Estimating the fractal dimension of plants using
the two-surface method. An analysis based on 3D-
digitized tree foliage.
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Abstract

In this paper, we present a method to estimate the fractal dimension of plant foliage in 3-
dimensions (3D). This method is derived from the two-surface method introduced in the
90’s to estimate the fractal dimension of tree species from field measurements on collec-
tions of trees. Here we adapted the method to individual plants. The multiscale topology
and geometry of the plant must first be digitized in 3D. Then leafy branching systems of
different sizes are constructed from the plant database, using the topological information.
3D convex envelops are then computed for each leafy branching system. The fractal
dimension of the plant is finally estimated by comparing the total leaf area and the convex
envelop area of these leafy modules. The method was assessed on a set of 4 peach trees
entirely digitized at shoot scale. Results show that the peach trees have a marked self-sim-
ilar foliage with fractal dimension close to 2.4.

Keywords: Fractal dimension, two-surface method, box counting method, plant archi-
tecture, foliage distribution, multiscale analysis.

1 INTRODUCTION

Plant geometry is a key factor in the modeling of plant functioning and growth. It represents
the exchange interface between internal physiological processes and the environment. This inter-
action may concern either the abiotic (resource capture, heat dissipation) or the biotic (disease
propagation, insect movement) environment. Characterizing the geometry of plants is thus a
challenging problem in the functional-structural modeling of plants [1].

Contrary to most handcrafted objects, the geometry of many natural objects is very irregular
and presents intricate structures at different scales. This is particularly true for plants that may
show, depending on the species, complex and irregular crown shapes or spatial distributions of
leaves [2]. As illustrated in [3], fractal geometry [4] offers a useful framework to study the geom-
etry of such irregular objects in biology.

A few studies have already been made in this direction to analyze the irregularity of plants
by determining their supposed fractal dimension. This parameter is of major importance in the
study of plant architecture since it characterizes the way plants physically penetrate into the 3D
space. Most of these studies were carried out on woody structures, and especially on root sys-
tems using the classical box-counting method [5],[6],[7]. Only a few works have addressed the
problem of determining the fractal dimension of plant foliage [8],[9]. However, none of these
methods were applied on 3D foliage structures. Morse et al. for instance [8] used the box-
counting method on plant foliage pictures to estimate the fractal dimension of real plants and
used this result to explain different distributions of anthropods populations at different scales in
the vegetation. A different method was introduced in [10],[11], where the fractal dimension of



forest tree species was estimated from estimation of leaf area and crown surface of individual
trees. This two-surface method relies on the assumption that plants are self-similar organisms.
In this paper, we consider the problem of estimating the fractal dimension of an individual
tree using a method derived from the two-surface method. We first review the theoretical
aspects of the two-surface method and illustrate it on theoretical examples. We then present a
multiscale model of plant geometry and show how this model can be used to compute plant
envelops at different scales. These algorithms are then used to apply the two-surface method to
3D-digitized plant foliages (peach trees) and derive their individual fractal dimension.

2 THE TWO-SURFACE METHOD

The two-surface method [10] exploits a scaling property of fractal objects for estimating their
fractal dimension. It is based on the idea that, through magnification or reduction, the relation-
ship between the size of the envelop of an object (i.e. its diameter, surface or volume) and the
measure at scale § of its contents follow particular scaling rules that depend on the fractal
dimension D of the object. This relationship links the fractal contents of an object to its non-
fractal envelop. It is thus symmetrical to the length-area relationship discussed in [4] which links
the measure of a non-fractal object with its fractal boundary [10].

Let us consider an object P and a unit of measurement of dimension D of size § (D =1 for a
yardstick, D = 2 for a tile or D = 3 for a paving volume). We call u}’(P) the measure of P at
scale §, obtained by tiling P with the paving units of size § and dimension D, and by summing
up the measures of these Ns(P) tiles. By construction, ) (P) ignores details of size less than &
[12].

For many objects, including regular and fractal objects, the number of tiles Ns(P) behaves
as a power law as § decreases to 0:

Ns(P)ocd— (1)

meaning that Ns(P) gets proportional to 6~ as § tends to 0. The power value, d, can be identi-
fied with the dimension of the object [4]. Since all the tiles have the same elementary measure,
67, the measure pf(P) can thus be expressed as:

us (P) = Ns(P)§” oc 6”1, (2)

This expression shows that the measure of P at scale d gets independent of the measurement
unit § when D =d, i.e. when the integer dimension of the paving unit matches the dimension of
the object. Tn such a case, we shall simply note uf(P)= uP(P).

For fractal objects of dimension d, this measure has the following important property. If the
object P is dilated by a factor ), its measure is multiplied by a factor A% [12]. This scaling prop-
erty of fractal objects is at the origin of the two-surface method. It relies on the idea that the
measure at scale § of an object dilated by a factor A is identical to the measure at scale % of the
initial, non-dilated, object :

WP(NP) = Ny(AP)5 = No (P) 57 )
Hence,
pP(\P) o (;) 5D = a5 (4)

which finally yields the scaling property:

uP(AP) =\ 7 (P). (5)

Now, let us consider a regular object £(P), called the extension of P, characterizing the amount
of space occupied by P. £(P) can be defined for instance as a diameter of P, i.e. a straight line
segment between two given points of P whose size equals the maximum Euclidean distance
between any two points of P, or as the minimal convex envelop containing P, etc. Being reg-
ular, £(P) has an integer dimension D'. Tts measure p” (£(P)) is thus independent of the mea-
surement unit § and verifies the scaling property :

1

uP'AE(P) = A" P (£(P)). (6)



By eliminating A between Eqgs. 5 and 6 we get:

pPOP) = (—“D 2 <P))> e

uP(E(P))
Denoting:
p3'(P)
a= .
u”(E(P))PT
we get the two-surface Eq.:
nEAP)=ap” (ENP)>T @

Equation (7) holds for any value of A. The term a only depends on measures of the initial
object P and its extension. It is independent of the dilation factor A. Equation (7) expresses
that the measure at scale § of an object dilated by any factor A, is proportional to the measure
of the extension of the dilated object to the power d/D’, d being the fractal dimension of P and
D' the dimension of the paving unit. As noted by Zeide and Pfeifer [10], if both detailed sur-
faces at scale § and extension surfaces can be measured or estimated for a family of fractal
objects with varying sizes, this Eq. makes it possible to estimate the fractal dimension of this
family by linear regression between the Log values of both surfaces.

Example 1. Let us first illustrate this property on a simple example. Consider the von Koch
curve C illustrated in Fig. 1. To measure the extent of C at different dilation scales, we choose
a unit of measurement § of dimension D = 1 (§ is a yardstick) and we consider the following
dilations of C: Co=C,C, =3C,Cy=9C,..., C,,=3"C. At dilation scale 0 (Fig. 1.Cp), ui(Co) =

26 =1y, the curve Cy looks like a straight segment.

G,

C, diameter

Figure 1. a series of dilated von Koch curves. Using a fixed measurement unit §, the observer can see an
increasing number of details with increasing dilation factors (from Cp to C3). However the increase rate of the
number of details is different from the increase rate of the curve diameter: when the diameter is multiplied by 3,
the number of details is multiplied by 4.

At dilation scale 1, the curve C; corresponds to the curve Cy dilated 3 times. New details
appear since they are now bigger than unit § (Fig. 1.C). The new measure of the curve is
ps(Ch) = 4lp. At dilation scale 2, again, new details appear in Cs leading to a length p}(Cs) =
161y (Fig. 1.C5). At dilation scale n, the length of the curve measured with unit § would be:

115(Cn) = 4" lo. (8)



Now, let us consider the amount of space occupied by these objects. For the von Koch curve, we
define the extension £(C,) of C, as the horizontal straight line encompassing the entire curve
from left to right. The size of the extension, u'(£(C,,)) is thus simply the diameter of the curve.
At the different dilation scales, we have p'(£(Co)) = lo, u'(E(C1)) = 3lo, u'(E(Cs)) = 91, ... ,
and more generally:

pH(E(Cn)) =3"lo. (9)

At dilation scale n, the object C' is dilated by a factor A = 3™, and the relationship between the
total length, p}(C,) and the size of its extension, p'(£(C,)), can be obtained by eliminating n
in the two preceding Egs.:

Log 4

p5(Cn) = ! (E(Cn)) =, (10)

Log 4
Log 3
between the measure of C,, at scale §, ui(C,) (here the length at scale §) and the measure of its
extension (reflecting the space occupation of the object). The actual length of the object at
scale § grows quicker than that of its extension throughout successive dilations. Note that, in a
dual perspective, successive contractions of the measurement unit d (do—lg/2 at scale 0, d;—1y/6
at scale 1, 0,,=1/(2.3") at scale n) would lead exactly to the same relationship.

where the exponent is the curve fractal dimension. This Eq. expresses a direct relationship

Example 2. Let us consider a second theoretical example, closer to plant applications (Fig. 2).
A plant-like object is generated recursively with a slightly modified iterated function system
(IFS) (e.g. [13]). The initial object is a leaf, represented as a small horizontal disk (Fig. 2.a). At
the first iteration step, the initial object P, is scaled by the IFS by a factor s =1/3 and this con-
tracted leaf is duplicated k& = 5 times as indicated on Fig. 2.b. In addition to these classical
transformation of an IFS, the result is then dilated by a factor 3 to keep the size of a leaf
unchanged between two iteration steps, leading thus to object P, (Fig. 2.b). This process is
then iterated using, at each step n, the object P,_; resulting from the previous step as the ini-
tial object (Figs. 2.c and d). Note that the object obtained after the n-th iteration is scaled by
a factor 3™ compared to the output of a classical IFS (i.e. without the dilation step). Up to this
scaling factor, both objects have exactly the same spatial distribution of leaves and identical
scaling structure. They both approach the theoretical self-similar dimension Dy as n increases:

_ Logk _ Log5
® Logl/s Log3

=1.465 (11)

Figure 2. Theoretical plant canopies generated at the consecutive iteration steps of an IFS. After each iteration
step m, the result is dilated by a factor 3™ to keep the size of a leaf constant.



For each iteration step of the modified IFS, the total leaf area p3(P,) is:
B3P =1k (12)

where [ is the surface of a leaf (proportional to §%).

For each theoretical plant P,, an extension represented by a convex envelop £(P,) can be
computed (Fig. 3). The total surface of £(P,), u*(£(P,)), may be estimated numerically (see
Sec. 3).
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Figure 3. a. original leaf distribution. b. original distribution scaled by a factor s. c. envelop of the original dis-

tribution of leaves. d. Envelop scaled by a factor s.

The measures of both surfaces, the leaf and the envelop surface, can be compared by plotting
Log(u3(P,)) versus Log(u?(£(P,))) for different values of the scaling factor s (Fig. 4). As indi-
cated by Eq. (7), the slope « of this graph characterizes the fractal dimension of the object:

D,=2a=1.4786 (13)

which is close to the theoretical value D, =1.465.

12 -
5 = 07393+ 1 7506
G 11 A e
2
10
3 7
8 -
? T T T T 1
7 8 9 10 1 12

LogEnvelopdutface)

Figure 4. Log-Log regression between the envelop surface and the leaf surface of a series of theoretical canopies.



3 COMPUTING THE FRACTAL DIMENSION OF A
PLANT USING ITS MULTISCALE ORGANIZATION
AND THE TWO SURFACE METHOD

The two-surface method can be used to estimate the fractal dimension of real plant populations
[10]. The method consists of comparing the total leaf area of each plant with the area of its
crown envelop. If this comparison is made for a high enough number of individuals with varying
sizes, a Log-Log regression between the two variables gives an estimate of d/D' (Eq. (7)). As
proposed by Zeide and Pfeifer, the method can be applied on a collection of plant individuals
with sufficient size variability. In this case, the estimated fractal dimension characterizes the
geometry of an “average” plant corresponding to the class of all the individuals used in the esti-
mation process. In this paper, we show how the two-surface method can be used to estimate the
fractal dimension of a single individual.

Plants appear as intricate organisms due to the existence of numerous components of dif-
ferent types, called modules, in their structure [14], [15], [16]. At a particular level of organiza-
tion, or scale, each individual plant can be decomposed into a set of modules of the same type,
thus defining a particular plant modularity [17]. From finer to coarser scales, classical module
types are metamers (nodes plus their internodes and their leaves), annual shoots (parts of a
plant grown by a meristem during one year), axes (parts of a plant grown by a single bud),
branches (branching systems grown by a bud and its descendants) or reiterated complexes
(duplications of an adult plant borne by the plant itself). Plant modules are usually nested [17].
Modules from a coarser scale are composed of modules of finer scales, e.g. branches are com-
posed of annual shoots and annual shoots are composed of metamers.

Within a given plant modularity, modules may bear leaves or not. Leafy modules are always
located at the topological periphery of the plant due to the characteristic way plants grow: i)
the young leaves are systematically added on new shoots; ii) the new shoots are themselves
added at the periphery of the existing structure, which is thus itself not modified by this addi-
tion; iii) older leaves may fall out, which may thus result in an absence of leaves in the inner
modules of the plant.

The possibility to apply the two surface method to a single plant stems from the following
remark. Throughout the plant, leafy modules form a collection of branching systems with
varying sizes. If the plant has a fractal nature, the relationship between the module size and
their leaf area should respect Eq. (7).

To test this hypothesis, we designed an adapted methodology, which consists of the following
steps.

Creating 3D representation of plants. Depending on the application, 3D plant representa-
tion can be either obtained by simulations based on theoretical models [18], [19] or by 3D digi-
tizing of real plants [20] and [21]. 3D digitizing consists in simultaneously recording tree geom-
etry, i.e. the spatial location of tree components, and tree topology, i.e. the physical connec-
tions between tree components. Spatial co-ordinates can be recorded by using an electromag-
netic 3D digitizer [22] while tree topology can be described as a multiscale tree graph [17]. The
latter allows the tree decomposition into components defined at several scales, and describes
connections between tree components in terms of succession and branching.

Building multiscale representations. In the digitized plants, the finest modularity (e.g. the
metamer scale) is represented by a directed tree graph g = (V, E), where V is a set of vertices
representing the plant components and FE is a set of edges representing the adjacency between
pairs of components (Fig. 5.a). We denote 7 the root vertex of g, i.e. the only vertex that has
no parent vertex. If a directed path connects vertex v to vertex v’ in the tree graph g, v’ is
called a descendant of v and we write: v <v'. Note that relation < is a partial order relation on
V. Given a vertex v of V| the sub-tree of g, rooted in v, and containing all the descendants of v
in g, is called the complete subtree of v.

A cut C in a tree-graph is a set of vertices of V' such that 4) none of them is an ancestor of
an other vertex in C, and i) any terminal vertex (i.e. vertex with no descendant) in the tree
graph is the descendant of a vertex from the cut (Fig. 5.b). We say that a cut C is greater than
a cut C', if for any comparable vertices v € C and v’ € C’, v' < v and we write C’' < C. Given a



cut C, the cut-forest f(C) of g is the set of complete subtrees of g such that the set of roots of
f(C) is C. Note that if a cut C' is greater than a cut C, then each tree of f(C) contains a tree
in £(C).

In our approach, cuts are used to define the roots of the leafy modules. The resulting forest
is thus a partition of the plant leaves into leafy modules. To define plant representations at dif-
ferent scales, a set of cut-forests is defined by an ordered series of cuts in the tree-graph g.
These cut-forests are nested and define leafy modules at different scales with different types and
sizes (Figs. 5.b and c¢). The cuts can be defined based on either a biological or an artificial crite-
rion. Biological cuts would correspond to modules having a botanical basis, such as shoots or
axes. Artificial cuts would correspond to all other types of definitions, such as modules having a
main stem with a fixed length or a given number of metamers.

'

a b C

Figure 5. Definition of different types of leafy modules using different cuts. (a) tree-graph representing the plant
topology at the finest scale. Leaf vertices are represented in green. (b) a fine-grain cut C' (vertices colored in red)
defining small leafy modules. (c) a coarser cut C (C < C’) defining bigger groups of leaves.

Computing convex envelops. Each cut forest defines a set of complete subtrees corre-
sponding to leafy modules. In the 3D space, each leafy module is represented by a set of geo-
metric models representing its leaves. The convex envelop of this set is computed using the
QuickHull algorithm [23].

Figure 6. Leafy modules at different scales in a theoretical tree (a). Leafy modules are defined here by biolog-
ical cuts corresponding to branching order 2 (b), 1 (c¢) and 0 (d). Their convex envelop were computed empha-
sizing how the overall plant geometry depends scale.



Figure 6 illustrates the result of these different steps on a theoretical tree. The plant geom-
etry is first generated in 3D (Fig. 6.a). Then, different types of leafy modules are defined at dif-
ferent scales, here corresponding to different branching orders. This is carried out by identifying
a totally ordered set of cuts in the original tree-graph corresponding to the different branching
orders. Convex envelops of these modules are then computed at different scales (Figs. 6.b-d).

The fractal dimension of the plant can then be estimated from the Log-Log relationship
between the surface of the convex envelop and the leaf area of each module. In addition, if the
modules at a particular scale are sufficiently numerous and have varying lengths (which is not
the case on this theoretical example), a fractal dimension can be computed more locally for the
modules at this scale. The resulting dimension coefficients characterize the fractal nature of the
plant at the considered scales. These coefficients need not be a priori identical. High variations
would indicate a complex dependence of the structure upon scale, while weak variations would
reflect a self-similar organization of the structure.

4 PEACH TREE FRACTAL DIMENSION

4.1 Plant Material

Four four-year peach trees (cv. August Red) were digitized in May 2001 in CTIFL Center,
Nimes, South of France, at shoot scale, one month after bud break. Plant digitizing made use of
software 3A [24], which allows simultaneous recording of plant topology and geometry. Plant
geometry was recorded using a magnetic digitizing device 3SPACE Fastrak [22]|, which records
the coordinates of a pointer located on the plant organs. As described in [20], plant digitizing
started at plant collar, i.e. the base of the trunk and each shoot was then described as a set of
segments to take into account curvature and branching points. The resulting dataset was a mul-
tiscale tree graph (MTGQG, [17]) including both multiscale topology and spatial co-ordinates of
organs (~ 3.700 co-ordinates per tree).

Figure 7. Four peach trees whose wood structures have been digitized. The geometry of the branches and the
leaves have been reconstructed using AMAPmod [25]. The mock up have been rendered with Pov-Ray [26].

Different types of leafy modules were considered in the measurement protocols (Fig. 8.a) :

e Current Year Shoots (CYS). Wood structure of the current year that carry leaves. These
plants are made up of several types of current year shoots:

e Long shoots borne by one-year-old wood.



e Spurs, which are short shoots borne by one-year-old wood.

e Suckers, corresponding to vigorous branches borne by more than one-year-old
wood.

e One-Year-Old Shoots (OYOS). They correspond to the fruiting units managed by the
peach tree growers.

e Scaffolds. They correspond to the main branching systems borne by the short trunk of
the trees.

e  (Crowns. Whole leafy structure of the tree.

The origin vertices of these leafy modules were marked in the tree graphs representing each
peach tree topology in order to retrieve all these botanically-defined leafy modules in subsequent
treatments.

Given the high number of leaves ( ~ 15, 000 per tree), digitizing all leaves was impossible.
Leaves attached to CYS were therefore reconstructed from a set of empirical rules [27] (Fig.
8.b). For this purpose, an additional set of thirty randomly sampled CYS (ten in each category -
suckers; spurs and long shoots) were digitized at leaf level in order to assess the spatial distribu-
tion of leaves in CYS. The number of leaves and the average area of a CYS were estimated from
an allometric relationship with CYS length, which was established for each shoot type. All
leaves attached to a CYS were affected the same leaf area.

Allometric relationships for leaf length and leaf width as a function of leaf area were derived
for each shoot type from the set of 30 digitized CYS at leaf scale. They were used to calibrate
leaf shape to make leaves obey allometry laws between area and dimensions [28]. Internode
lengths were assumed to be constant, so that leaf insertion points were regularly spaced along
the shoot segment according to leaf rank. Finally, leaves orientation angles with respect to their
bearing stem were assessed using distribution estimated from sampling.

The reconstruction of the virtual 3D representation of the tree was made using AMAPmod,
an open software for plant architecture modelling, [25] (Fig. 7). Envelop-based multiscale repre-
sentations of the trees were then constructed using the method described in Sec. 3 on the
marked leafy modules (Figs. 8.c-d).

Figure 8. Structure of the peachtrees: (a) Digitized wood segments with different botanical types represented by
colors : red for old wood, yellow for one-year-old shoot, green for the suckers, purple for the long shoots and blue
for the short shoots. (b) 3D reconstruction of foliage using allometric relations between the length of shoots and
their total leaf area. Construction of convex envelops corresponding to leafy modules defined by the (c¢) current

year shoots, or (d) one-year-old shoots.



The multiscale structure of the peach trees is illustrated in Fig. 9 which shows volumic rep-
resentations at the different scales, i.e. corresponding for each tree to a set of ordered cuts
defined by the different types of leafy modules. The use of colors allows us to visualize the dis-
tribution of different types of elements at the same scale. On the top left picture, the short
shoots are represented in blue, the long shoots in purple and the suckers in green. The suckers
are located in the center of the crown while the two others types are distributed in the
periphery. The spatial distribution of the different branching systems and their entanglement
can be visually appreciated on these representations. For instance in the bottom left picture of
Fig. 9, scaffolds appear regularly distributed in the crowns except for the first tree, where entan-
gled systems can be observed.

Figure 9. Multiscale representation of the peachtrees. From left to right and top to bottom, representations of
the leafy modules at the scale of current year shoots, one-year-old shoots, scaffolds and crowns. In the first pic-
ture, three colors are used to make the difference between short shoots (blue), long shoots (purple) from suckers

(green).

Different characteristics were computed for the different types of leafy modules to charac-
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terize them (Tab. 1). The number of elements grows exponentially at increasingly finer scales
(this variation is studied more precisely in Sec. 4.3). Leaf area density (i.e. ratio of leaf area to
envelop volume of any leafy module) is stable at the coarsest scales, then increases rapidly.

Crowns Scaffolds 0YOS CYS Leaves
Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.
Nb Elements 1 0 5 0.8 99 8.9 1765 247.1 14705 823.4

Element Surface (m?) 29.15 2.76 8.97 2.58 0.57 0.37 0.0585 0.0572 0.002 0.0005
Element Volume (m3) 13.09 1.89 2.14 0.96 0.036 0.034 0.0012 0.0019
Leaf Area Density 232 026 293 0.84 9.55 4.26 18.06 2.47

Table 1. Number of elements per tree at the different scales, with their mean surfaces (m2), mean volumes (m3)
and leaf area density (m?2/m?).

The scale of the leafy modules can be further characterized by comparing their surfaces (Fig.
10). Each level of organization contains elements with surfaces included in a certain range. On
Fig. 10.a, the histogram of the leafy module surfaces per scale provides an estimate of the range
of surfaces in each level of organization. Two main classes of leaf surface can be observed, corre-
sponding to the two classes of shoots, i.e. long and short, which have different allometric rela-
tionships for leaf area reconstruction. A peak also appears in the CYS curve which correspond
to a small variability of the short CYS. Figure 10.b shows the total leafy module area at the dif-
ferent scales. The more detailed the representation, the larger the surface. However, at leaf scale
a decrease of the total area is observed due to a difference in nature of the origin of the consid-
ered surfaces: envelops essentially represent how the plant branching structures colonize space
and are roughly independent of the leaf size, while leaf surfaces are independent of the plant
branching strategy.
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Figure 10. Left: Histogram of the leafy module surfaces per levels of organization. Right: Total surface of the leafy
modules as a function of scale.

4.2 Estimating the Fractal Dimensions of Tree Crowns

All leafy modules at all scales were considered and the respective areas of their convex envelop
E and leaf content L were computed. According to Eq. (7), if the tree crowns are fractal, there
must be an allometric relationship between these two quantities of the form:

L=aFE? (14)

Figure 11 shows the Log-Log diagrams between the leaf and the convex envelop areas of peach
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tree module for each individual tree. The slope of the regression gives us the values g. All the
points, computed from the branching systems at different biological scales and structural com-
plexities, are aligned within each category of leafy modules (at CYS, OYOS and scaffold scales
respectively) and between these categories showing a marked self-similarity among scales. Corre-
sponding fractal dimensions estimated for the 4 peach trees are very stable (between 2.33 and
2.38), with an overall regression coefficient greater than 0.97, each slope coefficient being signifi-
cant at 0.05 level (Tab. 2, all scales).
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Figure 11. Linear regression between the log of the convex envelops surfaces and the log of the leaves surfaces. All

branching systems (leafy modules) at all scales are considered.

At individual scales, it is possible to consider partial regressions, restricted to branching sys-
tems of a particular type (instead of merging all branching systems at all scales). Due to the
size variation of the modules at each particular scale, the two surface method can still be
applied “locally”. The resulting fractal dimension can be interpreted as a “local dimension”,
reflecting the self-similarity of the leafy modules around the considered scale (Tab. 2). If the
plant is self-similar, all these “local dimensions” will tend to be identical. In the opposite case,
these different coefficients express a change in the structure of the plant as a function of scale.
In the peach trees, we observe very close values at CYS, OYOS scales and when all scales are
considered together (2.38 £ 0.9), thus confirming the marked self-similar organization of the
peach tree foliage. An exception to this constant scaling variation appears at the scaffolds scale
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when all trees are considered. At this scale, the local dimension is slightly higher (2.77) and
reflects a locally more dense occupation of space at the scaffolds scale.

We must note in this method that the current year shoots are linear compounds whose leaves
shapes and numbers are determined with allometric relationships depending of their lengths.
Because of this reconstruction process, the convex envelop surface and leaves area of these small
branching systems are highly correlated. This artefact of the reconstruction method influences
mainly the bottom part of the point clouds, leading to linear point sets. Other branching sys-
tems than current year shoots have more irregular branching structure, leading to greater vari-
ability in the point clouds.

Peachtree 1 Peachtree 2 Peachtree 3 Peachtree 4 All
d r? d r2 d r2 d r2 d r?
CYS 244 0.96 244 0.97 242 097 242 097 244 0.97
0YOS 247 091 230 0.92 244 094 229 093 2.35 0.92
Scaffolds n.s. n.s. n.s. n.s. 2.77 0.82

All scales 2.33 097 236 0.98 238 097 233 098 235 0.97

Table 2. Fractal dimension of the different trees computed for all types of branching systems and more locally
for each type of branching system (CYS, OYOS and Scaffolds). The low number of scaffolds of individual trees
does not allow to compute significant regression coefficients. However, these coefficients can be computed when
all tree branching systems are merged together.

4.3 Comparison with the Box-Counting Method

We compared the two-surface with the box-counting method as a reference method which has
been extensively used to estimate fractal dimension of objects embedded in the plane. For this
purpose, we adapted the box-counting method to 3-D analysis by building 3-D grids dividing
space into voxels of size § and detecting intersection of 3-D objects with grids of varying voxel
size. 3-D objects consisted of triangular meshes and detection of intersections with the voxel
grid was carried out using the algorithm described in [29]. If N(J) denotes the number of inter-
cepted voxels of size § the box-counting estimator of the fractal dimension Dj of the object is
defined as:
Ds=lim m (15)
§—0 In=
s
In practice, only a finite range of scales are considered between dmin and dmax [4]. dmin is chosen
of the order of magnitude of a plant leaf, while dy., typically corresponds to the size of the
plant bounding box. Several grid shifts and rotations were tested with respect to the plant and
grids corresponding to the minimum number of intercepted boxes were considered for the fractal
dimension estimation. Results of this method on the different peachtrees are given in Tab. 3.
These results are very close to the estimates provided by the two surface method (Tab. 2, the
maximum difference between the two estimated fractal coefficients being less than 0.04). Both
methods thus give consistent results.

Peachtree 1 Peachtree 2 Peachtree 3 Peachtree 4
2.37 2.39 2.36 2.36

Table 3. Fractal dimension of the peachtrees computed using the Box-Counting method.

Interestingly, the developed methodology made it possible to compute the fractal dimension
of peach trees using a variant of the box-counting method, where boxes correspond to foliage
envelops. Indeed, the computed envelops at the different scales represent different covers of the
plant foliage at different scales. Let us denote § the average diameter of envelops at a given scale
(resp. CYS, OYOS, Scaffold and Crowns) and N(d) the number of envelops at this scale. In
practice, ¢ is estimated as the square root of the average envelop surface at each scale (Tab. 1
Element Surface). The fractal dimension of the plant can thus be estimated by Eq. (15) as well
[12]. We tested this estimation method with the envelops computed for the two-surface method.
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Results are presented in Fig. 12. Estimated fractal dimensions between 2.36 and 2.39 are in
very good accordance with both the classical box-counting method and with the two surface
method.
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Figure 12. Variant of the box counting method using envelops computed in the two-surface method as boxes.
Log-Log diagrams between N(§) and 1/6 are shown for the 4 peach trees. Estimated fractal dimensions are com-
prised between 2.36 and 2.39.

5 CONCLUSION

In this paper, we presented a method derived from the two-surface method to estimate the
fractal dimension of plant foliage. This method consists of i) digitizing in 3D the plant topology
and geometry, ii) extracting different types of leafy modules of different sizes from the plant
database, using the topological information iii) comparing the total leaf area and the convex
envelop area of these leafy modules which is computed from the digitized geometric information.
The method was applied to a set of 4 digitized peach trees and gave similar estimates of the
fractal dimension for the 4 trees. We also estimated the fractal dimension of the same trees
using the classical box-counting method adapted to 3D-geometry, and a variant of this method
based on envelops, which both gave results consistent with our method. In addition to an overall
fractal dimension coefficient, the method enabled us to estimate “local dimensions”, i.e. fractal
dimension coefficients that correspond to particular types of plant components at different levels
of organization. Such coefficients make it possible to characterize the variation of the fractal
nature of the plant throughout scales. They could be of much value in the botanic analysis of
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plant architecture and ecophysiological models. This work suggests that methods based on
envelop computing are applicable to plant architecture analysis. In particular, they can over-
come limitations of classical method such as the lack of accuracy of the standard box counting
method [30]. More generally, by exploiting the topological organization of plants at different
scales, these envelop-based methods are adapted to explore the multiscale nature of plants.
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