)Dj(τ)πj
Occupancynj (τ − 1) := τ

end if
end if

end for
end if
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r(Occupancynj (t)) := r(Occupancynj (t)) + 1
end for

else {state j is Markovian}
for n := 1 to Lt do
if t = 0 then

Forwardn
j (0) := bj(x0)πj

else {t > 0}
Forwardn

j (t) := bj(xt)StateInn
j (t)PreviousStatenj (t) := Statenj (t)PreviousRankn

j (t) := Ranknj (t)end if
Occupancynj (t) := 1

end for
end if

for n := Lt + 1 to L do
Forwardn

j (t) := 0
end for

end for

if t < τ − 1 then
if J Lt < L then

Lt+1 := J Lt
else {J Lt ≥ L}

Lt+1 := L
end if

for j := 0 to J − 1 do
for i := 0 to J − 1 do

r(i) := 1
end for

for n := 1 to Lt+1 do
StateInn

j (t+ 1) := 0
for i := 0 to J − 1 do
if Transitionij Forwardr(i)

i (t) > StateInn
j (t+ 1) then

StateInn
j (t+ 1) := Transitionij Forwardr(i)

i (t)
Statenj (t+ 1) := i
Ranknj (t+ 1) := r(i)

end if
end for

r(Statenj (t+ 1)) := r(Statenj (t+ 1)) + 1
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end for

for n := Lt+1 + 1 to L do
StateInn

j (t+ 1) := 0
end for

end for
end if

end for

In a first step, the quantities Forwardnj (t) are computed for each state j and each
rank n. In a second step, the quantities StateInnj (t+ 1) are computed for each state j
and each rank n. The rank propagation decomposes into two steps since the ranks at-
tached to Forwardnj (t) are deduced from the ranks attached to (StateInr(u)

j (t− u+ 1) ;
u := 1, . . . ,min (t+ 1,Mj)) and the ranks attached to StateInnj (t+ 1) are deduced
from the ranks attached to (Forwardr(i)

i (t) ; i = 0, . . . , J − 1). The increasing num-
ber of partial state sequences for small values of t is taken into account by initializing
at 0 Forwardnj (t) for each state j and for n = Lt + 1, . . . , L, and StateInnj (t+ 1)
for each state j and for n = Lt+1 + 1, . . . , L. The quantities Forwardnj (t) should
be stored for each state j and each rank n while the quantities PreviousStatenj (t),PreviousRanknj (t), Occupancynj (t), StateInnj (t+ 1), Statenj (t+ 1) and Ranknj (t+ 1)
should be stored for each time t, each state j and each rank n.

Backtracking
for j := 0 to J − 1 do

r(j) := 1
end for

for n := 1 to Lτ−1 do
MaxForward := 0
for j := 0 to J − 1 do
if Forwardr(j)

j (τ − 1) > MaxForward then
MaxForward := Forwardr(j)

j (τ − 1)
s̃nτ−1 := j

end if
end for

m := r(s̃nτ−1)r(s̃nτ−1) := r(s̃nτ−1) + 1
t := τ − 1
repeat

j := s̃ntu := Occupancymj (t)for v := 1 to u− 1 do
s̃nt−v := j
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end for
if t ≥ u then

s̃nt−u := PreviousStatemj (t)m := PreviousRankm
j (t)end if

t := t− u
until t ≥ 0

end for

For numerical stability, a log transformation should be applied to all the model
parameters. As a consequence, all the products are turned into sums in a practical
computer implementation.
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