
Estimating the fractal dimension of plants usingthe two-surface method. An analysis based on 3D-digitized tree foliage.Frédéric BoudonINRIA-Lorraine615, rue du Jardin Botanique54600 Villers-lès-Nancy, France Christophe GodinINRIA-Sophia Antipolis,UMR AMAP TA/40E34398 MontpellierCedex 5, France Christophe PradalCIRAD,UMR AMAP TA/40E34398 MontpellierCedex 5, FranceOlivier PuechINRA,UMR AMAP TA/40E34398 MontpellierCedex 5, France Hervé SinoquetINRA-UBP, UMR PIAFDomaine de Crouelle,234, avenue du Brézet63100 Clermont-Ferrand, FranceAbstractIn this paper, we present a method to estimate the fractal dimension of plant foliage in 3-dimensions (3D). This method is derived from the two-surface method introduced in the90's to estimate the fractal dimension of tree species from �eld measurements on collec-tions of trees. Here we adapted the method to individual plants. The multiscale topologyand geometry of the plant must �rst be digitized in 3D. Then leafy branching systems ofdi�erent sizes are constructed from the plant database, using the topological information.3D convex envelops are then computed for each leafy branching system. The fractaldimension of the plant is �nally estimated by comparing the total leaf area and the convexenvelop area of these leafy modules. The method was assessed on a set of 4 peach treesentirely digitized at shoot scale. Results show that the peach trees have a marked self-sim-ilar foliage with fractal dimension close to 2.4.Keywords: Fractal dimension, two-surface method, box counting method, plant archi-tecture, foliage distribution, multiscale analysis.1 INTRODUCTIONPlant geometry is a key factor in the modeling of plant functioning and growth. It representsthe exchange interface between internal physiological processes and the environment. This inter-action may concern either the abiotic (resource capture, heat dissipation) or the biotic (diseasepropagation, insect movement) environment. Characterizing the geometry of plants is thus achallenging problem in the functional-structural modeling of plants [1].Contrary to most handcrafted objects, the geometry of many natural objects is very irregularand presents intricate structures at di�erent scales. This is particularly true for plants that mayshow, depending on the species, complex and irregular crown shapes or spatial distributions ofleaves [2]. As illustrated in [3], fractal geometry [4] o�ers a useful framework to study the geom-etry of such irregular objects in biology.A few studies have already been made in this direction to analyze the irregularity of plantsby determining their supposed fractal dimension. This parameter is of major importance in thestudy of plant architecture since it characterizes the way plants physically penetrate into the 3Dspace. Most of these studies were carried out on woody structures, and especially on root sys-tems using the classical box-counting method [5],[6],[7]. Only a few works have addressed theproblem of determining the fractal dimension of plant foliage [8],[9]. However, none of thesemethods were applied on 3D foliage structures. Morse et al. for instance [8] used the box-counting method on plant foliage pictures to estimate the fractal dimension of real plants andused this result to explain di�erent distributions of anthropods populations at di�erent scales inthe vegetation. A di�erent method was introduced in [10],[11], where the fractal dimension of1



forest tree species was estimated from estimation of leaf area and crown surface of individualtrees. This two-surface method relies on the assumption that plants are self-similar organisms.In this paper, we consider the problem of estimating the fractal dimension of an individualtree using a method derived from the two-surface method. We �rst review the theoreticalaspects of the two-surface method and illustrate it on theoretical examples. We then present amultiscale model of plant geometry and show how this model can be used to compute plantenvelops at di�erent scales. These algorithms are then used to apply the two-surface method to3D-digitized plant foliages (peach trees) and derive their individual fractal dimension.2 THE TWO-SURFACE METHODThe two-surface method [10] exploits a scaling property of fractal objects for estimating theirfractal dimension. It is based on the idea that, through magni�cation or reduction, the relation-ship between the size of the envelop of an object (i.e. its diameter, surface or volume) and themeasure at scale � of its contents follow particular scaling rules that depend on the fractaldimension D of the object. This relationship links the fractal contents of an object to its non-fractal envelop. It is thus symmetrical to the length-area relationship discussed in [4] which linksthe measure of a non-fractal object with its fractal boundary [10].Let us consider an object P and a unit of measurement of dimension D of size � (D=1 for ayardstick, D = 2 for a tile or D = 3 for a paving volume). We call ��D(P ) the measure of P atscale �, obtained by tiling P with the paving units of size � and dimension D; and by summingup the measures of these N�(P ) tiles. By construction, ��D(P ) ignores details of size less than �[12].For many objects, including regular and fractal objects, the number of tiles N�(P ) behavesas a power law as � decreases to 0: N�(P )_ ��d (1)meaning that N�(P ) gets proportional to ��d as � tends to 0. The power value, d, can be identi-�ed with the dimension of the object [4]. Since all the tiles have the same elementary measure,�D, the measure ��D(P ) can thus be expressed as:��D(P )=N�(P ) �D_ �D�d: (2)This expression shows that the measure of P at scale � gets independent of the measurementunit � when D= d, i.e . when the integer dimension of the paving unit matches the dimension ofthe object. In such a case, we shall simply note ��D(P ) = �D(P ).For fractal objects of dimension d, this measure has the following important property. If theobject P is dilated by a factor �, its measure is multiplied by a factor �d [12]. This scaling prop-erty of fractal objects is at the origin of the two-surface method. It relies on the idea that themeasure at scale � of an object dilated by a factor � is identical to the measure at scale �� of theinitial, non-dilated, object : ��D(�P )=N�(�P )�D=N ��(P )�D (3)Hence, ��D(�P )_� ����d�D=�d�D�d (4)which �nally yields the scaling property:��D(�P ) =�d��D(P ): (5)Now, let us consider a regular object E(P ), called the extension of P , characterizing the amountof space occupied by P . E(P ) can be de�ned for instance as a diameter of P , i.e . a straight linesegment between two given points of P whose size equals the maximum Euclidean distancebetween any two points of P , or as the minimal convex envelop containing P , etc. Being reg-ular, E(P ) has an integer dimension D 0. Its measure �D 0(E(P )) is thus independent of the mea-surement unit � and veri�es the scaling property :�D 0(� E(P )) =�D 0�D 0(E(P )): (6)2



By eliminating � between Eqs. 5 and 6 we get:��D(�P )= �D 0(�E(P ))�D 0(E(P )) ! dD 0��D(P )Denoting: a= ��D(P )�D 0(E(P )) dD 0we get the two-surface Eq.: ��D(�P ) =a�D 0(E(�P )) dD 0 (7)Equation (7) holds for any value of �. The term a only depends on measures of the initialobject P and its extension. It is independent of the dilation factor �. Equation (7) expressesthat the measure at scale � of an object dilated by any factor �, is proportional to the measureof the extension of the dilated object to the power d/D 0, d being the fractal dimension of P andD 0 the dimension of the paving unit. As noted by Zeide and Pfeifer [10], if both detailed sur-faces at scale � and extension surfaces can be measured or estimated for a family of fractalobjects with varying sizes, this Eq. makes it possible to estimate the fractal dimension of thisfamily by linear regression between the Log values of both surfaces.Example 1. Let us �rst illustrate this property on a simple example. Consider the von Kochcurve C illustrated in Fig. 1. To measure the extent of C at di�erent dilation scales, we choosea unit of measurement � of dimension D = 1 (� is a yardstick) and we consider the followingdilations of C: C0=C; C1=3C;C2=9C,..., Cn=3nC. At dilation scale 0 (Fig. 1.C0), ��1(C0) =2�= l0, the curve C0 looks like a straight segment.

Figure 1. a series of dilated von Koch curves. Using a �xed measurement unit �, the observer can see anincreasing number of details with increasing dilation factors (from C0 to C2). However the increase rate of thenumber of details is di�erent from the increase rate of the curve diameter: when the diameter is multiplied by 3,the number of details is multiplied by 4.At dilation scale 1, the curve C1 corresponds to the curve C0 dilated 3 times. New detailsappear since they are now bigger than unit � (Fig. 1.C1). The new measure of the curve is��1(C1) = 4l0. At dilation scale 2, again, new details appear in C2 leading to a length ��1(C2) =16l0 (Fig. 1.C2). At dilation scale n, the length of the curve measured with unit � would be:��1(Cn) =4n l0: (8)3



Now, let us consider the amount of space occupied by these objects. For the von Koch curve, wede�ne the extension E(Cn) of Cn as the horizontal straight line encompassing the entire curvefrom left to right. The size of the extension, �1(E(Cn)) is thus simply the diameter of the curve.At the di�erent dilation scales, we have �1(E(C0)) = l0, �1(E(C1)) = 3 l0, �1(E(C2)) = 9 l0, ... ,and more generally: �1(E(Cn)) =3n l0: (9)At dilation scale n, the object C is dilated by a factor � = 3n, and the relationship between thetotal length, ��1(Cn) and the size of its extension, �1(E(Cn)), can be obtained by eliminating nin the two preceding Eqs.: ��1(Cn)= �1(E(Cn))Log 4Log 3: (10)where the exponent Log 4Log 3 is the curve fractal dimension. This Eq. expresses a direct relationshipbetween the measure of Cn at scale �, ��1(Cn) (here the length at scale �) and the measure of itsextension (re�ecting the space occupation of the object). The actual length of the object atscale � grows quicker than that of its extension throughout successive dilations. Note that, in adual perspective, successive contractions of the measurement unit � (�0=l0/2 at scale 0, �1=l0/6at scale 1, �n=1/(2.3n) at scale n) would lead exactly to the same relationship.Example 2. Let us consider a second theoretical example, closer to plant applications (Fig. 2).A plant-like object is generated recursively with a slightly modi�ed iterated function system(IFS) (e.g. [13]). The initial object is a leaf, represented as a small horizontal disk (Fig. 2.a). Atthe �rst iteration step, the initial object P0 is scaled by the IFS by a factor s=1/3 and this con-tracted leaf is duplicated k = 5 times as indicated on Fig. 2.b. In addition to these classicaltransformation of an IFS, the result is then dilated by a factor 3 to keep the size of a leafunchanged between two iteration steps, leading thus to object P2 (Fig. 2.b). This process isthen iterated using, at each step n, the object Pn�1 resulting from the previous step as the ini-tial object (Figs. 2.c and d). Note that the object obtained after the n-th iteration is scaled bya factor 3n compared to the output of a classical IFS (i.e. without the dilation step). Up to thisscaling factor, both objects have exactly the same spatial distribution of leaves and identicalscaling structure. They both approach the theoretical self-similar dimension Ds as n increases:Ds= Log kLog 1/s = Log 5Log 3 = 1.465 (11)

Figure 2. Theoretical plant canopies generated at the consecutive iteration steps of an IFS. After each iterationstep n, the result is dilated by a factor 3n to keep the size of a leaf constant.4



For each iteration step of the modi�ed IFS, the total leaf area ��2(Pn) is:��2(Pn) = l kn (12)where l is the surface of a leaf (proportional to �2).For each theoretical plant Pn, an extension represented by a convex envelop E(Pn) can becomputed (Fig. 3). The total surface of E(Pn), �2(E(Pn)), may be estimated numerically (seeSec. 3).

Figure 3. a. original leaf distribution. b. original distribution scaled by a factor s. c. envelop of the original dis-tribution of leaves. d. Envelop scaled by a factor s.The measures of both surfaces, the leaf and the envelop surface, can be compared by plottingLog(��2(Pn)) versus Log(�2(E(Pn))) for di�erent values of the scaling factor s (Fig. 4). As indi-cated by Eq. (7), the slope � of this graph characterizes the fractal dimension of the object:D~s=2�= 1.4786 (13)which is close to the theoretical value Ds= 1.465.

Figure 4. Log-Log regression between the envelop surface and the leaf surface of a series of theoretical canopies.5



3 COMPUTING THE FRACTAL DIMENSION OF APLANT USING ITS MULTISCALE ORGANIZATIONAND THE TWO SURFACE METHODThe two-surface method can be used to estimate the fractal dimension of real plant populations[10]. The method consists of comparing the total leaf area of each plant with the area of itscrown envelop. If this comparison is made for a high enough number of individuals with varyingsizes, a Log-Log regression between the two variables gives an estimate of d/D 0 (Eq. (7)). Asproposed by Zeide and Pfeifer, the method can be applied on a collection of plant individualswith su�cient size variability. In this case, the estimated fractal dimension characterizes thegeometry of an �average� plant corresponding to the class of all the individuals used in the esti-mation process. In this paper, we show how the two-surface method can be used to estimate thefractal dimension of a single individual.Plants appear as intricate organisms due to the existence of numerous components of dif-ferent types, called modules, in their structure [14], [15], [16]. At a particular level of organiza-tion, or scale , each individual plant can be decomposed into a set of modules of the same type,thus de�ning a particular plant modularity [17]. From �ner to coarser scales, classical moduletypes are metamers (nodes plus their internodes and their leaves), annual shoots (parts of aplant grown by a meristem during one year), axes (parts of a plant grown by a single bud),branches (branching systems grown by a bud and its descendants) or reiterated complexes(duplications of an adult plant borne by the plant itself). Plant modules are usually nested [17].Modules from a coarser scale are composed of modules of �ner scales, e.g . branches are com-posed of annual shoots and annual shoots are composed of metamers.Within a given plant modularity, modules may bear leaves or not. Leafy modules are alwayslocated at the topological periphery of the plant due to the characteristic way plants grow: i)the young leaves are systematically added on new shoots; ii) the new shoots are themselvesadded at the periphery of the existing structure, which is thus itself not modi�ed by this addi-tion; iii) older leaves may fall out, which may thus result in an absence of leaves in the innermodules of the plant.The possibility to apply the two surface method to a single plant stems from the followingremark. Throughout the plant, leafy modules form a collection of branching systems withvarying sizes. If the plant has a fractal nature, the relationship between the module size andtheir leaf area should respect Eq. (7).To test this hypothesis, we designed an adapted methodology, which consists of the followingsteps.Creating 3D representation of plants. Depending on the application, 3D plant representa-tion can be either obtained by simulations based on theoretical models [18], [19] or by 3D digi-tizing of real plants [20] and [21]. 3D digitizing consists in simultaneously recording tree geom-etry, i.e. the spatial location of tree components, and tree topology, i.e . the physical connec-tions between tree components. Spatial co-ordinates can be recorded by using an electromag-netic 3D digitizer [22] while tree topology can be described as a multiscale tree graph [17]. Thelatter allows the tree decomposition into components de�ned at several scales, and describesconnections between tree components in terms of succession and branching.Building multiscale representations. In the digitized plants, the �nest modularity (e.g . themetamer scale) is represented by a directed tree graph g = (V ; E), where V is a set of verticesrepresenting the plant components and E is a set of edges representing the adjacency betweenpairs of components (Fig. 5.a). We denote r the root vertex of g, i.e. the only vertex that hasno parent vertex. If a directed path connects vertex v to vertex v 0 in the tree graph g, v 0 iscalled a descendant of v and we write: v6 v 0. Note that relation 6 is a partial order relation onV . Given a vertex v of V , the sub-tree of g, rooted in v, and containing all the descendants of vin g, is called the complete subtree of v.A cut C in a tree-graph is a set of vertices of V such that i) none of them is an ancestor ofan other vertex in C, and ii) any terminal vertex (i.e. vertex with no descendant) in the treegraph is the descendant of a vertex from the cut (Fig. 5.b). We say that a cut C is greater thana cut C 0, if for any comparable vertices v 2 C and v 0 2 C 0, v 06 v and we write C 0 6 C. Given a6



cut C, the cut-forest f(C) of g is the set of complete subtrees of g such that the set of roots off(C) is C. Note that if a cut C 0 is greater than a cut C, then each tree of f(C) contains a treein f(C 0).In our approach, cuts are used to de�ne the roots of the leafy modules. The resulting forestis thus a partition of the plant leaves into leafy modules. To de�ne plant representations at dif-ferent scales, a set of cut-forests is de�ned by an ordered series of cuts in the tree-graph g.These cut-forests are nested and de�ne leafy modules at di�erent scales with di�erent types andsizes (Figs. 5.b and c). The cuts can be de�ned based on either a biological or an arti�cial crite-rion. Biological cuts would correspond to modules having a botanical basis, such as shoots oraxes. Arti�cial cuts would correspond to all other types of de�nitions, such as modules having amain stem with a �xed length or a given number of metamers.

Figure 5. De�nition of di�erent types of leafy modules using di�erent cuts. (a) tree-graph representing the planttopology at the �nest scale. Leaf vertices are represented in green. (b) a �ne-grain cut C 0 (vertices colored in red)de�ning small leafy modules. (c) a coarser cut C (C 6C 0) de�ning bigger groups of leaves.Computing convex envelops. Each cut forest de�nes a set of complete subtrees corre-sponding to leafy modules. In the 3D space, each leafy module is represented by a set of geo-metric models representing its leaves. The convex envelop of this set is computed using theQuickHull algorithm [23].

a b c dFigure 6. Leafy modules at di�erent scales in a theoretical tree (a). Leafy modules are de�ned here by biolog-ical cuts corresponding to branching order 2 (b), 1 (c) and 0 (d). Their convex envelop were computed empha-sizing how the overall plant geometry depends scale. 7



Figure 6 illustrates the result of these di�erent steps on a theoretical tree. The plant geom-etry is �rst generated in 3D (Fig. 6.a). Then, di�erent types of leafy modules are de�ned at dif-ferent scales, here corresponding to di�erent branching orders. This is carried out by identifyinga totally ordered set of cuts in the original tree-graph corresponding to the di�erent branchingorders. Convex envelops of these modules are then computed at di�erent scales (Figs. 6.b-d).The fractal dimension of the plant can then be estimated from the Log-Log relationshipbetween the surface of the convex envelop and the leaf area of each module. In addition, if themodules at a particular scale are su�ciently numerous and have varying lengths (which is notthe case on this theoretical example), a fractal dimension can be computed more locally for themodules at this scale. The resulting dimension coe�cients characterize the fractal nature of theplant at the considered scales. These coe�cients need not be a priori identical. High variationswould indicate a complex dependence of the structure upon scale, while weak variations wouldre�ect a self-similar organization of the structure.4 PEACH TREE FRACTAL DIMENSION4.1 Plant MaterialFour four-year peach trees (cv. August Red) were digitized in May 2001 in CTIFL Center,Nîmes, South of France, at shoot scale, one month after bud break. Plant digitizing made use ofsoftware 3A [24], which allows simultaneous recording of plant topology and geometry. Plantgeometry was recorded using a magnetic digitizing device 3SPACE Fastrak [22], which recordsthe coordinates of a pointer located on the plant organs. As described in [20], plant digitizingstarted at plant collar, i.e. the base of the trunk and each shoot was then described as a set ofsegments to take into account curvature and branching points. The resulting dataset was a mul-tiscale tree graph (MTG, [17]) including both multiscale topology and spatial co-ordinates oforgans (� 3.700 co-ordinates per tree).

Figure 7. Four peach trees whose wood structures have been digitized. The geometry of the branches and theleaves have been reconstructed using AMAPmod [25]. The mock up have been rendered with Pov-Ray [26].Di�erent types of leafy modules were considered in the measurement protocols (Fig. 8.a) :� Current Year Shoots (CYS). Wood structure of the current year that carry leaves. Theseplants are made up of several types of current year shoots:� Long shoots borne by one-year-old wood.8



� Spurs, which are short shoots borne by one-year-old wood.� Suckers, corresponding to vigorous branches borne by more than one-year-oldwood.� One-Year-Old Shoots (OYOS). They correspond to the fruiting units managed by thepeach tree growers.� Sca�olds . They correspond to the main branching systems borne by the short trunk ofthe trees.� Crowns . Whole leafy structure of the tree.The origin vertices of these leafy modules were marked in the tree graphs representing eachpeach tree topology in order to retrieve all these botanically-de�ned leafy modules in subsequenttreatments.Given the high number of leaves ( � 15; 000 per tree), digitizing all leaves was impossible.Leaves attached to CYS were therefore reconstructed from a set of empirical rules [27] (Fig.8.b). For this purpose, an additional set of thirty randomly sampled CYS (ten in each category -suckers; spurs and long shoots) were digitized at leaf level in order to assess the spatial distribu-tion of leaves in CYS. The number of leaves and the average area of a CYS were estimated froman allometric relationship with CYS length, which was established for each shoot type. Allleaves attached to a CYS were a�ected the same leaf area.Allometric relationships for leaf length and leaf width as a function of leaf area were derivedfor each shoot type from the set of 30 digitized CYS at leaf scale. They were used to calibrateleaf shape to make leaves obey allometry laws between area and dimensions [28]. Internodelengths were assumed to be constant, so that leaf insertion points were regularly spaced alongthe shoot segment according to leaf rank. Finally, leaves orientation angles with respect to theirbearing stem were assessed using distribution estimated from sampling.The reconstruction of the virtual 3D representation of the tree was made using AMAPmod,an open software for plant architecture modelling, [25] (Fig. 7). Envelop-based multiscale repre-sentations of the trees were then constructed using the method described in Sec. 3 on themarked leafy modules (Figs. 8.c-d).

Figure 8. Structure of the peachtrees: (a) Digitized wood segments with di�erent botanical types represented bycolors : red for old wood, yellow for one-year-old shoot, green for the suckers, purple for the long shoots and bluefor the short shoots. (b) 3D reconstruction of foliage using allometric relations between the length of shoots andtheir total leaf area. Construction of convex envelops corresponding to leafy modules de�ned by the (c) currentyear shoots, or (d) one-year-old shoots. 9



The multiscale structure of the peach trees is illustrated in Fig. 9 which shows volumic rep-resentations at the di�erent scales, i.e . corresponding for each tree to a set of ordered cutsde�ned by the di�erent types of leafy modules. The use of colors allows us to visualize the dis-tribution of di�erent types of elements at the same scale. On the top left picture, the shortshoots are represented in blue, the long shoots in purple and the suckers in green. The suckersare located in the center of the crown while the two others types are distributed in theperiphery. The spatial distribution of the di�erent branching systems and their entanglementcan be visually appreciated on these representations. For instance in the bottom left picture ofFig. 9, sca�olds appear regularly distributed in the crowns except for the �rst tree, where entan-gled systems can be observed.

Figure 9. Multiscale representation of the peachtrees. From left to right and top to bottom, representations ofthe leafy modules at the scale of current year shoots, one-year-old shoots, sca�olds and crowns. In the �rst pic-ture, three colors are used to make the di�erence between short shoots (blue), long shoots (purple) from suckers(green).Di�erent characteristics were computed for the di�erent types of leafy modules to charac-
10



terize them (Tab. 1). The number of elements grows exponentially at increasingly �ner scales(this variation is studied more precisely in Sec. 4.3). Leaf area density (i.e. ratio of leaf area toenvelop volume of any leafy module) is stable at the coarsest scales, then increases rapidly.Crowns Sca�olds OYOS CYS LeavesMean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.Nb Elements 1 0 5 0.8 99 8.9 1765 247.1 14705 823.4Element Surface (m2) 29.15 2.76 8.97 2.58 0.57 0.37 0.0585 0.0572 0.002 0.0005Element Volume (m3) 13.09 1.89 2.14 0.96 0.036 0.034 0.0012 0.0019Leaf Area Density 2.32 0.26 2.93 0.84 9.55 4.26 18.06 2.47Table 1. Number of elements per tree at the di�erent scales, with their mean surfaces (m2), mean volumes (m3)and leaf area density (m2/m3).The scale of the leafy modules can be further characterized by comparing their surfaces (Fig.10). Each level of organization contains elements with surfaces included in a certain range. OnFig. 10.a, the histogram of the leafy module surfaces per scale provides an estimate of the rangeof surfaces in each level of organization. Two main classes of leaf surface can be observed, corre-sponding to the two classes of shoots, i.e . long and short, which have di�erent allometric rela-tionships for leaf area reconstruction. A peak also appears in the CYS curve which correspondto a small variability of the short CYS. Figure 10.b shows the total leafy module area at the dif-ferent scales. The more detailed the representation, the larger the surface. However, at leaf scalea decrease of the total area is observed due to a di�erence in nature of the origin of the consid-ered surfaces: envelops essentially represent how the plant branching structures colonize spaceand are roughly independent of the leaf size, while leaf surfaces are independent of the plantbranching strategy.

Figure 10. Left: Histogram of the leafy module surfaces per levels of organization. Right: Total surface of the leafymodules as a function of scale.4.2 Estimating the Fractal Dimensions of Tree CrownsAll leafy modules at all scales were considered and the respective areas of their convex envelopE and leaf content L were computed. According to Eq. (7), if the tree crowns are fractal, theremust be an allometric relationship between these two quantities of the form:L= aEd/2 (14)Figure 11 shows the Log-Log diagrams between the leaf and the convex envelop areas of peach11



tree module for each individual tree. The slope of the regression gives us the values d2 . All thepoints, computed from the branching systems at di�erent biological scales and structural com-plexities, are aligned within each category of leafy modules (at CYS, OYOS and sca�old scalesrespectively) and between these categories showing a marked self-similarity among scales. Corre-sponding fractal dimensions estimated for the 4 peach trees are very stable (between 2.33 and2.38), with an overall regression coe�cient greater than 0.97, each slope coe�cient being signi�-cant at 0.05 level (Tab. 2, all scales).

Figure 11. Linear regression between the log of the convex envelops surfaces and the log of the leaves surfaces. Allbranching systems (leafy modules) at all scales are considered.At individual scales, it is possible to consider partial regressions, restricted to branching sys-tems of a particular type (instead of merging all branching systems at all scales). Due to thesize variation of the modules at each particular scale, the two surface method can still beapplied �locally�. The resulting fractal dimension can be interpreted as a �local dimension�,re�ecting the self-similarity of the leafy modules around the considered scale (Tab. 2). If theplant is self-similar, all these �local dimensions� will tend to be identical. In the opposite case,these di�erent coe�cients express a change in the structure of the plant as a function of scale.In the peach trees, we observe very close values at CYS, OYOS scales and when all scales areconsidered together (2.38 � 0.9), thus con�rming the marked self-similar organization of thepeach tree foliage. An exception to this constant scaling variation appears at the sca�olds scale12



when all trees are considered. At this scale, the local dimension is slightly higher (2.77) andre�ects a locally more dense occupation of space at the sca�olds scale.We must note in this method that the current year shoots are linear compounds whose leavesshapes and numbers are determined with allometric relationships depending of their lengths.Because of this reconstruction process, the convex envelop surface and leaves area of these smallbranching systems are highly correlated. This artefact of the reconstruction method in�uencesmainly the bottom part of the point clouds, leading to linear point sets. Other branching sys-tems than current year shoots have more irregular branching structure, leading to greater vari-ability in the point clouds.Peachtree 1 Peachtree 2 Peachtree 3 Peachtree 4 Alld r2 d r2 d r2 d r2 d r2CYS 2.44 0.96 2.44 0.97 2.42 0.97 2.42 0.97 2.44 0.97OYOS 2.47 0.91 2.30 0.92 2.44 0.94 2.29 0.93 2.35 0.92Sca�olds n.s. n.s. n.s. n.s. 2.77 0.82All scales 2.33 0.97 2.36 0.98 2.38 0.97 2.33 0.98 2.35 0.97Table 2. Fractal dimension of the di�erent trees computed for all types of branching systems and more locallyfor each type of branching system (CYS, OYOS and Sca�olds). The low number of sca�olds of individual treesdoes not allow to compute signi�cant regression coe�cients. However, these coe�cients can be computed whenall tree branching systems are merged together.4.3 Comparison with the Box-Counting MethodWe compared the two-surface with the box-counting method as a reference method which hasbeen extensively used to estimate fractal dimension of objects embedded in the plane. For thispurpose, we adapted the box-counting method to 3-D analysis by building 3-D grids dividingspace into voxels of size � and detecting intersection of 3-D objects with grids of varying voxelsize. 3-D objects consisted of triangular meshes and detection of intersections with the voxelgrid was carried out using the algorithm described in [29]. If N(�) denotes the number of inter-cepted voxels of size � the box-counting estimator of the fractal dimension D� of the object isde�ned as: D�= lim�!0 lnN(�)ln 1� (15)In practice, only a �nite range of scales are considered between �min and �max [4]. �min is chosenof the order of magnitude of a plant leaf, while �max typically corresponds to the size of theplant bounding box. Several grid shifts and rotations were tested with respect to the plant andgrids corresponding to the minimum number of intercepted boxes were considered for the fractaldimension estimation. Results of this method on the di�erent peachtrees are given in Tab. 3.These results are very close to the estimates provided by the two surface method (Tab. 2, themaximum di�erence between the two estimated fractal coe�cients being less than 0.04). Bothmethods thus give consistent results.Peachtree 1 Peachtree 2 Peachtree 3 Peachtree 42.37 2.39 2.36 2.36Table 3. Fractal dimension of the peachtrees computed using the Box-Counting method.Interestingly, the developed methodology made it possible to compute the fractal dimensionof peach trees using a variant of the box-counting method, where boxes correspond to foliageenvelops. Indeed, the computed envelops at the di�erent scales represent di�erent covers of theplant foliage at di�erent scales. Let us denote � the average diameter of envelops at a given scale(resp. CYS, OYOS, Sca�old and Crowns) and N(�) the number of envelops at this scale. Inpractice, � is estimated as the square root of the average envelop surface at each scale (Tab. 1Element Surface). The fractal dimension of the plant can thus be estimated by Eq. (15) as well[12]. We tested this estimation method with the envelops computed for the two-surface method.13



Results are presented in Fig. 12. Estimated fractal dimensions between 2.36 and 2.39 are invery good accordance with both the classical box-counting method and with the two surfacemethod.

Figure 12. Variant of the box counting method using envelops computed in the two-surface method as boxes.Log-Log diagrams between N(�) and 1/� are shown for the 4 peach trees. Estimated fractal dimensions are com-prised between 2.36 and 2.39.5 CONCLUSIONIn this paper, we presented a method derived from the two-surface method to estimate thefractal dimension of plant foliage. This method consists of i) digitizing in 3D the plant topologyand geometry, ii) extracting di�erent types of leafy modules of di�erent sizes from the plantdatabase, using the topological information iii) comparing the total leaf area and the convexenvelop area of these leafy modules which is computed from the digitized geometric information.The method was applied to a set of 4 digitized peach trees and gave similar estimates of thefractal dimension for the 4 trees. We also estimated the fractal dimension of the same treesusing the classical box-counting method adapted to 3D-geometry, and a variant of this methodbased on envelops, which both gave results consistent with our method. In addition to an overallfractal dimension coe�cient, the method enabled us to estimate �local dimensions�, i.e. fractaldimension coe�cients that correspond to particular types of plant components at di�erent levelsof organization. Such coe�cients make it possible to characterize the variation of the fractalnature of the plant throughout scales. They could be of much value in the botanic analysis of14
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